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Abstract 

This review examines the effects of elevated [CO2] on plant symbioses with mycorrhizal fungi and root nodule 
bacteria, with emphasis on community and ecosystem processes. The effects of elevated [CO2] on the relationships 
between single plant species and root symbionts are considered first. There is some evidence that plant infection by 
and/or biomass of root symbionts are stimulated by elevated [CO2], but growth enhancement of the host seemingly 
depends on its degree of dependence on symbiosis and on soil nutrient availability. Second, the effects of elevated 
[CO2] on the relationships between plant multispecies assemblages and soil, and likely impacts on above-ground and 
belowground diversity, are analysed. Experimental and modelling work have suggested the existence of complex 
feedbacks in the responses of plants and the rhizosphere to CO2 enrichment. By modifying C inputs from plants to 
soil, elevated [CO2] may affect the biomass, the infectivity, and the species/isolate composition of root symbionts. 
This has the potential to alter community structure and ecosystem functioning. Finally, the incorporation of type 
and degree of symbiotic dependence into the definition of plant functional types, and into experimental work within 
the context of global change research, are discussed. More experimental work on the effects of elevated [CO2] at 
the community/ecosystem level, explicitly considering the role of root symbioses, is urgently needed. 

Introduction 

The atmospheric concentration of CO2 has increased 
by 25% in the last two centuries and its steady rise 
throughout the next century is the most certain pre- 
diction related with global change (Houghton et al., 
1992). Accordingly, a large body of research has been 
devoted in the last few decades to the effects of elevat- 
ed [CO2] on plants. The interest on the effects of CO2 
enrichment on plant-soil processes, however, is much 
more recent. Although the existence of complex feed- 
backs involving root symbionts and other rhizospheric 
organisms was suggested in the early '80s (Lamborgh 
et al., 1983; Luxmoore, 1981), experimental initiatives 
aimed at exploring them were rare before the '90s. At 
present, there is a growing interest in the effects of ele- 
vated [CO2] on root symbionts. This is probably related 
to the realisation that responses of whole communities 
cannot be predicted from single species experiments 
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(Bazzaz and McConnaughay, 1992; K6rner, 1993), 
and to the idea that the "missing carbon sink" (i.e. an 
amount of 1.8:1:1.4 Pg. per year not accounted for by 
the global C budgets; Houghton et al., 1992) could be 
connected with biotic below-ground processes (Dyson, 
1992). 

Probably one of the most important influences of 
elevated [CO2] at theecosystem level is the modifica- 
tion of plant carbon allocation patterns. Altered amount 
and quality of substrate made available to other troph- 
ic levels may produce changes in the whole cycling 
of materials through food webs. Root symbionts are 
a constituent part of most natural terrestrial commu- 
nities, thus these changes may have major implica- 
tions for their responses to the changing environmental 
conditions expected for the next century. Most of the 
research effort in this field has been focused on sim- 
ple systems, typically involving one plant species and 
one or very few root symbiont species/isolates. Very 
recently, however, the role of root symbionts within 
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more complex systems has begun to receive increas- 
ing attention. 

The main objective of this article is to review what 
is known to date about the effects of elevated [CO2] 
on plant associations with mycorrhizal and root nodule 
symbionts, with emphasis on community and ecosys- 
tem processes. It also aims at identifying areas in which 
critical information is needed in order to increase our 
understanding of likely responses of natural systems 
to global environmental change. The effects of ele- 
vated [CO2] are considered at three levels. Firstly, a 
review is presented on the relationships between sin- 
gle plant species and root symbionts. Symbioses with 
AM and EM mycorrhizal fungi, root nodule bacte- 
ria and to a lesser extent ericoid mycorrhizal fungi 
and N-fixing actinomycetes, are considered. Secondly, 
more complex interactions between plant multispecies 
assemblages and soil, and impacts on aboveground 
and below-ground diversity, are analysed. Finally, the 
incorporation of symbiotic relationships into the defi- 
nition of plant functional types, and into experimental 
work within the context of global change research, are 
discussed. 

