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Abstract. In certain cases it is possible to construct work potentials and J-like path-independent integrals for 
monolithic or composite nonlinear viscoelastic media. In this paper we discuss some situations in which such 
quantities exist and are useful in the study of quasi-static initiation and continuation of crack growth. The 
so-called quasi-elastic approximation and a constitutive equation in the form of a single hereditary integral provide 
the basis for using J or J-like integrals as fracture characterizing parameters during initiation and the early stages 
of crack growth. It is also shown that in some cases with significant crack growth the instantaneous crack speed 
can be characterized in terms of a similar path-independent integral. The problem of characterizing growth of large 
cracks in viscoelastic media with micro-damage is discussed briefly. 

1. Introduction 

Rice's introduction of the path-independent J integral [1] provided the basis for a major 
advancement of the fracture mechanics of ductile metals and other materials exhibiting 
significant time-independent, nonlinear behavior. Other similar path-independent integrals 
have been since proposed as fracture characterizing parameters for linear and nonlinear 
time-dependent materials, such as those reviewed by Kanninen and Popelar [2]. In two- 
dimensional problems Rice's J integral involves only a contour integration around the crack 
edge, while other parameters developed for general inelastic behavior include an area 
integral as well as a contour integral (e.g., Kishimoto et al. [3] and Watanabe and Kurashige 
[4]). For nonlinear viscous media, an integral which is like J (but with velocities in place of 
displacements) has been proposed and applied by Ohji et al. [5] and Landes and Begley [6]. 

A primary objective of these various studies has been to identify a load parameter that 
enables one to predict when a crack will start to propagate and, following initiation of 
growth, the amount or rate of growth. In order to be useful, the relationship between crack 
growth and the parameter should possess at least some degree of transferability. Namely, the 
same fracture characterization in terms of this parameter should be applicable to the 
different geometries and loadings of interest; it should be possible to use results from fracture 
test specimens to predict crack growth in engineering structures. Stress intensity factor serves 
as such a parameter for linear elastic and linear viscoelastic media. 

Beside path-independence, another important feature of the J integral is that it is equal 
to the decrease in global potential energy (per unit surface area) with self-similar crack 
growth. This relationship provides the basis for determining instantaneous values of J 
directly from fracture test specimens, thereby avoiding the need for detailed information on 
constitutive properties and for possibly involved theoretical calculations to determine J 
values. 
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In this paper we discuss some cases in which J-like integrals can be used as fracture 
characterizing parameters for quasi-static initiation and continuation of crack growth in 
nonlinear viscoelastic media. Large strains and the effect of  distributed microcracking on the 
growth of much larger cracks are only briefly considered in the concluding remarks. 

The central effort in establishing path-independence of J and its relation to potential 
energy is to demonstrate that a work potential O, like strain energy density, can be found 
which characterizes the stress (0 0.) - strain (e u) behavior of the continuum using 

ao = O~/& U (1) 

where ¢ = ~(eu, Xk, t) and i, j, k = 1, 2, 3. The stresses and strains are referred to an 
orthogonal set of  Cartesian coordinates xi; explicit use of x k and time t in • implies 
allowance for material nonhomogeneity and aging or certain viscoelastic effects, as discussed 
below. A significant generalization is achieved, without much additional analytical complex- 

R ity, by replacing strains in (1) by the quantities e0, 

= 0*/o4 ( 2 )  

As above, q~ -- ~ ( ~ ,  Xk, t). The quantities e R are linear functionals of  strain which are 
R Oe U/Ot, corresponding to viscous behavior. As defined in Section 2; one special case is e,j = 

discussed by Schapery [7-9], the important aspects of  Rice's original J integral carry over to 
nonlinear viscoelastic media if the constitutive equation is given by (l) or (2). At first we shall 
not restrict the material nonhomogeneity; but, as is well-known, q~ cannot depend explicitly 
on the coordinate in the crack plane normal to the crack edge (say Xl) if J, expressed as a 
contour integral, is to be independent of path. 

In Section 2 the basis for using e~ in place of strain and various consequences for fracture 
theory, as described previously [9], are reviewed. The J-like integral which comes out of this 
formulation serves as a fracture characterizing parameter for nonlinear elastic, viscoelastic, 
and viscous media. Power law nonlinear behavior is assumed in Section 3 in order to obtain 
some explicit results for singular stress fields surrounding crack tips and related implications 
for fracture characterization; this study serves to extend some of Riedel and Rice's results 
for nonlinear creeping solids [10] to more general viscoelastic behavior. In Section 4 we 
discuss the applicability of J theory when stress or strain-reduced time is used in hereditary 
constitutive integrals. 

2. J-like integral based on a single-integral constitutive equation 

2.1. Constitutive equation 

Outside of the highly damaged and failing material at crack tips, the deformation behavior 
is assumed to be characterized by a nonlinear viscoelastic constitutive equation in the form 
of a single hereditary integral for the strain tensor: 

eu ER Io D(t -- z, t) Oe~ dr (3) 
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The quanti ty e~ is a second-order tensor which is a material function, 

s~ = e~ (trk,, Xm, t) (4) 

with all indices taking the values 1, 2, 3. The coefficient E R is a free constant which will be 
termed the reference modulus; it is a useful parameter  in discussing special material behavior 
and introducing dimensionless variables. 

When e~ is used in (3), the time argument is specified as the variable of  integration; that 
is, t should be replaced by z where explicitly shown in (4) and in the argument of  the stress, 
akt = akt (X~, r). TO simplify notation, the arguments of  stress and strain will not be written 
out unless required for clarity. For  all cases it will be assumed that e~ = e,~ = aij = 0 when 
t < 0 and D(t  - r, t) = 0 when t < r. To allow for the possibility of  a discontinuous 
change in e,~ with time at t = 0, the lower integration limit in (3) and succeeding hereditary 
integrals should be interpreted as 0 - .  

