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Abstract 

The role of oligosaccharide molecules in plant development is discussed. In particular the role of the 
rhizobial lipo-chitin oligosaccharide (LCO) signal molecules in the development of the root nodule in- 
dicates that oligosaccharides play an important role in organogenesis in plants. Recent results of the 
analyses of structures and of the biosynthesis of the LCO molecules are summarized in this paper. The 
knowledge and technologies that resulted from these studies will be important tools for further study- 
ing the function of LCO signals in the plant and in the search for analogous signal molecules produced 
by plants. 

Introduction 

The mechanisms underlying the formation of or- 
gans are, although one of the most intriguing 
problems in biology, still poorly understood. In 
animals, various genes and signal molecules in- 
volved in the local differentiation and dedifferen- 
tiation processes leading to organogenesis have 
been identified. However, in plants far less is 
known about organogenesis. Although several 
plant hormones, such as auxin and cytokinin, 
have been known for decades and have been 
studied intensively, their role in plant differentia- 
tion is still very poorly understood at the molecu- 
lar level. The fact that they play a general role in 
many - if not all - morphogenic processes of the 
plant, as well as their apparent lack of specificity 
at a molecular level, strongly suggests that, like in 
animals, other, more specific (as yet undiscov- 

ered) signal molecules also have to play a role in 
plant development. During the east decade evi- 
dence has accumulated that several classes of oli- 
gosaccharides, called oligosaccharins, have 
strong effects on plant development (see [ 1, 17]). 
Recently, a novel class of oligosaccharin signal 
molecules has been discovered which plays a role 
in the host-specific interaction between rhizobial 
bacteria and leguminous plants leading to the 
nitrogen-fixing root nodules (see [22, 26, 61, 62, 
71]). These signal molecules, which were shown 
to be lipo-chitin oligosaccharides (LCOs), are the 
first plant organogenesis-inducing factors discov- 
ered. Several results indicate that plants, and per- 
haps even animals, also use LCO analogues as 
signal molecules (see [62]). In this paper the role 
of the LCOs in plant development is discussed in 
the context of the oligosaccharin concept. Fur- 
thermore, the knowledge of the chemical struc- 
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tures and biosynthesis of LCOs is summarized 
since this will be an important tool in the future 
search for novel plant signal molecules. 

The oligosaccharin concept 

Oligosaccharins are defined as particular oli- 
gosaccharides which, at low concentrations, exert 
biological effects on plant tissue other than as 
carbon or energy sources [17]. The oligosaccha- 
rin concept emanates from the original discovery 
that a certain class of oligosaccharides acts as a 
potent elicitor of the plant defense response [4]. 
This concept was shown to be of a more general 
nature by the discoveries of various other classes 
of oligosaccharide elicitor molecules. Recently, it 
has been shown that even in animals, oligosac- 
charides can have a very strong signalling func- 
tion (see [48]). This was demonstrated by Velu- 
pillai and Ham [70], who showed that the 
pentasaccharide LNFP-III  produced by schisto- 
some parasites is able to specifically trigger the 
production of cytokines by spleen B cells. For 
plants, the oligosaccharin concept is built around 
the assumption that hydrolytic enzymes of plant 
or parasitic origin are involved in the release of 
oligosaccharides from cell wall polysaccharides 
[17]. Indeed, some of the molecules derived by 
enzymatic treatment of cell wall material of the 
pathogenic fungus Phytophthora megasperma have 
been shown to be active elicitors of the hypersen- 
sitive response of the host plants. In this case the 
smallest active component appeared to be a 
branched heptasaccharide consisting of D-glu- 
cose [57]. Also in other cases oligosaccharins 
which elicit a defense response have been shown 
to be released by enzymatic treatment of cell wall 
material of the parasite or host plant [7, 11, 17, 
23]. 

The function of oligosaccharins is not limited 
to that of signal molecules with a role in disease 
resistance. Some oligosaccharins have effects on 
plant development which are not obviously re- 
lated to elicitor activity [39, 75]. Good examples 
are the xyloglucan-derived oligosaccharins which 
antagonize the growth promotion of pea stem 
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segments by auxin at nanomolar concentrations 
[27, 75]. Although the effects of xyloglucan oli- 
gosaccharides are well documented in in vitro sys- 
tems it has not been shown whether such mol- 
ecules indeed play a role in the growth of intact 
pea plants [ 1 ]. 

