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Abstract. 

It is noted that calculations of the interaction between a main crack and two-dimensional microcracks 
surrounding the main-crack tip can be considerably simplified by using a point-source representation for the 
microcracks and a self-consistent scheme to determine the strength of these point sources. The procedure is 
illustrated by a detailed analysis for two basic configurations: (i) a single microcrack of arbitrary orientation 
near a main crack which is subjecte d to combined mode I and mode II loading; (ii) two microcracks 
symmetrically disposed about a main crack which is subjected to purely mode ! loading. By comparing the result 
for configuration (i) with the exact result which is available for the special case of a collinear microcrack, it is 
found that the point-source representation for that case is accurate to within 5 percent over the range 
0 < s / r  I < 2/3, where 2s is the length of the microcrack and q the distance from the main-crack tip to the 
mid-point of the microcrack. Over this range of s / r >  the neutral-shielding angle for configuration (ii), using the 
point-source representation, is found to vary from 70 to 69.4 deg, when the microcracks are parallel to the main 
crack. 

1. Introduction 

In a number  of br i t t le  mater ia ls ,  crack growth  is a ccompan ied  by  the fo rma t ion  of 
microcracks  a round  the ma in  crack [1-4]. This  stress induced  microcrack ing  can con- 
s t i tute  an i m p o r t a n t  toughening mechan i sm [5,6], and  consequent ly ,  it is of interest  to 
s tudy  theore t ica l ly  the in te rac t ion  be tween a main  crack and  ne ighbour ing  microcracks.  
H o a g l a n d  and E m b u r y  [7] have presen ted  a general  fo rmula t ion  for evaluat ing  this 
in te rac t ion  in the two-d imens iona l  case, bu t  the calcula t ions  required are ra ther  labor ious  
so that,  in pract ice,  a number  of  app rox ima t ions  are used. Recent ly ,  Chudnovsky  et al. 
[8,9] have p r o p o s e d  a self-consis tent  procedure ,  which c i rcumvents  the i tera t ive  process  
requi red  in [7], thereby  s impl i fy ing the calculat ions.  The  aim of the present  work  is to 

p ropose  an a l ternat ive  self-consis tent  scheme, which relies on using a po in t - source  
represen ta t ion  for the microcracks.  

Firs t ,  the complex  potent ia l s  co r respond ing  to the po in t - source  represen ta t ion  for a 
two-d imens iona l  microcrack  in an inf ini te  b o d y  are der ived  in Sect ion 2. The  self-con- 
sistent  p rocedure  is then i l lus t ra ted  b y  a de ta i led  analysis  of two basic  conf igura t ions ,  
name ly  (i) a single mic rocrack  of a rb i t r a ry  or ien ta t ion  near  a ma in  crack which is 

subjec ted  to combined  mode  I and  mode  II  load ing  (Sect ion 3); and  (ii) two symmetr i -  
cal ly  d isposed  microcracks  near  a main  crack which is subjec ted  to pure ly  m o d e  I load ing  
(Sect ion 5). The results  for the la t ter  conf igura t ion  d e a r l y  show the t rans i t ion  f rom a 
shielding to an ant i -shie ld ing effect, as the pos i t ion  of the microcracks  relat ive to the 
ma in -c rack  tip changes.  This t rans i t ion  had  caused some cont roversy  in previous  discus-  
sions on the consequences  of microcrack ing  [10]. A po in t - source  represen ta t ion  can be  
expected to be accura te  in the l imit  when the length of  the mic rocrack  is much  smaller  
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234 Microcrack interaction with a main crack 

than the distance between the main-crack tip and the mid-point of the microcrack. The 
range of accuracy of this representation is assessed more precisely in Section 4 by 
comparison with the exact stress analysis which is available for the special case of a 
collinear microcrack [11,12]. 

