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Process region changes for rapidly propagating cracks 
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Abstract. A finite element model of a plate, which contains an initial crack subjected to a rapid loading at its faces, is 
investigated. A cell model of the prospective process region is adopted. The cell size is assumed to represent some 
characteristic intrinsic material length. The size of the process region is not predetermined but depends at every time 
on the number of cells that have reached a state characteristic for the process region i.e. essentially instability if load 
control would prevail. Outside the process region the material is assumed to be linearly elastic. 

For low loading magnitudes the simulations show a rather long period of crack acceleration, but at higher loads this 
period is short or even not detectable, and a constant terminal velocity, significantly lower than the Rayleigh wave 
velocity, is reached. At lower loads both the energy release rate and the extension of the process region stay rather 
constant, but at higher loads they increase considerably with time, even though the crack tip velocity stays constant. 
Thus it appears that a tendency towards increased energy flow to the process region is met by increased size of this 
region, and thereby increased energy dissipation per unit of crack growth, rather than by increased crack edge velocity. 
The process region may finally occupy several cell rows, and the control of the process region by the characteristic 
length is thus lost. This can explain the apparent loss of the unique relation between stress intensity factor and crack 
edge velocity at high crack velocities. 

In some simulations branching was obtained. The results from the simulations showed qualitative agreement with 
some recent experimental results e.g. those by Ravi-Chandar. 

1. Introduction 

Griffith [1] and Irwin [2] assumed that crack growth at small scale yielding occurred under 

constant  energy release rate, specific for each material and environmental  condit ion (such as 

temperature). It was later taken for granted that the small scale yielding energy release rate at 

dynamic  crack growth could be represented by a unique function of the crack tip velocity for 

each material. Several experiments, first those by Paxson and Lucas [3], indicated that such a 

function could show a very strong dependence on the crack tip velocity. 

In an at tempt to theoretically explain results such as those by Paxson and Lucas, Broberg 

114] argued that the process region could be considerably larger at high velocities than at low 

ones. This could explain the strong velocity dependence, but as a consequence a material- 

related length parameter,  which controls the size of  the process region at low crack tip 

velocities, loses its ability to do so at very high velocities. Such a loss removed the basis for the 

theoretical conclusion that the small scale yielding energy release rate was a unique function of  

the crack tip velocity for each given material [4, 5]. This conclusion was supported by 

experiments performed by Ravi-Chandar  [-6], Ravi -Chandar  and Knauss [7, 8, 9, 10], Kalthoff, 

Winkler and Beinert [11] and Kal thoff  [12] which apparent ly confirmed that dynamic crack 

growth at small scale of  yielding could proceed under different energy release rates at the same 
crack tip velocity. In several experiments a surprisingly constant  velocity could prevail even 

though  both  direct measurements  and theoretical calculations showed considerable variation 

of the energy release rate. This seems to indicate that a tendency towards increased energy flow 

to the crack tip region results in a larger process region rather than an increased crack edge 
velocity. 
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Figures 1 and 2 show results adapted from Ravi-Chandar [6], also reported in [9]. For the 
lowest velocity the energy release rate (g to the crack edge appears to be approximately constant 
at constant velocity, whereas it varies quite remarkably at a constant high velocity. 

The present work is an attempt to explain the apparent fact that there is no unique relation 
between small scale yielding energy release rate and crack tip velocity in the high velocity region. 
The basis for this work consists of an assumption that the size of the process region is not 
predetermined. A cell model of the material, (cf. [4] and [13]), is therefore adopted and the size 
of the process region depends on the number of cells per unit of crack growth that reach a state 
characteristic to a process region, i.e. essentially instability if load control would prevail. Ideally 
each cell should correspond to a material volume that contains one nucleus for micro- 
separation, for instance an inclusion. However, the model would then contain a very large 
number of cells, perhaps 10~-106, to cover the whole succ, cssion of prospective process regions in 
a material of the kind used in the experiments referred to. For computatonal reasons only a 
much smaller number, less than 104, can be handled and therefore a material modelled with a 
much coarser cell structure had to be chosen. 