The recently discovered LCOs produced by 
rhizobial bacteria are by definition oligosaccha- 
rins since they elicit various discemable effects on 
plants at low concentrations (see below). One of 
the effects that LCOs have in common with other 
oligosaccharins is that they can induce various 
effects on suspension-cultured plant cells in a 
species-non-specific way which, for instance, can 
be measured using electrophysiological tech- 
niques ([ 1], B. van Duijn and H.P. Spaink, un- 
published results). A published example for such 
an effect of LCOs is the transient alkalinization 
of suspension cultures of tomato cells which oc- 
curs within 5 min after addition of LCOs to the 
culture medium [64]. However, LCOs differ from 
other classes of oligosaccharins discovered until 
now in the following respects: (1) LCOs are ap- 
parently not derived from a larger precursor by 
proteolytic cleavage; (2) the oligosaccharide is 
linked to a fatty acyl group; (3) LCOs are very 
plant species-specific in their activity on the (in- 
tact) host plant. 

Structures and biosynthesis of rhizobial LCO 

As indicated in Fig. 1, the LCOs produced by 
Rhizobium, Azorhizobium and Bradyrhizobium 
bacteria, collectively called rhizobia, uniformly 
consist of an oligosaccharide backbone of/% 1,4- 
1inked N-acetyl-D-glucosamine, varying in length 
between three and five sugar units. To the nitro- 
gen of the non-reducing sugar moiety a fatty acid 
group is attached, the structure of which is vari- 
able (see [22, 26, 62]). In the cases of the LCOs 
produced by R. meliloti [35] and R. leguminosa- 
rum biovar, viciae [60] a special ~,/%unsaturated 
fatty acid moiety can be present (for an example 
see Fig. 1). In the LCOs of other rhizobial species 
such a polyunsaturated fatty acyl group is not 
present but instead fatty acyl moieties are found 
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Fig. I. Chemical structures of the rhizobial LCOs. The length 
of the chitin oligosaccharide backbone varies between 3 and 
5 sugar units. The attached fatty acid shown is cis-vaccenic 
acid. At the left is indicated the highly unsaturated (Ct8:4) 
moiety produced by R. leguminosarum biovar, viciae as an 
example of a special ~,fl-unsaturated fatty acyl moiety. The 
nature of other fatty acid moieties and of the substituents in- 
dicated by R1 to R5 is indicated in Table 1. 

of the classes which also commonly occur in the 
phospholipids of the cell membrane. The pres- 
ence of other substitutions on the chitin backbone 
is dependent on the rhizobial strain (Table 1). 
Substitutions which have been found are: sul- 
phate, acetyl, carbamoyl, glycerol and sugar moi- 
eties such as arabinose, 2-O-methylfucose or fu- 
cose. The latter two moieties can also contain 
additional acetyl or sulphate modifications. In the 
LCOs of some species an N-linked methyl group 
can also be present. 

Most of the proteins encoded by the rhizobial 
nod genes play a crucial role in the biosynthesis 
of  the LCOs [61]. The NodA, NodB and NodC 
proteins, which are called common Nod proteins 
because they are present in all rhizobia and are 
not involved in the determination of host speci- 
ficity, are sufficient for the production of a basic 
LCO structure [60]. Recent results have given 
strong indications that the NodC and NodB pro- 
teins function as a chitin synthase and a chitin 
deacetylase, respectively [3, 13, 14, 18, 32, 33, 63] 
(Fig. 2). Since the NodA protein is essential for 
the production of LCOs, this protein has been 

Table 1. Comparison of LCO structures produced by various rhizobia 1. 

Producing strain Specific lipid Other substituents Reference 

R.I. bv. viciae RBL5560 C18:4 
R.1. bv. viciae TOM C18:4 
R. meliloti 2011 C16:2 
R. meliloti AK41 C16:2 or  C16:3 
Rhizobii4m NGR234 

R. tropicii CFN299 
R. fredii USDA257 
B. japonicum USDA110 
B. japonicum USDA135 
B. japonicurn USDA61 

A. caulinodans ORS571 

R4, O-acetyl [60] 
R4, O-acetyl; R5, O-acetyl [25] 
R4( + / -  ), O-acetyl; R5, sulphate [35, 67] 
R5, sulphate [54] 
R1, N-methyl, R2 and R3( + / - ), O-carbamoyl [42] 
R5, 2-O-methylfucose or 2-O-methyl-3-O-sulphofucose 
or 2-O-methyl-4-O-acetylfucose 
R1, N-methyl; R5 ( + / - ), sulphate [41] 
R5, 2-O-methylfucose or fucose [8] 
R5, 2-O-methylfucose [50] 
R4( + / - ), O-acetyl; R5, 2-O-methylfucose [ 15] 
RI(  + / - ), N-methyl; R2 or R3 or R4 ( + / - ), carbamoyl; [ 15] 
R4( + / - ), O-acetyl; R5, 2-O-methylfucose or fucose; 
R6 ( + / - ), glycerol 
R1, N-methyl; R4, O-carbamoyl; R5, D-arabinose [38] 

