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Abstract 

For some time now the elastic T-term has been proposed as a secondary "biaxiality" parameter, to be used in 
conjunction with the stress intensity factor, K1, or the path independent integral J, as the primary parameter for 
the characterization of crack tip fracture states. At a recent conference a theorem due to Eshelby was presented 
[1]. The theorem provides a convenient method of calculating the T-term, obtained by evaluating appropriate J 
contour integrals. Examples of analytical, semi-analytical and numerical applications were included. Here, some 
additional finite element applications, using a fairly simple idealization, are presented in greater detail and 
comparisons of the results of the different independent analyses available so far are made, giving further 
evidence of the practical utility of Eshelby's method. New results on double-edge notched specimens are also 
included. 

1. Introduction 

A basic understanding of fundamental processes causing fracture in solids is the main 
theoretical aim of fracture mechanics but an important engineering requirement is the 
establishment of a continuum model providing calculable and measurable parameters 
which can characterize unambiguously such fracture events as the initiation of crack 
growth and the onset of unstable crack propagation under monotonically increasing 
quasi-static mode I loading or which can be used in quantitative or qualitative descrip- 
tions of Fatigue Crack Propagation (FTP) under various types and modes of loading. 

The traditional Linear Elastic Fracture Mechanics (LEFM) parameters [2] such as 
Griffith's energy release rate G, equal to Rice's path independent integral J and also to 
the first component of Eshelby's energy momentum tensor, Irwin's mode I stress intensity 
factor K 1 or the Crack Opening Displacement (COD) are uniquely interrelated; any one 
of them can be used to characterize fracture in this ideal, but practically nonexistent, 
linear elastic material. A more realistic model applicable to most engineering materials 
assumes that fracture is preceded by plastic flow or other irreversible processes in the 
crack tip region even in the case of brittle or quasi-brittle materials under Small Scale 
Yielding (SSY) conditions, since the infinite stress due to the singularity emerging from a 
LEFM analysis is not physically admissible. In addition, the present trend is to stipulate 
near the crack tip a "process zone" in which the constitutive relations obeyed by the bulk 
of the elastic-plastic material are not applicable and in which a number of latent fracture 
micromechanisms can become active [3]. In materials exhibiting some ductility the process 
zone is deeply imbedded in the plastic zone, i.e., the process zone size r~ appreciably 
smaller than the crack tip plastic zone size rp. The inclusion of r z in a continuum model 
provides some link with microstructural dimensions, e.g., grain size, inclusion spacing, etc., 
and the ratio 0 = rz/rp can be very relevant to fracture behaviour [4,5,6]. 
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Stress biaxiality in the crack tip region can affect the values of such quantities as r e and 
O which play a significant role in fracture phenomena [7,8,9,10,11,12]. In addition, stress 
biaxiality can affect the fracture micromechanisms both qualitatively and quantitatively. 
For instance the hydrostatic component of the stress and the maximum tensile stress, 
which are related to the state of biaxiality, can influence the rates of void formation and 
growth in the process zone. Also, the dependence of directional stability of crack 
propagation on the state of stress biaxiality has been known for some time [13,14,15,16]. 

The stress and strain fields within the plastic enclave cannot be determined by using 
LEFM type analyses. However, under SSY conditions, using a boundary layer approach, 
it can be assumed that the crack tip plastic zone is contained in a mainly elastic circular 
region with the crack tip as its centre and radius R, where R is large compared to r e. 

Nevertheless R can still be considered sufficiently small compared to the crack length or 
other structural dimensions for the stress and strain fields within the region to be 
adequately represented by LEFM parameters when the material is linear elastic. Hope- 
fully, the tractions exerted by the elastic region forming the bulk of the specimen, on the 
periphery of the circular region containing the crack tip plastic and process zones and, in 
particular, the state of stress biaxiality, can be described satisfactorily by using ap- 
propriate terms of the elastic asymptotic solution, albeit that the latter does not take into 
account the presence of the crack tip plastic zone. 