Since the main hypothesis concerns the role of the process region, an accurate modelling of 
the continuum outside this region does not appear to be necessary. For simplicity, therefore, the 
continuum is assumed to be linearly elastic. 

During the course of the investigation it was, quite unexpectedly, found that branching or 
attempts to branching resulted in some of the simulations. Attempts to branching were found 
quite frequently on a micro-structural scale. This is in agreement with several investigations, 
among them those by Ravi-Chandar [6] and Ravi-Chandar and Knauss [9] who found that 
several branching attempts preceeded successful branching. This was also assumed by P~irletun 
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Fig. 1. The energy release rate ~ and crack length increment a - a o  against time for a low loading magnitude; adapted 
from results by Ravi-Chandar [6]. Young's modulus is E, the length of the specimen is h (of. Fig. 3). cd denotes the 
longitudinal wave velocity in a thin plate. The crack velocity is d = 0.22ca where ca is the Rayleigh wave velocity in a 
thin plate. The result is interrupted at cdt/h ~ 0.53. At this time stress waves, reflected at the boundaries, reach the crack 
tip. 
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Fig. 2. The energy release rate f~ and crack length increment a -  ao against time t for a high loading magnitude; adapted 
from results by Ravi-Chandar  [6]. The crack velocity is ~ = 0.40cR. The crack propagation is recorded for times 
cat/h <~ 0.31. Thus  it is terminated before the interaction of waves reflected at the boundaries. The result for the energy 
release rate is shown as a solid line since no data points are presented in the original work [6]. 

[14], who attributed unsuccessful branching to the apparent fact that the shorter of two 
micro-structurally small branches is quickly arrested except at very high crack tip velocities. In 
the present investigation this result could not be simulated, since perfect symmetry is inherent in 
the model. 

2. The model 

2.1. Geometry and loading 

A plane stress model is used. The geometry, shown in Fig. 3, corresponds to that used by 
Ravi-Chandar [6] and Ravi-Chandar and Knauss [7], [8], [9] and [10] in their investigations 
of rapid crack propagation in Homalite 100. An initial crack of length ao is prepared and a 
constant pressure p is reached at its faces after a rise time of cdt/h ,~ 0.10. The length of the 
specimen is h and its height is 2b. By appropriate choices of ao/h and b/h, it is possible to avoid 
waves, generated by the pressure application at the crack faces and reflected from the 
boundaries, to interact with the crack within a comparatively long time of simulation. During 
this interval the geometry is thus equivalent to an infinite geometry. In the simulations Poisson's 
ratio v = 0.31 (as for Homalite 100), ao = 0.60h and b = 0.30h. This implies that longitudinal 
waves travelling with velocity Cd and reflected from the upper (or lower) boundary will reach the 
crack tip at a normalized time cdt/h >>, 0.60 while longitudinal waves reflected at the right edge 
will arrive at Cdt/h ~ 0.52 if the crack at all times propagates with the Rayleigh wave velocity. 
Thus the latter value is a lower limit to the time during which the geometry can be regarded as 
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Fig. 3. The geometry used by Ravi-Chandar [6] in his investigations of rapid crack propagation in Homalite 100. Due 
to the symmetry only the upper half with boundaries I, II, III, IV and V is used in the simulations. The initial crack 
length is a0, the height is 2b and the length is h. In the experimental results presented ao ~ 0.63h and b = 0.30h. The 
same b-value is used in the simulations while an initial crack length a o = 0.60h is used. The crack surfaces are loaded by 
a pressure p, which is constant  after a rise time cdt/h = 0.03. 

infinite. In each specific experiment or simulation this time can, of course, be accurately 
determined. The value ao = 0.60h differs somewhat from the value ao ~ 0.63h used by Ravi- 
Chandar [6]; this difference, however, is unimportant as long as no reflected waves have reached 
the crack tip. 

