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Abstract 

Chlorosome-depleted membranes and a reaction center complex with well-defined subunit composition were 
prepared from the green sulfur bacterium Chlorobium vibrioforme under anaerobic conditions. The reaction center 
complex contains a 15-kDa polypeptide with the N-terminal amino acid sequence MEPQLSRPETASNQVR/. This 
sequence is nearly identical to the N-terminus of the pscD gene product from Chlorobium limicola (Hager-Braun 
et al. (1995) Biochemistry 34: 9617-9624). In the presence of ferredoxin and ferredoxin:NADP + oxidoreductase, 
the membranes and the isolated reaction center complex photoreduced NADP + at rates of 333 and 110 #mol (mg 
bacteriochlorophyll a)-1 h - l ,  respectively. This shows that the isolated reaction center complex contains all the 
components essential for steady state electron transport. Midpoint potentials at pH 7.0 of 160 mV for cytochrome 
c551 and of 245 mV for P840 were determined by redox titration. Antibodies against cytochrome c551 inhibit 
NADP + reduction while antibodies against the bacteriochlorophyll a-binding Fenna-Matthews-Olson protein do 
not. 

Abbreviations: FMO protein-Fenna-Matthews-Olson protein; TMBZ-3,3',5,5'-tetramethylbenzidine 

Introduction 

The photosynthetic reaction center complex from 
green sulfur bacteria has recently attracted increased 
attention. Already in 1969, Buchanan and Evans 
showed that membranes from Chlorobium limicola f. 
thiosulfatophilum were able to photoreduce ferredox- 
in, and this suggested that the green sulfur bacteria 
contained a reaction center complex related to Photo- 
system I as opposed to purple bacteria and green fila- 
mentous bacteria (Cloroflexaceae) with a reaction cen- 
ter related to Photosystem II. The relationship between 
the reaction center complex in green sulfur bacteria 
and Photosystem I has subsequently been document- 
ed by EPR studies and by the demonstrated sequence 
similarity between their reaction center polypeptides 
(Kja~r et al. 1994; Kusumoto et al. 1994; Illinger et al. 
1993; Oh-oka et al. 1993; Btittner et al. 1992; Feiler 

et al. 1992; Miller et al. 1992; Nitschke et al. 1990; 
Swarthoff et al. 1981a). 

Isolated reaction center complexes from Chlorobi- 
um spp. contain 5 to 6 different subunits: two identical 
reaction center polypeptides of 82 kDa (encoded by 
pscA), a varying amount of a 40-kDa BChl a binding 
protein (the Fenna-Matthews-Olson (FMO) protein), 
an iron-sulfur protein of 24 kDa (encoded by pscB), 
a c-type cytochrome of 20 kDa (encoded by pscC), 
and one or two smaller subunits of 15 and 9 kDa with 
unknown function (Hager-Braun et al. 1995; Kja~r et al. 
1994; Kusumoto et al. 1994; Illinger et al. 1993; Oh- 
oka et al. 1993; Btittner et al. 1992; Feiler et al. 1992; 
Okkels et al. 1992; Nitschke et al. 1990; Swarthoff 
et al. 1981a). EPR spectroscopy has shown that the 
isolated complexes contain photoreducible iron-sulfur 
clusters similar to FA and FB in Photosystem I (Kj~er 
et al. 1994; Kusumoto et al. 1994; Oh-oka et al. 1993; 
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Miller et al. 1992; Nitschke et ai. 1990). However, 
an ability of the isolated reaction center complexes 
to sustain steady state reduction of ferredoxin has not 
been reported. A few studies have been carded out 
with membrane preparations but the measured activi- 
ties were rather low (Miller et al. 1992; Buchanan and 
Evans 1969). In Photosystem I the ferredoxin dock- 
ing PSI-D subunit mediates efficient electron transport 
from the terminal acceptors FA and FB bound to the 
iron-sulfur protein PSI-C to ferredoxin (Li et al. 1991; 
Chitnis et al. 1989). In addition, the presence of the PS 
I-E subunit is known to stimulate ferredoxin reduction 
(Rousseau et al. 1993). The isolated reaction center 
complexes from Chlorobium spp. do not contain sub- 
units homologous to PS I-D and PS I-E, and therefore it 
is important to investigate whether the reaction center 
complexes are able to photoreduce soluble acceptors 
in the absence of such subunits or whether the reaction 
center complexes obtained are inactive due to loss of 
subunits during their isolation. In this work we show 
that membranes and a reaction center complex from C. 
vibrioforme are able to photoreduce NADP + at high 
rates when isolated under anaerobic conditions. 

