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Abstract. A detailed description of a new numerical method for the solution of dynamic fracture problems is 
presented. The method employs finite volume discretization of the equilibrium equations. 

The present work considers the analysis of rapid crack propagation (RCP) in two-dimensional geometries only. 
The simulation of steady-state RCP in a peeling-strip geometry, and an economical approach which allows the 
calculation of the crack driving force from a 'snapshot' computation of the displacement field are described. Also 
presented is the modelling of transient RCP in single edge notch tensile specimens, based on a fixed-mesh 'node 
release' technique and a 'holding back' force concept. It is shown that finite volume results are in very good 
agreement with both analytical and finite element predictions. The accuracy, simplicity and efficiency of this novel 
method are also demonstrated. 

1. Introduction 

Dynamic fracture is influenced by the effects of inertia and of stress wave propagation. 
Due to these, momentary values of the crack driving force (energy release rate) G dyn and 
the stress intensity factor K dyn during rapid crack propagation, cannot be derived from the 
crack length, loading and geometry as in static cases; a full dynamic analysis has to be 
performed. The presence of dynamic effects makes analytical solutions possible only for 
infinite geometries. Therefore, numerical simulation is often necessary for the analysis of 
RCP in real geometries. 

A number of numerical schemes have been developed in order to solve solid mechanics 
problems involving dynamic fracture. These schemes usually utilise conventional mumerical 
methods such as Finite Difference, Finite Element (FE) and Boundary Element formulations. 
On the other hand, the Finite Volume (FV) method has been primarily used in solving fluid 
flow problems [ 1, 2]. However, it has recently been applied to the stress analysis of linear elas- 
tic [3], and elastic-plastic [4] solid materials, as an alternative to the widely used FE method. 
The only attempt so far to employ FV for the solution of dynamic fracture problems, has been 
conducted by the present authors; some preliminary results of FV simulation of a steady-state 
RCP along pressurised pipelines are presented in [5]. The FV method was demonstrated to be 
simple, straightforward, conservative and efficient, especially for nonlinear problems, due to 
its inherent iterative character. For these reasons, FV is employed in the present work for the 
analysis of RCP. 
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Fig. 1. A body with a moving crack. 

2. Background 

The basic problem in the analysis of a body of volume V, bounded by a surface S and 
containing a crack which propagates at a speed h (Fig. 1), is to solve the equation of motion 
at any instant of time t during the fracture event 

°L°u, /, O--t P -oi- d Y = t i do e + p f i d V. (1) 

Here ul is the displacement vector, ti = ¢rijnj is the traction vector (surface force), aij is the 
stress tensor, nj is the unit vector of outward normal to the surfaces S, fi  is the body force 
and p is the mass density. 

For an isotropic linear-elastic solid the relationship between the stresses aij and strains cij 
is 

aid = /~kk~ij  q- 2G~ij ,  (2) 

where A = rE~(1 + v)(1 - 2v) and G = E /2 (1  + v) are Lame constants, E is Young's 
modulus, v is Poisson's ratio and ~ij is the Kronecker delta. 

For two-dimensional problems vector Eqn. (1) reduces to two scalar equations which, if 
body forces are neglected, represent the equilibrium of traction and inertia forces acting on 

the solid 

d V  = (3a) 

o£ov 
p - ~  dV  = f s  tu ds' (3b) 

where x and y are Cartesian coordinates, and u and v are displacements in x- and y-direction, 

respectively. 
If a simple Cartesian control volume shown in Fig. 2 is considered, (3) take the form 

0 Ou 



O-t p-~ dV = tyn dS - 
n 8 

By introducing (2) into (4) one obtains 

-~ p-~ dV 

Finz 

+ ~ , ( ( A + 2 G ) ~ - ~ +  OyJ d S -  fs,o 

~£~v 
p - ~  dV 

Finy 
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t~s dS) + ( Z  tue dS - fs t~w dS ) . (4b) 
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can be employed to determine either the crack length history, ifRCP properties of the material 
under consideration are known, or the crack driving force G dyn if the crack speed h is 
specified. Here, B is thickness, UE is external work, Us and UK are strain and kinetic 
energies, respectively. 