2.2. Material behaviour in the process region 

The material in the near-tip region is assumed to possess a large number of sites where 
nucleation of defects occurs. Restriction is made to the case where only one type and size of 
defect dominates. The nucleation sites are homogeneously distributed over the specimen and 
they all have the same excitability. The specimen is divided into cells in the prospective process 
region (the region where the influence from the defects on the material behavior is expected to be 
noticeable). Due to the unrealistically large computer times otherwise expected, the cells have to 
be chosen far too large to represent a real material as mentioned above. However, even though 
the linear dimensions of the cells are perhaps a factor 100 or more too large, the model is 
expected to catch the main phenomena that are due to the influence from a characteristic 
material length in the prospective process region. Each cell is assumed to contain one main 
defect. When the relative volume increase v of the cell reaches a critical value v = vl the cell 
response will change from the linearly elastic one to one that would lead to instability under 
load control. Thus cell softening starts abruptly when v reaches the value vl. Nucleation is thus 
not specifically taken into account. When the critical volume is reached, the defects are assumed 
to grow with increasing cell volume independently of the rate of volume increase. This growth of 
the defects weakens the cells. No dependence of displacement biaxiality is taken into account. 
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Therefore only one parameter co is needed to characterize the weakening behaviour. This is 
accomplished by inclusion of co as a factor in the cell stiffness. When the relative volume v 

increases from vl to v2, parameter co decreases from 1.0 to 0.0 according to 

(Vz/V)"- 1 
co(v) - (v2/vl)" - 1' (1) 

For v ~> v2 the parameter co remains zero. This corresponds to a cell with zero stiffness and thus 
a cell which can be disregarded in the future: it will be said to have vanished. If the cell volume 
for some reason decreases after some amount of softening, the current co-value is maintained 
until the previous maximum volume again is reached. Then softening continues according to (1). 
Unloading is thus explicitly taken into account. 

The finite elements are modelled as cells in the 12 element rows closest to the crack surface. 
They are square with side length 5.10-4h. The elements outside this prospective process region 
are modelled as linearly elastic elements. The size of these elements can thus be chosen only with 
regard to the numerical accuracy wanted. 

2.3. Boundary conditions and symmetry 

Due to the symmetry in loading and geometry, only the upper half of the body shown in Fig. 3, 
needs to be considered in the simulations. Along boundaries, I, 11 and V, the tractions are zero. 
The boundary region IV is loaded by the crack face pressure p. Along the symmetry line in front 
of the crack (region III) the symmetry conditions 

Uy ~--- O~ 

~Ux 
- 0 ( 2 )  #y 

are imposed, Ux and Uy denote the displacements in the horizontal and vertical directions 
respectively. 

2.4. Solution technique 

The problem is solved with a finite element code developed specially for the present investiga- 
tion. The discretization in time is attained with the explicit central difference method [15]. A 
lumped mass matrix is used, implying that no factorization is necessary during the time stepping 
procedure. Four-node plane stress elements with two displacement degrees of freedom at every 
node are used. Since the softening behaviour, which arises from the opening of the assumed 
defects, is modelled with a quite general damage law (cf. (1)), the choice of one of the simplest 
types of elements in this region probably does not imply any severe restriction. The advantage of 
choosing elements with comparatively few degrees of freedom is, of course, that smaller elements 
can be chosen at a given computational effort. This type of element is also used for the rest of the 
model. In this way transition regions between elements of different types are avoided. It also 
simplifies the calculations, since only one type of stiffness matrix needs to be stored and used. 
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Fig. 4. (a) The displacement degrees of freedom for the full-sized elements across the line of symmetry (cf. Fig. 3). (b) The 
displacement degrees of freedom for the half-sized elements at the line of symmetry. 

Fig. 5. The mesh used in the simulations. The initial crack tip position is located at x = ao. The prospective process 
region occupies 0.60h ~< x ~< 0.80h and 0 ~< y ~< 0.006h. In this region the elements are square-sized with side length 
5.0" 10-4h. The total number of degrees of freedom is approximately 44000. 

