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Abstract. This paper presents a numerical method well suited to solve the integral equation governing the asymptotic 
behavior of a cohesive crack, and uses it to analyze the influence of the softening curve on the cracking response of 
large specimens. The analysis is performed with two main objectives in mind: (1) providing criteria to determine when 
a simplified linear elastic fracture mechanics (LEFM) approach can be applied, and (2) providing possible procedures 
of extracting information on the softening behavior from experimental data. The main conclusion is that the effective 
crack extension prior to peak is nearly determined by the length of the softening curve (the critical crack opening) and 
so is the deviation from LEFM. Furthermore, a simplified ~'-curve approach is proposed as an approximate alternative 
to solving the governing integral equation. 

I. Introduction 

When a crack is created in a material such as concrete, rock, or a ceramic, generically called 
quasi-brittle materials, a situation develops whereby the crack extends and its faces become 
bridged by unbroken ligaments whose average behavior may be represented by a decreasing 
stress versus crack opening relationship. In this sense the material may be said to soften and the 
softening region may be modeled by a cohesive zone, coplanar with the crack, where the 
restraining - or cohesive - stresses reflect the softening behavior of the material under 
consideration. The initial models of Barenblatt and Dugdale [1, 2] in the early sixties - dealing 
with different physical problems but formally similar - were generalized and applied to concrete 
by Hillerborg [3, 4] and are a current research topic in ceramics [5, 6]. 

Despite their apparently brittle behavior, it is well known that the linear elastic fracture 
mechanics (LEFM) approach is not applicable, in general, to quasi-brittle (cohesive) materials, 
so the analysis of the fracture behavior of these materials requires more involved techniques. 
On the other hand, it has been established that for large sizes both approaches must coincide 
and hence LEFM can be applied if the size of the specimen, or of the cracked structure, is large 
enough. 

It is not an easy task to ascertain when the size is large enough for LEFM to apply; this size is 
different for ceramic materials, for rocks, and for cementitious composites and these large sizes may 
span several orders of magnitude depending on the characteristics of the softening curve, 
particularly on its shape. The essential aim of this paper is to investigate the influence of the 
softening curve in the deviations of quasi-brittle materials from LEFM in the limit of large sizes 
using a special semi-analytical procedure developed in previous work [7, 8, 9]. The research 
includes the analysis of other aspects which also depend on the softening curve and may help in 
ascertaining the suitability of different softening models when analyzing experimental results: The 
shape of the displacement field near the crack tip, and the specimen compliance among others. 
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This paper is structured as follows: Section 2 reviews some analytical results for cohesive 
cracks when the specimen size D is large (D/R ~ 1, where R is the cohesive zone size). Section 
3 includes the description of the numerical procedures and the analysis of their performances. 
In Section 4 the influence of the softening functions on the stress and displacement fields 
near the cohesive crack is considered in detail, as well as the far fields and the connection 
with the far fields of an equivalent linear elastic sample. Finally, Section 5 discusses some 
practical aspects: How large the size must be for LEFM to hold within given bounds, and 
how to make an estimate of the evolution of the remote fields without recourse to numerical 
procedures. 

2. Asymptotic analysis: Summary of previous results 

We face the problem of mode I loading of a specimen with a characteristic dimension (a size, for 
short) D and assume that the fracturing behavior is well described by a cohesive crack model. In 
these conditions, a cohesive crack grows ahead of the initial crack tip as shown in Fig. la. The 
size of the cohesive zone is denoted as R and is taken as the independent variable in the 

following analysis. 
The cohesive crack model is defined by the softening curve, the equation relating the stress 

transferred across the cohesive crack faces ¢, to the crack opening displacement w 

= F(w), (1) 

where F(w) is a non-increasing, non-negative function defined for positive crack openings, as 
depicted in Fig. lb. The area enclosed by the curve and the coordinate axes is the fracture energy 

GF. 
In the remainder of this section we include a summary of the relevant results previously 

obtained by the authors in [8]. The cohesive crack problem was formulated as a weighted 
superposition of solutions of auxiliary linear elastic fracture mechanics problems and was 
reduced to solving a functional integral equation. The asymptotic analysis is then performed by 
expanding the functions appearing in the integral equation in powers of R/D (the relative size of 
the cohesive zone), an asymptotically vanishing variable. It immediately turns out that when the 
series is truncated to N + 1 terms (where N is the order of the approximation) the previous 
functional equation splits into N + 1 integral equations which allow calculation of the N + 1 
coefficients of the truncated series. In this paper we restrict our attention to the zero order 
approximation, and so we restrict the background exposition to this limiting case. 