Effects of elevated [C02] on the interactions 
between single plants and root symbionts 

The most important effects of mycorrhizal fungi 
and root nodule bacteria on plants include increased 
nutrient and water status, increased protection from 
pathogens and toxicity, and stimulation of photosyn- 
thesis due to enhanced sink strength for carbon (Table 
I). There are several thorough reviews on the topic, 
and probably the most general conclusion from them 
is that in many plants the presence of root symbiosis 
tends to enhance host-plant performance, at least at 
some life stages, and particularly when growing under 
low nutrient supply (Allen, 1991; Fitter, 1985; Harley 
and Smith, 1983; Read, 1991). 

Elevated [CO2] may influence root growth, activi- 
ty and/or concentration of non-structural carbohydrate, 
and thus has the potential to alter plant-symbiont rela- 
tionships. This section summarises reported effects 
of CO2 enrichment on below-ground processes, with 
emphasis on mycorrhizal and nodulating plants. 

Effects of elevated [C02] on plant carbon allocation 
below ground 

The amount and quality of living roots and root-derived 
compounds (exudates, sloughed-off cells and dead 
roots) are extremely important for below-ground pro- 
cesses (Van Veen et al., 1989). Mycorrhizas (Clarkson, 
1985; Jakobsen and Rosendahl, 1990) and nodulated 
legume roots (Kucey and Paul, 1982) represent high 
demands for C and therefore stimulate the transport of 
carbohydrate through the root system and the C fix- 
ation at the whole-plant level. Accordingly, several 
authors have reported stimulated photosynthesis in the 
presence of mycorrhizal and root nodule bacteria as 
compared with uninfected plants (Allen et al., 1981; 
Paul and Kucey, 1981; Reid et al., 1983). Within a 
single plant, individual EM- (Reid et al., 1983) and 
AM-infected roots (Pearson, 1993; Snellgrove et al., 
1982) act as greater sinks for photosynthate than non- 
mycorrhizal roots, at least at early stages of develop- 
ment. The presence of AM fungi decreases exudation 
(Graham et al., 1981; Ratnayake et al., 1978) and 
the concentration of soluble carbohydrate in the roots, 
affecting the amount of C available for root growth 
and for colonisation by other symbiotic fungi (Pear- 
son, 1993). Increased biomass and C:N ratios of roots 
should therefore stimulate symbioses betweeen plants 
and nodule bacteria and/or mycorrhizal fungi. 

There is evidence that this happens in some plants 
growing under elevated [CO2], although this response 
is by no means universal (Table 2). Root mass consis- 
tently increases under elevated [CO2] (Bazzaz, 1990; 
Eamus and Harvis, 1989; Rogers et al., 1994; Stulen 
and den Hertog, 1993), despite the fact that root-to- 
shoot ratio on average seems to change little (Norby, 
1994). The effect of CO2 enrichment on root C:N ratio 
is not consistent across species and experimental con- 
ditions. Although it increases in many cases, it remains 
unchanged in others. The same is true for exudation 
from roots to the rhizosphere. 

Effects on mycorrhizal and nodulating plants 

Conclusions from recent reviews (O'Neill, 1994; 
Rogers et al., 1995; Stulen and den Hertog, 1993) seem 
to support the idea that elevated [CO2] may enhance the 
growth of root symbionts through altered C allocation 
patterns of host plants. Under CO2 enrichment, more 
mycorrhizal tissue per plant is usually reported. This 
is a result of greater root mass with unchanged percent 
root colonised in some studies, and of net increase of 



Table 1. Summary of the most important effects of root symbioses on host plants 

Effect Type of symbiont Source 

Enhacement of nutritional status 

Nitrogen EM fungi 

Ericoid mycorrhizal fungi 
Abuzinadah and Read (1986a, b) 
Bajwa and Read (1985) 

Phosphorus AM fungi Bolan et al. (1987) 

Graham et al. (1981) 
EM fungi Finlay and Read (1986) 

Potassium AM fungi 

EM fungi 
Bethlenfalvay et al. (1989) 

Rygiewicz and Bledsoe (1984) 

Calcium AM fungi Rhodes and Gerdeman (1978) 
Ericoid mycorrhizal fungi Leake and Read (1989) 

