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ABSTRACT 
Steady state crack propagation in solids is analyzed as a thermally activated process. The fracture 
mechanics concept of a crack driving force is formally introduced to molecular rate theory. This 
representation of crack propagation appears to be, in many aspects, similar to that of the motion of a 
dislocation under a shear stress across thermal obstacles. The basic thermodynamic relations are derived 
for steady state crack propagation using assumptions similar to those well accepted in theories of 
deformation based on thermally activated dislocation motion. 

I. Introduction 

Fracture mechanics  analysis predicts the conditions for  which a crack propagates .  It  
is now well established that  the parameters  ~d and K, respect ively I rwin 's  crack 
extension force and the stress intensity factor,  are the proper  variables to represent  
the action of mechanical  forces  on any crack system. ~ and K are related, for  plane 
strain f racture  conditions, by 

K ~ ( 1 - v )  K 2 ~ ( l - v )  K2n 
= + ~ (1) 

2t~ 2t~ 2t~ 

where KLn.m are the stress intensity factors ,  for  opening, sliding and tearing modes of 
fracture,  tz is the shear modulus and v is Poisson 's  ratio. 

Consider  an exper iment  in which a sample containing a crack is progressively 
loaded, then according to the Irwin [1] or the Orowan [2] theories,  the crack starts to 
propagate  when the crack extension force (or the equivalent  stress intensity factor)  
reaches a critical value ~dc, (or Kc,)'t; in plane strain, the quantities ~dcr and Kcr are 
recognized as material  propert ies  independent  of  specimen geometry.  

Although the element  of  t ime can be introduced in f racture  mechanics  to explain 
the time dependence  of crack propagat ion at large crack velocities by taking account  
of a kinetic energy term, a wide range of ra te-dependent  f racture  processes  also 
occurs  at low crack velocities, where dynamic effects are negligible. In this case, the 
fracture  surface energy (or the critical stress intensity factor)  shows a strong de- 
pendence on the tempera ture  and the crack velocity,  features  which are characterist ic 
of a thermally act ivated process.  I t  is therefore  not surprising that slow crack 
propagat ion and a related phenomenon,  "delayed f rac ture" ,  have been described in 
terms of thermally act ivated processes  [3-15]. Specific models assuming detailed 
molecular mechanism at the crack tip as the rate controlling process  have been 
proposed to interpret  crack velocities in brittle solids. One of the most  proposed 
reaction rate models  for f racture  of  solid materials assumes  that  the crack velocity is 
controlled by a tempera ture  and stress act ivated bond rupture process ;  resulting 

t-In fracture mechanics, these quantities are often written q3,- and Kc. 
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theories essentially differ according to the specific assumptions made on the model. A 
compar ison of the reaction rate models  for delayed fracture of  Tobolsky-Eyr ing ,  
Coleman,  Zhurkov and Hsiao has been made by Henderson  e t  al .  [16] with the 
conclusion that bond rupture models  are preferred.  Knauss  [17] also reviewed 
different expressions proposed for  the kinetics of bond rupture in polymers  as applied 
to a rate theory description of fracture.  A literature survey [3-16] showed that a 
variety of  equations describing crack velocity in the Arrhenius form of a rate 
act ivated process  have  been proposed and used to fit experimental  data relating the 
crack velocity to the stress intensity fac tor  (or to the fracture  surface energy) and to 
the temperature .  The forms of these equations are listed in Table 1. Zhurkov ' s  rate 
equation for  t ime to rupture has also been included in the table because of a probable  
connect ion between time to rupture and subcritical crack velocity. 

Since it appears  that crack propagation,  at least stable crack propagation,  behaves  
as a thermally act ivated process ,  it is important  to consider a general model of crack 
propagat ion and to derive the formalism of a rate theory,  as it applies to crack 
propagation.  The formal  rate description in the following section establishes the 
interrelations between the rate controlling parameters .  The determination of ther- 
modynamic  parameters  is discussed in the third section. An athermal  crack extension 
componen t  is introduced in the fourth section. In the final section, general conclusions 
are summarized.  

TABLE 1 
Expressions for the crack velocity, as found in literature*. 