2. Point-source representation for a microcraek 

Consider a two-dimensional centre crack along ix I ~< s, y = 0, in an infinite elastic body, 
under a uniform stress at infinity specified by 

Oxx  = O,  Oyy = O ,  Oxy  = "r, X 2 + y 2  __+ O0. (1) 

The complex potentials describing the perturbation to this uniform stress field due to the 
crack are [13] 

q ~ ( z )  = ( ~  - i ~ ) a ( z ) ,  

, I , ( z )  = 2 i ~ a ( z )  - ( o  - i~)za'(z), 
a ( z )  = ½{ z / ( z  2 -  s2) ' / 2 -  1}, 

(2a) 

(2b) 

(2c) 

where z = x + iy  and ~ ' ( z ) =  df~/dz .  The potentials describing the point-source repre- 
sentation can be obtained simply by retaining only the first term in the asymptotic 
expansion of these expressions for large I z l / s .  This gives 

f~PW~( z ) = s2( o - i r ) / 4 z  2, (3a) 

"PV~( z ) = sZo/2z  2. (3b) 

Consider next the more general case where the crack has its mid-point at z 1, instead of at 
the origin, and the crack line makes an angle a with the x-axis, measured anticlockwise. 
Let o, r now denote respectively the uniform normal stress and shear stress which would 
prevail across the crack line if there were no crack. The perturbation potentials for this 
case can be obtained from (3), using the standard results for the translation and rotation 
of complex potentials [14], which gives 

~bP~(z; Za) = s 2 ei2~(o - i r ) / 4 ( z  - zl) 2, (4a) 

_ )a e iZa(o i r ) ~ l / 2 ( z  zl) 3, (4b) ' t ' e~(z ;  za) = s2o /2 ( z  Z 1 -'1- S 2 - -  __ 

where the overbar denotes the complex conjugate ( ~ = x - i y ) .  These point-source 
potentials for a microcrack in an infinite body will be used in the next section to study the 
interaction with a main crack. 

Before proceeding, it may be noted that this point-source representation could have 
been derived by starting from the general representation theorem of linear elasticity for 
the elastic field associated with a displacement discontinuity across a surface [15,16]. The 
usual procedure is to treat the field due to a body force as the basic elastic singularity, 
which would lead to a representation for the crack as a combination of force doublets. 
Alternatively, one could view the crack as a continuous distribution of dislocations [17], 
which would lead to a representation as a combination of dislocation doublets [18]. This 
second representation is effectively that used by Chudnovsky et al. [8,9]. The procedure 
outlined above, however, leads more directly to the complex potentials for the point-source 
representation. 

3. Single microcrack near a main crack 

Consider the configuration shown in Fig. 1, consisting of a two-dimensional microcrack 
of length 2s with its mid-point at a distance r 1 from the tip of a main crack. It is assumed 
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Figure 1. A single microcrack near a main crack, showing the coordinates used in Section 3. 

that s and r 1 are much smaller than the length of the main crack, so that (i) the main 
crack can be regarded as a semi-infinite crack in an infinite body for the purposes of 
calculating its interaction with the microcrack; (ii) the nominal stress field oi N, i.e. the 
stress field which would prevail in the absence of the microcrack, can be approximated by 
the singular term in the near-tip asymptotic expansion for an elastic crack-tip stress field. 
The corresponding potential q5 N can therefore be expressed as follows [19], if the tip of 
the main crack is taken as the origin of coordinates, the main crack lying along the 
negative x-axis, as in Fig. 1: 

o~N(z) = ( K N -  i K N ) / { 2 ( 2 ~ r z ) l / 2 } .  (5) 

K~ and KII denote as usual the mode I and mode II  stress intensity factors. The 
superscript N serves to distinguish field variables pertaining to the nominal elastic field 
from those associated with the perturbation due to the microcrack; the latter will carry a 
superscript P. Thus the actual stress intensity factors at the main-crack tip in Fig. 1 can 
be viewed as the following sums 

K I = K N + K~, (6a) 

K H = K N +  K~.  (6b) 

The problem is to determine K (  and K~, in terms of K N and K N which are prescribed. 
The difficulty in solving this problem is that the perturbation due to the microcrack 

involves a feed-back. One approach is to use the iterative scheme of Hoagland and 
Embury [7] in which the first step is to work out the stress field o/0~ around the 
microcrack if a normal stress - o  N and a shear stress -~.N are applied to the faces of the 
microcrack, so as to cancel the nominal stresses. This field @)~ is calculated by ignoring 
the presence of the main crack. The next step is therefore to cancel the stress o,.() ) across 
the main crack, ignoring the microcrack. This leads to a stress field @f). A second 
iteration is now required to cancel this stress o~ (f) across the microcrack, and so on. 
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The use of a point-source representation for the microcrack allows us to circumvent 
this iterative scheme as follows. We first treat the microcrack as a point-source of given 
strength, whose infinite-body potentials are given by (4), with o, r regarded as prescribed 
constants. By cancelling the normal and shear stresses due to that source along the faces 
of the main crack, we generate an image field which can be described by potentials • Pi, 
'I *PI. Detailed expressions for these image potentials will be given below. The appropriate 
values for o and r in (4) can now be determined in a self-consistent manner by requiring 
that 

• N . PI 
O + i r  = (%n + W~n) -1- ( O~ -t- lO'~rl ) , at z=zl ,  (7) 

where ~, ~/ are coordinates with their origin at z 1 and with the microcrack lying along 
~/= 0, as in Fig. 1. 