Reference is made to the groups indicated in Fig. 1. A minus indicates that no ~,fl-unsaturated fatty acyl group is present but 
a common fatty acyl group like the cis-vaccenic acid moiety indicated in Fig. 1. If not indicated otherwise, R1 stands for hydro- 
gen and R2, R3, R4 and R5 stand for hydroxyl groups. ( + / - ) indicates that such a group is not always present. Abbreviation: 
R.l, R. leguminosarum. 
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Fig. 2. Model for the functions for the NodA, NodB, and 
NodC proteins in the synthesis of rhizobial LCOs based upon 
data described in references [3, 13, 14, 18, 32, 33, 63]. The 
function of the NodM protein is postulated on basis of the 
results of Baev et al. [5] and Marie et al. [37]. The occurence 
of oligosaccharide metabolites attached to a prenyl carrier 
postulated to be produced by NodC protein has not been 
confirmed by structural analysis. NodC protein has also been 
indicated to produce free chitin oligomers (n = l, 2, 3) in low 
quantities [63 ]. In addition to its deacetylating activity, NodB 
plays a major role in determining the quantity of produced 
oligosaccharides [63]. 

postulated to be involved in the addition of the 
fatty acyl moiety [10] (Fig. 2). 

Other Nod proteins are involved in the synthe- 
sis or addition of various structural modifications 
as indicated in Table 2. These functions are in 
good agreement with their important roles in the 
determination of host-specificity. For some of 
these gene products their enzymatic function has 
also been shown by using in vitro test systems. 
In R. meliloti the NodP and NodQ proteins 
were shown to function together as ATP sulphury- 
lase and adenosine 5'-phosphosulphate (APS) 
kinase, leading to the production of the sulphate 
donor 3'-phosphoadenosine 5'-phosphosulphate 
(PAPS) [55, 56]. The NodH protein acts as a 
sulphotransferase involved in the transfer of the 
sulphate moiety of PAPS to the reducing termi- 
nal sugar of the LCO acceptor [2, 35, 46]. The 
NodL protein, which is produced by various 
rhizobial species, is an acetyl transferase which is 
involved in the addition of the O-acetyl moiety to 
the non-reducing terminal sugar [ 10]. In addition 
to showing the biochemical functions of these 
Nod proteins, these results from in vitro analyses 
have also yielded valuable systems for obtaining 
radiolabelled derivatives of the LCO molecules 
which can be used in future studies devoted to 
their function in the plant. 

Effects of LCOs on the host plant 

At micromolar concentrations, externally applied 
purified LCO molecules can elicit in the inner 

Table 2. nod or nol genes which have been shown to be involved in the addition of LCO substituents. 

LCO substituent I Gene involved Reference 

ct,fl-unsaturated fatty acid nodF and nodE [21, 29, 58, 60] 
Sulphate (R5) nodP, nodQ and nodH [2, 46, 55, 56] 
O-acetyl (R4) nodL [10, 60] 
N-methyl (R1) nodS [28] 
O-acetyl (R5) nodX [25] 
2-O-methylfucose (R5) nodZ [65] 

Reference is made to the R groups indicated in Fig. 1. 
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cortex the formation of nodule primordia which 
are indistinguishable from the nodule primordia 
in the first stage of normal nodule organogenesis 
[60, 67]. Furthermore, as in plants which are in- 
fected by rhizobia, the primordia are only induced 
at certain positions in the plant root, namely the 
position where young root hairs emerge, opposite 
(or almost opposite) the protoxylem poles of the 
central cylinder [60, 67]. In the case of Medicago 
the nodule primordia are capable of further de- 
veloping into full-grown nodules which have the 
anatomical and histological features of genuine 
rhizobium-induced nodules, such as apical mer- 
istems and peripheral vascular bundles and en- 
dodermis [67]. In Vicia this was never observed 
but instead the development of the nodules stops 
at a stage at which small outgrowths are exter- 
nally visible on the roots [62]. Besides their role 
in the formation of the root nodule primordia, 
LCOs also seem to be involved in the bacterial 
infection process, as suggested by the induction 
ofpre-infection thread structures in the outer cor- 
tex of Vicia roots by mitogenic LCOs in the ab- 
sence of bacteria [ 69]. These pre-infection thread 
structures are characterized by the formation of 
so-called cytoplasmic bridges in the outer cortex 
which are radially aligned, giving the impression 
of cytoplasmic threads which cross the outer cor- 
tex. The formation of these structures, which are 
indistinguishable from those observed after infec- 
tion with R. leguminosarum biovar, viciae bacte- 
ria, always precedes the formation of infection 
threads, and therefore they were named pre- 
infection thread structures. The formation of cy- 
toplasmic bridges in vacuolated cells is preceded 
by polarization of the cell in which the nucleus 
moves to the centre of the cell just as in cells 
which are about to divide [6]. The process of 
pre-infection thread formation can therefore be 
interpreted as being the result of activation of the 
cell cycle as is the case of the formation of the 
nodule primordium in the inner cortex. The final 
result apparently is determined by the position of 
the cells in the cortex. An explanation for the local 
reaction of particular cortical cells to the rhizobial 
signals is given by the gradient hypothesis which 
postulates that a variation in concentration of a 
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plant factor determines that only particular cor- 
tical cells respond towards the rhizobial signals 
[36, 69]. A factor from the central stele, which 
stimulated cell division in pea root explants at 
nanomolar concentrations has now been purified 
in our institute and was shown to be uridine ([59], 
G. Smit and J. Kijne, personal communication). 

