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Abstract

The 287-bp spacer and the flanking 3’-end of the 16S- and 5’-end of the 23S-rRNA genes of the cyanelles
from Cyanophora paradoxa have been sequenced and compared with the corresponding regions of cyanobac-
teria and chloroplasts. The spacer contains the uninterrupted genes for tRNA!® and tRNA22, All coding
regions show high homology to their prokaryotic counterparts. At the 3’ -end of the 16S-rDNA a CCTCCTTT
sequence has been identified which is complementary to putative ribosome binding sites observed immediately

upstream of the coding region of cyanelle protein genes.

Introduction

Cyanelles, the photosynthetic organelles from the
biflagellated protist Cyanophora paradoxa, possess
dual properties: the genome size of chloroplasts and
a peptidoglycan-containing rudimentary cell wall
pointing to their origin from endosymbiotic
cyanobacteria. It appears justified to view the
cyanelles from this organism as a model for an evolu-
tionarily intermediate stage between cyanobacteria
and chloroplasts [23].

As in most chloroplast DNAs, two inverted repeat
segments have been identified, which are 10 kb in
size in cyanelles, coding for the 16S- and 23S-rRNAs.
Within the spacer, genes for tRNA and tRNA22
— a common feature found in chloroplast and
prokaryotic rDNA units — have been revealed by
homologous hybridization [11]. Heterologous
hybridization experiments have shown a considera-
ble sequence homology to the maize and spinach
counterparts for these tRNAs.

To get a more precise estimation of the relation-
ship between cyanelles and chloroplasts or cyanelles
and cyanobacteria, respectively, the spacer region,
the 3’-end of the 16S-, and the 5’-end of the 23S-
rDNA have been sequenced and compared with the
corresponding sequences of Anacystis nidulans [10,
21, 24] and the chloroplasts from Euglena gracilis [7,
8], Chlamydomonas reinhardii [5, 15, 16], Chlorella
ellipsoidea (25, 26], Marchantia polymorpha [14],
Zea mays [6, 9, 17], and Nicotiana tabacum [19].
This nucleotide sequence comparison is important
in view of the variable spacer sizes and the presence
of introns in the tRNAs among higher plants and al-
gae (Table 1). In algal chloroplast rDNA units thus

" far studied, no introns in tRNA genes have been

found, in spite of the large size of Chlamydomonas
and Chlorella spacer segments. In both algae, how-
ever, introns in the 23S-rDNA have been reported
[15, 26]. Chlorella chloroplast DNA appears to lack
the tRNA&2 gene and the 23S-gene is in opposite
orientation to the 16S-gene [25].
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Table 1. Comparison of chloroplast and cyanobacterial rDNA spacers

Organism Spacer size (bp) tRNAie tRNAala Introns
tRNAik tRNAala

Maize 2408 + + + +
Tobacco 2079 + + + +
Euglena 260 + + - _
Chlorella 4842 + —

Chlamydomonas 1805 + + - _
Marchantia 2308 + + + +
Anacystis 395 + + - -

Materials and methods

The strain Cyanophora paradoxa LB 555 UTEX was
obtained from the culture collection of algae of the
University of Texas at Austin. The cyanelles and
cyanelle DNA were isolated as described [2] and the
Sma-4/5 fragment [2] was cloned into pUC 18 with
E. coli 71-18 as host cell. From this approximately
950-bp insert several subclones have been produced,
again in pUC 18. Plasmid DNA was prepared from
the subclones according to Birnboim and Doly {1].
Plasmid DNA was sequenced directly using the su-
percoil DNA sequencing method [4]. For two

regions where no subclones in the opposite direction
could be obtained, oligonucleotides were synthe-
sized: a 17mer (positions 178 —195) and a 15mer (po-
sitions 557—571).

Results and discussion

The approximately 950-bp Sma-4/5 fragment con-
tains parts of the 16S- and 23S-rDNA [2] and the
tRNAIll® and tRNA?2 genes [11]. Figure 1 shows the
restriction map of this fragment and the sequencing
strategy used. Both strands were sequenced except
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Fig. 1. Restriction map and outline of the sequencing strategy for the cyanelle Sma-4/5 fragment of Cyanophora paradoxa. The tRNAile
and tRNA22 genes and the 3’-end of 16S- and 5’-end of 23S-rDNA are indicated.
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Fig. 2. Nucleotide sequence of the noncoding (RNA-like) strand of the cyanelle ribosomal spacer and flanking regions (Sma-4/5 frag-
ment). The genes for tRNAll® and tRNA2"2 are framed. The 3”-end of 16S- and the 5 -end of 23S-rDNA are marked by arrows. The region
at the 3’-end of 165-rDNA complementary to Shine-Dalgarno sequences of cyanelle protein genes is bracketed.