Sulphur 

Nitrogen and Phosphorus 

AM fungi 

AM fungi and root nodule 
bacteria 

Cooper and Tinker (1978) 

Bethenfalvay et al. (1989) 

Kucey and Paul (1982) 

Enhancement of water status AM fungi Allen and Allen (1986) a 
Sanders and Tinker (1973) a 
Trent et al. (1989) 

EM fungi Bowen (1973) 

Increased sink strength for C AM fungi Snellgrove et al. (1982) 

Trent et al. (1989) 

EM fungi Reid et al. (1983) 

Root nodule bacteria Paul and Kucey (1981) 

Protection from pathogens AM fungi Newsham et al. (1995) 
EM fungi Marx (1969) 

Sylvia and Sinclair (1983) 

Protection from toxicity Ericoid mycorrhizal fungi Jalal and Read (1983) 

aOnly during periods of water stress. 
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colonisation per unit root mass in some others (Table 
2). According to O'Neill (1994), the second situation 
seems more common among EM-mycorrhizal plants). 
Total N-fixation in nodulating plants also tends to 
increase under CO2 enrichment due to increased nod- 
ule weight and/or to enhanced specific nodule activity 
(Table 2). 

It is not very clear, however, whether the enhanced 
symbiont biomass and/or activity is reflected in 
enhanced plant performance. Sustained sink strengh 
for C seems necessary for plant growth enhancement 
by elevated [CO2] for extended periods (Arp, 1991; 
Stitt, 1991). Larger or more numerous root nodules or 

larger mycorrhizal hyphae may act as extra sinks for 
carbohydrate, and thus suppress or retard downregu- 
lation effects on photosynthesis (Lewis et al., 1994). 
Most infected plants show increased dry weight and/or 
better nutritional status under elevated [CO2], but in 
a small number of cases no significant change was 
found (see O'Neill, 1994; Rogers et al., 1995; Stulen 
and den Hertog, 1993 for detailed discussion and ref- 
erences). The extra benefits that plants could obtain 
from symbionts under CO2 enrichment are likely to 
depend on their degree of reliance on symbiosis and 
on resource availability from the soil. Experimen- 
tal studies on symbiotic and non-symbiotic species 
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Table 2. Effects of elevated [CO2] on plant carbon allocation below ground and root symbioses. -: root symbionts absent or not 
addressed in the study 

Response to elevated CO 2 Plant species Type of symbiont Source 

Root mass Increased Alnus rubra Frankia 

Citrus aurantium 

Liriodendron tulipifera - 

Pinus echinata EM fungi 

Pinus taeda EM fungi 

Pinus taeda 

Populus grandidentata - 

Quercus alba EM fungi 

Triticum aestivum 

Amone and Gordon (1990) 

Idso and Kimball (1991) 

O'Neill et al. (1987b) 

O'Neill et al. (1987a) 

Lewis et al. (1994) 

Tschanplinsky et al. (1993) 

Zak et al. (1993) 

O'Neill et ai. (1987a) 

Bill,s et al. (1993) 

Unchanged Artemisia tridentata 

Betula nana 

Bouteloua gracilis 

Johnson and Licoln ( 1991) 

Oberbauer et al. (1986) 

Riechers and Strain (1988) 

Root C:N ratio Increased Betula pendula 

Castanea sativa 

Picea sitchensis 

Pinus eehinata 

Pinus meda 

Pinus taeda 

Scirpus olneyi 

EM fungi 

EM fungi 

Cotrufo and Ineson (1995) 

C6uteaux et al. (1991) 

Cotrufo and Ineson (1995) 

Norby et al. (1987) 

Lewis et al. (1994) 

Tschanplinsky et al. (1993) 

Curtis et al. (1990) 

Unchanged Glycine max 

Spartina patens 

Triticum aestivum 

Vessey et al. (1990) 

Curtis et al. (1990) 
Bill,s et al. (1993) 

Exudation Increased Castanea sativa Rouhier et al. (1994) 

Triticum aestivum Lekkerkerk et al. (1990) 

Increased only at early stages Pinus echinata EM fungi Norby et al. (1987) 