An important difference between Photosystem I 
and the green sulfur bacterial reaction center complex 
is the presence of a bound cytochrome c which appears 
to function as the donor to photooxidized P840 (Oh- 
oka et al. 1995; Kusumoto et al. 1994; Oh-oka et al. 
1993; Miller et al. 1992; Okkels et al. 1992; Hurt and 
Hauska 1984; Swarthoff et al. 1981b; Swarthoff and 
Amesz 1979; Olson et al. 1976a; Prince and Olson 
1976; Fowler et al. 1971). However, there are some 
unresolved discrepancies regarding this cytochrome, 
in particular with respect to the position of its a-band. 
Studies with membranes from Chlorobium strains indi- 
cate the presence of a photooxidizable Cyt c553 that is 
rapidly photooxidized (Miller et al. 1992; Prince and 
Olson 1976) whereas the isolated reaction center com- 
plexes contain a photooxidizable Cyt c551 (Oh-oka et 
al. 1995; Kusumoto et al. 1994; Oh-oka et al. 1993; 
Okkels et al. 1992, Hurt and Hauska 1984). Kinet- 
ic measurements have shown photooxidation of the 
cytochrome with halftimes of 50-110 #s (Oh-oka et 
al. 1995, 1993; Okkels et al. 1992) but the <5 #s 
phase observed in membranes from C. limicola (Prince 
and Olson 1976) has not been clearly seen in the iso- 
lated reaction center preparations. Interestingly, the 
<5 as phase of cytochrome oxidation has not been 
observed in membranes from Prostechochloris aestu- 
arii (Swarthoff et al. 1981b) or C. vibrioforme (Miller 
et al. 1992). Reasons for the discrepancy could be 

species differences or changes in the a-band position 
due to the use of detergents. Alternatively, the mem- 
branes could contain a Cyt c553 which is the real donor 
but which is lost upon isolation. Feiler et al. (1992) 
have speculated that the direct donor to P840 in C. limi- 
cola is a tetraheme Cyt c553 similar to the electron donor 
to the reaction center in Rhodopseudomonas viridis. In 
this work, we show that the Cyt c551 present in prepa- 
rations from C. vibrioforme has a midpoint potential of 
160 mV which is compatible with a function as donor 
to P840. Also we show that an antibody against this 
cytochrome inhibits the steady state electron transport. 

Reaction center complexes from green sulfur bac- 
teria usually contain some FMO protein. This protein 
can be removed from the remaining complex but this 
has not been accomplished without simultaneous loss 
of photochemical activity (Hager-Braun et al. 1995; 
Oh-oka et al. 1993; Vasmel et al. 1983; Olson et al. 
1976a). An antibody against the FMO protein does not 
affect steady state electron transport, indicating that 
the protein does not play a role in for example docking 
of ferredoxin. 

Materials and methods 

Chlorobium vibrioforme strain NCIB 8327 (kindly 
provided by Professor J.G. Ormerod, Department of 
Biology, University of Oslo) was grown as previous- 
ly described (Okkels et al. 1992). The chlorosome- 
depleted membranes and the reaction center complex 
were isolated anaerobically according to the previous- 
ly reported procedure (Kj~er et al. 1994; Feiler et al. 
1992; Okkels et al. 1992). 