The image-stress term (o + i ' r )  pl depends on the assumed source-strength o, z, so that 
(7) can be rearranged into the following set of two equations for the two unknowns o, z: 

[I_(s /4rl)2A(O1;a)] .[;]  B(O1;a) [ KN] 
= (2~rrl)1/2 "[KIN], (8) 

where I denotes the unit matrix, and A can be derived from the image potentials, while B 
can be derived from the assumed form (5) for the nominal stress. Detailed expressions for 
the components of A and B are given below. It is of course a trivial matter to solve (8) so 
that o, r can therefore be regarded as having been determined explicitly• The final step is 
to determine the stress intensity factors due to the microcrack, using the relation 

( K , -  iKn)  p =  }im {2(2"lrz)l/ZdPel(z; Z1)}, (9) 

and the source strength o, r obtained from (8). 
To implement the above self-consistent scheme, we first need to determine the image 

potentials. This can be done by using complex variable techniques [14], which lead to the 
following results. 

(I)PI(z; z1) = MG(z; Zl) q- (s2o/2 ~ r )G(z ;  ~1) '}- J~(z1 3G -- - - Z - I ) ~ I  (Z ; Z~l) , (10a) 

M = s 2 ei2~(o -- i t ) / 4  (10b) 

G(z; z l ) =  1/[4~/7 Z~l(VG- + z~1)2], (10c) 

O(I )vI 
~ItPI(z; Z1)=(I)PI(z; Z1)--(I)PI(z; Z1)--Z~--z(Z ; Z1). (10d) 

The stress combination appearing on the right hand side of (7) can be expressed in terms 
of the potentials as follows [14]: 

o(x ,  y)  + i t ( x ,  y)  = 2  Re[aP(z)] + eiZ~f~q?(z) + ~ ( z ) } .  (11) 

From (10) and (11) we can therefore derive the following expressions for the elements of 
A, using s(x) and c(x) as convenient abbreviations for sin(x) and cos(x). 

An(x ;  y)  = c (2x -  2y)  - ½c(2x- 4y) + s ( x ) s (3x -  4y) 

+ {3 - 2c(2y)  + 2s(x/2)[3s(x/2 - 2y)  + s(3x/2 - 2y)]  

+ s2( x/2)[2 + c(x)]  }/2c2(x/2),  
(12a) 
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- { s (2y )  - s ( x / 2 ) [ 3 c ( x / 2  - 2y )  + c(3x/2 - 2y)]  } /2c2(x /2) ,  
(12b) 

A22(x, y )  = ½c(2x-  4y)  - s ( x ) s ( 3 x -  4y)  

+ {1 + s2(x/2)[2 + c (x ) ]  } /2c2(x /2) .  

Similarly, from (5) and (11) we derive the components of B in the following form, 

BH(x, y) = c(x /2){1 + s (x /2 ) s (3x /2  - 2 y ) } ,  (13a) 

B12(x, y) = - s ( x / 2 )  + s ( x / 2 -  2y )  + ½s(x )c (3x /2 -  2y) ,  (13b) 

B2a(x, y) = ½s(x)c(3x/2 - 2y) ,  (13c) 

B22(X , y )  = c (x /2  -- 2y )  -- l s ( x ) s (3x /2  -- 2y ) .  (13d) 

(12c) 

Finally, from (9) and (10a), we derive the following expression for the stress intensity 
factors, 

K (  - iK(i = (2~rr 1)l /2(s/z&)2{ o exp(i301/2 ) 

- i [ o  sin(30]/2 - 2a)  + ~- cos(30a/2 - 2a)] 

- ~ i ( o + i ~ )  sin(01) exp[i(5Ol/2-Za)] } (14) 

with ~, ~, obtained by solving (8). 
Thus, an explicit expression for the change in stress intensity factor at the main crack 

tip due to a single microcrack of arbitrary orientation has been obtained by using the 
point-source representation for the microcrack. This result should provide an excellent 
approximation to the actual interaction between a microcrack and a main crack in the 
limit where the length of the microcrack is much smaller than its distance from the 
main-crack tip. To assess more precisely the accuracy of this approximation, we shall 
consider next a particular case for which an exact solution is available for comparison. 