~" ~ (b) IP (a) err 

cohesive crack o = F(w) 

~- A o ~ ~ - R - 

- D "i 
]P crack opening, w wc 

Fig. 1. (a) Cohesive crack in mode I. (b) General softening curve. 
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2.1. Notation and definitions 

We follow I-8] and denote all linear dimensions of the specimen and coordinates by upper case 
Latin letters, as shown in Fig. 2. In particular D is the size of the specimen, B its thickness, Ao 
the initial crack length, R the cohesive zone extent, and C denotes the length of an ideal elastic 
crack. Other distances to characteristic points are shown in Fig. 2. 

In [8], linear dimensions relative to size D were extensively used and were represented by 
lower case Latin letters. In the present case, where the order zero is analyzed, the only relevant 
relative dimensions are the relative initial crack length ao, the relative cohesive zone size r, and 
the relative depth of an ideal crack length c, which are defined as 

A R C 
(2) 

For the asymptotic analysis, the only relevant dimension is that of the cohesive zone, and the 
set of reduced variables relative to R are denoted by lower case Greek letters. In particular ~ and 

denote positions relative to the cohesive zone. Referring to Fig. 2, the corresponding reduced 
variables are 

X T 
~ = ~ - ,  f f = ~ .  (3) 

The load acting upon the specimen is better described using the stress intensity factor for an 
ideal crack. For a crack of arbitrary relative length c, the stress intensity factor may be written as 

KI = o'N]~o(C) 2 x / ~ ,  (4) 

where aN is a nominal stress proportional to P/BD, P being the applied load, and flo(C) a 
non-dimensional shape function. 

The nominal stress intensity factor is used in the following as a measure of the load acting on 
the cohesive specimen. It is defined as the value of the stress intensity factor computed for the 
actual load and the initial crack length, i.e. 

KIN = o-u/~o(ao) 2x/2x/2x/2x/2x/2x/2~ = aN/~oo 2X//~. (s) 

[.. 
Ao 

I - - X = ~ R - - . -  

• ~ R 

c 

Fig. 2. Notation used for the cohesive crack problem and the auxiliary non-cohesive crack. 
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The results are presented in dimensionless form (represented by starred characters) using 
various combinations of the material properties aR, GF and E' (generalized elastic modulus, 
E ' =  E for plane stress, E ' =  El(1 - v  2) for plane strain, v = Poisson's ratio). In particular, 
stresses, crack openings, and cohesive crack lengths take the following dimensionless forms 

a w R 
a * = - - ,  w * = - - ,  R * = 7 - ,  (6) 

(7 R W ch tch 

where the characteristic crack opening W~h and the characteristic length lch a r e  defined as 

GF GFE' 
wch = - ,  lch-- • (7) 

O- R 0 -2  

The dimensionless version of the softening function is written as 

a* = F*(w*), (8) 

where F*(w*) is related to F(w) in (1) by F*(w*) = F(W*Wch)/aR. 

2.2. The basic equation for the zeroth order asymptotic approach 

The main result of the asymptotic analysis performed in [8] is that the solution of the zero order 
approximation (valid for RID ~ 1) may be written in terms of a single scalar dimensionless 
function Po(~) defined over [0, 1]. But it turns out that Po appears always in the combination 
flooPo. Therefore, in the following we write k*(~) = fl0oPo((), as in [9]. With this notation, the 
integral equation to be solved for k*(() is 

(~ - ()- ' /2k*(()d( = F* 8R* (( - ~)'/2k*(()d( . (9) 

As already pointed out, R* is the independent variable, and it must be understood that the 
solution for k*(() depends on it. The solution depends on the material properties through the 
softening curve F* (w*). 

In the foregoing equation, the left hand member represents the stress distribution over the 
cohesive zone. Likewise, the bracketed expression in the right hand member is the crack opening 
distribution along the cohesive zone. 