The mesh influence and  the choices of certain numerical  parameters control l ing the accuracy of 

the program have been investigated and  the results are given in a separate report 1-16]. The 

lowest element row consists of half-size elements which are obtained from an imagined row of 

full-size elements placed symmetrically a round  the boundary  I I I  as shown in Fig. 4a. For  the 
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full-size elements the symmetry conditions imply u'~ = UT,' U 3  . . . .  = U5, t/2 = --//8 and u4' = --U 6.' The 
half-size elements are generated by the upper half of the full-size elements (Fig. 4b). For these 

t P t t I I elements, therefore, u~ = uT, u2 = 0, u3 = us, u4 = 0, u5 = Us, u6 = u6, u7 = u7 and u8 = us. The 
condition t3ux/t3y = 0 is thus approximated by a difference expression over the height of one half 
element. The stiffness of these elements is modified to correspond to the stiffness of the upper 
half of the full-size elements. Crack propagation is brought about by the succession of elements 
reaching v = rE, i.e. by successively vanishing elements and not by change of boundary 
conditions. 

The mesh used is shown in Fig. 5. 

3. Output data 

The current crack tip position x = a is defined as the rightmost element in an unbroken row of 
vanished elements. This position is recorded at every time step and the crack tip velocity is 
extracted from the slope of the relation between the crack tip position and time. 

Since small scale yielding prevails, the energy release rate f# at crack length a is calculated as 
the sum of the energy dissipated in all cells, and summed over all time increments occuring 
during this crack tip position. The contribution to f# from one specific cell during one time 
increment At consists of two parts. One part originates from the energy received by the cell 
during the time increment At, and the other part consists of the change of energy (during this 
time increment) that is recoverable if the cell is completely unloaded. Thus, 

f# = 
i = l  j = l  z.Aa i = 1  j = l  z*Aa 

8 + ~, ~ (½o~(v(t - At))kijui(t_A_- At)uj(t - At)) 

i=1  j = 1  ~ ' z a u  
(3) 

where the sums over i and j range over the eight degrees of freedom of the cell and kij is the elastic 
element stiffness matrix of the cell considered. The parameter Aa is the length of the process 
region cells in the horizontal direction. The arbitrary thickness z is taken as the value 0.00952h 
when presenting results of f#. This value is valid for the specimen used by Ravi-Chandar, and so, a 
direct comparison with the experimental results shown in Figs. 1 and 2 is easily made. 

4. Results 

Results for different pressures p on the crack surfaces will be presented. For  the first material 
model the choices vl = 0.0020, v2 = 0.048 and n = 1.0 were made. This choice corresponds to 
the uniaxial force-displacement relation shown in Fig. 6. The responses for load magnitudes 
p/E = 1.0.10 -3, 3.0-10 -3, 5.0.10 -3 and 7.0.10 -3 were investigated. 

Elements that have been subjected to softening and possibly also vanishing at a time towards 
the end of the simulation are shown in Fig. 7. One notices that the process region expands more 
rapidly in the y-direction at the higher loads. The positions of softening and vanishing cells in 
the x-direction are shown against time in Fig. 8. 
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Fig. 6. The relation between force per unit of cell cross-sectional area, normalized with Young's modulus, and relative 
uniaxial elongation for the cells in the prospective process region. The curves are calculated for the specific case when the 

cell is locked to deformations in the horizontal direction. 

For p/E = 1.0" 10 - 3  initiation of crack growth occurs at cat/h = 0.20, see Fig. 8a. The crack 

accelerates to a velocity of about 0.16ca = 0.29cR at the end of the simulation, apparently 
without reaching a constant terminal velocity. For p/E = 3.0.10 -3 there is an acceleration 

phase during a time cat/h = 0.7-0.12 followed by a constant terminal velocity of 0.24Cd = 0.44CR. 
For p/E= 5.0'10 -3, no acceleration phase is observed and the velocity recorded, 