External application of LCOs, in concentra- 
tions varying between 10-8 and 10-12 M, can 
also elicit effects on root hairs of the respective 
host plants (see [22, 26, 61]). These effects, such 
as depolarization of membrane potential [24], 
curling, branching and swelling of the root hairs 
are probably related to the process of root hair 
curling which is also observed very early during 
the rhizobial infection process. Although the bio- 
logical relevance of these phenotypes is not yet 
clear they have been shown to be very useful as 
semi-quantitative bioassays [30, 45]. 

At the molecular genetic level, several effects of 
LCO signals are observed which also occur dur- 
ing the rhizobial infection process. These effects 
include the induction of nodulin gene expression, 
for instance of the early nodulins ENOD12, 
ENOD5 and ENOD40, of which the expression 
in time and place is strongly correlated with the 
early steps in the symbiosis [31, 34, 52, 71, 74]. 
Transgenic plants which contain ENOD 12-GU S 
reporter gene fusions have been constructed, pro- 
viding a valuable molecular marker for studying 
LCO signal transduction in the plant [40]. An- 
other effect of LCOs is the induction of flavonoid 
synthesis genes such as those encoding phenyl- 
alanine ammonia-lyase (PAL) and chalcone syn- 
thase (CHS). Flavonoid synthesis is condition- 
dependent since it is only detectable in roots not 
shielded from light [43, 44, 60, 68]. This induc- 
tion process is correlated with the production of 
various new flavonoids which are capable of in- 
ducing the transcription of the nod genes [43, 44]. 
Savour6 et al. [51] have shown that the cognate 
(R. meliloti) LCO signals also have various host- 
specific effects on gene expression in Medicago 
microcallus suspension cultures. At nanomolar 
concentrations a host-specific effect on the cell 
cycle was observed as was demonstrated by an 
increased expression of histone H3-1, cdc2Ms 
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and the cyclin encoding gene cycMs2. A stimula- 
tion of the cell cycle was also indicated by en- 
hanced thymidine incorporation, elevated num- 
ber of S-phase cells and an increase in kinase 
activity of p34CaC2-related complexes [51 ]. At 
higher concentrations (10 -6 M) LCOs also in- 
duced the expression of the flavonoid synthesis 
gene encoding isoflavone reductase (IFR) [51]. 

There are several structural requirements that 
an LCO molecule has to fullfil in order to elicit 
biological effects on plant roots. The necessity of 
substituents, such as O-acetyl [60], sulphate [46] 
or 2-O-methylfucose [65], is dependent on the 
type ofbioassay and the plant species tested. The 
presence of the fatty acyl substituent seems al- 
ways to be required since chitin oligomers are 
inactive in several of the above-mentioned bioas- 
says (see [61]). The host-specific unsaturated 
fatty acyl substituents are required in order to 
obtain nodule primordia on the roots of Medicago 
and Vicia plants [60, 67]. However, a special fatty 
acyl moiety is not required for other effects such 
as root hair deformation. Surprisingly, the pres- 
ence of a fatty acyl substituent seems neither to 
be required to obtain nodule primordia when 
chitin oligosaccharides are delivered by ballistic 
microtargeting into the plant tissue (C. Sautter 
and H.P. Spaink, unpublished results). These re- 
suits suggest that the fatty acyl group is involved 
in the delivery of the signal molecules inside the 
plant tissue. 