Reference Crack velocity 

(a) Wiederhorn et al. [10] 
and Wiederhorn and Bolz [13] 

(b) Wiederhorn [11] 
(c) Evans [18] 
(d) Charles [6] 
(e) Evans and Wiederhorn [12] 
(f) Charles and Hillig [7]~ 

(g) Kies and Clark [14] 

(h) Atkins et al. [15] 

Zhurkov [4] 

z, = ~'0 exp ( -  E*  + b K O / R T  
V = a exp (-AH + ) tKO/RT 
V = a 'K ~ exp ( - A H / R T )  
v = k(trm)" exp ( - A / R T )  
V = VoK~ r/r° exp ( - A H ] R T )  

v = vo exp ( -  E* + V*o, - V~T/p) /RT  

d 3 
dx = ~o - * T + ~ / N o k T ) { ( p  + ~ ) ~  - Nof~} dt h exp( f /k  

ti = A1 exp (-(U - AR) /kT)  

time for rupture: 
¢ = r0exp (U0- Vtr)/kT 

* See original articles for definitions of symbols. 
t (For corrosion effect at tip of crack). 

2. Rate theory applied to steady state crack propagation 

The problem to be considered is a crack propagating in a solid at a macroscopic  
velocity v, under the action of an external mechanical  force.  It  will be assumed that 
thermally act ivated rate processes  near the crack tip determine the crack velocity. For  
clarity, only fracture  for  mode I opening will be considered,  although any combinat ion 
of the three opening modes could be considered as well. 

Now,  let 's think of a specific, thin section of the crack of width ~ X  defined by 
the contour  E as shown in Fig. 1; ~ is chosen large enough around the crack tip so 
that, at any time, it covers  all regions of  material  undergoing transition f rom the 
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J 

Figure 1. (a) Macroscopic crack and crack element of width AX; (b) crack system and crack tip region ~ of 
crack element. 

original material to the fracture-modified material. AX is chosen small enough so that 
the crack element considered has to overcome one energy barrier at a time. It is 
assumed that as the crack advances,  the crack element has to overcome short range 
energy barriers. Thus, the energy barriers are the rate controlling mechanisms and the 
crack motion is thermally activated. Examples of such barriers (or obstacles) might be 
rupture of main chain bonds in polymers,  diffusion of molecular segments, diffusion 
of chemical components  to the crack tip region, nucleation of voids, obstacles to 
plastic flow, lattice trapping [8], and so forth. 

Following the usual procedure employed in the study of rate processes,  we first 
consider the case of a single type of energy barrier, i.e., a single process.  

Since  the crack alone will be considered as the system, it is necessary to use a 
parameter  which describes the mechanical action imposed on the crack as a whole 
system and does not depend on the sample geometry.  Fracture mechanics analysis 
shows that two variables could describe this " fo r ce"  on the crack: l) the stress 
intensity factor  K or 2) the crack extension force r~. The selection of one of these 
parameters  is based on the following considerations: 

In thermodynamics,  the energy of a system is expressed as the sum of energy 
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terms, each equal to the product  of a measurable intensive variable by a measurable 
extensive variable. When the crack is considered as the system, the mechanical 
energy term could be written as the product  of the stress intensity factor K (which we 
can admit to be an intensive variable for  a crack, and can be measured), by a variable 
having the dimension of a (length) 5/2, that is, the dimension of a surface times the 
square root of a length or a volume over  the square root of a length; this variable is 
therefore difficult to picture as an extensive variable. The alternative solution of 
writing a term like K/X/-L x V where L is a length and V a volume, has the advantage 
that K/V'-L can represent  a stress, an intensive variable, and V has a physical meaning 
of an extensive variable. However ,  this is not a satisfactory approach because K/X/-L 
depends on the undefined quantity L and thus does not have a unique value for a 
given crack, loaded with specified conditions. 

On the other hand, if we use the crack extension force ~, which has the 
dimension of an energy/unit  area, or of a force/unit  length and is therefore a 
measurable intensive variable, to describe the mechanical driving force on the crack, 
the mechanical energy term corresponds to ~ x A where A is the fracture surface 
area, a measurable extensive variable. 