0.22ca = 0.41CR, is thus the terminal velocity. Initiation occurs at cdt/h = 0.05. The remarkable 
result that the terminal velocity is somewhat lower than for p/E = 3.0-10-3 might be attributed 

to stronger shielding from the peripheral parts of the process region (cf. the discussion on the 

barrier effect in [4]). At further increase of the pressure to p/E = 7.0" 10-3, the same crack 
velocity as for p/E = 5.0-10 - 3  is observed, whereas initiation occurred somewhat earlier, at 

cat/h = 0.04. It is to be noticed, however, that the latter simulation is not valid for cat/h >>- 0.15, 

or equivalently a/h >~ 0.625 since the process region height is about to overshoot the upmost one 

of the twelve element rows modelled as cells; see Fig. 7d. 
The energy release rate against crack length can be seen in Fig. 9. One notices that the 

increase of energy release rate with crack length is much stronger at higher than at lower load 
magnitudes. At the lowest load it is constant; this is not surprising, since the extension of the 

process region stays approximately constant during the simulation, cf. Fig. 7a. At higher loads 

the crack seems to choose to dissipate excess energy in the process region rather than using it to 

increase its velocity. 
Another simulation was performed with vl = 0.00075, v2 = 0.018 and n = 1.5. This choice 

corresponds to the uniaxial force-displacement relation shown in Fig. 6. The load magnitudes 
p/E = 0.3.10 -3, h0 .10 -3, 2.0.10 -3 and 3.0" 10 -3 were investigated. Figure 10 shows the rows 

of cells softening and vanishing against crack length. For the lowest load magnitude only the 
lowest cell row was subjected to softening and vanishing. The height of the process region 
oscillates in the last two of these simulations. This activity seems to be stronger at the higher 
load. For p/E= 1.0-10 -3 and 2.0.10 -3 vanishing elements appear only in the first row. 
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Fig. 7. Elements in the different cell rows which have reached the softening state (o) and the vanishing state (x) are 
shown against their x-position at a time towards the end of the simulations. Four different load cases are considered: 
piE = (a) 1.0.10 -3, (b) 3.0.10 -3, (c) 5.0.10 -3 and (d) 7.0.10 -3. vl = 0.0020, v2 = 0.048 and n = 1.0. 

The case p/E = 3.0-10 -3 shows an attempted branching at x/h = 0.61, see Fig. 10d. In fact, 
only the branch is propagated for a while, but then the main crack again starts to propagate 
straight forward. Thereupon the branch becomes arrested. Another attempted branching at 
x/h = 0.645 also fails. At x/h = 0.665 successful branching is initiated. Even though softening 
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Fig. 8. The x-coordinate against time for all elements that have reached the softening state (o) and the vanishing state 
(*) at a time towards the end of the simulation. The pressure on the crack surfaces is pie = (a) 1.0" 10 -3, (b) 3.0. I0- 3, 
(c) 5.0" 10-3 and (d) 7.0" 10-3. The islands of softening in (c) are due to some elements behind the crack tip reaching 
the softening state. The crack velocities are shown in the figures, vl = 0.0020, v2 = 0.048 and n = 1.0. 

has occurred several times in the twelfth element row, the results are believed to be approxi- 

mately valid until about  cdt/h = 0.28 when the successful branch tends to overshoot  the 

twelfth row. 
The x-posi t ions  of softening and vanishing elements against time are shown in Fig. 11. 

The increased activity at increased load gives a less smooth  crack length variation with time. 

The velocities seem to increase with increasing load magnitude.  For piE = 0 .3 .10  -3  no 

terminal velocity seems to be approached, and the velocity reaches its highest value, 0.20Cd = 

0.37CR, at the end of  the simulation.  At the higher loads constant terminal velocities, approx- 

imately 0.30ca = 0.55cR at piE = 1.0 .10 -3,  0.3led = 0.58CR at piE = 2 .0-10 -3  and 0.33ca = 

0.61cR at piE = 3 .0 .10  -3, are reached rather soon after the init iation of crack propa- 

gation. 
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The energy release rates along the crack paths can be seen in Figs. 12. As could be expected, 
the energy release rate is rather constant for the two lowest loads. For piE = 2.0" 10 -3 it is on 
the average rather constant except for large peaks in regions with process region peaks. For the 
highest load such peaks are present at the branching trials. In this case the average energy 
release rate increases significantly with the crack length. 