2.1. The T-term as a biaxiality parameter 

For the reasons mentioned it is perhaps natural to define a LEFM biaxiality parameter to 
be used in conjunction with J, G or/£1. Such a parameter which has been suggested by a 
number of authors [17,18,19] is the elastic T-term, given by the first non-singular term in 
Williams' eigenfunction expansion [20]. Thus, for the Inglis configuration, namely that of 
a crack of length 2a in an infinite plane, loaded by remote hydrostatic tension o, the 
T-term vanishes. For a remote tension Op applied normally to the crack and a remote 
lateral stress OQ, applied parallel to the crack, T = (OQ -- oe). However, for more general 
geometries encountered in real structures or in fracture specimens, the evaluation of T can 
present difficulties. Numerical methods have been more successful and one designed to 
solve directly for the vector of the Williams series coefficients has been described by 
Leevers and Radon [21]. Under SSY conditions, J is not affected by the T-term [9,18]. 

2.2. The  normalised T- term 

Greater generality, as well as independence from the influence of specimen geometry on 
K 1, is obtained by non-dimensionalising the stress T e.g., by normalising T with respect to 
the stress % (=  Kl(Tra ) -  a/z). This stress will be recognised as the stress applied remotely 
on the Inglis configuration such as will produce a stress intensity factor equal to K 1 at the 
crack tip. Using/£1 = E ' J ,  where E '  = E / ( 1  - u2), E being the modulus of elasticity and 

is Poisson's ratio, o 0 becomes 

o o = ( E ' J / r r a ) a / 2  

Adopting the notation used by Leevers and Radon, 

B = 7"/o o = T ( ~ r a / E ' J )  1/2. (1) 

3.1. Eshelby's theorem 

An alternative method of obtaining the elastic T-term due to Eshelby [1] is based on the 
evaluation of certain J contour integrals along paths remote from the crack tip, thus 



Some evaluations of the elastic T-term 303 

(/ 
i 

F 

I / / /  

Y 
r 

/ 4  . ~  Boundary 

f 

Figure 1. Cracked body subjected to external forces F. A point force f applied at the crack tip is resisted by 
tractions t. 

circumventing the need for the seemingly more difficult task of establishing accurately the 
near tip fields (including the T-term). Hence for any specimen geometry the calculations 
can be carried out numerically using Finite Element Methods (FEM). A brief description 
of Eshelby's method follows. 

Consider the cracked body shown in Fig. 1, in plane strain. External forces or tractions 
denoted by F are applied to the boundary and call the resulting stress, strain and 
displacement fields au, cij and u~, respectively. Next consider a semiinfinite crack in an 
infinite plane loaded by a point force f (per unit thickness) applied to the crack tip in a 
direction parallel to the crack, shown dotted on Fig. 1. This last configuration is a variant 
of Boussinesq's problem, for a point force applied to the apex of a wedge [22,23,24]. Using 
rectangular coordinates (x, y) or polar Coordinates (r, 0), centered at the crack tip and 
using primes to denote the corresponding stress, strain and displacement fields o o, e'~j and 
u~, respectively, the analytical solution gives 

Ofr = - f c o s  O/(~rr), o~0 = o" 0 = 0 (2) 

u{ = - ( f larE')[ ln(r /d  ) + y2/(2ra (1 - v))] (3a) 

u i = - [ f (1  + v)/2~rE] [(1 - 2v)O - xy / r  2] (3b) 

where d is the x-coordinate of a fixed point on the x-axis. (Note that (2) and (3) do not 
correspond to the physical situation when f >  0 since the y-displacements on the top 
crack face given by (3b) are negative when 0 = ~r.) 

Now, if the plane region is not infinite but has some boundary C, the point force f 
must be resisted by tractions t applied to the boundary C, where t can assume any 
distribution of tractions provided that it is statistically equivalent to - f .  In this case the 
stresses and the displacements within the region bounded by C will be given by (2) and (3) 
only if the tractions t are equal to t o = o~jnj where nj is the outward normal to the 
boundary C. 

It will be recalled that the path independent integral J is given by 

J =  fr( WSi j -  oijuia)nj ds (4) 

where W is the strain energy density, ~u are the Kronecker deltas, F is the path of 
integration and, here, nj is the outward normal to F. 
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Let J(F) denote the value of J when the specimen is loaded by the external forces F; 
let J(f ,  t) denote the value of J when the point force f is applied at the crack tip and is 
resisted by the tractions t applied on the boundary C (which may conveniently coincide 
with the boundary of the specimen but not necessarily so). Finally let J(F, f, t) give the J 
integral when the fields corresponding to F, f and t are superimposed; small displace- 
ment theory is assumed here. 