FMO protein and cytochrome c551 were isolated 
from the reaction center complex by preparative SDS- 
PAGE and electroelution from the Coomassie-stained 
gels. Polyclonal antibodies against the electroehited 
proteins were raised in rabbits. 

N-terminal amino acid sequencing was carried 
out with the 15-kDa polypeptide after electroelution 
or transfer to polyvinylidene difluoride membranes. 
Sequencing was performed with an Applied Biosys- 
tems sequenator. 

P840 was determined from the ferricyanide- 
oxidized minus ascorbate reduced spectrum using 
Aes30 = 90 mM - l  cm -1 (Olson et al. 1976b). 

NADP + reduction was measured in a 500 #1 reac- 
tion mixture using an anaerobic cuvette to which the 
following components were added: 0.5 mM NADP +, 
20 mM Tricine (pH 7.5), 8 mM MgC12, 0.6 mg bovine 



serum albumin, 0.04% decyl ~-D-maltoside, 2 mM 
sodium ascorbate, 0.1 mM N,N, lC,N'-tetramethyl-p- 
phenylenediamine, 6 #M ferredoxin, 0.05 /~M bar- 
ley ferredoxin:NADP + oxidoreductase, 2 units of glu- 
cose oxidase, 4 #g catalase, 6 mM glucose, 8 mM 2- 
mercaptoethanol, 0.1 or 0.4% dodecyl fl-D-maltoside 
(for reaction center complex and for membranes, 
respectively) and reaction center complex equivalent 
to 3 #g BChl a or membranes equivalent to 1.3 #g 
BChl a. After 10 min incubation in the dark at 4°C, 
the light-induced production of NADPH was measured 
at 340 nm in an Aminco DW 2000 spectropbotometer. 
The sample was kept at 25 °C and irradiated from the 
side with a Schott KL 1500 light source fitted with 
two red filters (Schott RG660 and Coming 2-58). The 
photomultiplier tube was protected from the actinic red 
light by a 340 nm interference filter (Schott UV-DAD- 
15-3). 

The effect of antibodies on NADP + reduction was 
studied by anaerobic incubation of the reaction center 
complex or membranes with specific antibodies in a 
volume of 300 #1 containing 70 mM MOPS (pH 7.5), 
13 mM MgC12, 0.17 or 0.66% dodecyl ~-D-maltoside 
(for the reaction center complex and for membranes, 
respectively). Bovine serum albumin was added to 
give a total protein content of 600 #g in all incuba- 
tions. After incubation in the anaerobic chamber for 
1 h at 4 °C in the dark, the remaining components of 
the reaction mixture for measuring NADP + reduction 
were added to a final volume of 500 #1. Tricine and 
decylmaltoside were excluded for these measurements. 

Redox titration of P840 and Cyt c551 was per- 
formed at pH 7.0 essentially according to Dutton 
(1978). The cuvette was kept anaerobic during the 
measurement by flushing with argon. The follow- 
ing redox mediators were added: 100 #M 2,3,5,6- 
tetramethylphenylenediamine, 50 #M phenazine 
methosulfate, 100 #M 1,2-naphtoquinone, and 100 
#M thymoquinone. Reductive and oxidative titrations 
were carried out with sodium dithionite and potassi- 
um ferricyanide, respectively. During the titrations, 
spectra were repeatedly aquired on an Aminco DW 
2000 spectrophotometer operating in dual mode with 
a fixed reference wavelength. The initial spectra (fully 
oxidized for Cyt c and fully reduced for P840) were 
subtracted during aquisition. The absorbance changes 
were calculated from the spectra. 

Clostridium pasteurianium ferredoxin, spinach 
ferredoxin, glucose oxidase, dodecyl ~-D-maltoside 
and bovine serum albumin (highest grade available) 
were obtained from Sigma and catalase was obtained 
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from Boehringer. Barley ferredoxin:NADP + oxidore- 
ductase was isolated by affinity chromatography essen- 
tially according to Serrano and Rivas (1982). All other 
reagents were of analytical grade. 