Several simulations with other combinations of the model parameters Vx, v2 and n have been 
performed; they are reported in [16]. The main result seems to be that a lower value of vl implies 
larger length and height of the process region, a shorter time of crack acceleration and a higher 
terminal velocity. A lower value of v2 implies a shorter process region, a slightly shorter time of 
crack acceleration and a slightly higher terminal velocity. The influence of vl and v2 on the 
tendency for branching is more complicated. For a given load, a given size of the model and a 
given value of n it seems to be necessary to have a sufficiently low value of Vx and a value of v2 
that is neither too large nor too small to get crack branching with a certain time of simulation. A 
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lower value of n seems to increase the height of the process region and to reduce the terminal 
velocity as well as the tendency for branching. 

Simulations with different cell sizes in the prospective process region were investigated for 
fixed vl, v2, n and p. No dramatic changes were observed when reducing the cell size, but the 

12 

(a) 

10 

E 8 

6 
3: 
O 

, , , u , u n ,  

0.6 0.61 0.62 0.63 0.64 0.65 
x / h  

i i 

0.66 0.67 0.68 

12 10 _j 
o~ 

2 o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

I 
0.6 0.61 0162 0.63 0.64 0.65 0.66 0.67 0.68 

(h) x / h 

Fig. 10. Elements  in the different cell rows which have reached the sof tening state (o) and  the van ish ing  state (x) are 
shown agains t  their x-posi t ion at a t ime towards  the end of the s imulat ions.  The  load magn i tudes  are p/E = (a) 
0.3-10 -3,  (b) 1.0.10 -3, (c) 2.0-10 -3 and  (d) 3.0.10 -3. th = 0.00075, v2 = 0.018 and  n = 1.5. 



Rapidly propagating cracks 59 

(c) 

12 

. 1 0  

E 8 

6 

c r  l. 

2 

0.6 

o 

o co co 

a)  co co 

co co co 

o co cco co o 

co oo co o co co co o 

o o co co co o co coo co o co 

co co 03 otr~ ax) ca cco coo co coo co ~ o  co co 

co ~ co rl~ m o  omD ~ ~ oc~ co ~ ( : m ~  ococlc~ ~ 

c a n m  e o a m a l x l m ~  o m o m c x l x r l ~ o a l m o m o o m m o  ~ . . . . . . . . . .  u a u x l x x x x x x x ~ a x x x l ~  

nn 

0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 
x / h  

(d) 

Fig. 10. (cont.) 

~2 

10 

8 

2 6 
o 

cc 4 

2 

0.6 

i c~x~o o o oax~xo o cc~o 

cco o o o i o  ~ co 

(m oD o o m co co 

~lm co o co ~ co co ~mo 

co ca co o0o 03 co 

o ~m co co co m o oa ca) c~m 

o ~ coo ~ oa3 co ~ oo(10o co 

co ~ o aa3 cto o0~ oal OLD o 0 o o c o o o : o  ax lmo  

o co ~ m  o ~ o a ~  otto ore3 corn ~ 

~ ~ tram oaro oamo cm3o o ( m a l i i m m n l i l x l o  c o a ~ J  

oc~ . . . . . . . . .  ~ a l l / a ~  a l l l : o  ocax'~ 

l l I I T I n I l l I T )  
L | i i i ] i 

0.61 0.62 0.63 0.64 0.65 0.66 0.67 
× / h  

0.68 

softening and vanishing activity along the crack path is increased and both attempted and 
successful branching occur earlier. 

0.7 

0.69 

0.68 

0.67 

0.66 
× 

h 0.65 

0.64 

0.63 

0.62 

0.61 

0.6 00~ 

~ i n o l  

/ . , . j "  v e l o c i t y  

~ ~  0 " 3 7 C R  

ooO o o ~  , , , , .* ' -  

~ o o o °  o , t ' ~ * * "  • i i i i , 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Cd~/h 

Fig. 11. The x-coord ina te  aga ins t  t ime for all e lements  tha t  have reached the softening s ta te  (o) and  the van ish ing  state 
(*) a t  a t ime towards  the end of the s imulat ion.  The  pressure on the crack surfaces is p/E = (a) 0 .3-10 -3, (b) 1.0.10 -3, (c) 

2 .0 .10 3 and  (d) 3 .0 .10-3 .  The c rack  velocit ies are indica ted  in Fig. l l a  and  Fig. l lb.  An irregular ,  but  over  large 
dis tances  app rox ima te ly  cons tan t  t e rmina l  veloci ty  is reached for the two highest  loads. I t  is es t imated  to 0.58CR in Fig. 
l l c  and  to 0.61c n in Fig. l l d .  vl = 0.00075, v2 = 0.018 and n = 1.5. 