The explicit dependence of  e~ on x,, in (4) accounts when necessary for material non- 
homogeneity; t is introduced to allow for aging and time-dependent residual strains (such as 
those due to thermal expansion in composites [1l]. The function D(t  - ~, t) is a creep 
compliance; it provides creep under constant stress as well as other hereditary effects under 
time-varying stress in both aging and nonaging materials. The significance of  e,~ and D will 
be shown by considering some special cases. 

First, however, it will be useful to rewrite (3) and (4) by expressing stress in terms of  strain 
e R history. Supposing that the inverses exist, and replacing the notation s~j by so, (4) may be 

rewritten as 

,rij = ~r~j(~'~, x~,  t) (5) 

The quanti ty eft is called pseudo strain; it is related to the physical strain through the inverse 
of  (3): 

~ = E£ ~ f~ E(t  - r, t) ~ dr  (6) 

The quanti ty E is a relaxation modulus; its relationship to D is given by 

(' E( t  - z, t) D(r  - zo, z) dr = H ( t  - to) (7) 
~ r  

where T0 >~ 0 and H ( t  - To) is the Heaviside step function (i.e., H( t  - z0) = 0 and 1 for 
t < r0 and for t > T 0, respectively). In all cases e~ = s~; the superscript R is used when we 
consider this tensor to be a function of  strain history (6), while the superscript e is used when 
this tensor is viewed as a material function of  stress, (4). One can verify that substitution of  
(3) into (6) yields eft = e~ under the condition that (7) is satisfied. 

A linear viscoelastic material without  residual stresses which is isotropic, homogeneous 
and has a constant  Poisson's ratio v is characterized by (3) if we use 

e5 = E £  ~ [(1 + v)a~j - VakkO~] (8) 
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where 6i~ is the Kronecker delta, and the standard summation convention is followed in 
which repeated indices imply summation over their range. Given a uniaxial stress state 
(all :~ 0 and all other tr~ = 0) then (3) becomes 

00"11 
eN = fo D ( t  - z, t) ~ dz  (9) 

If O'll -~- O" 0 H ( z  -- to), where to >t 0 and a 0 is constant, then (9) reduces to ell = 
D ( t  - to, t)ao. Since eli/% is customarily termed the creep compliance, this name shall be 
used for D throughout this paper. Similarly, if ~1 = ~oH(z - to) for a uniaxial stress state, 
where ~0 is constant, one finds from (6) that the relaxation modulus, a./e0, is equal to 
E ( t  - to, t). Linear viscoelastic behavior for a nonaging material is characterized when the 
second argument in D and E in (3) and (6) is dropped, so that D (t - z) and E ( t  - z) appear 
in equations (3) and (6), respectively. 

The mechanisms which may require the aging form to be used for D and E (e.g., 
D = D ( t  - z, t)) are not limited to chemical processes. For example, this form accounts for 
the effect of transient temperatures on the creep compliance and relaxation modulus, and 
includes the familiar thermorheologically simple behavior of polymers as a special case. It 
should be noted that the expression D ( t ,  z) is sometimes used instead of D ( t  - z, t) in 
characterizing viscoelastic behavior of an aging material. Although both forms are equally 
general, the latter is used here as it is a more convenient notation in equations which govern 
crack growth. 

Allowing now for nonlinear, anisotropic and nonhomogeneous material, it can be seen 
R that for the special case of a constant relaxation modulus, E = ER, (6) reduces to eu = e0. 

Thus, (5) becomes the constitutive equation for an elastic-like material (in that the current 
stress depends on the current strain, not past values of strain). An equivalent result is found 
by using D = E~ ~ in (3). Viscous behavior results byusing E = tvER6(t  -- z) in (6) (where 
6(t - r) is the Dirac delta function and tv is a time constant), or by setting D = (t - z ) / t~E  R 

R = tvOeij / in (3). In this case the pseudo strain is found to be proportional to the strain rate, % 
~3t; thus, the current stress (5) becomes a function of the current strain rate. Equation (3) 
takes this form after integrating it by parts, then differentiating and inverting the result. 

It is desirable to introduce abbreviated notation for the hereditary integrals. Specifically, 
for any function f of time, 

{Ddf}  =- E R I : D ( t -  z , t ) ~ d z  

{Edf}  =- E ;  ~ f: E ( t  - z, t ) - ~  dz  (lO) 

Thus, (3) and (6) become, respectively, 

R = {E d%) eo = {Dde~}, %. (11) 
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2.2. Correspondence principle 
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The close relationship between mechanical states of nonlinear elastic and viscoelastic media 
with stationary or growing cracks in media defined by (3) or (5) is given in this section. It 
is stated in the form of a so-called correspondence principle, and serves as the basis for the 
development of crack growth theory. First, let us introduce a reference elastic solution ai~, 
e~/R, u~ corresponding to the case in which D -~ = E = E R. This solution is specified to 
satisfy the field equations, 

&ri~ 
- o ( 1 2 )  a.vj 

.i, = + ( 1 3 )  

R R R 
~ij = Gij (~'kl, Xm, t) (14) 

The following correspondence principle was established in [11], in which the instantaneous 
geometry (including cracks) is the same for both elastic and viscoelastic problems: Let 
surface traction T~ = a~nj be a specified function of time and position (which vanishes when 
t < 0) on all surfaces; n~ is the outer, unit normal vector. Then, the nonlinear viscoelastic 
solution based on (3) (or (5) and (6)) is 

a~i = a~, Q = {DdeuR}, u~ = {Ddu~} (15) 

where the variables with superscript R satisfy equations (12)-(14) and the traction boundary 
R condition T,. = a o nj on all surfaces. 