An essential aspect to consider for numerical formulations is the possibility of singular 
behavior of the unknown function k* ((). This may be detected by writing that the left hand side 
of (9) is equal to the cohesive stress distribution 

fo(~ -- ()-1/2 k*(() d( = acoh(~). (10) 

This Volterra-type integral equation may be inverted [8, 93 to give 

O'coh(O + ) 1 Io dO'c°h(~) 
k*(O- ~x/~ + ~ (~ -  ~)- '/~ d~ - - d ~ ,  (Ii) 
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which shows that k*(0 displays a ~-1/z singularity whenever there is a stress discontinuity at the 
initial crack tip (a¢oh(0 +) # 0). 

2.3. Expressions for the nominal stress intensity factor and the near-tip fields 

Once the density function k*(0 is obtained from (9), the dimensionless nominal stress intensity 
factor K*N is given by 

K,N 2V/5~-~ f '  = k*(0 d5 K*~ - ~ jo (12) 

The stress and crack opening fields on and near the cohesive zone are given by [8] 

~*(0 = (4 - O-'/2k*(0H(~ - 0 d5 (13) 

f0' w * ( O  = 8R* (~ - O-1/2k*(OH(~ - Od~, (14) 

where H(t/) is the Heaviside step distribution. 

2.4. Far-fields and effective crack extension 

The fields far from the cohesive zone cannot be computed using the foregoing expressions, 
because those require that ~ = X/R ~ D/R. The expressions valid for far-field expressions were 
discussed in [8] and an essential theorem was proved regarding the far-field distribution. This 
theorem reads as follows: 

For a cohesive material and a general geometry under proportional mode I loading, every-far field 
may be approximated, up to order R/D, by the far-field corresponding to an equivalent elastic crack 
of length Ao + AA~, subjected to the same load. The far field equivalent extension zXA~ is given by 

AA~ = R(~), (15) 

where subscript oo indicates that this corresponds to the large size approximation, and (~) is the 
k-average of ff over the fracture process zone, i.e. the position of the center of gravity of the k 
distribution 

So ~ ~k* (0 d~ (16) 
(~) - S ~ k * ( 0 d ~ "  

2.5. Lower bound theorems 

The deviation from LEFM in the large size limit is controlled by the effective crack extension. In 
general it is not possible to find a closed form expression for it, and one has to solve (9) 
numerically to get the value of AA~. However, a closed form lower bound can be found in terms 
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of the material properties and the crack tip opening displacement (CTOD) I-8, 9]. The lower 
bound theorems state that 

AA~ CTOD .2 (17) 
W *  ' 

where W*(CTOD) --- Wp(CTOD)/Gv and 

i 
w(0) 

Wr(CTOD) = WF[w(0)] = F(w')dw'. (18) 
d o  

In particular, when the CTOD reaches the critical crack opening value we, the critical 
cohesive zone size and effective crack extension verify 

AA~oc 1 .2 
R* ~> ~ t> 77~z(wc ). (19) 

2.6. Asymptotic size effect 

The far field property just summarized is at the base of the determination of the asymptotic size 
effect curve [8, 9]. The result is that the effect of the size D on the apparent toughness, K~Nmax 
may be written in the form 

E'Gr 2 flo~ AAo~c (20) 
K2Nmax - -  1 + floo D ' 

where AA~c is the critical effective crack extension (we call critical the situation where the 
strength at the initial crack tip has been exhausted, i.e.: when a(0 + ) = 0 or w(0) = CTOD = w~). 
The factor flol is related to the geometric shape factor rio(C) in (4) by 

flol - dflo(C) (21) 
d c  c=ao 

3. N u m e r i c a l  meth od s  

Analytical solutions for the integral equation (9) are scarce. To the authors' knowledge, the only 
complete analytical solutions available correspond to rectangular softening (Dugdale type), and 
to softening functions built of rectangular blocks, in which cases the inversion formula (11) 
reduces the problem to a set of algebraic equations. The piece-wise rectangular softening 
functions have been extensively explored by Smith [10]. In particular Smith analyzed an 
extreme case of a two-step softening function in which the first step may be approximated by a 
Dirac 6-distribution, which leads to relatively compact solutions and may give a good 
representation of brittle matrix composite materials. 
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A partial analytical solution may be obtained by assuming a priori the shape of the spatial 
distribution of stress, or the spatial distribution of crack opening displacement along the 
cohesive zone in the critical situation. In this method, the softening function is obtained as an 
output of the analysis. Smith [11] investigated the case where the critical crack opening 
distribution is a linear combination of power laws of the type 1 - ~t,+3/2) (n = 0, 1 . . . .  ), and 
obtained expressions for the length of the critical cohesive zone as a function of the critical crack 
opening [11]. 