R ~  

The anaerobically isolated reaction center complex 
contains six different subunits of which the four largest 
have been identified previously (see 'Introduction'). 
The 15-kDa band was analyzed by N-terminal amino 
acid sequencing and the sequence MEPQLSRPETAS- 
NQVR/ was obtained. The N-terminal sequence is 
very similar to the recently published sequence of 
the pscD gene product from the reaction center com- 
plex from Chlorobium limicola (Hager-Braun et al. 
1995). Thirteen residues are identical and the remain- 
ing three residues are conservative substitutions. The 
BChl a/P840 ratio was 35-45 in the isolated reaction 
center complex (Kjaer et al. 1994) and about 80 in 
chlorosome-depleted membranes. 

Staining of the electrophoresed proteins with 
TMBZ shows that the isolated reaction center com- 
plex contains Cyt c551 as the single heme containing 
subunit. Contrary to this, chlorosome-depleted mem- 
branes contain several c-type cytochromes. The anti- 
bodies raised against Cyt c551 and FMO protein were 
tested by western blotting. The cytochrome antibody is 
very specific and shows no cross-reactivity with other 
cytochromes in the membranes. 

Photoreduction of NADP + was measured in 
chlorosome-depleted membranes and in the isolated 
reaction center complex using anaerobic conditions. 
In membranes, the activity (-4- SD) was 333 + 11 
#mol NADPH (mg BChl a) -1 h -1. In the isolated 
reaction center complex the activity was 110 + 21 
#mol NADPH (mg BChl a)-1 h - l .  The highest value 
obtained with a preparation of isolated reaction cen- 
ter complex was 150 #mol NADPH (mg BChl a) -1 
h -1. The absorbance changes observed at 340 nm 
were completely dependent on light, ferredoxin and 
ferredoxin:NADP + oxidoreductase. The high rates of 
photoreduction of NADP + reported in this study were 
obtained using C. pasteurianum ferredoxin as electron 
acceptor. With barley or spinach ferredoxin the rates 
were about one third (data not shown). 

Incubation of the reaction center complex or 
chlorosome-depleted membranes from C. vibrioforme 
with antibodies raised against Cyt c551 inhibited 
NADP + photoreduction (Fig. 1). The extent of inhibi- 
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Fig. 1. Light-induced NADP + reduction activity in the reaction 
center complex ( I )  and the chlorosome depleted membranes (1:]) 
from C. vibrioforme after incubation with antibodies against Cyt 
c551 (A) and the FMO protein (B). Values are expressed as percent 
of  control -t- SD. In the anti-Cyt c551 experiment the control activity 
of the membranes and reaction center complex were 328 and 144 
/~mol NADPH (mg BChl a ) -  1 h -  l . In the anti-FMO experiment 
the corresponding values were 337 and 102/~mol NADPH (rag BChl 
a ) - I  h -1 .  

tion was similar in the two types of preparations. Con- 
trary to this, incubation with antibodies raised against 
the FMO protein did not result in significant inhibition 
of NADP + photoreduction (Fig. 1). Incubation with 
a non-immune serum did not result in inhibition of 
activity (data not shown). 

The redox titrations of P840 and Cyt c551 are shown 
in Fig. 2. For both curves, the best fit to the Nernst equa- 
tion is obtained with n = 1. The Em values are calculated 
to be 245 -4- 10 mV for P840 and 160 4- 2 mV for Cyt 
c551. The scattering of the points obtained for P840 is 
due to oxidative bleaching of pigment molecules in the 
sample. 