The correspondence principle was generalized in [ 11 ] to allow for specification of displace- 
ment Ui on some or all surfaces. In this case, the specified surface displacement in the elastic 
problem is Ui e = {E dU,.}; as in (15), elastic and viscoelastic stresses throughout the 
continuum are equal with stationary and growing cracks. 

2.3. Pseudo strain energy density 

Equation (2), which is a special case of (5), is needed to establish a fracture-characterizing 
integral which is analogous to Rice's J integral. Since all effects of  strain history are 
contained in the hereditary integral (6), for most cases it follows from the first and second 
laws of thermodynamics that a potential • exists [11]; we shall refer to • as "pseudo strain 
energy density". As proof, consider the case of constant strain rate, starting at some time to, 
for all strain components. Equation (6) becomes for t > t 0, 

ei/R = ~ij E£~(t - to)-J fio E(t - ~, t)dr (16) 

For t ~ to, and assuming the "initial" modulus E(0 + , to) exists, (16) becomes 

e~jR = EiiE(O +, to)/ER (17) 
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The stresses (5) at age to are thus functions of the current strains. When this elastic behavior 
is used along with the assumption that the internal energy density U at age t o is a function 
of only strain and entropy, thermodynamics yields [12] 

aij = 8U/88 o (18) 

If temperature is used in place of entropy as an independent variable, the Helmholtz free 
energy F replaces U as the potential. Using (17) we obtain (2) by taking 

• = E(O + , t o ) U / E  R or • = E(0 +, t0)F/E R (19) 

Without aging, the potential (I) can be shown to exist in a similar manner by using the long 
time response to constant strains if the limiting long-time relaxation modulus does not 
vanish. However, with significant aging (i.e., if the material ages appreciably during the time 
period required for most of the stress relaxation to occur) we cannot use this strain history 
to conclude that • exists (except at long times) unless the effect of aging enters (5) as a scalar 
factor. Having argued that stress can be derived from the potential q) with the special case 
(17), we can use this potential even when the hereditary integral (6) is needed because the 
form of the constitutive function (5) does not depend on the relationship between e~ and ~ij. 

This approach to establishing (2) is not valid for viscous media since in this case ~ --- 
tvO~ij/Ot regardless of strain history. Nevertheless, for linear viscous media Onsager's prin- 
ciple provides a symmetric viscosity tensor [12], and thus implies the potential • exists; but 
this principle does not apply to nonlinear viscous media. For isotropic linear viscous and 
viscoelastic media with constant Poisson's ratio, an appeal to thermodynamics is not needed; 

can be constructed directly from the inverse of (8). This potential is the same as the strain 
energy density for a linear elastic body except ~ (=  eTj) appears in place of eij. 

Instead of using thermodynamics to argue for the existence of O, one could use an 
experimental approach in which the path-independence of "pseudo work", 

WR = I a'J da~ (20) 

is evaluated for time periods which are short enough that aging is not significant. (Observe 
from (6) that only the relaxation modulus is needed to calculate e~ from a given strain 
history.) If  this work is independent of path then it follows by a standard argument that (2) 
is valid, whether the body is viscoelastic or simply viscous; as noted above, the existence of 
• cannot be deduced from thermodynamics for the nonlinear viscous case. 

2.4. The Jr integral and crack growth 

In analogy with the two-dimensional J integral (plane stress, plane strain, or antiplane strain) 
for nonlinear elastic behavior, we introduce 

auf ) 
Jo = Ic, - (21) 
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Fig. l. Cross section of crack in nonlinear viscoelastic material showing contour Cl (- - -) used in line integral (21 ). 
Only the opening mode of displacement is drawn, although the basic formulation allows for shearing deformation 
and unsymmetric damage. From [9]. 

where C~ is the contour in Fig. 1 which starts at point 1 and ends at point 2. (The three- 
dimensional version [8] could be used, but it is not really needed to make the points of  
interest here.) If the crack faces are traction-free, then the contour may start and end 
anywhere along the crack faces to the left of the failure zone (also called the fracture process 
zone); this zone is, by definition, where the ultimate failure processes occur, and where (2) 
is not necessarily applicable. If the material is homogeneous with respect to x~, then Jv is 
independent of Ct for all contours CI which are outside of the failure zone. Also, in analogy 
with the elastic case for self-similar crack area increase, ~A, 

J~ = - ~P~/~A (22) 

where Pv is the potential energy of the reference elastic body expressed in terms of the 
variables u/R and e~ or %. 

Equation (21), together with the correspondence principle (15), was used in [9] for some 
special cases of initiation and continuation of crack growth. Although more general material 
models of a thin-layer failure zone were treated, here we record only two results on initiation 
for the case in which the zone exerts a constant normal traction a0 on the adjacent con- 
tinuum. Prior to crack growth, the opening displacement at the left edge of the failure zone 
(which is essentially the distance between points 1 and 2 in Fig. 1) is 

Au2~ = {Dd(Jv/ao) } (23) 

and the equation for predicting crack growth initiation time ti is 

dL 
2F, = {DdJv}, = ERfI 'D(t i  - z, t i ) ~ d z  (24) 
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The right side of (24) is the work input to the left edge of the failure zone and the left side 
is the work required for rupture of the left edge (per unit of area projected onto the crack 
plane). For quasi-steady crack growth, in which crack speed is essentially constant during 
the time interval for growth of an amount equal to the failure zone length ~, 

2F = E g D ( k ~ / &  t) J~ (25) 

The coefficient k depends on the shape of the cusp-like failure zone boundary; but as a fairly 
good approximation k -~ 1/3. (For linear viscoelasticity and the opening mode of deforma- 
tion J~ ~ K~, where KI is the stress intensity factor; equation (25) then takes the form 
derived by Mueller and Knauss [13] and Schapery [14].) As in (24), the right side is the 
available work and the left side is the required work (or "fracture energy"). 