The energy term ~ x A has the same form as the theoretical surface energy term 
usually used in thermodynamics or as the work performed by surface tension forces.  

For  the preceding reasons, ~3 is the parameter  that should be used to represent  
the mechanical intensive parameter  on the crack. In the present treatment,  the crack 
front  is thus represented by a line on which a force per unit length ~d tends to move it 
in the forward direction; its motion is however  restrained by the presence of 
" thermal"  obstacles, i.e., obstacles, or barriers, which can be overcome by thermal 
activation. Whether  the physical origins of those energy barriers are individual 
obstacles placed on a unique surface along the fracture path or whether  they are some 
mechanisms occurring somewhere in the region ~, does not affect the generality of the 
following treatment,  because the energy of the whole crack element is considered. As 
defined above, the problem of crack motion is somewhat similar to the problem of 
dislocation motion over  thermal barriers. It follows that the formalism of the present 
discussion will be inspired from that used to interpret plastic flow rate processes in 
terms of dislocation motion over  energy barriers [19, 20]. 

With the assumption of thermally activated barriers, the average crack velocity 
can be written according to a general Arrhenius-type equation as: 

v = v0(~, T, P, tri, s) exp [ - A G ( ~ ,  T, P, tri, s)/kT] (2) 

where the quantity v0 can be thought as the maximum attainable crack velocity, AG is 
the Gibbs free energy of activation, ~ is the average applied mechanical driving 
force per unit length of crack profile, T is the temperature,  and P is the hydrostatic 
pressure, o'i are external stresses not contributing to an opening mode, for  example a 
uniform stress applied parallel to the crack front on a test sample, s are parameters 
describing the internal structure, for  example the number of obstacles per unit area of 
fracture surface. 

In order to simplify the problem, we will now make the important assumption, 
similar to that usually made in the theories of thermally activated dislocation motion 
[21], that the internal structure is constant. This assumption implies that in steady 
state, the concentrat ion of "obs tac les"  referred to a unit of fracture surface area is 
constant.  This assumption, however,  allows the material in the crack tip region to be 
different from that outside (for example,  molecular orientation in the crack tip region 
in a polymer),  provided that this structure stays in a steady state in the range of the 
operating process.  

Int. Journ. of Fracture, 13 (1977)667-679 
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From the rate theory alone, the effects of ~, T, P, tri and s, on vo cannot, in 
general, be found; consequently, unless it is possible from other considerations to 
attribute a specific dependence of one of these parameters on v0, v0 will be assumed to 
be constant for a given process. If v0 is not constant, then v should be replaced by 
v/vo in the expressions which will be derived later. 

The Gibbs free energy G of the crack element then takes the general form: 

G -- U + P V  - ~JA - ~ ,  triVi - T S  (3) 

where U is the internal energy, V is the volume, A is the fracture surface area and S 
is the entropy. 

Now, only in order to clarify the following equations, we will consider the case 
where P and the tri's are kept constant, i.e., the only experimental variables will be 
and T. With the previous assumptions and simplifications, the expression for the crack 
velocity becomes 

-AG(~ ,  T) 
v = v0 exp k T  (4) 

This equation implies that, for a given material, the crack velocity depends only 
on ~ and T, and therefore, In v can be written as: 

In v =/(~g, T). 

It follows that: 

(5) 
a ~  r aTIjn~ alnvl 

A useful check of the assumption that v depends only on ~3 and T is to verify this 
last equation where each of the three partial derivatives can be measured from the 
experimental data. 

The differential of the Gibbs free energy G, the Helmholtz's free energy F, the 
enthalpy H and the internal energy U are respectively expressed as: 

dG = - A  d % -  S dT 

dF  = - S dT + ~3~ dA (6) 

dH = T dS - A d~gi 

d U = T d S + ~ d A .  

In the above differentials, A is the area of fracture surface of the crack element, 
which defines its position along the fracture path. % is the local internal back 
force/unit crack length on the crack element and is equal to the applied force/unit 
crack length required to maintain the crack in equilibrium at the position A. The 
choice of the origin of the coordinate A is arbitrary, provided it is kept constant 
throughout the analysis. 