Discussion 

The anaerobically isolated reaction center complex 
from C. vibrioforme is able to photoreduce NADP + at 
a rate of up to 150/zmol NADPH (mg BChl a ) - l h  -1 
corresponding to a P840 turnover of 3 s -1. This is the 
first report of reduction of NADP + in an isolated reac- 
tion center complex from a green sulfur bacterium. The 
high activity shows that all the subunits necessary for 
reduction of soluble ferredoxin are present and active in 
the isolated complex. In the more native chlorosome- 
depleted membranes, a rate of 333 #mol NADPH (mg 
BChl a ) - l h  -1 can be measured. On a P840 basis this 
activity is about four to five times higher than in the 
reaction center complex. The lower activity in the iso- 
lated reaction center complex could be related to loss 
of an important component but it is conceivable that 
the lower activity is simply due to inactivation dur- 
ing the isolation procedure which involves detergent 
solubilization of the membranes. Photosystem I prepa- 
rations containing all subunits important for NADP + 
reduction have for example been reported to exhibit an 
activity of 214/zmol NADPH (mg Chl) - lh  -1 (Bengis 
and Nelson 1977); a value considerably lower than the 
1800/~mol NADPH (mg Chl)- lh  -1 obtained with a 
different detergent (Andersen et al. 1992). The rate of 
NADP + reduction obtained with chlorosome-depleted 
membranes is 15-30 times higher than the previously 
reported rates (Miller et al. 1992; Buchanan and Evans 
1969). The higher rates of NADP + photoreduction 
obtained in this study are probably due to the anaero- 
bic conditions used during isolation which result in a 
more native complex (Kj~er et al. 1994). A second rea- 
son for the high activity is the use of C. pasteurianum 
ferredoxin as electron acceptor instead of plant ferre- 
doxin. In previous studies, spinach ferredoxin (Miller 
et al. 1992) or Chromatium ferredoxin (Buchanan and 
Evans 1969) were used. The rate of NADP + photore- 
duction by the isolated reaction center complex could 
possibly be even higher if Chlorobium ferredoxin were 
used, but this was not attempted because the protein 
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Fig. 2. (A) Redox titration of P840. The curve shows the absorption at 830-885 nm measured at different redox potentials (Eh) first obtained by 
oxidation with potassium ferricyanide (O) then by reduction with sodium dithionite (0). (B) Redox titration of Cyt c551. The curve shows the 
absorption at 551-540 nm measured at different redox potentials (Eh) first obtained by reduction (I) ,  then by oxidation (O). In both (A) and 
(B) the data were fitted to an n = 1 Nernst equation and the midpoint potentials (F-,m) were estimated by a least-squares-fit program. A reaction 
center preparation with approximately 0.5 #M P840 was used in both titratious. 

is reported to be very unstable (Evans and Buchanan 
1965). 

The present study has shown that photoreduction 
of  NADP + is possible in an isolated reaction cen- 
ter complex from C. vibrioforme, where the only c- 
type cytochrome present is Cyt c551. Furthermore the 
N A D P  + reduction is inhibited when the complex is 
incubated with antibodies raised against Cyt CSSl. The 
fact that an immunoglobulin molecule bound to Cyt 
c551 results in inhibition of  NADP + reduction strongly 

indicates that Cyt c551 has an important function in the 
NADP + photoreduction process. 