This paper considers only the generation mode analysis in which the crack length his- 
tory, material mechanical properties, loading and boundary conditions are prescribed and 
corresponding G dyn is generated. 

GdY n 1 (dUE dUs dUK ~ dUE dUs dUi< 
- B a  \ d-t dt d-t ] - d A  d A  d A  ' (6)  

The problem reduces to the solution of (5) for displacements u and v. Having obtained 
the displacements throughout the body at any instant of time during RCP, the global energy 
balance 



360 A.  I v a n k o v i c  e t  al .  

Fig. 2. Cartesian control volume and forces acting on it; n, 
respectively. 

tyn t 

Fin x ~ lye 

s, e and w stand for north, south, east and west, 

Fig. 3. Finite volume discretization; 6x~ = 6x,~ = 6xp ,  6y~ = 6ye = 6yp,  S t  = 6x~B,  S,~ = 6x,~B, 
S,~ = 5 y ~ B ,  S~ = 6y~B. 

3. The finite volume analysis 

In order to solve the equations of motion (5), the FV discretization scheme is used. The 
time domain is divided into a number of discrete time steps tSt, while the space domain is 
divided into a number of rectangular cells. Each cell is bounded by four faces with areas 
Sk (k = n, s, e, w), and it contains one computational nodal point at its centre (Fig. 3). The 
deformation of the cell is neglected in the analysis. Linear distribution of the displacements u 
and v between neighbouring points is assumed. 

When the simulation of transient RCP is considered, the inertia force is approximated using 
the mean value theorem which gives 

u + - 2u~o + u~ (7a) 
Finx = p V p  p 6 t  2 , 
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Finu = pVp v+ - 2v° + vp 
~t 2 , (7b) 

where superscripts '+ ' ,  '0' and ' - '  refer to the 'future', 'present' and 'previous' time instants 
respectively and Vp is the volume of the cell. As the calculation of displacements ' + '  is 
completed, the solution is stepped forward by 6t to the following time instant. In the first time 
step a non-existing value ' - '  is approximated by a corresponding value '0'. A fully implicit 
time differencing scheme is used, implying that all dependent variables correspond to ' + '  
time instant, except in transient term (7). For convenience, the subscript ' + '  is omitted in the 
rest of this paper. 

In modelling of steady state RCP, during which an observer travelling with the crack at a 
constant speed would observe no local change in the stress field, time is eliminated from the 
analysis and the inertia force is expressed as: 

F i n ~ : = P ( a ) 2 ( ~ ( u E - u P ) - - - ~ w ( u p - u w )  ) , (8a) 

Finv = P(d)2 (-~e(VE-- VP)-- ~w(Vp - Vw) ) . (8b) 

When Eqns. (5) are applied to an arbitrary cell containing the node P (Fig. 3), the forces 
acting on the cell faces are approximated using a central spatial differencing scheme as 

x-direction 

Txn = 

TX8 ~ 

~ = 

Gn ~n(UN - Up) + Gn ~-~(Vne - Vnw), 

Gs ~L(up - us) + Gs ~s(Vse - Vsw), 
Oys 

Sw (~ + 2a)~ - ~ ( u p  - uw) + ~ ~ ( ~  - v.~). 

(9a) 

y-direction 

Ty,~ = 

Tys = 

Ty~ = 

Tvw = 

("~ + 2G)n ~n(VN -- VP) + "~n ~n(une - Unw), 

()~ + 2G)s ~ys(Vp - vs) + )% ~xs(Use - Usw), 

Ge 6~e(VE - Vp) + Ge ~e(Une - Use), 

&,, S~ 
Usw)~ VXw oy~o - 

(9b) 
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Table 1. Coefficients and source terms in FV discretization 