Unchanged Triticum aestivum Bill6s et al. (1993) 

Zea mays Whipps (1985) 

Mycorrhizal biomass Increased Liriodendron tupilifera 

Pinus echinata 

Pinus taeda 

Quercus alba 

AM fungi 

EM fungi 

EM fungi 

EM fungi 

O'Neill et al. (1991) 

O'Neill et al. (1987a) 

Lewis et al. (1994) 

O'Neill et al. (1987a) 

Increased only at early stages Pinus echinata EM fungi Norby et al. (1987) 

Mycorrhizal colonisation Increased Bouteloua gracilis 

Pinus echinata 

Quereus alba 

AM fungi 

EM fungi 

EM fungi 

Monz et al. (1994) 

Norby et al. (1987) 

O'Neill et al. (1987a) 

Increased only at early stages Pinus echinata EM fungi O'Neill et al. (1987a) 

Unchanged Liriodendron tupilifera 

Pascopyrum smithii 

Pinus taeda 

AM fungi 
AM fungi 
EM fungi 

O'Neill et al. (1991) 
Monz et al. (1994) 
Lewis et al. (1994) 
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Nodule weight Increased 

Specific nodule activi O, Increased 

Unchanged 

Alnus rubra 

Eleagnus angustifolia 
Glycine max 

Glycine max 

Robinia pseudoacacia 

Tr!folium repens 

Alnus rubra 

Glycine max 

Tri~lium repens 

Eleagnus angustgfblia 

Glycine max 

Robinia pseudoacacia 

Frankia Arnone and Gordon (1990) 

Frankia Norby (1987) 

Rhizobtum Finn and Brun (1982) 
Rhizobium Shivashankar and Vlassak (1978) 

Rhizobium Norby (1987) 

Rhizobium Masterson and Sherwood (1978) 

Frankia 

Rhizobium 

Rhizobium 

Amone and Gordon (1990) 

Shivashankar and Vlassak (1978) 
Masterson and Sherwood (1978) 

Frankia Norby (1987) 

Rhizobium Finn and Brun (1982) 

Rhizobium Norby (1987) 

often involve different nutritional conditions. There- 
fore direct comparisons of plant growth enhancement 
under elevated [CO2] accross a wide range of symbi- 
otic and non-symbiotic species are difficult. However, 
recent reviews suggest that the growth of mycorrhizal 
and nodulating plant species may be more stimulat- 
ed by high [CO2] than that of non-symbiotic species 
(Poorter, 1993; Rogers et al., 1995; Stulen and den 
Hertog, 1993). 

Symbiotic interactions: a missing link in ecosystem 
studies? 

The previous section focused on the effects of ele- 
vated [CO2] on interactions between individual plants 
and their symbionts. Recent studies on more com- 
plex assemblages, however, indicate the existence of 
various feedbacks between soil microbiota and differ- 
ent kinds of plants. Therefore the responses of natu- 
ral systems may not be predictable from the results 
observed in experiments on single plant species grow- 
ing under highly artifcial conditions (Bazzaz and 
McConnawghay, 1992; K6rner, 1993; O'Neill and 
Norby, 1996). The effects of elevated [CO2] on the 
relationships between plants, soil, and belowground 
organisms are poorly understood, in part because of 
methodological difficulties. Net nutrient mineraliza- 
tion (Hungate, 1995; K6rner and Amone, 1992; Nor- 
by et al., 1986; Zak et al., 1993) or immobilisation 
(Dfaz et al., 1993; Owensby et al., 1994; Rouhier 
et al., 1994; Whitford, 1992) in the soil have been 
proposed as likely outcomes under atmospheric CO2 
enrichment. These studies have in common that they 

either ignored root symbionts, or considered them as 
a "black box" (Klironomos et al., 1995). Although its 
potential importance was highlighted in early models 
(Luxmoore, 1981), the role of root symbionts has been 
also overlooked in most of the subsequent modelling 
developments (see Andersen et al., 1992 for review). 
This may seriously mislead attempts to predict the 
responses of natural communities to a changing envi- 
ronment, because of two reasons: (1) elevated [CO2] 
may differentially enhance the growth of mycorrhizal 
and nodulating plants and alter rhizospheric process- 
es involving free-living microorganisms, therefore the 
balance between symbiotic and non-symbiotic plants 
in mixed stands may shift; and (2) mycorrhizal fungi 
are known to have considerable influence at the com- 
munity and ecosystem levels; these effects may be 
altered if fungal biomass or composition changes. 