for a small 7-bp region where only one strand was
sequenced 4 times independently. The size of the to-
tal fragment was determined as 961 bp. Figure 2
shows the noncoding (RNA-like) strand of this Smal
fragment. Based on the homology with the cor-
responding genes of Anacystis nidulans the 3’-end
of the 168-rDNA, the 5’ -end of the 23S-rDNA and
the two tRNA genes were located. This determined
the size of the spacer as 287 bp. This size is similar

to that of Anacystis nidulans and Euglena gracilis
(Table 1). The spacer tRNA genes do not contain in-
trons, as they have been found until now only in
higher plants (Table 1). Notable is the very short dis-
tance, only three basepairs, between the two tRNA
genes. Table 2 gives a comparison of the sequence
homology of the rRNA and tRNA genes of the
spacer region between cyanelles, prokaryotic and eu-
karyotic algae and plants. No homology was found
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Table 2. Percentage of homology between the cyanelle genes and the corresponding genes of cyanobacteria and chloroplasts

Organism 3'-16S (162 bp) t-RNAlle t-RNAala 57-23S (512 bp)
Anacystis 93%, 94.5% 92% 79%

Euglena 83% 84% 97% 69%0*
Chlamydomonas 85% 73% 96% 80%

Chlorella n.d. 90.5% - 75%
Marchantia 89.5% 88% 93% 76%

Maize 88% 89% 90% 75%

Tobacco 89.5% 89% 90% 75%

n.d. = not determined.

* The Euglena sequence (391 bp) is from Orozco, Dubbs, Karabin and Hallick (unpublished) as cited in Rochaix and Darlix (1982).

when the intergenic regions were compared. The
cloverleaf structure of the two tRNAs is shown in
Fig. 3. In analogy to chloroplast tRNAs the
3’-terminal CCA is not encoded by the cyanelle
DNA.

For the first time partial sequence information
was obtained for the large ribosomal RNAs from
cyanelles of C. paradoxa. Cyanelle SS-TRNA has
been sequenced recently and found to be most close-
Iy related to that from the cyanobacterium Syn-
echococcus lividus [13]. A pyrimidine-rich region at
the 3’ -end of the 16S-rDNA was found complemen-
tary to putative ribosome binding sites (Shine-

t-rNalle

Dalgarno sequences) [18] which have been reported
upstream of several analyzed cyanelle protein genes.
Among those are the genes for o- and 3-phycocyanin
(GGAG) [12}, @allophycocyanin (AAGG), o
allophycocyanin (AAAG) [3, 12], the 8 subunit for
the ATP synthase (GAGG) [22] and the large subunit
of ribulose-1,5-bisphosphate carboxylase/oxygenase
(GGAG) [22]. These four different 4-bp sequence
motives match the CCTCCTTT sequence at the
3’ -end of 16S-rDNA (Fig. 2). This is not the case for
the small subunit gene of ribulose-1,5-bisphosphate
carboxylase/oxygenase [20, 22], that is cotran-
scribed with the large subunit gene [20].

t-RNAAla

U-A
G-C
C-G
C-G

Fig. 3. Cloverleaf structure of tRNAIil¢ and tRNA#2 from C. paradoxa cyanelles.



We have compared the homology of the se-
quenced region of the cyanelle 16S-rDNA gene
(162 bp) and the sequenced region of the cyanelle
23S-rRNA gene (512 bp) with the corresponding
regions of these genes from several other species (Ta-
ble 2). Amongthe 16S-rRNA genes the homology of
the cyanelle gene is highest (93%) with the Anacystis
counterpart, with values ranging from 83% (Eugle-
na) to 89.5% (Marchantia, tobacco). Similar values
were obtained when the 23S-rRNA genes were com-
pared. The highest homology is found with Anacys-
tis (79%) and Chlamydomonas (80%) while se-
quence homology of approximately 75% is observed
in comparisons with the other species. The data
presented here lend further support to the notion
that cyanelles are a unique evolutionary link between
chloroplast and free-living cyanobacteria in an or-
ganism where the evolution of plastids has taken a
separate route.
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