AN 

(), + 2G). eft. 
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(A + 2G)s 
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(~ + 2G)~ ~-~ 
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P 6t 2 

btls beto 

Sn S, S~, 
a " ~ ( v n ' - v " ' ~ ) - G s 6 - ~ ( v s ~ - v ~ " )  A"~(v"'-v")-)~"~u,,,(v""-v"~)Yw 

bin-transient bin-steady state 

V p .  0 

where, for example, the displacement u ~  at the cell corner is linearly interpolated between 
displacements of four surrounding points P, E, N, N E  (Fig. 3) 

u ~  = (up(1 - f x p )  + uEfxp) (1  -- f y p )  + (UN(1 -- f x p )  + U N E f x p ) f y p ,  

~Xp 5yp 
f x p  - ¢5xp + ~XE' fYP -- $YP + ~YN 

As a result of FV discretization two algebraic equations are obtained for each cell 

A p u p  - Z AKuK = b, 
K 

(10a) 

Apvp  - E AKvK = b, (lOb) 
K 

where Ap = E K A K  + ap, b = b,~ + b~w + bin, K = N, S, E ,  W, and the coefficients 
AK and source term b are as listed in Table 1. 

The most marked feature of the FV method is its conservative nature, i.e. the forces acting 
on the internal cell faces are always balanced. 

The formulation of a particular problem is completed by specifying boundary conditions. 
These are implemented either by replacing the expressions for the traction forces in (9) by 
known boundary forces for given boundary cells, or by prescribing the displacements of the 
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boundary points. In the transient case initial conditions must be prescribed prior to dynamic 
solution (see Section 4.2). 

Thus, a system of 2N linear algebraic equations with 2N unknown displacements 
(Ul  , . . .  ~ UN,  Vl  , . . .  , V N )  is formed, where N is the number of cells. In order to solve 
this system, an iterative method is employed. The values of displacements in b, (10), are 
assumed known; in the first iteration guessed values are used, while values calculated from 
the previous iteration are used during the rest of the iterative process. Thus, the equations are 
temporarily decoupled for individual displacements, and two sets of N equations with a sparse 
five-diagonal diagonally dominant symmetric coefficient matrix are obtained. Equations are 
solved sequentially in turn by a line-by-line three diagonal matrix algorithm [1]. The process 
is repeated until a required convergence is achieved. In the transient case, the solution is then 
advanced to the next time step. 

4. Applicat ions 

4.1. STEADY-STATE RCP IN A PEELING-STRIP GEOMETRY 

After the method had been verified on a number of simple test cases (e.g. beams loaded in 
pure shear, tension and bending), it was applied to the analysis of steady-state RCP in the 
peeling-strip geometry. Williams [6] analysed a long strip of finite height H and thickness/3, 
loaded by linearly varying pressure p(x) over the distance )~ and fracturing along its length at 
a constant speed d (Fig. 4). The expression for the dynamic crack driving force was derived 
from the global energy balance (6), using one-dimensional 'built-in' beam theory 

G dyn ((  -- sin ~)2 

Gs t - 36 ~6 ' (11) 

where ~ = v'~()~/It)(t,/C) and C = ( x / ( - ~ )  is the longitudinal stress wave speed, while 
the static energy release rate G st is given as 

1 Bp2 ()~*) 4 
e St _ 

6 EH 3 

Here a corrected length 

2 

accounts for deflection due to shear in the beam, and deflection due to rotation at its 'built-in' 
end. 

The analytical prediction for the dynamic crack opening displacement V dyn at x ---- A is 
derived in terms of the corresponding displacement v st of a stationary crack 

v dyn 3 0 ( ~  s inE)  (12) 
vSt - -  ~4 "J[- C O S ~ - -  T " 

The numerical simulation was performed by defining a control volume containing the crack 
front (Fig. 5). The pressure decay from P0 to 0 is completed inside this volume, which cuts the 
bar at two vertical sections; one in front and the other behind the crack tip. Since steady-state 
conditions are assumed, fixing the control volume position relative to the crack tip which 
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Fig. 4. Peeling - strip geometry. 
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Fig. 5. Control volume for the analysis of peeling-strip geometry. 