Do plants produce chitin-derived signal mol- 
ecules? 

There are several indications that plants contain 
signal molecules that structurally resemble the 
rhizobial lipo-oligosaccharides. 
1. In alfalfa a certain proportion of wild-type 
plants can spontaneously develop genuine root 
nodule structures in the absence of Rhizobium 
bacteria [66]. Since the number of root nodules 
as well as their position on the root are indistin- 
guishable from those observed in the infected 
situation, this indicates that the plant is able to 
trigger the genes involved in the nodule formation 
process in the same way as Rhizobium bacteria 

[182] 

do. Therefore it is possible that similar signal mol- 
ecules are involved in the induction process in 
both cases. 
2. Schmidt et al. [53] have shown that the Rhizo- 
bium nodA and nodB genes, when introduced sin- 
gly or in combination into Nicotiana plants, have 
severe effects on plant development. One of the 
effects which was observed is that nodB-contain- 
ing transgenic plants have abnormally formed 
leaves and flowers. Since these nod genes have an 
essential function in the biosynthesis of LCOs 
(Fig. 2), these results indicate that these nodgenes 
interfere with the biosynthesis or structure of plant 
molecules which are involved in plant morpho- 
genesis. They also suggest that such plant mol- 
ecule(s) have structural homology with the bac- 
terial LCOs. 
3. De Jong et aL [20] have shown that the Rhizo- 
biurn LCOs are able to rescue a temperature- 
sensitive somatic embryogenic mutant of Daucus. 
After addition of the LCOs in nanomolar con- 
centrations, the ability of the mutant to form em- 
bryos was restored. In this heterologous test sys- 
tem the fatty acyl moiety of the LCOs was 
essential for activity. However, the presence of 
other structural modifications, like the O-acetyl 
moiety, did not influence activity [20]. Comple- 
mentation of the embryogenic mutant could also 
be achieved by the addition of a 32 kDa endoch- 
itinase purified from wild-type Daucus [ 19]. Since 
chitin and its derivatives are currently the only 
possible known candidate substrates for this en- 
zyme, it is tempting to speculate that the function 
of this chitinase is to release LCO-like molecules 
from larger polymers produced by Daucus cells. 
The observation that the expression of several 
other plant chitinases is correlated with plant de- 
velopment also indicates that chitin-like mol- 
ecules occur in uninfected plants and could play 
a role in plant development (see [16, 62]). 

Preservation of chitin-synthesis ability in various 
organisms 

Since rhizobial bacteria and perhaps also plants 
are able to synthesize chitin oligosaccharides it is 



tempting to speculate about a general occurence 
of chitin in nature. Hardly anything is known 
about the occurrence of chitin derivatives in 
plants. In immunogold-labeUing studies, using 
chitinase or wheat germ agglutinin as probes, 
Benhamou and Asselin [9] have obtained results 
which suggest that lipophilic chitin derivatives 
also occur in secondary plant cell walls of various 
plant species. Furthermore, using radioactive la- 
belling studies we have recently obtained evidence 
that lipophilic molecules, which are susceptible to 
chitinase degradation, also occur in flowering 
Lathyrus plants ([62], Spaink et al., unpublished 
results). In animals, improved methodologies for 
detecting chitin and chitin synthase geales has 
yielded results which also show that the classical 
notion that chitin only occurs in fungi and non- 
deuterostome animal taxa should be revised [73 ]. 
This is clearly indicated by the finding of chitin in 
the pectoral fins of the fish Paralipophrys [72]. 
The significant similarity of NodC protein, re- 
sponsible for the oligomerization of the sugar 
backbone of the LCO (Fig. 2), with the DG42 
protein, which is transiently expressed during em- 
bryogenesis of the frog [ 12, 47, 49, 62] suggests 
that chitin-like molecules might even play a role 
during embryogenesis in vertebrates. 

Future prospects 

The rhizobial LCO molecules are the first discov- 
ered examples of a novel class of signal molecules 
involved in plant organogenesis. Several lines of 
evidence indicate that plants and animals also 
produce chitin-derived oligosaccharide mol- 
ecules. There are even indications that these mol- 
ecules might play a role in the embryogenesis of 
plants as well as animals. Since plants are differ- 
ent from animals in that plants are continuously 
able to form new organs, it is not too far-fetched 
to speculate upon a generally conserved role of 
LCOs in the establishment of cell polarity and cell 
division, leading to the formation of new organs. 
The knowledge and the tools which have resulted 
from the study of the signal exchange in the nodu- 
lation process will be useful in the future search 
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for such putative novel plant and animal signal 
molecules. 
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