From Eqn. (6), for an isothermal reversible process over a potential barrier, the 
derivative of the Helmholtz free energy with respect to the crack propagation area A 
is ~. The Helmholtz free energy and its derivative are schematically illustrated in Fig. 
2a and 2b; also from Eqn. (6), the activation free energy is equal to: 

AG = A* d(gl (7) 

as shown in Fig. 2b. ~* is the crack extension force effectively used for overcoming 
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Figure 2. Energy and internal fnrce diagram for the front of a crack element during reversible overcnming 
of a thermal obstacle. 

the thermal obstacle  and will be called "effect ive crack extension fo rce" ;  (g* is the 
max imum effective crack extension force corresponding to a fully force-act ivated 
process  and at which the crack velocity attains the value v0. 

Now,  f rom Eqn. (7) and also f rom Fig. 2b with zero effective driving force,  i.e., 
~d* = 0; 

AGo ~ A* d~i (8) 

with AGo = AF. Equations (7) and (8) allow AG to be written as: 
q3* 

f 

AG = A G o -  Jo A* d~gi. (9) 

For  a forward motion of the crack f ront  element ,  the corresponding crack front  
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velocity becomes  

V+ = V0 e - a ° + l k T  ( 1 0 )  

and for a reversible backward  process:  

v-  = Vo e -a°-Ik'r (11) 

where  AG+ and AG- are the activation Gibb 's  free energies respect ively  for the 
forward  and for the backward  motion of the crack over  a thermal  obstacle.  Thus,  for 
a given ~g* (see Fig. 2c), the net crack velocity becomes:  

v = v + - - v -  

o r :  

= { e x p -  -exp-(f_ ra*d ,)/kT } V Vo ( f~ '~  A *  d 9 1 , ) / k T  ~* (12) 

Following the arguments  of Li on dislocation velocity [22], we have,  for  a reversible 
crack motion under  a zero effective driving force ~d*, a net zero crack velocity: 

I q? )/ If_° )/} v = vo e x p -  A *  dq3i k T  - e x p -  A *  dqJi k T  = 0 (13) 
q3~_ 

which gives the condition 

AGo = | A* d~di -=- A* dq3i. (14) 
J0 q3*_ 

At very small values of q3* so that A* and A*- are approximate ly  independent  of 
q3*, we have f rom Eqn. (11): 

AG+ = A G 0 -  A*~d * 

and (15) 

AG- = AG0+ A-*~d * 

with 

A* + A-* = A*. (16) 

Therefore ,  f rom Eqns. (10), (11) and (15), 

v = Vo e-a°°¢kr(e ~ 'az lkr-  e-~d*a*-IkT), (17) 

and, for  a symmetr ic  barrier,  where A* = A* = A*, one obtains an Eyring-type 
expression:  

v = 2v0 e -a°°lkr sin h qd*A* (18) 
k T  " 

On the other hand, if AG-  is sufficiently larger than AG+, then v_ is much smaller 
than v+ and the net solution of the crack is given by 

(r )/ v = v0 e -adder = v0 exp - A ;  d qdi k T  (19) 
x j qd, 

The condition of AG-  being large compared  to AG+ can be obtained at large values of 
~d*. In some cases,  the backward  process  may be very improbable  and therefore  be 
negligible because  of the nature of the obstacle.  For  example ,  if in a po lymer  such 
obstacles are main chain bonds of highly strained molecules that can be ruptured,  the 
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reversible recombination of the broken bonds of the same molecule is very unlikely 
because the broken parts may be far apart. It should be noted that whenever the 
overall process is controlled by the forward process, the condition of reversibility has 
to apply only during the forward activation process. From Eqn. (19) and (9), we then 
have 

(f( V = Vo e-a%lkrexp  A+ d k T  (20) 

3. Determination of thermodynamic  parameters 

The derivative of Eqn. (20) with respect to ~*, at constant T, yields 

a in v) A* 
0 ~ * / r  = k-T" (21) 

The activation area is therefore obtained from the dependence of the crack velocity 
on ~* at constant temperature. 