Elevated [C02] may tip the balance between 
symbiotic and non-symbiotic plants 

In mixed communities involving symbiotic and non- 
symbiotic species, elevated [CO2] may be expected to 
differentially promote the growth of symbiotic species 
by the concurrence of two mechanisms. First, as report- 
ed from experiments on individual plants, atmospher- 
ic CO2 enrichment tends to enhance mycorrhizal and 
nodule biomass and/or activity. Second, as suggested 
by Dfaz et al. (1993), non-symbiotic species, lack- 
ing the sinks for C represented by symbiotic fungi 
and/or bacteria, may release increased amounts of 
carbonaceous substrate into the rhizosphere, stimulat- 
ing the competition for nutrients between roots and 
free-living microbes surrounding them. This process 
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may be particularly important for fast-growing, non- 
mycorrhizal species from disturbed habitats, which 
tend to have high nutritional requirements (e.g. Bras- 
sicaceae, Caryophyllaceae, Chenopodiaceae, Polygo- 
naceae; Francis and Read, 1994; Grime et al., 1988; 
Read, 1991). Mycorrhizal or nodulating roots, on 
the other hand, may experience decreased competi- 
tion by surrounding free-living microbes due to their 
decreased release of carbonaceous exudates to the rhi- 
zosphere, as well as the benefits from enhanced sym- 
biosis,. Although this last suggestion still awaits spe- 
cific testing, there is some circumstantial evidence that 
C exudation to soil is lower in mycorrhizal roots than in 
nonmycorrhizal roots (Graham et al., 1981; Ratnayake 
et al., 1978). Higher sink strength of mycorrhizas for 
C is invoked as the most likely explanation (Pearson, 
1993; Reid et al., 1983; Snellgrove et al., 1982). 

Very little experimental work has been published 
on the impacts of CO2 enrichment on the interaction 
between symbiotic and non-symbiotic plant species. 
Some of the few available examples seem to support 
the idea that elevated [CQ] would differentially affect 
symbiotic and non-symbiotic species in mixed com- 
munities. Dfaz et al. (1993), working with micro- 
cosms from a productive tall herb community and 
an acidic grassland, found that increase in leaf C:N 
ratio under elevated [CO2] was much greater in non- 
mycorrhizal than in mycorrhizal plants (30% and 10%, 
respectively). Spring et al. (1996) subjected calcare- 
ous grasslands to elevated [CO2] and temperature in 
the field, and found ca. 60% total biomass decrease 
of nonmycorrhizal species, and approximately 50% of 
increase of mycorrhizal species. 

Information on the responses of plants associated 
with N-fixing bacteria to elevated [CO2] in mixed com- 
munities is also scant. Newton et al. (1994) and Ross et 
al. (1995), working with turves ofTrifolium repens and 
Lolium perenne, found that elevated [CO2] differential- 
ly promoted the growth of nodulating T. repens. On the 
other hand, preliminary results reported by Rrtzel et al. 
(1995) suggest no differential responses of nodulating 
legumes to elevated [CO2] in calcareous grasslands, as 
compared with non-nodulating plants. It is obvious that 
the evidence is still too scarce to draw generalisations, 
and new insights should be gained from medium- to 
long-term experiments. 