For any other softening one has to resort to numerical methods to solve the integral equation. 
This is the topic of this section. 

3.1. Interpolating functions and equation discretization 

Since this is a very particular problem, particular methods of solution were envisaged. The most 
obvious one was to use global polynomial shape functions and point collocation (on a number 
of properly selected nodal points). This was so because the required integrals were easily 
expressible analytically (in terms of the Eulerian F function). The results were very good for a 
small number of terms, but started to show ill-behaved trends for polynomial degrees over 20. 

Therefore, piecewise interpolating shape functions are used in a formulation very similar to 
finite elements. To get maximum simplicity, collocation at the nodes is used so that the following 
discrete set of equations is obtained 

Lijgj = F*(R* Uijgj), i, j = 1, 2 . . . .  , N, (22) 

where 9j is thejth nodal value of g(0, L~ i is a constant lower triangular matrix, Uq a constant upper 
triangular matrix, and N the number of nodes of the mesh. Repeated indices imply summation. 

The elements of the matrices are given by 

~0 i Lq = ~- 1/z(~ i _ ~)- lie c~j(()H(~i - ~) d(, (23) 

8 f¢l __ Ui~ = ~- 1/~(~ ~i)- 1/2 q~/~)H(~ ~) d~, 
i 

(24) 

where ~i is the coordinate of the ith node, and H(q) the Heaviside step distribution, and ~bi(~ ) the 
shape function associated with the node j. 

If the shape functions q~j(~) are taken to be polynomials, the integrals in the foregoing 
equations decompose into binomial integrals that can be integrated analytically. In order to 
keep the algebra to a minimum, we selected linear interpolating functions as shown in Fig. 3. We 
will show that this selection is good enough for practical purposes. 

1 2 i-I i i+l N-1 N 

1 - - 1  

Fi9. 3. Shape functions used in the numerical method. 
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3.2. Method of solution 

In previous works [7, 8, 9] the method of solution used to solve (22) was an incremental and 
iterative Newton-Raphson. At present, direct iteration is used solving for the new value 9i from 
the previous value 9, ore from the equation 

Lijgi = F*(R*UijgP,~¢), i , j  = 1, 2 . . . . .  N. (25) 

Since Lij is lower triangular, each iteration involves forward substitution only, and is 
extremely fast. No convergence problems have been detected so far. 

This algorithm has been implemented into a QuickBASIC program for Apple Macintosh. The 
program incorporates automatic search of the critical point (where w(0) = we), and at each 
increment, determines K~N, AA~ and the stress and crack opening profiles over a user-selectable 
zone containing the cohesive region. 

3.3. Error analysis 

To estimate the degree of accuracy of the computations, various meshes have been used. 
Equi-spaced meshes with 2, 5, 10, 20, 40, 60 and 100 elements were analyzed. 

The results showed that for a given variable the relative error increases with the size of the 
fracture zone. The maximum error thus corresponds to the critical situation. Of a number of 
variables (CTOD, KIN, AA~) the relative error was greater for CTOD, so we use this variable to 
illustrate the dependence of the error on the element size. 

Focusing on the linear softening (F*(w*)= 1 -w*/2) ,  Fig. 4 shows the evolution of the 
relative error on the prediction of the CTOD for R = 0.7lch (close to the critical value 
Rc - 0.7312/ch). From the figure it is clear that the convergence is quadratic and that the error is 
very low for as few elements as 5 (less than 0.3 percent). The extrapolated relative error for 100 
elements is completely negligible: 33 parts per million. 

The prediction of the stress and crack opening profiles is also excellent. Figure 5 compares the 
profiles in the critical situation computed using 100 elements, with the nodal values computed 
using 5 elements. The coincidence is very good for any practical purpose, and one may conclude 
that the numerical procedure is robust and accurate. 

0.000 

2-0.005 

-0.010 

-o.o15 

-0.020 

Linear softening, R* = 0.7 

relative error = - 0.093 A~ L'3 ~ 

- 0 . 0 2 5  . . . . . .  L . . . .  ~ . . . . .  L . . . . .  l ~ + ~  . . . .  