0.7 

0.69 

0.68 

0.67 

0.66 

0,65 

0,64 

0,63 

0,62 

0,61 

0.( 
0 

0,7 

0.69 [ 

:66;[ 
x 0.66 I 

~°o::I 
0.63 I 

N ~ /  ^~ 

0.05 0.1 0.15 0.2 0.25 013 0.35 0.4 
C - d t / h  

60 E. Johnson 

0-60 0.05 0.1 0.15 0.2 0.25 
Cdl/h 

0.3 

Fio. I1. (cont.) 

0.7 / 
0.69 t 

Do: f, 
x 0'66 I 

::f 0.61[ ~O~o o 

06~ ^" 0.15 0.15 
c~ /h  

0.3 



xlO-8 

1/` 

~2 

10 

cj 8 

5 

/` 

2 

0 
0.6 

a) 

x10-8 

1/* 

12 

10 

Eh 

6 

/` 

2 

0.6 

b) 

xlO-a 

1/. 

12 

10 

g 8 

Eh 

0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 
a / h  

, i i t 

0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 

a / h  

/` 

2 

0 
0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 

c )  ca/h 

Fig. 12. T h e  e n e r g y  re lease  r a t e  N a g a i n s t  c r a c k  l e n g t h  for  the  f o u r  d i f ferent  c r a c k  su r f ace  p r e s s u r e s  p/E = (a) 0 . 3 . 1 0 - 3 ,  

(b) 1 . 0 . 1 0  -3 ,  (c) 2 . 0 . 1 0  . 3  a n d  (d) 3 . 0 . 1 0  -3 .  vl = 0.00075,  v2 = 0.018 a n d  n = 1.5. 



62 E. Johnson 

xlO B 

1 2  

10 

t t 

z, 

2 

0 
0 .6  

a) 
0.61 {).62 0.63 0 .64 

C1 / 1% 

j 
0.65 0 .66 0 .67 0.6R 

Fig. 12. (cont.) 

5. Discussion and conclusion 

By using a cell model for the process region it has been possible to simulate some noteworthy, 
recently experimentally detected properties of rapid crack growth. Quite in agreement with these 
findings, a constant terminal velocity was obtained for the high velocity region at the same time 
as the energy release rate increased considerably during crack growth. A comparison between, 
for instance, the simulated results shown in Figs. 8 and 9 and the experimental results 
reproduced in Figs. 1 and 2, show a striking resemblence, even as regards the magnitude of the 
constant terminal velocity at the higher loads. A peculiar phenomenon was detected, viz., that 
the terminal velocity in one set of simulations was slightly lowered at an increase of the load; 
this phenomenon was attributed to shielding. In some cases, especially at high velocities, 
attempts to branching and even successful branching were obtained. The observation that 
several attempts of branching preceded successful branching is in agreement with experimental 
and theoretical results mentioned in the Introduction. 

Present knowledge about process properties is not sufficient to give guidelines about the 
choice of the parameters vl, v2 and n for different materials. It was found that different 
combinations lead to different propensity towards branching and to different magnitudes of the 
terminal velocities. This is not an unexpected result: on the contrary, it is known that different 
materials show quite different behaviour in these respects. It should also be remembered that the 
material model used is considerably idealized: no viscoplastic flow or other rate dependent 
properties have been incorporated for the process region or for the continuum outside this 
region. Nevertheless the results appear to confirm the anticipation that the properties of the 
process region constitute the main factor responsible for the lack of a unique relation between 
energy release rate and crack edge velocity in the high velocity region. Studies of the process 
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region morphology obtained in the simulations also clearly show that there is no unique relation 
between the cell size and the process region height. This confirms the anticipation [4], [5] that 
the control of the process region by an intrinsic length parameter gets lost at very high velocities. 
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