moves at a constant speed/L, the shape of the bar remains unchanged inside the volume. Thus, 
during an increment of crack growth/ia, G dyn is computed from the energy content of the 
bar as it enters and leaves the control volume, and the external work during the crack growth 

which is approximated as 

) B d----a- - B d~ =o p(x)B dx dv ,~ E Pi -~aOXi, 
i= l  

where the summation is done over N~ cells along the pressure decay length A. So, (6) takes 

the form 

N~ /ivi 1 U 
adyn----  E Pi --~--a/iXi + - ~ a  ((( s)] -- Us)b) + ((Uk)f  - (Uk)b)), 

i= l  

(13) 

f and b stand for the front and back end regions of the bar respectively; e.g. (Uk)b is kinetic 
energy in the section H x / ia  × B at the back end of the bar (Fig. 5). In this particular problem 
(Us)y, (Us)b and (Uk)y are practically negligible. 

The FV simulation was performed on a 1 m thick bar loaded by P0 = 1 bar, w i t h / /  = 
1 × 10 -3 m, A/H = 10 and 8, 1 = 1 × 10 -2 m and n -- 1 × 10 -3 m. Material behaviour 
was characterized by E = 1.5 GPa, v = 0.33 and p = 1.5 103 kg/m 3. As in the analytical 
solution, the bar is assumed to be under plane stress conditions. A mesh independent solution 
was achieved using a uniform mesh consisting of 525 rectangular cells for A/ t t  = 10 and 
475 cells for A/H = 8, with/ix = / i y  = 2 × 10 -4 m./ia was chosen to be equal to the length 
/ix of the cell at the crack tip. However, varying/ia showed little effect on G results once the 
solution had converged (Table 2). 



Dynamic fracture problems 365 

Table 2. Influence of various 8a on G results ()~/H = 10) 

G st J/m 2 G dyn J/m 2 (~ = 100m/s) 

8a = 2 × 10-4m 14.32 9.09 
/Sa = 1 x 10-4m 14.72 9.20 
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Fig. 6. FV vs. analytical steady-state results ()~/H = 10). 

First, numerical simulation of  a stationary crack (~ = 0) was performed showing very 
good agreement with analytical results: within 1 percent for A/H = 10 and 0.7 percent for 

Computation for steady-state RCP was carried out for a range of  crack speeds from 0 
to 120 m/s .  The comparisons between numerical and analytical G dyn results are presented 
in Figs. 6 and 7, for ~/I-I = 10 and ~/ t I  = 8, respectively. Values of  the crack opening 
displacement at z = ~ are also shown. 

Summarised G dyn data from both ~/I-I = 10 and ~/I-I = 8 steady-state RCP simulations 
are presented in Fig. 8 in the form of  a single master G dyn vs. ~ curve. Figures 6 to 8 demonstrate 
remarkable agreement between FV and analytical results, verifying both the accuracy of  the 
FV method and the validity of  the approach for calculation of  G dyn (st) (13). 

4.2. TRANSIENT RCP IN SINGLE EDGE NOTCH TENSILE (SENT) GEOMETRIES 

The accuracy of  the FV method f o r  transient RCP has been examined by comparing its 
results with those from idealised analytical and dynamic FE solutions [7]. FV modelling was 
performed on single-material SENT and duplex SENT geometries (Figs. 9 and 10), and all 
the details regarding the geometries, materials, crack speed data, loading and the boundary 
conditions are taken from [7]. 
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Fig. 7. FV vs. analytical steady-state results (A/H -- 8). 
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Experience gained from the FE work on RCP has been useful in developing the FV code. 
The simulation of a propagating crack is based on a fixed mesh 'node release' technique, which 
is simpler than alternative moving mesh procedures [8, 9]. Only a generation mode analysis 
is considered in this work, i.e. the crack length history is prescribed and the corresponding 
crack driving force is generated. Due to symmetry, only half of the sample is analysed and the 
crack path is represented as a boundary. The running crack is modelled by sequential release 
of the boundary cell faces along the crack path, progressively changing boundary conditons. 
It was found that a step change of boundary conditions with instantaneous increase of the 
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Fig. 9. Single material SENT geometry. Fig. 10. Duplex SENT geometry. 