The first form of Eshelby's theorem, which applies to the case when t = t o, is given 
below: 

J(F, f ,  to) = J ( F )  + Tf/E'. (5) 

When the point force f is resisted by tractions t which may differ from To, Eshelby's 
theorem takes the following second form: 

J( F, f ,  t) = J ( F )  + J( f , t) + Tf/E'  + 2K1Kf/E' (6) 

where K 1 is the stress intensity factor when the load F is applied on its own and Kf is the 
stress intensity factor included by the tractions ( t -  to) applied on the boundary C on 
their own, i.e., without the point force f .  

Now, by calculating J along circular paths of radius R surrounding the crack tip and 
shrinking R to zero, one is led to the expectation that if path independence is to be 
maintained the value of J can be different from zero only if the strain energy density 
singularity is of type r -1 [25]. But the fields due to the point force f resisted by to, given 
by (2) and (3) correspond to a strain energy density singularity of type r -2, i.e., the stress 
and strain fields are ' too singular' for J to assume a non-zero value. Hence 

J ( f ,  t 0) = 0. (7) 

It is now apparent that when t = t o the second form given by (6) reverts to the first given 
by (5). (A proof of Eshelby's theorem is given in Appendix 1.) 

4.1. Numerical evaluations of the T-term by Eshelby's method 

It seemed a worthwhile exercise to examine whether acceptable working values of the 
non-dimensionalised T-term, B, could be obtained readily by FEM analyses, using 
relatively simple meshes. Figure 2 shows the different types of specimens analysed and 
their loading system. They include (a) the Single-Edged-Notched (SEN) specimen, (b) the 
Double-Edged-Notched (DEN) specimen, (c) the Centre-Cracked-Plate (CCP), (d) the 
Three-Point-Bend (BEND) specimen and (e) a simplified version of the Compact Tension 
Specimen (CTS), in which the load is applied at one end instead of the usual pin holes. In 
addition the Double-Cantilever-Beam (DCB) has essentially the same geometry as the 
simplified version of the CTS but has very small values of 11/W (=  < 0.2). The choice of 
specimens was governed by their general interest and frequent usage in fracture mechanics 
experiments but also on account of the possibility they afforded of comparisons with 
independent analyses, using different procedures or meshes, on similar specimens [17,21,1]. 

4. 2. Finite element procedure 

A typical finite element idealization is shown in Fig. 3a; the region near the crack tip is 
shown to a larger scale in Fig. 3b. Only the upper half, above the crack surface, is shown, 
taking advantage of the symmetry of the configurations. The mesh comprises 486 nodes 
and 442 "linear' '  isoparametric quadrilateral elements, with degrees of freedom vested in 
the nodal displacements u", v". The analyses were for plane strain. The modulus.of 
elasticity was E = 206840 Mpa and Poisson's ratio u was equal to 0.3. 
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Figure 2. Specimen geometries: (a) Single-Edged Notch (SEN),(b) Double-Edged Notch (DEN), (c) Centre- 
Cracked-Plate (CCP), (d) Three-Point Bend (BEND), (e) A simplified version of a Compact Tension Specimen 
(CTS). 

The first version of Eshelby's theorem was applied. First an attempt was made towards 
achieving a satisfactory representation of the stress field caused by the point force, given 
by (2). Using standard FEM procedure a routine was written to translate the tractions t o 
(= oi'j% ) into equivalent nodal forces applied on the external boundary nodes. The point 
force at the crack tip, f ,  was given the value of 2000 N (per unit thickness). Note however 
that the point force on the top half section of the specimen is only f /2 .  It also occurred 
that an improved representation of the crack tip fields could be obtained by "diffusing" 
the singularity caused by the point force. This was carried out by effectively suppressing 
the material in the small rectangle containing twelve elements, near the crack tip, shown in 
Fig. 3b, namely, by assigning to these elements a negligible thickness compared with unity. 
The point force f was then replaced by nodal forces, equivalent to the tractions to, 
applied to the near tip boundary nodes linldng nodes 163, 166, 238 and 235, i.e., in a 
similar fashion to the equivalent nodal forces applied to the original more distant 
boundary. 