4. The collinear microcrack 

It has been pointed out recently [11,12] that an exact stress analysis of the interaction 
between a two-dimensional microcrack and a semi-infinite main crack can be performed 
for the special case of a collinear microcrack. Let the tips of the microcrack be at x = a 
and x = b, as shown on the inset to Fig. 2, and suppose, for simplicity, that the nominal 
stress field is purely mode I. It then follows from the symmetry of the configuration about 
y = 0 that the actual stress intensity factors at x = 0, a, b are all purely mode I, so that 
we may drop the subscript I for this section. Let K s denote the nominal stress intensity 
factor, i.e. the stress intensity factor which would prevail in the absence of the microcrack. 
Then, it is shown in [11,12] that the actual stress intensity factor K(x = 0) with the 
microcrack present is given by 

K(x  = O)/K N= E ( k ' ) / {  kl /ZK(k')}  (15a) 

k = (a/b)  1/2, k ' =  ( 1 -  k2) 1/2, (15b) 

where E(k), K(k)  denote respectively the complete elliptic integrals of the second kind 
and the first kind, with modulus k. Values of these integrals are tabulated in [20]. The 
variation of K / K  N given by (15) is shown as the solid curve for x = 0 in Fig. 2. 

Turning next to the point-source representation, we note that the results given in the 
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Figure 2. Variation of the normalized stress intensity factor at the three crack tips x = 0, a, b, for the collinear 
crack configuration shown inset. The solid curves show the exact results while the dashed curves are based on a 
point-source representation for the microcrack. 

previous  sect ion can  be  cons ide rab ly  s impl i f ied  for  the presen t  special  case, which 

corresP0nds  to a,  01, K u and ~', all being equal  to zero. Equa t ions  (8) and  (14) reduce to 

a [ 1  - ( s / 4 r l )  2] = K u / ( Z r r r l )  1/2, (16a) 

K e = 4 K U ( s / 4 r l ) 2 / [  1 -- ( s / 4 r l )  2] (168) 

so that,  using (6a), we ob ta in  

This  resul t  is shown by  the dashed  curve for  x = 0 in Fig.  2. I t  can  be  seen tha t  (17) 
underes t imates  the  exact  result  (15), but  is within 5 percent  of  the exact  result  for 
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0.2 < a / b  < 1, i.e. for 0 < s / r  1 < 2/3,  where 2s is the length of the microcrack and r 1 is 
the distance from the main-crack tip to the mid-point of the microcrack. This range of 
microcrack size includes most cases which are likely to be of interest in practice, so that 
the point-source representation can be considered to be sufficiently accurate for practical 
purposes. The advantage of the point-source representation is that it can be used for 
microcracks of arbitrary orientation, for which an exact stress analysis is not available. It 
should be noted, however, that for 01 -~ _+ 180 deg in Fig. 1, the relevant characteristic 
length is the distance between the microcrack and the main-crack faces, rather than the 
main-crack tip, so that the range of accuracy of the point-source representation is 
determined by s/]  Yl ], rather than s / r  1. 

Figure 2 also shows the variation of the stress intensity factor at x = a and x = b, 
based on the exact stress analysis (solid curves). K ( x  = a) diverges as a / b  ~ 0, as noted 
in [11,12]. The point-source representation gives of course a single estimate for the stress 
intensity factor at both microcrack tips, viz. 

Kp z ,~1/2 = o t r r s  ) , (18) 

with o given by (16a). This single value is shown as a dashed curve in Fig. 2. As would be 
anticipated, (18) gives the average of the exact values, at least for a / b  > 0.4. 