The length ct can be related to other crack-tip parameters through the requirement of 
bounded stresses at the crack tip. An explicit result is given in [9] for power-law nonlinear 
behavior of the continuum (cf. (29)) with a small-scale failure-zone, 

l a-~lll" "Iv (26) 
= i<rmll i 

where a, and a m are measures of the yield stress of the continuum (cf. (31)) and the strength 
of the failure-zone material, respectively. The quantity/y is a dimensionless function of n; for 
an aging material it may depend on time. This equation for e, together with (25), provides 
a means for predicting a as a function of the instantaneous J~, while t i is obtained from (24) 
as a function of the history of J~. 

For the special case of a nonaging, isotropic, nonlinear, viscous body, we use • = @(e~) 
and E = t~ER6(t  -- z); as noted previously this relaxation modulus yields eg = t~&t i /a t  ' 
and corresponds to the creep compliance D = (t - z ) / t~E  R. Equation (24), after an 
integration-by-parts, and (25) reduce to 

2F~ = 1 f~, j~ d t  (27a) 
tv 

and 

k~ 
2F = ate---: J~ (27b) 

R = cgei ~/Ot; this substitution reduces Jv to the C* parameter used for If we use t~ = 1, then eij 
characterizing crack speed in viscous media [6]. Equation (27b) provides the physical 
significance of C*, 

2Fa 2Fa 
C* = ~ 3 x - -  (28) 

k~ ct 

Recalling that 2F is the work done on the failure zone per unit projected area of new surface, 
it is seen that C* is approximately three-times the mechanical power input to the failure zone 
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per unit area of failure zone; i.e., it is three-times the crack tip power density. For viscoelastic 
behavior Jv does not have a simple physical interpretation. However, it should be noted that 
when J~ is expressed in terms of stresses or pseudo strains it is the same as for an elastic body 
with strain energy density ~. 

Equation (24) for ti and (25) and (26) for a and ~ are expressed in terms of only one loading 
parameter Jv which accounts for the effect of all external loads and the geometry of the 
nonlinear viscoelastic body. If the fracture energies, 2Fi and 2F, and the traction in the failure 
zone are constant (or at least do not depend on the effects of external loading and geometry 
other than through J~), these equations show that ti is a function of only the history of J~, 
and that a depends on only the current value of Jr. In practice it is not necessary to use these 
equations explicitly. Rather, one may conduct crack growth tests on specimens to obtain 
these relationships and then use them directly in structural applications. Because J~ controls 
the crack growth, it is referred to as a fracture characterizing parameter. Determination of 
instantaneous values of J~ for any given application is aided by recognizing that with a 
small-scale failure zone it is identical to that for an elastic body with strain energy density 

when under the same loads as the viscoelastic body. However, it should be added that the 
analysis leading to (23)-(25) does not explicitly use the assumption that ~ is very small 
compared to other dimensions of the body; however the validity of approximation (25) is 
uncertain when ~ is large. 

3. Jr and K~ as fracture characterizing parameters for power-law media 

Let us assume now that the material in the immediate neighborhood of a crack tip, but 
outside of the failure zone, is physically homogeneous and nonaging, and that the local 
is a homogeneous function of degree 1 + 1In 

• (2e~) = IAr'+'/"~(8~) (29) 

where 2 is a constant. The value of J~ then determines completely the local stress field if 
is sufficiently small. Specifically, in view of (15) the stresses have the same form as for an 
elastic body; i.e., the so-called Hutchinson-Rice-Rosengren (HRR) singularity solution is 
valid [2, 15], 

o~j = o, 6~j(0, n), (30) 

The quantity on is a constant with dimensions of stress; it may be identified with the 
coefficient used in the uniaxial stress-pseudo strain equation derived from (29) 

= ~ , , IERI  '/" sgn (eR) (31) 

where J • J denotes absolute value and sgn ( • )  is the sign of its argument. Also, r is the radial 
distance from a material point to the stationary or propagating crack tip, and 9~j is a dimen- 
sionless function of n and the polar angle 0. The zone of material failure is considered to be 
very small relative to the size of the HRR field, but it is not limited to the thin layer of Fig. 1. 
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Equation (29) is of  a more general form than the J2-deformation theory for isotropic 
power-law materials used to develop the HRR solution. Here, the material may be isotropic 
or anisotropic; one can show that (29) leads to the HRR form of solution for stresses and 
displacements. It should be noted that a normalizing constant I, is explicitly shown in the 
stresses in [2, 15]; here it is contained in 6 u, whose dependence on 0 is not necessarily the 
same as for the Jz-theory. Aging could be taken into account by allowing for time-depend- 
ence in ~,, n, and 6 u. 

Because the crack tip zone of material failure is well within the zone over which (30) 
applies, the mechanical environment of the tip is determined by J~; thus J~ controls the local 
failure processes. Both t~ and ~t may be affected by the history of Jr, not just its instantaneous 
values; but at least their dependence on J~ may be obtained from one geometry (test 
specimen) and then transferred to other geometries (engineering structures). This is the same 
justification for using J as a fracture characterizing parameter for nonlinear elastic materials 
[2]. It should be observed that this justification is sufficient but not necessary; recall that (24) 
and (25) do not depend fundamentally on the smallness of ~, and yet would be transferable 
criteria if the material parameters which appear are constant or depend on loading and 
geometry only through J~. 