Elevated [C02] may affect diversity and succession 

Root symbionts can play a substantial role in the struc- 
ture and functioning of natural ecosystems, by influ- 

encing the diversity and succession of plants communi- 
ties and also affecting the diversity of other trophic lev- 
els. Mycorrhizal fungi are known to transfer resources 
between plants of different species (see Newman, 1988 
for review). AM fungi contribute to plant diversity 
(Grime et al., 1987), even in highly disturbed early- 
successional communities (Gange et al., 1990), by 
transference of resources from dominant to subordinate 
individuals (Grime et al., 1987) and/or direct antago- 
nistic effect of the AM fungal mycelium on the growth 
of nonmycorrhizal species (Francis and Read, 1994). 
EM fungi and AM fungi influence plant diversity and 
secondary succession in forests (Amaranthus and Per- 
ry, 1994; Janos, 1983). It seems obvious that root sym- 
bionts can hardly be overlooked when trying to investi- 
gate vegetation responses to global change. However, 
to my knowledge no experiment has been published 
specifically addressing their role in secondary succes- 
sion or resource transfer between plant species under 
elevated [CO2]. 

Responses not only of biomass and activity, but also 
of genetic and functional diversity of root symbionts 
are worth considering in global change research. Myc- 
orrhizal fungi and N-fixing symbiotic bacteria show 
considerable diversity, which does not necessarily fol- 
low patterns of plant diversity (Alien et al., 1995; 
Young and Johnston, 1989). Higher atmospheric [CO2] 
may result in shifts in fungal community composition 
(Klironomos et al., 1995; Lewis et a1.,1994; O'Neill, 
1994). Given the wide differences in the ability of 
mycorrhizal fungi to enhance the growth of the host 
(Abbot and Robson, 1985; Sanders et al., 1977), this 
in turn may affect vegetation composition. For exam- 
ple, results from Klironomos et al. (1995) and Lewis 
et al. (1994) suggest shifts from mutualistic to oppor- 
tunistic/parasitic interactions under CO2 enrichment, 
involving AM and EM fungi, respectively. 

Very few experiments on the effects of elevated 
[CO2] on diversity of non-symbiotic below ground 
organisms have been carried out, with mixed and 
sometimes opposite results (C6uteaux et al., 1991; 
Freckman et al., 1991; Runion et al., 1994; J Law- 
ton, pers. comm.). Mycorrhizal composition influences 
the diversity of other belowground microorganisms 
(fixing- and non-fixing bacteria, protozoa, collem- 
bola) through altered exudation, and also because 
grazers tend to have preferences for specifc fungal 
species/isolates (Fitter and Garbaye, 1994; Ingham and 
Massicotte, 1994). Altered patterns of C allocation to 
mycorrhizas under high [CO2] thus may modify inter- 
actions across the whole rhizosphere. 



The lack of information about the effects of elevat- 
ed [CO2] on the complex community/ecosystem pro- 
cesses discussed in this section seriously precludes our 
capacity to predict the responses of natural systems to 
global change. It is imperative to design ecosystem- 
level experiments in which specific hypothesis on the 
role of root symbioses are tested. 

Root symbioses, elevated-CO2 responsiveness, and 
plant functional types 

In view of the complexity of organisms and interac- 
tions which make up most natural systems, it is clear 
that studying the responses of every single (or even 
dominant) species is not a reasonable way for global 
change research to proceed. Some authors have put 
forward the concept of functional types as a possible 
way to tackle this problem (e.g. Smith et al., 1996). 
Functional types are sets of organisms showing sim- 
ilar responses to environmental conditions and sim- 
ilar effects on dominant ecosystem processes. Some 
research groups have taken the approach of identify- 
ing key traits associated with plant response to major 
environmental factors, and constructing plant function- 
al types on that basis (D/az and Cabido, 1995; Grime et 
al., 1996; Leishman and Westoby, 1992). Plant respon- 
siveness to elevated [CO2] is undoubtedly to be taken 
into account in this task. The challenge here is to pre- 
dict whether a plant will show enhanced growth under 
CO2 enrichment on the basis of its morphological and 
functional traits. At the individual level, there is a large 
body of literature pointing to photosynthetic pathway 
and assimilate demands (determined in turn by rela- 
tive growth rate, size, presence of non-photosynthetic 
organs, and longevity) associated with enhanced plant 
growth under elevated [CO2]. Plants with high rela- 
tive growth rate and high sink strength capacity tend to 
be more responsive than those which are either slow- 
growing or fast growing, short-lived, and small (Hunt 
et al., 1991, 1993; Poorter, 1993). However, perfor- 
mance in communities is usually not predictable from 
behaviour in short-term physiological experiments in 
which plants are grown in isolation (Krrner, 1993; 
O'Neill and Norby, 1996). Diaz (1995) has recently 
advocated the inclusion of other traits, which can be 
measured on individual plants, but, at the same time, 
are relevant to interactions within multispecies assem- 
blages. Examples of those traits are canopy display and 
phenology, mode of acquisition of mineral nutrients, 
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and interactions with aboveground and belowground 
organisms. 