0.0 0.10 0.20 0.30 0.40 0.50 0.60 
element  size, A~ 

Fig. 4. Relative error of computed CTOD versus element size. 

0.005 



Asymptotic analysis of a cohesive crack: 2. 229 
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0 
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relative position, ~ 

Fig. 5. Comparison of the profiles computed using a 100-element mesh (full line) and a 5-element mesh (open symbols). 
(a) Stress profiles. (b) Crack opening profiles. 

4. Influence of the softening curve for large sizes 

For large sizes it is possible to find some general trends depending on the material softening 
function; the shape of the stress and displacement functions near the crack tip are influenced by 
the kind of softening. The specimen compliance, a far field property, is also dependent on the 
softening function through the equivalent crack extension AA~. All these properties, and some 
others discussed below, will help in ascertaining the suitability of different softening models 
when analyzing experimental results. 

4.1. Material softening curves 

The analysis will be based on the following uniparametric family of softening curves 

F*(w*)=(l + A)e - n w * - A  for 0 < w * < w * ,  

F*(w*) = 0 for w* >/w*, 

where 

(26) 

I + A  
B =  1 - - A l n - -  

A 
(27) 

and 

1 - B  
w* = A---B-- (28) 

This family has the theoretical advantage of including as particular limiting cases the Dugdale 
model (w* = 1), the straight line softening (w* = 2) and the exponential softening (w* = oo). 
Moreover, the shape of the curves for w* in the range 5 to 8 displays a marked similitude to the 
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1 
. 2 ~ - ~  rectangular, w * = 1 

[ 'Dugdale with  t-of0 

~ 0.4 
"~ t I ' ~  quasi-exponential, w 'c=5 

I 
0.0 ~ 

0 1 2 3 4 
reduced COD, WIJR/G F 

Fi 9. 6. Softening curves. 

experimentally determined curves for concrete and cementitious materials. Figure 6 shows the 
shape of the curves for some selected values of the critical crack opening w*. 

The density function, in the zeroth order approximation, k*(0 was computed for three 
different softening functions. The solution for the rectangular (Dugdale) model, was obtained 
analytically in previous work [7, 8] with the following result 

1 k * ( ~ ) = l ~  -1/2 or g ( Q = - .  (29) 
7[ 7[ 

For the other cases the density functions were obtained using the numerical methods described 
in the previous section. 

A family of g(~) curves for several values of the cohesive zone R*, corresponding to a material 
with linear softening is shown in Fig. 7a. The same results for a material exhibiting a 
quasi-exponential softening with w* = 5, are depicted in Fig. 7b. 

4.2. Evolution of KIN and of stress and crack opening profiles 

Once g(~) - and so also k*(0 - are known, the nominal stress intensity factor KIN and stress and 
displacement fields are computed respectively from expressions (12), (13) and (14). 

0.6 

0.5 v 
t~ 

0.4 

0.3 

~ 0.2 

~ 0.1 

0.0 
0 

linear softening (a) 

>o°.1 
> o . 3 j j  
! / o . 5 /  
~ "  0.7312 (critical) 

, I I i J I , i i I , , I I h , , 

0.2 0.4 0.6 0.8 
relative position, 

1.41 

.O, 1.2 I 

" ~  1.0 

i o8i 
,~ 0.6 

0.4 

021 
0.0' 

quasi-exponential softening, (b', 

w* =5 ( e r ~  e 2.921 

0.2 0.4 0.6 0.8 
relative position, 

Fig. 7. Evolution of g(0 with R*. (a) For linear softening. (b) For a quasi-exponential softening with w* = 5. 
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Fig. 8. Evolution of the nominal stress intensity factor with the size of the cohesive zone for various softening curves. 

Figure 8 shows the evolution of the nominal stress intensity factor versus the cohesive crack 
extension for three softening curves: rectangular, linear and quasi-exponential with w* = 5. The 

curves show that for small loads (K~N < 0.2E' Gr) the responses are very close. However, when 
the load approaches the peak, the sizes of the fracture zone become much larger for the 
materials with longer softening tails. In particular, the critical cohesive zone size is very different: 
R* = ~z for rectangular softening, R* = 0.731 for linear softening, and R* = 2.92 for quasi- 
exponential (with w* = 5). This strong dependence has also been observed by Smith, who used a 
combination of power laws for the critical distribution of crack openings along the cohesive 
zone to investigate the dependence of R* on w*. He proposed the approximate relationship (11) 

R* ,-~ 0.4w* for w* ~< 4, 

R* ~ 0.1Wc .2 for w*/> 4, 
(30) 

which do capture the main trend of the results. 