3.1. Generalization of the v&coelastic constitutive equation 

The continuum remote to the crack tip may not satisfy (29). Nevertheless, the value of Jv in 
(30) can be found from a far-field contour whenever (2) applies and the material is homoge- 
neous with respect to x~. If, however, one or both of these conditions is not valid for the 
far-field, additional considerations are needed to determine Jv from far-field information. In 
particular, consider the situation in which the viscoelastic behavior close to the crack tip is 
considerably different from that of the far-field, possibly due to different creep compliances 
for low and high stresses. Let us assume that (29) applies close to the crack tip, and that, for 
simplicity, far from the tip the material is linearly viscoelastic, isotropic, nonaging, and has 
a creep compliance D~(t) which is different from that close to the tip; a constant Poisson's 
ratio is assumed. One approach to this problem is to use (2) for the entire field (apart from 
the failure zone) and introduce explicit time-dependence in • to account for the difference 
in compliances, not true material aging. With this approximate constitutive model, J~ is 
independent of path. 

The approach will be illustrated using a two-term constitutive equation, 

= E R f~ D(t -- ~) ~ [c~ec,/cqauld'~ + E R f~ D~(t - z) -~ [cl*,.,/clauldz (32) 

where the "complementary" potentials ~c, and (I)cl a r e  homogeneous functions of degree 
1 + n and 2, respectively, in tr u. Assuming n > 1, at sufficiently high stresses the first term 
will be dominant; the associated potential ~ ,  = ~,  (eR) may be found by inversion of the first 
term in (32) and use of a Legendre transformation, in which ~ ,  = -~ , . ,  + aue ~ . It is 
readily shown that this high-stress • satisfies (29). Similarly, at low stresses another pseudo 
strain energy density ~1 can be obtained from ~,.~. 

For a uniaxial, constant stress state (32) can be reduced to 

e = ERD(t)Ia/%1" sgn (a) + Dt(t)a (33) 
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When a power law creep compliance for the nonlinear range is used, 
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ERD(t) = (t/tp) r, (34) 

and/) / i s  constant (giving linear elastic response at low stress), then (33) has the form used 
to characterize creep of many materials [16]. Note that so-called secondary or viscous creep 
results ifp = 1. The relaxation modulus corresponding to (34) is infinite at t = 0 and zero 
at t = oe. This behavior does not necessarily preclude the use of thermodynamics to prove 
the existence of~,, and @,,; in reality, the power law is usually just an approximation for a 
limited time period. 

Consider next a constitutive equation which has a form that leads to a path-independent 
integral, say J~. 

c~ 
e~ ~ - ( f e , , ,  + ~ , )  (35) 

in which e~ t is given by (6), but E is replaced by Et where Ez is found from the non-aging form 
of(7) using E t and Dz; a l so . /=  f ( t )  is as yet an unspecified "'aging" function. The associated 

Rt becomes a function of only ~/ pseudo strain energy density, qb = - (fq),, + qb~ ) + a~ie~i, 
and t after (35) is used to eliminate o-~/in favor of these variables. We shall assume that (35) 
is a good approximation to (32) over the entire stress range provided f i s  chosen properly. 
To find J; Laplace transform both (32) and (35), equate the transformed strains and then 
introduce s/? t = 1/sD~ (which follows from (7), with s as the transform parameter and the 
overbar denoting a Laplace transform). Thus. 

( . /~ , J&r , , )  D~ = (~O,.,,/~aij) D (36) 

If D(t) = D l(t) then (36) correctly yields f = 1. 
If D(t) # Di(t) it is not possible in general to satisfy all six equations in (36) with one 

function.l: On the other hand, it is possible to do so with proportional stressing, 

/ 

ail = Saij  (37) 

where S = S(t) and the a~ are independent of time. Equation (36) then yields 

./x,,zS, = s"  L5 (38) 

Thus, with proportional stressing (38) may be used to obtain the f ( t )  which makes (35) fully 
equivalent to (32). Proportional stressing is not needed at low stresses because (32) and (35) 
are equivalent when the nonlinear strain term is negligible. 

Instead of using (35) as the basis for a path-independent integral, the original equation 
(32) can be used if the so-called quasi-elastic approximation is valid for both the nonlinear 
and linear terms [17]. In this case, 

air = ~,/Oa,:/ (39a) 
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where 

O, =_ ERD(t) $c, + ERDz(t) Oct (39b) 

Obviously (39) is exact when the stresses are constant. For time-varying stresses it is a good 
approximation if the magnitude of the curvature 02/(0 log t) 2 or 0 log ( • ) / a  log t of the 
potential gradients and e0, D, and Dt is small. For this time-dependent elastic characteriza- 
tion • = - ~ c  + a0e0 is the potential which is used in constructing a path-independent 
integral. The integral is simply J, in which the actual displacements and strains (instead of 
pseudo variables) are used. 

3.2. A very small nonlinear crack tip zone; opening mode 

If the zone of nonlinear behavior is small enough, it will be surrounded by a linear viscoelastic 
singular stress field. We may consider this outer singular field to be the far-field relative to the 
region of validity of (30). The form of the stresses is the same as in (30), but n = 1. In order 
to identify the constant a, in the linear solution, consider (35) for a uniaxial stress a, 

e Rl = f [ a / a .  I" sgn (a) + a/E  R (40) 

where ER has been introduced so that it cancels out of (40) in the linear range when eR is 
expressed in terms ofe. Comparing the linear term in (40) with (31), we see that by replacing 
G with E R in (30) the stresses for the outer singular zone are obtained, 

[- l~' 1 "/ -]1/2 
= LrJ (41) 

In the linear range of (40), the material is elastic with a Young's modulus of E,~ and strain 
eR~. The J,~ integral and the stress intensity factors (for single or mixed mode) are related in 
the same way as for an elastic material. For example, the opening mode stress intensity factor 
/(i for plane strain in the outer singular zone is 

K~ = ERJ'/(1 - v 2) (42) 

Of course for plane stress (1 - v ~) is replaced by unity. Equation (41) reduces to 

trij = g l r - l / 2 ~ i j ( O  , 1)(1 - v2) 1/2 (43) 

It is well-known that % is independent of v, given K1, and therefore ai: in (43) must be 
inversely propotional to the last factor. 