The presence and nature of root symbionts is a 
good example of these kind of trait. The occurrence 
of root symbioses, and especially mycorrhizal status, 
is often related with plant traits and habitat charac- 
teristics in a predictable way. A preliminary model 
of these recurrent patterns and their likely association 
with plant responsiveness to elevated [CO2] is present- 
ed in Table 3. There are well-established trade-offs 
between plant traits that lead to low nutrient loss rate 
in resource-poor habitats, and those that lead to high 
dry matter production in productive habitats (Chapin et 
al., 1993; Grime et al., 1988). Plants in the first group 
tend to be more dependent on mycorrhizal symbioses 
than those in the second group (Grime et al., 1988; 
Read, 1991). Very few plant families are composed 
mostly of nonmycorrhizal species (Newman and Red- 
dell, 1987). Their members tend to be fast-growing, 
short-lived plants, with high seed output and strong 
nutritional demands, which typically thrive on highly 
disturbed, early successional habitats and are exclud- 
ed from most closed plant communities (Francis and 
Read, 1994; Grime et al., 1988; Read, 1991). Notable 
exceptions to this general pattern are members of the 
Proteaceae and Cyperacea, which are typically nonmy- 
corrhizal slow-growing plants of nutrient poor, nondis- 
turbed habitats. However, they show specialised roots 
structures (swollen portions of lateral roots, bearing 
dense clusters of root hairs) that are usually interpreted 
as playing a role in soil resource capture (Torrey and 
Clarkson, 1975). Although there are examples of plants 
associated with N-fixing bacteria among both the 
fast-growing, long-lived perennials and fast-growing 
"pionner" species, N-fixing symbiosis is probably dis- 
advantageous for both plants with very short lifespan, 
and those growing under severe water, temperature or 
pH stress (Pate, 1986). 

Some recurrent patterns linking symbiotic inter- 
actions, plant physiological and morphogenetic traits, 
and responsiveness to elevated [CO2] are starting to 
emerge. However, clearly more exploration is needed 
in order to assess the validity of the model sketched in 
Table 3. These likely associations need sharper defini- 
tion, in order to be explicitly tested. Major obstacles are 
the low comparability of studies on plant responses to 
elevated [CO2], and the limited range of plant families 
and functional types involved in these studies. Further 
integration of possible effects of [CO2] into theories of 
C allocation at the whole-plant and plant-soil levels is 
also required. However, the incorporation of type and 
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degree of symbiotic associations seems both desirable 
and feasible in the search for functional types within 
the framework of climate change research. 

Concluding remarks 

Root symbionts play an important role in many natural 
systems. The evidence to date indicates that elevated 
[CO2] is likely to have an effect on them, mediated by 
altered C inputs from plants. This in turn is expected to 
modify community structure and ecosystem function- 
ing in various and perhaps unexpected ways. There- 
fore, these factors should not be underestimated in 
experimental or modelling studies aimed at predicting 
the responses of natural systems to global change. 

Two ways can be mentioned to incorporate the role 
of root symbionts into global change research. First- 
ly, in community experiments (both in the field and 
in micro- or mesocosms) root symbioses can be delib- 
erately manipulated, or at least explicitly taken into 
account in the design. Secondly, the so-called "big- 
leaf" approach, namely extrapolating directly from 
short-term physiological responses of leaves to veg- 
etation, which is then treated as a black (or green) 
box, is unlikely to produce reliable predictions of the 
responses of natural communities to rising atmospher- 
ic [CO2]. An alternative or complementary way is to 
consider the concept of plant functional types. Respon- 
siveness to elevated [CO2] is an obvious criterion to 
incorporate into them, and in doing so the degree and 
nature of symbiotic associations should not be ignored. 
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