H 

crack length by one element spacing caused spurious oscillations in the FE solution [8, 9]. 
Also, no net energy was dissipated in the system as the crack propagated. In the fixed mesh 
FE simulations, this problem was overcome by applying a 'holding back force' to the newly 
released node at the instant of release [8, 9 10]. This force was gradually decayed to zero from 
its maximum value, equal to the negative nodal force prior to release. A number of decay 
schemes have been proposed, and a linear decay of holding back force found to be satisfactory 
[11, 12], suppressing artificial oscillations and providing an energy sink near the moving crack 
tip. A similar concept is used in the present work. The holding back force (Tys), applied on 
the last released boundary cell face, decreases gradually from its prior value (Tys)0 according 
to the position of the crack tip 

Tys = - ( T y s ) O ( 1  - f ) ,  (14) 

where 0 < f < 1 is the proportion of cell face length traversed by the crack. When this 
reaches l, the next boundary cell face is set free and the procedure is repeated. 

Before the crack initiates, an initial static solution of the stresss-strain distribution in the 
sample is computed, corresponding to the static boundary conditions. Having obtained the 
initial conditions, the crack is propagated by releasing the boundary cell faces at times specified 
according to the crack speed. Every time a cell face is released, the energy absorbed by the 
crack is calculated by both global energy balance 

GdY n ~ ( ( ( V E ) t n  - (UE) tp)  - ( ( V s ) t n  - ( V s ) t p )  - ( ( V K ) t n  - ( V K ) t p ) )  (15) 
B r x ~  

and summation of the local work done by the holding back force 

(Tys) (v  - 

Gdyn ~ E - ~ X  s , (16) 
tp 

t n  and tp  stand for the times when the next and present crack tip cell faces, respectively, are 
released, t is the current time, (Ty~)t is the current holding back force acting on the presently 
released cell face, and vt and v t -~t  are the crack tip opening displacements of the released 
boundary face node at two consecutive times. Both methods should agree if the solution is 
stable [8, 9, 12]. Disparity indicates that energy is not being conserved in the system. 
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Fig. 11. Crack driving force vs. crack length; FV vs. FE results; E = 6GPa, v = 0.33, p = l l80kg/m 3, 
D = 10 mm, H = 40 mm, P = 1.65 kN, a0 = 1.8 mm, h = 305 m/s; FV: 3200 nodes, FE: 3198 nodes. 

A uniform mesh is used throughout, as recommended for the simulation of transient RCP 
[11, 12]. The sample is assumed to be under plane strain conditions. During static loading, a 
uniform y displacement, corresponding to the applied load is applied to the upper boundary, 
along which all boundary cell faces were constrained in the x-direction. The cell faces along 
the crack path were only constrained in the y-direction, while those along the initial notch a0 
(Figs. 9 and 10) and the two side boundaries were stress free. 

The dynamic mode calculation begins by a release of the crack tip cell face. During the 
dynamic computation the specimens are regarded as being under fixed grip conditions, i.e. the 
upper boundary is fixed in both x- and y-directions. In the case of the duplex SENT sample, 
the mechanical properties of material were attributed to all cells on one side of the interface, 
while all cells on the other side had the mechanical properties of material 2 (Fig. 10). The 
forces acting on the cell faces which lie on the interface are calculated using a harmonic mean 
value of the mechanical properties of the two materials (E and G). Constant crack speed 
was specified throughout the single material SENT sample. In the duplex sample, the crack 
propagated at a constant speed in material 1, arrested at the interface for a short period (tartest), 
and continued with a lower constant speed through the second material. 