Since the value of J~' in (42) is the same in the nonlinear singular zone, (42) can be used to 
express (30) (with Jv first replaced by J ' )  in terms of/(1. Notice, however, tha t fappears  in the 
constitutive equation;comparing (31) and (40), a, in (30) has to be replaced by G / f  1/~ . Thus, 

K? ql/(n+l) ~iJ (0 '  n)(1 - v2) 1/~l+") 
ao = E .  [_E2 fr_l 

(44) 
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After making the above substitutions we used a,, = ER, which is permissible since o, is a 
redundant constant. It would be possible to take ER = 1 as well, since ER always appears 
with D and D~; but unless n = 1, D would not have dimensions of compliance a n d f w o u l d  
not be dimensionless. 

Equation (30) in terms of the original Jr, with a,, = ER, must agree with (44). Hence, 

J~ = Jt/ f  (45) 

where 

J~ = K~(1 - v2)/ER (46) 

is the J integral for a linear elastic material and is equal to J~'. 
If the quasi-elastic expression (39) is applicable, we can use it to get another expression 

for the inner and outer singular stress fields. For uniaxial stress, (39) must reduce to the result 
(33) given previously for constant stress. In the linear range the modulus is D~ -1 , and 
therefore the quasi-elastic counterpart to (42) is 

K~ = J/Dt(t)(1 - v 2) (47) 

Equation (43) is still applicable since the stresses in terms of K l do not depend on the 
viscoelastic compliance. 

In the solution (30) for the nonlinear singular zone, a. must be replaced by a./(ERD) l/', 
as may be seen by comparing (31) with the nonlinear term in (33). Also replace Jv by J and, 
as before, let o-. = ER; thus 

i j ll/(n+ 1) 
= if,i(0, n) (48) aij ER D E~ r 

This expression is valid with or without far-field linear behavior. In the former case we may 
use (47) to express (48) in terms of Kl, 

[ 7 a~j = E,  D E~ r J  c?u(0, n)(1 - v2) l,'l"+l/ (49) 

For agreement between (44) and (49) u s e f  = D/D~. This result is also found by applying the 
so-called direct method of approximate Laplace transform inversion [17] to (38). 

3.3. Transition from small to large-scale nonlinearity 

According to (35), the nonlinear viscoelastic strain is dominant whenf is  large, whereas there 
is primarily linear behavior when f is small; what constitutes small and large depends of 
course on the stress level and value of the exponent n. In order to illustrate how behavior 
changes with time and then to estimate the time scale for the transition, we shall assume D, 
Dr, and Kl obey power laws in time; i.e., use the D in (34) and similar representations 
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for the other two functions, 

E R D  I = ( t / t q )  q, g 1 = ( t / t k )  k (50) 

in which (p, q) ~> 0. Considering only material points which are in the nonlinear singular 
field (44), we assume power laws as trial solutions for the stress factor S and aging 
function f,  

S = (t/tm) m, f = (tits) a (51) 

Substitution of (34), (50) and (51) into (37), (38), and (44) yields 

a = p - q (52a) 

m = (q - p  + 2k) / (n  + 1) (52b) 

and 

F(p + 1)F(mn + 1) D 
f = F(q + 1)r ' (p  - q + mn + 1 ) ~  (52c) 

where F( • ) is the gamma function. When an argument of F vanishes or is negative one of 
the convolution integrals used to predict strain by means of (32) or (35) does not converge, 
whereas there is no convergence problem with positive arguments. The time exponent for the 
stress intensity factor, k, which is viewed as a specified quantity, therefore must be such that 

mn + 1 > 0 and p -  q + mn + 1 > 0 (53) 

Suppose, for example, in the fully nonlinear range the material is viscous (p = 1) and in 
the linear range it is elastic (q = 0). Equation (52) yields 

n + l  t 
f - (54) 

2 k n +  l t p  

Recalling (45), we find that this result is the same as reported in [10, p. 123] if we take k = 0 
(constant K~) and tp = 1; the latter selection reduces Jv to C* for a viscous body. 

It was found earlier that the quasi-elastic approximation f o r f i s  D/Dt ,  and thus it is the 
same as (52c) except for a constant factor. This factor is approximately unity with weak time- 
dependence 0 < (p, q) ,~ 1 or if q ~- p. Since F(x) is within 13 percent of unity when 
1 ~< x ~< 2, there is a fairly large set of  conditions for which the quasi-elastic approximation 
is both qualitatively and quantitatively valid. The exponent m, which defines the time- 
dependence of stress, is different for points in the linear and nonlinear fields. Indeed, neither 
the proportional stressing assumption nor the power law time-dependence are fully satisfied 
at any given point in a singular field while it changes from a linear to nonlinear field (or 
vice-versa). Although this change has not been accounted for in deriving (52c), it is not 
important at least when the quasi-elastic approximation can be used. Additional support for 
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the present analysis is inferred from the comparisons in [10] for mode III when q = k = 0 
and p = 1. 