Next the external forces F, alone, were applied on the external boundary nodes, using 
of course the complete mesh, including the twelve elements near the crack tip. Finally, the 
fields corresponding to (F, f,  to) were obtained by superposition of the two preceding 
fields. 

For the F loading, the usual boundary conditions were applied to the nodes on the 
x-axis (the axis of symmetry), namely, the crack tip node and those to its right were 
inhibited in the y-direction but were allowed to slide along the x-axis, with the possible 
exception of the last node to the right (node 469) which was fixed both ways when this 
was necessary to prevent rigid body translation, e.g., in the case of the SEN specimen. 
However, for the (f ,  t0)-loading, a special feature of the stress field described by (2), is 
that the'insertion of a crack along any radius emanating from the crack tip does not alter 
the stress field. This permitted the imposition of minimum boundary conditions consisting 
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Figure 3. Typical finite element idealization (a) of half of the symmetrical specimen and (b) showing the region 
near the crack tip to a larger scale. 
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of the inhibition of node 235 (see Fig. 3b) in the y-direction and of node 469 both ways. 
The J contour integrals were evaluated for the four progressively decreasing paths F1, 

F2, F 2 and F 4 shown in Fig. 3a. 

4.3. Spot checks for the point force field 

Some feel for the accuracy of the finite element representation of the stress field generated 
by the ( f ,  t0)-loading was acquired by a few spot check comparisons of the numerical 
values with the analytical values given by (2) and (3). Thus, to begin with, since the 
tractions t o imposed on the near tip and outside boundaries are, together, equivalent to a 
null field, the reactions at the inhibited nodes 235 and 469 must vanish and this was found 
to be true. Also, the vertical displacements of intervening nodes on the x-axis must be nil. 
The maximum value observed was less than 0.0007 mm, i.e., smaller than 0.0065u 235, 
where u 23s ( =  0.010939 mm) is the horizontal displacement of node 235 when a / W =  0.5. 
The analytical value for the displacement at node 235, obtained with (3a) for r/d = 0.02, 
is 0.010957 mm. The FEM values of the displacements at the last node at the top right 
corner, with coordinates r = 28.398 mm, 0 = 64.435 a r e  u 4 8 6 =  -0.003719 ram, U 4 8 6 =  

-0.000031 mm, compared with the analytical values i u = - 0 . 0 0 3 8 5 4  mm and v =  
-0.000086 mm, respectively. 

A spot check on the stresses is provided, for instance, by the stresses at the centre of 
element 107, situated in the region behind the crack tip, with coordinates r = 0.80822 ram, 
0 = 135 °. The numerical values of the principal stresses are ol = 555.1 MPa, o2 = - 3.3 
MPa and 4' = - 4 4 . 4  ° compared with the analytical values o'r = 557.0 MPa, od0 = 0 and 

= - 4 5  ° obtained by using (2). Here q, is the angle, measured in a counterclockwise 
sense, that the main principal stress makes with the x-axis. A second spot check at the 
centre of element 296 situated in the region ahead of the crack tip, with coordinates 
r =  1.16743 mm, 0 =45  °, gave o 1 = -385 .2  MPa, o 2 = 1.2 MPa, q~ = 45.1 ° for the FEM 
solution compared with o" r = - 385.6 MPa, od0 = 0, 4~ = 45 ° for the analytical solution. 