It can be seen from Fig. 2 that the point-source representation is more accurate for 
estimating the stress intensity factor at the main-crack tip rather than at the microcrack 
tips. In practice, the former is usually of greater interest, so that the present order of 
approximation is adequate. However, it is possible to improve the accuracy of estimates 
for the microcrack by using a higher-order point-source representation, which would 
allow for the effect of a stress-gradient across the microcrack. While the procedure is 
straight forward in principle (it involves retaining more terms in the asymptotic expansion 
(3)), the resulting expressions are of course more complicated than those in Section 3, and 
therefore this refinement will not be pursued here. 

It is of interest to discuss briefly the difference between the present work and that of 
Chudnovsky et al. [8,9]. Their procedure can be summarized as follows, using the notation 
of the present work and concentrating on the particular case of a collinear microcrack. 
The image stress due to the microcrack is assumed to be of the form 

Ou~(x > O, y = O) = Ke/ (2~rx)  1/2, (19) 

where K e is initially unknown, but is determined in a self-consistent manner, which 
eventually leads to 

K ( x  = O) /K  u = 1 / (1  - q) ,  (20) 

where q is in the form of an integral which needs to be evaluated numerically. (This 
integral is given in equation (10) of [9]; it should be noted that  this equation contains two 
misprints.) Thus, their final form of the result is more complicated than in the present 
work. Furthermore, the assumed form (19) is reasonable for x << q,  but that expression is 
in fact used in [9] for x = q.  An estimate of the error involved can be obtained from the 
point-source representation which gives 

}{ (a Oyg(x>O, y = O ) =  ( K P / ( 2 r r x )  1/2 r l /  + . (21) 

It can be seen that (21) indeed reduces to (19) for x << q,  but for x = rl, (19) overesti- 
mates the stress given by (21) by a factor of 4. 
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5. Two symmetrically disposed mierocraeks 

Consider next the configuration shown in Fig. 3, with two microcracks symmetrically 
disposed about a main crack, the mid-points of the microcracks being at z 1 and 51. For 
this configuration it is natural to assume that the nominal stress field is purely mode I; by 
virtue of the symmetry, the stress intensity factor due to the microcracks is also purely 
mode I. The interaction in this case can be derived by the same procedure that was used 
in Section 3 for a single microcrack, so that we shall only note here the final results. 

Equation (8) still holds, but with K~  = 0, and with the components of A now given by 
the following expressions, using as before the abbreviations s ( x )  and c ( x )  for sin(x) and 
cos(x). 

All(X; y)  = c(2x) + 2 s ( x ) s ( 3 x  - 2y)  - 9 s 2 ( x ) c ( 4 x  - 4y)  

+ {1 + s ( x / Z ) [ 3 s ( x / 2  - 2y)  + s ( 3 x / 2  - 2y)] 

+ 3 s Z ( x / 2 ) [ 2  + c(x)] } / c 2 ( x / 2 ) ,  (22a) 

A12(x; y ) = A 2 1 ( x ;  y ) = s ( x ) c ( 3 x - Z y ) + 9 s R ( x ) s ( 4 x - a y )  

+ s(  x / Z ) [  3c( x / 2  - 2y)  + c ( 3 x / 2  - 2 y ) ] / z c a ( x / 2 ) ,  

(22b) 

Azz(X; y)  = 3 s 2 ( x ) { 3 c ( 4 x  - 4y) + [2 - c(x)l/c4(x/2)}. (22c) 

The change in stress intensity factor due to the two microcracks is given by 

K (  = (2~rr 1)1/2(s/2rl)2F(01 ; ~; s / r  I ), (23a) 

F ( x ;  y; s / r l )  = 20 cos(3x/2) + 3 s in(x)[o sin(5x/2 - 2y)  + r cos(5x/2 - 2y) ] ,  

(23b) 

with o, r determined from (8), (13) and (22). 
An important feature of this result can be brought out more clearly by considering the 

special case a = 0, when the microcracks are parallel to the main crack. Then it is found 
that the sign of KI*' changes from being positive for 01 less than 00, corresponding to 
anti-shielding in the terminology of [21-23], to being negative for 00 < 01 < rr, correspond- 
ing to shielding of the main-crack tip. The precise value of the neutral-shielding angle 00 
for which this transition occurs depends on the value of s / q ,  i.e. on the ratio of 
microcrack length to distance from the main-crack tip. However, over the restricted range 
of s / r  I for which the point-source representation is appropriate (as discussed in Section 
4), it is found that the angular variation of F in (23a) does not deviate substantially from 
its value for the limiting case s / r  1 ---, O. For that limit, the angular variation takes the 
following simpler form, which is shown in Fig. 4, 

F(01 ; O: = 0 ;  s / q  --~ O) = F o (01), (24a) 

Fo(x  ) = ~- cos(x) + 2 cos(2x) - 9 cos(3x) - cos(4x). (24b) 

For a = 0, the neutral-shielding angle is found to decrease from 70 deg for s / r  1 --+ O, to 
69.4 deg for s / r  1 = 2/3. 