3.4. Stability of crack growth 

As observed earlier in this section, the crack growth is controlled by Jv. Although (24) and 
(25) are based on certain idealizations of crack tip phenomena, it is believed they provide 
some indication of just how Jv affects crack growth. In turn, (45) shows how far-field stresses 
affect Jv for a small-scale, nonlinear singular zone. This latter equation, together with (50), 
(51) and (52a), yields Jv ~ /(q-p+2k). If the time exponent is negative, the high initial Jv will 
tend to produce a high, initial crack growth rate; but then the decrease of J,. with time may 
allow crack arrest. For a positive exponent the growth is more likely to be continuous and 
stable, at least in the early stage. Thus, the greater the time-dependence of the inner field (p) 
relative to the outer field (q), the more likely the early growth will be unstable, possibly 
consisting of start-stop steps. 

3.5. Estimate of the characteristic transition time 

When the exponent a = p - q is positive, the factor f increases with time, so that in 
time the linear viscoelastic component of strain in (35) becomes negligible, after first 
being dominant. Thus, initially the singular field is linear and controlled by Kj, while 
finally it is the HRR field, and controlled by Jv. The transition from the linear to the 
nonlinear field takes place of course over a period of time. Following the method used 
in [10] for constant applied loads, we may estimate a characteristic time, say tr, for this 
transition. Initially ,Iv decreases with time when J/is constant, according to (45). At long 
times the first term in (35) is dominant, and therefore the long-time J~., J,, say, is constant 
if the applied loads are constant; in this case (45) does not apply because the linear singular 
field does not exist. The time at which (45) predicts J~. = J,, is the characteristic transition 
time; thus, 

J,, = J , / f ( t T )  (55) 

From (34), (50), and (52c), 

t~-- = I F ( q +  1) F ( P -  q + mn + 1 ) ( t p / t q ) q j I ] l / ~ P - q ' t p  F(p + 1)F(mn + 1) J,, (56) 

(It is likely that (56) provides a good estimate of tr even if the loads are not constant (k ~ 0) 
provided that f increases  in time (a > 0).) With k --- q = 0 and tp = p = 1, then (56) 
reduces to the result in [10, Eqn. (42)], 

tT = Jt/(n + 1)C* (57) 

As in [10], we may also determine how the radial position of the intermediate zone between 
the inner and outer singular fields varies with time. Specifically, equate a measure of the 
stresses in (43) and (44) to find r ~ K~f  2/~'-- ~, showing, as expected, that the nonlinear field 
grows in time i f a  > 0, n > 1, and k >~ 0. 
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4. Additional constitutive equations derivable from a potential 

In the last section the nonlinear viscoelastic constitutive equation (32) was replaced by a 
time-dependent elastic representation in terms of pseudo strain, (35). For a given time- 
dependent factor, f ( t ) ,  this representation provides a J~ integral which is path-independent 
for proportional and nonproportional stressing. Assuming proportional stressing, an equation 
for the factorfwas developed, (38), whose solution made (35) an exact representation of (32). 
As a generalization of this method, an additional aging factor, sayf~, could be used with ~,l 
and the pseudo strain could be based on a compliance other than D/. Indeed it may be 
desirable to use f~ and D, instead o f f  and D t , at small load levels for the case of hardening 
nonlinearity, n < 1, because the far-field behavior is then primarily nonlinear. 

The quasi-elastic approximation to convolution integrals reduced (32) to (39), thus 
providing a path-independent, quasi-elastic J integral. There are other forms of linear and 
nonlinear viscoelastic constitutive equations which, under certain conditions, can be derived 
from a potential. For example, this is possible whenever the quasi-elastic approximation can 
be used in constitutive convolution-integral characterizations of linear isotropic or aniso- 
tropic media; in this case, as before, creep or relaxation functions are used in place of elastic 
constants in elastic-like consitutive equations. 

One type of nonlinear constitutive equation which has been used for polymeric materials 
is similar to that used for linear media but real time is replaced by a stress- or strain-reduced 
time [18]. In order to show how a reduced time may be included in a strain energy-like 
potential, let us return to the nonaging version of(3), but replace the times t and r by reduced 
times, ~ and ~', 

O = ~o dt'/a~, ~k' - O(z) (58) 

where a, is a function of stress or strain. Thus, 

e~j = E R f : D ( O  - f f ' ) ~ T & k '  (59) 

We shall comment  on two different situations in which (59) leads to a path-independent J 
integral. As in Section 2, we may use short-time response to argue from thermodynamics that 
e~ = d¢b~/Oaij, where ~,: is not necessarily a homogeneous function. It should be observed 
that the inverse form of (59) contains the Knauss and Emri model [19, 20] when the bulk 
modulus is proportional to the shear modulus; all nonlinearity is due to the effect of 
dilatation on the time-scale factor, ao. 

(i) Assume the quasi-elastic approximation is applicable, 

~j ~- ERD(~)~  (60) 

and that ff ~- O(t, a~). Then, since a potential ~.  exists if and only if &J~3ak~ = Oek~/Oa~/, 
we obtain the result that a~ can depend on stress through only ~. .  Alternatively, ao and ~ 
could each depend on the same, single stress invariant. It is encouraging that in a study of 
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fiber-reinforce plastic, the time-scale factor a, as well as other nonlinear material functions 
could be expressed using only one invariant, a local volume average of the octahedral shear 
stress in plastic matrix [21]. 

(ii) Do not use the quasi-elastic approximation, but assume proportional stressing and ~, 
and ~ are power law functions of one homogeneous stress invariant; also use (34). Again. 
it can be verified that a time-dependent potential ~ exists. 