5.1. Results and discussion 

Table 1 shows a typical output format summarizing the essential information emerging 
from the computer calculations for each case analysed. The top two lines give the type of 
specimen (SEN in the present case), its dimensions, the Load Factor (LF) for the applied 
load F and other information. The applied load F is equal to 6.8947 LF MPa in the case 
of an applied stress (or 100 LF N when F is a point load). Column 1 indicates the path of 
the J integrals. Columns 2, 3 and 4 give J(F), J(F, f, to) and J(f ,  to), in N / m m ,  
respectively. Column 5 gives the difference J(F, f,  to) - J ( F )  J( f ,  to). Column 6 gives 
the value of T. Column 7 gives the nominal stress %. Column 8 gives the geometric 
Y-Factor (YF), where YF = % / a p  for the SEN, DEN and CCP specimens and op is the 
normally applied stress (see Fig. 2). In the case of the point loads, F (per unit thickness), 
on the BEND and CTS specimens, YF indicates (E'j)I/2/Ko where K 0 = 6M(Tra)a/2/W 2. 
The nominal moment  M = FH/2 for the BEND specimen and M = FW for the CTS. 
Finally, column 9 gives the value of B obtained by using (1) and J(F). 

The absolute values of the figures for J(f ,  to) in column 4 provide an additional 
indication of the adequacy of the numerical representation of the fields since according to 
(7) they should be nil. Generally, it was found that the more distant paths from the crack 
tip gave the more consistent results and only the first three were used in the final averaged 
results (A possible heuristic explanation is that whereas T does not depend on r, the 
stresses and the spurious numerical errors associated with them depend on r-1/2 or r 1 
and are therefore greater near the crack tip). However, exceptions were the DCB 
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Figure 4. Geometric stress intensity Y-Factors (YF) for SEN and CCP specimens, derived from the integral 
J(F), as functions of the non-dimensionalised crack length ratio a /W,  compared with values of YF obtained 
from [26]. 

specimens for which the best results were obtained on F 4. Also, since the values of B 
appeared to be sensitive to the quality of the field description along the integration paths, 
only those paths were taken into account in the results for which the calculated values of 
J ( f ,  t 0) appearing in column 4 were numerically less than 0.006 N / m m .  

Table 1 also shows, in passing, the path independence of the J integral. Thus, the 
values for J(F) in column 2 vary by less than 0.12% while those for J(F, f, t0) in  column 
3 vary by less than 0.24%. In addition, a check on the geometric YFs is provided by 
column 8. Generally, these were found to be in good working agreement with the values 
obtainable from compendia such as Rook and Cartwright [26], as can be seen from Fig. 4 
which presents comparisons of YF values for SEN and CCP specimens, showing good 
agreement. Another spot check comparison can be made for- the normalised K I value for 
the CTS specimen shown in Fig. 2e when a/W = 0.5. Thus, when the point load is at node 
16, the value of KIW1/2/F is 9.48; cf. Y =  9.60 in [27]. 

Tests were also carried out with different values of the load factor LF and they showed, 
as expected, that the values of B did not depend on LF. 

The results for the B values corresponding to the different specimen geometries are 
shown graphically in Figs. 5 to 8. An exception is made for the three DCB specimens for 
which a tabular representation (Table 2) is more appropriate. 

Figure 5 gives the values of B against a /W for the SEN and DEN specimens. The 
comparison with L & R  show close agreement in the case of the SEN specimen with 
H / W =  0.5 and also for the SEN with H / W =  1 and a/W>l 0.3. Generally, the numeri- 
cal methods encountered difficulties at the shorter crack lengths, a/W<<. 0.1. The only 
comparison available for the DEN specimens is the value of B = -0 .255 for H / W =  1 
and a/W= 0.5, given by Larsson and Carlsson (L&C), [17]; c.f. B = -0 .233 in Fig. 5. 
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Figure 5. Values of the non-dimensional biaxiality parameter B for SEN and DEN specimens as functions of 
a/W and some comparisons with values obtained from [21]. 

The curves for the DEN specimens seem to indicate that, as H/W becomes large, the 
values of B do not depend on the ratio a/W and remain nearly constant at approximately 
- 0.49. 

Figure 6 gives the same type of results as the previous figure but for the CCP under 
uniaxial and equibiaxial loading. The biaxiality parameter X = o o / o  P is used. Again 
agreement with L&R is good. (Agreement between L&R and CGHK was close for the 
uniaxial loading mode, and also with the value obtained by Larsson and Carlsson, namely, 
B = -1 .044 ,  for a/W= 0.5.). It will be recalled that the limiting theoretical values of B, 
as a/W tends to zero are - 1 and 0, for the uniaxial and equibiaxial cases, respectively. 