As a main conclusion of the foregoing, R* is strongly dependent on the shape of the softening 
curve, particularly on the critical crack opening. Therefore, one may state that /f the critical 
cohesive zone length R* can be measured, a 9ood hint about the shape of the softenin 9 curve may be 
obtained. 

Figure 9a shows the stress profiles, for a material with linear softening, corresponding to 
various values of the cohesive zone length R*. Figure 9b shows the same results for a material 
with quasi-exponential softening with w* = 5. 

When R* > R*, the cohesive zone travels in a self-similar way, at this level of approxima- 
tion where very large sizes are considered (note that in this context, very large sizes imply very 
large distances from the cohesive zone to any outer surface of the body). From (13), it can be 
shown that these stresses are continuous at the tip of the cohesive zone (~, ~ = 1), but that its 
derivative is discontinuous. For the chosen family of softening functions, with finite slope at the 
start of softening, the stress distribution at the left of the cohesive crack tip has a horizontal 
tangent, while at the right of this point the slope is - ~ .  This behavior is depicted in Figs. 9a 
and 9b. 

The displacement profiles, near the cohesive zone, are sketched in Fig. 10 for linear and 
quasi-exponential softening. The profiles correspond to different R* values. 
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Fi 9. 9. Evolution of stress profiles with R*. (a) For linear softening. (b) For a quasi-exponential softening with w* = 5. 
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Fig. 10. Evolution of crack opening profiles with R*. (a) For linear softening. (b) For a quasi-exponential softening with 
w* = 5. 

Cohesive crack displacements near the end of the process zone are not like those for elastic 
cracks which display vertical tangents and behave as (1 - ~)1/2. Instead, they display horizontal 
tangents and behave as (1 - 4) 3/2 as is well known. The result obtained in [8] was 

W*(~) = ~ R * k * ( l ) ( 1  - ~)3/2 + 0 [ (1  - ~)3/22. (31) 

At the initial crack tip, the crack opening displacement is obtained by taking the limit of (14) 
when ~ approaches 0, i.e. 

;0 ;o C T O D *  = 8R* ~1/2 k*(~') d~' = 8R* 9(0 d~. (32) 

Due to the singularity in k*(() the derivative of the crack opening displays a logarithmic 
singularity at the initial crack tip, and this singularity exists for any softening function until the 
CTOD reaches the critical crack opening value. This behavior is hard to see in the figures 
because it is very localized. However, the strong inflection it produces is clear in the profiles 
corresponding to small cohesive zones (R* ~< 0.3) in Figs. 10a and 10b. 
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To grasp some information about the softening behavior (linear type or quasi-exponential, for 
example) of a cohesive material, a look at the displacements near the crack tip may throw some 
light, because displacements are dependent on the shape of the softening function, as depicted in 
Fig. 11 for the same cohesive zone extent. This kind of information can, in principle, be extracted 
from interferometric measurements, as reported for example by the research groups of S.P. Shah 
[12, 13], H. Horii [14] and A.S. Kobayashi [15]. However, the differences are quite small, and it 
may be extremely difficult in practice to get enough resolution to discriminate experimentally 
between the profiles shown in Fig. 11. 

4.3. Equivalent crack extension 

As pointed out in Section 2.4, the stress and displacement fields far from the cohesive zone, can be 
approximated by the corresponding far fields of an equivalent elastic crack of length Ao + AA~. 
The equivalent crack extension AAoo is given by (15) together with (16). Figure 12 shows the 
computed evolution of the equivalent crack extension as the cohesive zone increases for various 
softening behaviors. From this figure it can be realized that the relation between AA* and R* is 
scarcely influenced by the softening behavior. Only the situation of the critical points (coinciding 
also with the peak) is strongly dependent on the particular softening. This means again that if 
the critical point can be experimentally detected, and the cohesive zone size measured, this 
would provide a good hint to ascertain the type of softening function. 