Obvious generalizations of (59) for which a potential exists are obtained by adding an 
elastic strain as well as more integrals like (59), but with other material functions of time and 
stress. Additional realistic representations, including inverse forms, in which stress is a 
function of strain history, could be discussed. However, it is believed the above examples are 
sufficient to make the primary point that there is at least a limited basis for using strain 
energy-like potentials and J or Jv integrals to characterize deformation and fracture behavior 
of nonlinear viscoelastic media. What is believed needed at this time are experimental studies 
which directly address this question. Since time appears as a parameter, in these experimental 
studies isochronal data may be analyzed just as if the material were elastic, except for the 
possible use of pseudo strain in place of physical strain. 

5. Concluding remarks 

In this paper we first introduced a single-integral nonlinear viscoelastic constitutive equation, 
and then expressed it in terms of a strain energy-like potential. This formulation led to a 
path-independent integral, Jr, which is like the Jintegral for elastic media except a hereditary 
integral appears in place of displacement. By varying the form of the kernel function 
(relaxation modulus) one may characterize the behavior of different types of material, 
ranging from elastic to viscoelastic to viscous. A Barenblatt model of  the failure process at 
the crack tip resulted in relatively simple relationships between Jv and the time at which 
growth begins and the crack speed. In the constitutive model all hereditary effects are 
accounted for by one stress-independent relaxation or creep function. This limitation 
excludes the type of behavior exhibited by metals at constant stress, in which the response 
is elastic for low stress and viscous for high stress. However, as shown in Sections 3 and 4, 
it is possible to introduce an artificial type of aging which greatly extends the characteriza- 
tion, and includes metal-like creep behavior. How this extension can be used to relate a 
locally path-independent Jv integral to a far-field loading parameter was illustrated in 
Section 3 for limited crack growth. In [8] the counterpart to this transient analysis was 
considered; there is quasi-steady state crack growth and the viscoelastic behavior of material 
near the crack tip is different from that of the far-field. 

One version of the aging elastic characterization discussed in Sections 3 and 4 is based on 
a quasi-elastic approximation of the constitutive equations. If a strain energy-like function 
• (e~j, x2, x3, t) exists, then (1) leads to a time-dependent J integral. If qb is a homogeneous 
function of degree 1 + 1/n in the neighborhood of the crack tip then (48) gives the local 
stresses, where D = D(t) and the arbitrary constant ER are quantities which are introduced 
through the uniaxial stress-strain equation at high stress, 

e = ERD(t)[a/ERI" sgn (a) (61) 
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As long as the fracture process zone (or failure zone) at the crack tip remains well inside the 
singular stress field (48), the history of this J characterizes the fracture initiation time and 
subsequent crack growth. In the immediate vicinity of the tip the quasi-elastic approximation 
is not expected to be valid with crack growth because of the locally complex stress history, 
which includes unloading. If, however, (29) characterizes the local nonlinear viscoelastic 
behavior, then (30) is applicable, in which we may take a, = ER. For agreement between 
(30) and (48), 

J~ = J/ERD(t ) (62) 

This result provides a link between the far-field linear or nonlinear loading parameter J, and 
crack-tip loading parameter Jr; if the arbitrary constant ER has dimensions of modulus, then 
Jv has the same dimensions as J. Let us further suppose that the crack-tip failure process can 
be modeled using the thin-layer idealization, Fig. 1. Then we may use (24) (or related 
generalizations which allow for complex behavior of failure-zone material) for initiation time 
ti and (25) for quasi-steady crack-speed, as long as the tip remains well within the original 
location of the nonlinear singular field (48). 

A three-dimensional Jv integral theory was developed in [8], allowing for large strains and 
a special case of micro-damage in the continuum surrounding a large crack. To establish a 
J-like theory, including the connection with potential energy (22), one again has to argue 
that a local strain energy-like potential exists, as in (1) or (2). In [22] it was shown using a 
certain degree of idealization that a potential exists with continuum damage of a more 
general type than in [8]. An approximation lead to an aging type of elastic behavior in 
terms of a potential; it is multivalued with respect to loading and unloading paths, and 
exhibits aging-like behavior due to the time-dependent damage growth. The situation is 
analogous to that for a material which obeys deformation plasticity theory with a time- 
dependent yield stress during loading, and obeys elasticity theory during unloading. 
The associated J integral exhibits a limited amount  of path dependence in transient 
problems, but is still useful as a loading parameter. Finally, it is noted that the extension 
to large strains in [8] is approximate in the sense that the constitutive equations are not 
independent of large rigid body rotations. This problem does not arise with the quasi- 
elastic constitutive representation when the deformation measure used in the potential is the 
Green's strain tensor. 
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R~sum~. Dans certains cas, on peut construire les potentiels de travail et les int6grales ind6pendantes du parcours, 
du type int6grale J, pour des milieux visco-61astiques non lin+aires monolythiques ou composites. 

Darts ce m~moire, on discute de certaines situations off de telles valeurs existent et sont utiles fi l'+tude de 
l'amorqage quasi-statique et fi la propagation de fissures. 

L'approximation dite quasi-6lastique, est une 6quation constitutive sous forme d'une int6grale simple, fournis- 
sant la base d'utilisation de l'int6grale J ou des int6grales du marne type comme param+tres de caract6risation de 
la rupture au cours de l'amor~age et des premieres 6tapes de la propagation. 

On montre 6galement que dans certains cas de croissance significative de la fissure, la vitesse instantanee de 
croissance peut btre caract6ris6e par une int6grale similaire ind6pendante du parcours. 

On discute bri6vement du probl6me de la caractbrisation de la croissance de grandes fissures dans des milieux 
visco-6lastiques prdsentant un endommagement microscopique. 