Figure 7 covers the BEND and CTS specimens. The general agreement for the BEND 
specimen is less good than in the previous cases but it is still acceptable and they all follow 
the same trend. The results of the present analysis fall between L & R  and CGHK. The 
value given by L&C for H/W= 2 and a/W= 0.5 is B = 0.058. The curves for the 

Table 2. Comparisons of values of B obtained by independent analyses for the DCB specimens with a / W  = 0.5, 
for different values of H/W 

H/W Present L&R CGHK 
study 

0.05 7.513 6.364 7.399 
0.10 4.842 4.783 4.795 
0.20 2.956 2.942 2.829 
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the present study compared with values obtained from [21]. 

simplified version of the CTS do not provide a fair comparison at the smaller crack 
lengths in view of the difference in the geometries. Also, the value of B depends on the 
ratio g/H (see Fig. 2e) and the value of the ratio used in Fig. 5 was 0.8333. However, 
agreement with L & R  is good when a/W>~ 0.5, i.e., for the geometries normally encoun- 
tered in practice. The value given by L&C for the CTS with a / W  = 0.5 is B = 0.516. 

The results of the independent analyses on the DCB specimens for a / W =  0.5 are given 
in Table 2. Agreement between the different solutions seemed to deteriorate with de- 
creasing values of the ratio H / W  with the poorest for H/W=O.05.  The point of 
application of the end load (the distance g in Fig. 2e) had no bearing on the results for the 
three DCB specimens analysed. 
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Figure 8. Values of B for the SEN, DEN and CCP specimens as functions of the ratio a/W, for a fixed crack 
length ratio a/W= 0.5, from the present study and, for the SEN and CCP, also from [21] and [1]. 

Figure 8 shows B for the SEN specimens and the CCP under uniaxial loading at the 
constant value a /W= 0.5, against H/W. Again agreement between the independent 
analyses is quite acceptable and the curves from the present analysis and L&R follow 
closely the same trend in the case of the CCP at the lower values of H/W (<  1.5). Values 
for the DEN specimens are also shown without comparisons. 

Finally, the thought has occurred that, for the purpose of calculating the integral 
J(F, f, to) using (4), the values of the (F, f ,  t0)-fields could be obtained by superimpos- 
ing on the FEM solution for the F-fields, the analytical solution for the ( f ,  t0)-fields 
obtained from (2) and (3), but this has not yet been tried. However, there may be some 
merit in obtaining all the fields by FEM since (5) and (6) involve differences and it is 
plausible that some of the inherent numerical discrepancies may cancel out in the process. 
Possible future tests may show. 

6. Conclusion 

Eshelby's theorem provides a simple and effective device for the calculation of the T-term 
by means of certain J contour integrals evaluated along paths at some distance from the 
crack tip and the method is well suited to elastic finite element types of analysis. 

Consistent results, in good agreement with those from independent studies, have been 
obtained using comparatively simple meshes comprising "linear" isoparametric quadri- 
lateral elements, provided certain precautions, described in the text, were taken. 
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Appendix 1 

Proof of Eshelby's theorem 

The proof given here generally follows the fine of [1]. Using the terminology and notation of the main text, from 
(4), 

J( F, f ,  to) = £ [  + + , ; , ) a , , -  Co,, + + U;,1) ] nj ds C A 1 )  

J( F ) = fF( ½ Oil: ikaij -- Oij U i,1 ) nj d s ( a2 )  

' ' ' 8  - ' ' = ( A 3 )  J( f ,  to)= . o i j U i , l l n j d s  O. 

The last equation in (A3) follows from (7) in the main text. Let 

• Ix = J (F ,  f ,  t o ) -  J ( F ) -  J ( f ,  t0). (A4) 

It is easily seen that Jx is associated with the 'cross terms' of the products in (A1), 

f_[~(o, : ,k  + o, : ik)a  o. %<:- o,'ju,.,] n, ds. (A5) J x =  l : t _ 
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The stress strain relations for a linear material are Opq = CpqrsCrs , where Cpqrs are the elastic modulii. Hence, 

Cikik = Oik/¢ik = O[k//E~k , or OikC;k = O]kEik (A6) 

and 

Jx = £ ( OijU;, 1 -- O'ijUi, 1 ) tl j ds. (A7) 