Figures 11, 12 and 13 show the comparison between FV and FE G dyn results. In the FE 
solution, uniform meshes consisting of constant strain triangular elements were used. Also 
shown in Fig. 12 are the static and dynamic infinite plate predictions 

GSt ( g s t )  2 p27ra 
- E (1 - v 2) - BZD2 E (1 - u2), (17) 

where K st is a static stress intensity factor and P is the load prior to fracture, and 

G dyn = GStg(h), (18) 

9(~) being the crack speed correction factor, which is equal to unity at zero crack speed and 
reduces to zero at Rayleigh surface wave speed. For the case presented in Fig. 12 g(h) = 0.88 
[131. 

Generally, very good agreement between the FV and FE results is demonstrated. However, 
some disagreement developed as the crack approached the end of the sample, where only 
a few cells in FV or elements in FE simulation remained along the crack path. Therefore, 
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Fig. 12. Crack driving force vs. crack length; FV vs. FE vs. analytical results; E = 6GPa, v = 0.33, p = 
l l 8 0 k g / m  3, D = 30mm, H = 80mm, P = 3.7kN, a0 = 6mm, A = 253.6m/s;  FV: 2500 nodes, FE: 14342 
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Fig. 13. Crack driving force vs. crack length; FV vs. FE results; /~1 = 6GPa, vi = 0.33, Pl = l l 8 0 k g / m  3, 
E2 = 3GPa, v2 = 0.39, P2 = l l 9 0 k g / m  3, DI = 19.8mm, D2 = 9.3mm, / /  = 100mm, P = 2.06kN, 
ao = 2 mm, ~1 = 344.3 m/s ;  A2 = 265 m/s ,  tartest = 1.2/is; FV: 2640 nodes, FE: 14952 nodes. 

neither of the two methods is expected to give accurate results. Unlike the static solution, the 
dynamic infinite plate prediction is in close agreement with numerical simulations of the finite 
size geometry. Until the stress waves return to the tip, the crack is 'unaware' of the specimen 
size; thereafter, some divergence starts to develop, although no abrupt step change due to the 
wave arrival itself occurs. 

The influence of the mesh size on the FV results is shown in Fig. 14. The test shown in 
Fig. 11 is simulated using four different mesh sizes. It is demonstrated that the FV method 
is reasonably accurate (within 5 percent) even when a very coarse mesh (200 nodes) is used. 
When the same test was analysed by FE and the mesh size was reduced from original 3198 
nodes to 756 nodes, the difference between corresponding results was found to be within 7 
percent. 

It is important to notice that since the implicit time differencing scheme is used (Section 
3), the only restriction on the time step 6t is imposed by the accuracy requirement. The 
insensitivity of the computed results to the range of 6t/tc ratios is shown in Fig. 15, where tc 
is the time for the longitudinal stress wave to travel between two nearest nodes in the mesh. 
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Fig. 14. Influence of  the mesh size on G dyn vs. a results. 
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Fig. 15. Influence of  the time step (6t) on G dyn vs. a results. 

Although the results presented in Figs. 11 to 14 were generated using ~ t / t c  = ~, the optimal 

results regarding the computing time can be achieved with ~ t / t c  - ] 
- -  2 "  

It is also worth mentioning that the FE code [7] required twice as much computer memory 
as the FV code for the same number of computational nodes. 

5. Conclusions 

A novel numerical approach has been introduced to the solution of dynamic fracture 
problems. The finite volume discretization of the equilibrium equations leads to a system 
of decoupled linear algebraic equations with sparse, symmetric and diagonally dominant 
coefficient matrices. Consequently, a low computational memory requirement is achieved. 
The equations were efficiently solved by line-by-line iterative solver. 

The attractive simplicity is thought to be one of the main features of the presented technique; 
equally important is its conservative nature, which resulted in good accuracy even when coarse 
meshes were employed. 

This paper has considered only the application of the method to two-dimensional linear 
elastic RCP problems. However, it was recently shown that FV can easily be applied to any 
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geometry using arbitrary cell topology [14]. Work is also being conducted in order to efficiently 
and accurately simulate RCP in three dimensional specimens made of nonlinear materials. 
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