Chudnovsky et al. [9] have also considered the interaction with two microcracks 
parallel to the main crack, but their analysis for that case appears to be incomplete. In 
particular, their final result, given in equation (17) and Fig. 5 of [9], would seem to be for 
a value of 01 lying in the shielding range, but the actual value of 01 which they used was 
not stated. 
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Figure 3. Two symmetrically disposed microcracks 
near a main crack, showing the coordinates used in 
Section 5. 
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Figure 4. Angular variation of the shielding function 
Fo(O ) defined by (24). Neutral-shielding occurs for 
0 = 70 °, shown by the dashed line. 

Finally, it should be noted that the self-consistent scheme presented in Section 3 can 
be readily generalized to the case of an arbitrary number  N of microcracks. Instead of (8) 
one would obtain a set of 2N simultaneous equations for the normal stress o i and the 
shear stress ~'i (i = 1 . . . .  , N)  at the mid-points of the microcracks. The case of an even 
number  2N of microcracks symmetrically disposed about the main crack, and subjected 
to a symmetrical (mode I) nominal stress, also leads to a set of 2N, rather than 4N, 
equations, because one only needs to consider the N microcracks in one half-plane (say 
y > 0) by virtue of the symmetry about y = 0. For large N, however, this approach would 
be exceedingly laborious, especially if the boundary of the microcracked zone is not 
specified beforehand but has to be determined as part  of the solution. It  would clearly be 
preferable then to resort to a continuum representation for the microcracked zone. Some 
important  qualitative insights can be derived from such representations without detailed 
calculations, and these will be presented elsewhere. 

6. Conclusion 

It  has been shown that by using a point-source representation for microcracks, one can 
determine the interaction between a main crack and surrounding microcracks by solving a 
set of simulataneous equations for parameters characterizing the strength of the equiv- 
alent point sources. The procedure has been illustrated in detail for the case of a single 
microcrack and that of two symmetrically disposed microcracks. In the former case, a 
comparison with the exact solution which is available for a collinear microcrack indicated 
that the point-source representation is accurate to within 5 percent over the range of 
microcrack length 2s to distance from the main crack tip r 1 which is likely to be of 
greatest interest in practice, namely 0 < s / r  I < 2/3 .  For the latter case, it has been 
pointed out that the nature of the interaction changes from anti-shielding to shielding as 
the orientation varies, and the neutral shielding angle was found to be close to 70 deg for 
microcracks parallel to the main crack, in the range 0 < s / r  I < 2/3 .  
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R6sum6 

On remarque que les interactions entre une fissure principale et des microfissures bidimensionnelles situ6es 
autour de l'extr6mit6 de la fissure principale peuvent 8tre consid6rablement simplifi6es si on repr6sente ces 
microfissures par des sources ponctuelles, pourvues d'une certaine puissance d'actions. La proc6dure est illustr6e 
dans les cas de deux configurations: (1) une microfissure simple orient6e arbitrairement par rapport h une 
fissure principale soumise h une sollicitation purement de mode I. (2) Deux microfissures dispos6es sym6trique- 
ment de part et d'autre de la fissure principale, soumise h une sollicitation purement de mode I. En comparant 
les r6sultats relatifs h la configuration 1 aux rdsultats exacts disponibles dans le cas sp6cial d'une microfissure 
coplanaire, on trouve que la repr6sentation par source ponctuelle est exacte dans ce cas~ 5% sur une gamme de 
s / r  1 comprise entre 0 et 2/3,  oh 2s est la longueur de la microfissure et r 1 la distance entre l'extr6mit6 de la 
fissure principale et le centre de la microfissure. Sur cette gamme de s / r l ,  et en utilisant la repr6sentation par 
sources ponctuelles, on trouve que l'angle neutre relatif h la configuration 2 est compris entre 70 ° et 69°4, 
lorsque les microfissures sont parall6les ~t la fissure principale. 