Now consider derivatives of (20) with respect to temperature at constant ~*: 

a~v  ~ AG+ 
OT }~, = 

l (Oaa+) 
k T  \ OT } ~  

AG+ AS+ 
- "k--T ~ 4 k T 

AH+ 

k T  2 (22) 

or 
O ln v'~ =-~H+ 
~(Vf):~. (23) 

AS+ and AH÷ being the entropy and enthalpy of activation. Equation (23) represents 
the well known procedure for obtaining the enthalpy of activation by plotting the rate 
of the process versus l iT .  

In order to calculate the expressions relating different experimental and ther- 
modynamic parameters, Jacobian algebra can be conveniently used, as suggested by 
Li [20]. A list of partial derivatives of the functions to be considered is presented in 
Table 2. From this table, any other partial derivative of any tabulated variable can 
readily be obtained from the following relation: 

ox'~ J (X, z )  
a-Y )z = =J(Y,Z)"  

(24) 

For example, by applying the relation (24) and using Table 2, one finds: 

Oqd * ~ - AH+ 
~ / , . v  = ~4T-f • (25) 
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T A B L E  2 

Jacobian table for act ivation parameters  related to crack propagation.  

675 

f (O.f/OT)~. (0flaqd*)r 

T 1 0 
(fl* 0 i 
In v+ AH+/kT ~ A*/kT 
AG÷ - AS+ - A* 
AH+ C+ T~,+ - A* 
A* y+ 0+ 
A S+ C+ / T y+ 
AF+ - A S +  + q3*y+ u3*0+ 
AU+ C++ qJ*y+ Ty++ qJ*O+ 

Thus, the enthalpy of activation can also be obtained from the temperature de- 
pendence of the crack extension force, at a constant crack velocity. 

A few examples of possible relations between A* and ~d* leading to linear 
relations between In v and ~*, or simple functions of ~3", are summarized in Table 3; 
the dependence of the corresponding activation energy on ~* at constant temperature 
is also shown; these results are immediate by integrating Eqns. (21) and (9). From the 
experimentally observed dependence of the crack velocity on the effective crack 
extension force ~d*, it is therefore, in principle, possible to define a relation between 
the activation area A* and ~*. 

The types of relations as given in cases (a), (b) and (d) of Table 3 between crack 
velocity and crack extension force, or equivalent relations between crack velocity and 
stress intensity factor with the approximation that K oc ~3 IrE, are frequently found in 
literature. Examples (a), (b) and (f) in Table 1 correspond to type (d) relation in Table 
3, whereas (c), (d) and (e) relations in Table 1 follow a (b) type dependence in Table 3 
and (h) relation in Table 1 is associated with an (a) type behavior in Table 3. 

We have so far considered only a single operative thermally activated process. 
The combined effects of simultaneous processes on the rate and on the ther- 
modynamic parameters have been discussed by Li [23] and can be directly applied to 
crack propagation described by the foregoing model. For illustration, a crack velocity 
versus crack extension force relation as represented in Fig. 3 can be explained in 
terms of three consecutive processes (one athermal process I, and two thermal 
processes II and III) coupled in parallel with a thermal process IV. 

4. Athermal crack extension forces 

The existence of an applied ~3, or the equivalent applied stress intensity factors K, 
below which crack propagation does not occur is observed in many materials 
[l l ,  13, 24-26]. These experimental measurements suggest that there is an athermal 
component to ~3. The relation between ~3" and the externally applied and measured 
crack extension force ~ is shown in Fig. 4. The addition of the crack extension forces 
was established from the following considerations. 

When the crack is moving, the material in the crack tip region undergoes 
transitions from a low energy state, i.e. original material, to a high energy state. The 
fracture modified material has new surfaces and contains more defects such as 
dislocations, broken bonds, etc. This energy transition is equivalent to a structural 
change in the material and results in an increase in the energy of the crack system 
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TABLE 3 
Examples of the dependence of In v and AG+ on ~* according to the dependence of A* on ~3", at constant 
temperature. 