The possibility that there are alternative pathways 
for reduction of  P840 in vivo needs to be consid- 
ered. In some purple bacteria alternative secondary 
donors have been found (Zanoni and Daldal 1993). 
The chlorosome-depleted membranes from C. vibri- 
oforme contain several other c-type cytochromes in 
addition to Cyt c551, among these one migrating around 
32 kDa which could correspond to the putative tetra- 
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heme Cyt c553 in membranes from C. limicola (Feiler 
et al. 1992). However, NADP + reduction by the mem- 
branes is also strongly inhibited by the antibody raised 
against Cyt c551. This does not exclude the involve- 
ment of other cytochromes but show that Cyt c551 is 
also important for NADP + reduction by membranes. 
One reason for scepticism regarding the function of Cyt 
c551 has been the fact that its absorbance characteris- 
tics are different from those reported for the secondary 
donor cytochrome in studies of more intact systems. 
With cells or membranes from several different strains 
of Chlorobium, the secondary donor has been reported 
to have an c~-band of 553 nm (Okumura et al. 1994; 
Miller et al. 1992; Olson et al. 1976a; Prince and 
Olson 1976). An a-band of 553 nm was also report- 
ed for P. aestuarii (Swarthoff et al. 1981b; Swarthoff 
and Amesz 1979; Fowler et al. 1971). Contrary to this 
the pscC gene product in C. vibrioforme was found to 
absorb at 551.4 nm (Okkels et al. 1992). The same pro- 
tein has been reported to absorb at 551 or 550.5 in C. 
limicola f. thiosulfatophilum (Oh-oka et al. 1993; Hurt 
and Hauska 1984) and at 552 or 551 nm in C. tepidum 
(Oh-oka et al. 1995; Kusumoto et al. 1994). In order to 
provide additional information on the Cyt c551 in our 
preparations we have determined its midpoint poten- 
tial. This was found to be 160 mV at pH 7.0, a value 
very similar to the 170, 165 and 180 mV reported for 
Cyt c553 by Fowler et al. (1971), Prince and Olson 
(1976) and Okumura et al. (1994), respectively. Hurt 
and Hauska (1984) have reported a value of 220 mV for 
Cyt c550.5. The reason for this discrepancy is not clear. 
For P840 we found Em = 245 mV in good agreement 
with previous estimates of 230 mV (Okumura et al. 
1994), 250 mV (Prince and Olson 1976) and 240 mV 
(Fowler et al. 1971). The Rieske iron-sulfur protein 
and soluble Cyt c555, the presumed soluble carrier of 
electrons between the Cyt bc complex and the reaction 
center, both have Em at pH 7.0 around 145 mV (Meyer 
1994; Amesz and Knaff 1988). Thus an Em value of 
160 mV for Cyt csst is in excellent agreement with 
a function of this protein as the donor to P840. We 
suggest that the membrane-bound Cyt c551 is identi- 
cal to the Cyt c553 known from spectroscopical studies 
and that the discrepancy in a-band is due to detergent- 
introduced changes in the conformation of the protein. 
Another possibility could be that the membranes con- 
tain a cytochrome c553 which donates electrons to Cyt 
c551 in a very fast reaction. 

Unlike the antibody raised against Cyt c551, the anti- 
body raised against the FMO protein does not result in 
any significant inhibition of NADP + reduction, nei- 

ther in the isolated reaction center complex, nor in the 
chlorosome-depleted membranes. This indicates that 
the FMO protein is not directly involved in the NADP + 
reduction process, although it can not be excluded that 
the antibody binds to the relatively large protein at a 
place where it has no effect. 

Photosystem I of plants and cyanobacteria contains 
the stromal subunits PSI-D and PSI-E which are impor- 
tant for the interaction with ferredoxin. PSI-D is essen- 
tial for the docking of ferredoxin (Chitnis et al. 1989) 
while PSI-E is important for high rates of ferredoxin 
reduction (Rousseau et al. 1993). Homologous sub- 
units have not been reported from green sulfur bacteria 
and clearly the docking and reduction of ferredoxin do 
not depend on such subunits in C. vibrioforme. The 
pscB iron-sulfur protein in Chlorobium is 24 kDa as 
compared to 9 kDa for the PSI-C iron-sulfur protein in 
Photosystem I. It can be speculated that the additional 
regions of the pscB protein functionally resemble the 
PSI-D and PSI-E subunits of Photosystem I. Hager- 
Braun et al. (1995) have speculated that the basic pscD 
protein could have a function similar to PSI-D in stabi- 
lizing the pscB iron-sulfur protein. Likewise, the pscD 
protein or the 9-kDa polypeptide could also be involved 
in ferredoxin docking. 
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