In the crack tip region, 

oij = K,  (2 ~rr) - l/2Gij ( 0 ) + T3ai31j + 0 ( r 1/2 ) (AS) 

o'j = f r -  1Oij ( 0 ) (A9) 

where Gij(O ) and Hq(O) are functions of the orientation angle 0. The only terms that contribute to Jx when the 
contour F is shrunk to the crack tip region is the cross term between T and f .  This may be evaluated by 
considering a load involving only a laterally applied stress not contributing to the stress intensity K/.  Then, 

(rig = T~li61j, ¢11 = T / E '  

c22=-v(l+v)T/E, El2 = 0 .  

Also, 

uL1 = o h / E ' - . ( l +  ~)o~2/e (al  0 

Substituting terms from (A10) and (Al l )  in the expression for "Ix in (A7), after some manipulation and 
cancelling out of terms, we have 

L=- fro;j.ju,,, ds=-(T/E') froS.jd.. 
But j r  o'jnj ds is the integral of the tractions t o which are statistically equivalent to - f ,  i.e., 

f = - fpoi'jn j as ( a 1 2 )  

Hence 

.Ix = T f / E '  ( a13 )  

and 

J(  F, f ,  to) - J (  F )  = T f /E ' .  (A14) 

To prove the second form of the theorem, given by (6), consider tractions t resisting the point force f applied 
to the crack tip, where t ~ t 0. Using the principle of superposition, the tractions t can be looked upon as the sum 
of two sets of tractions, namely, t o and (t - to). Now o[j will be given by 

O~j = fr--1Hij ( O ) q- Kf  (2 ~rr) - 1/2 Gi j (O) q- Tf~li~lj + O( r 1/2 ) (A15) 

where Kf  is the stress intensity factor induced at the crack tip by tractions (t - to), on their own (i.e., without, of 
course, the point force f )  and Tf is the T-term associated with the loading (t - to). 

Consider "external" forces F 1 = (t - to) and apply the theorem by substituting F l for F in (A14), 

J (F1 ,  f ,  to) = J (  Fa)+ T f f / E '  

or 

J ( i ,  , )  = + 

Now apply the theorem again, this time using F 2 = F + F 1 as the "external" force, 

J (F2 ,  f ,  to) = J ( F 2 ) +  T z f / E '  

where T 2 = T + Tf is the T-term corresponding to F2, or 

J(  F, f ,  t)  = J(  F, F 1 ) + ( T  + T u ) f / E '  

or 

J ( F ,  f ,  t )  = [ ( K ,  + K I ) 2 +  ( T +  T / ) f ] / E ' .  

Using (A16) this reduces to 

J( F, f ,  t)  = J(  F ) +  g ( f  , t )+  2 K i K y / E '  + T f /E ' .  

When t = to, F a = K / =  Tf = J ( f ,  t) = 0 and (A17) reverts to (14). 

(A16) 

(A17) 
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R 6 s u m 6  

On a propos6 depuis un  certain temps d6jh, que le terme T 61astique soit consid6r6 comme un param6tre de 
biaxialit6 secondaire, h utiliser de concert avec le facteur d'intensit6 de contraintes KI ,  on l'int6grale J, en rant 
que param+tre primaire, pour caract6riser les 6tats de la rupture h l'extr6mit6 d 'une fissure. Lots d 'une 
conf6rence r6cente, on a pr6sent6 un th6or6me, dfi h Eshelby, qui fournit une m6thode commode pour calculer le 
terme T, obtenue par une 6valuation des int6grales de contour J appropri6es. On a inclu des exemples 
d'applications analytiques, semianalytiques et num6riques. Dans  la pr6sente 6tude, on donne avec de plus amples 
d6tails quelques applications compl6mentaires des 616ments finis, en utilisant une id6alisation assez simple, et 
l 'on compare les r6sultats de diverses analyses disponibles jusqu'ici, ce qui convainc de rutilit6 pratique de la 
m6thode d'Eshelby. 

On inclut 6galement des r6sultats nouveaux obtenus sur des 6prouvettes h double entaille lat6rale. 