A* 
Note: c may be a 

function of T In v AG+ 

(a) A* = c = constant linear with ~3" In v] / 
slope = clkT 

) 

AGo - c~* 

(b) A* = c]~* linear with In ~d* 
(power law) In v] / 
slope = - c/kT 

) 

In ~3' 

AGo - c In ~d* 

(c) A* = cl~ *z linear with 1/~3 * AGo+ c / ~ *  
slope = clkT In v 

I 

(d) A* = c ] ~  *1/2 linear with (~.1/2 A G  O __ C(t~* 1t2 

slope = 2clkT In v / 
) 

~ ,  u2 

which is proport ional  to the crack area. The mechanical  work provides this energy 
and is equal to it in a reversible process.  

For example ,  in the case of reversible crack propagat ion in nearly perfect ly  
brittle material such as during cleavage exper iments  on some crystals  [27], the 
increase in the material energy,  per unit f racture  area, for  one fracture  surface is 
equal to the thermodynamic  surface energy,  3,. Therefore  the crack is in an equili- 
brium state, zero velocity,  when the applied crack extension force (g is equal to 23,. 
When ~3 is increased, and if crack propagat ion is thermally activated,  the crack 
extension force  componen t  ~d* equal to ~ 3 - 2 y  is used to overcome the thermal 
obstacles.  

More generally in a non-perfect ly  brittle material  the energy per unit area of a 
crack surface of the material  going through the crack tip region is increased by 23, 
plus an additional amount  2F corresponding to changes in the state of the bulk 
material  close to the fracture  surface. Then the thermal componen t  of the crack 
extension force is equal to ~ -  23 , -  2F. 

High energy obstacles that cannot  be overcome by thermal activation may also be 
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Figure 3. Consecutive and parallel processes in crack propagation. 
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Figure 4. Components for the free energy and for the crack extension force. 
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encountered by the propagating crack. These obstacles will influence the crack 
propagation. Such obstacles may result from local variations in the material structure. 
Designate ~h the crack extension force component  required to overcome these high 
energy obstacles. Thus, ~d* is then equal to 

~3" = ~d - 23, - 2F - ~dh 
or (g* = ~ -  (ga. (26) 

Equation (26) is similar, in its form and in its origin, to the relation widely used in 
dislocation motion theories which states that the internal stress ~- on the dislocation 
consists of the sum of an athermal component  ~'~ and a thermal component  z* [28]. 
The value of ~d~ should then correspond to the value of ~ at which the crack velocity 
is zero. 

5. Conclusion 

Steady state crack propagation is described as the motion of a crack front  controlled 
by energy barriers. Arguments are given to select the crack extension force ~ rather 
than the stress intensity factor  K for describing the mechanical force on a crack 
system. The crack front  progresses under the action of the crack extension force,  
which, if we neglect the thermodynamic surface energy of the material, is equal to the 
sum of an athermal component  ~3a and a thermal component  ~d*. Each of these 
components  corresponds to the force per unit length of crack front,  respectively a) 
required to overcome long-range, high energy, obstacles that cannot be activated by 
thermal fluctuation and b) used to assist thermal activation of short-range barriers. 
Accordingly, the term ~da should correspond to the value of the applied crack 
extension force below which crack propagation does not occur. The activation area, 
defined as the area swept by a crack front  during the thermal activation event  is 
allowed to depend on the effective crack extension force. Interrelations between 
thermodynamic activation parameters are derived. Most of published crack velocity 
dependences on mechanical force are shown to correspond to different crack ex- 
tension force dependences on the activation area. 
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RI~SUMI~ 
La propagation stationnaire d'une fissure dans un solide est analys~e en tant qu'un processus d'activation 
thermique. Le concept d'une force d'extension de la fissure, utilis6 en m6canique de la rupture, est 
formellement introduit dans la th6orie cin~tique mol6culaire. Cette repr6sentation de la propagation d'une 
fissure apparait, en maint aspects, similaire h celle du mouvement d'une dislocation sous l'effect d'une 
contrainte de cisaillement b~ travers des obstacles thermiquement franchissables. On d~rive les relations 
thermodynamiques fondamentales pour la propagation stationnaire d'une fissure, ~ partir d'hypoth~ses 
simplificatrices similaires h celles couramment accept6es dans les thi~ories de d6formation bas6es sur le 
mouvement thermiquement activ6 des dislocations. 
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