It is interesting to compare the computed critical effective crack extension with its lower 
bound given by (17). Figure 13 shows that the computed results (open circles) lie very close to 
the lower bound, so that with a good approximation 

n W. 2 (33) A A %  . 

This is a conclusion similar to that obtained by Smith using two-step, piece-wise rectangular 
softening functions [10], as Fig. 13 also shows as open squares (the results displayed correspond 
to two-step softenings such that the center of gravity of the area enclosed by the curve and the 
axes has an abscissa equal to Wch). 

5 . ~ , , , , ,  + linear softening 

3 0~ ~ "o,,2.921 = R* 

0 0.5 1 1.5 2 2.5 3 
position, X/ld~ 

Fig. 11. Comparison of crack opening profiles for a 
linear softening and for a quasi-exponential softening 
with w* = 5. 
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Fig. 12. Evolution of the equivalent crack extension 
with the cohesive zone length for various softening 
curves. 
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squares to Smith's analytical results for two-step 
softening. 
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Fig. 14. Nominal stress intensity factor versus effective 
crack extension, expressed as ,~-curves. 

According to these results, in the cases where the size of the specimen is large enough for 
the asymptotic approximation to hold, the value of AA ~c may be inferred from the compliance 
at the peak, and an estimate made of the critical crack opening displacement w* by means 
of (33). 

Since the remote far-fields of the actual cohesive specimen coincide with those for an 
equivalent elastic crack of length Ao + AA~ (up to first order), this correspondence was called 
far-field equivalence within a wider discussion of the various possible forms of equivalences [16, 
17]. The associate N-AA curve is the same for all far field equivalences and it is geometry and 
size independent, which is obvious if one uses the parametric equations (with parameter R*) 
following from the basic relation ,~ = JR = K2~/E', and (12), (15) and (16): 

[fo 12 2nR* k*(~; R*)d~ , (34) 
Ge 

AAo~ _ R* ~k*(~;  R*) d~ 
l~h ~ k * ( ( ;  R*) d ~ '  

(35) 

where the dependence of k* (0 on R* has been made explicit. 
This result validates the use of a single N-AA curve for design whenever R/D ,~ 1, and shows 

that the ~-curve depends only on the softening function. Numerical results for N/Ge versus 
AAo~/lch are shown in Fig. 14 for various softening curves (w* = 1, 2 and 5). From these curves it 
is apparent that for small values of AA~ the behavior is nearly the same for all softening curves, 
so that a Dugdale model may be used to describe the first stages of cracking. This is obviously 
not the case when the load approaches the critical point, since according to (33), AA~c increases 
quadratically with w*. 



Asymptotic analysis of  a cohesive crack: 2. 235 

5. Implementation of the asymptotic concepts 

5.1. When is a size a large size? 

Throughout this paper, the sentence for laroe enough sizes was used to assure that the conditions 
for applicability of the asymptotic approximation were fulfilled. In practice, what one wants to 
know is the minimum required size for a sample of a cohesive material to be treated by linear 
elastic fracture mechanics, within some acceptable error. In particular one may require that the 
peak load corresponds to LEFM predictions within e, i.e. 

I KINmax -- ~/E'GFI <~ e. (36) 

If e is small, we may take the first order size effect equation (20) as very close to the actual 
behavior, and find D~, the minimum size required to comply with (36). Neglecting second order 
terms in i/e, the result is 

D* = 1 flol . . .  (37) 

which shows that the required size is inversely proportional to the accepted error. The 
proportionality coefficient decomposes into two factors. The first one, /~ol//~oo is purely 
geometric and is fixed for a given specimen shape and relative initial crack depth. The second 
one, AA*c is in fact a material property depending only on the shape of the softening curve, 
more specifically on the critical crack opening w*: the longer the tail of the softening curve, the 
larger the size required for a given error. 

To get an idea of the physical sizes involved, let us apply the above equation to various 
materials for an allowed 5 percent error, and a single edge notched beam in three point bending 
with a notch-to-depth ratio Ao/D = 0.5, where D is the beam depth. For such a geometry 
/~o~///oo ~ 3 (obtained from the analytical shape factor for the stress intensity factor given by 
Tada et al. [18]). Considering, furthermore, a quasi-exponential softening with w* ~ 5 for which 
AA*¢ ~ 2.5 the required size turns out to be 

DS./o ~ 1501ch. (38) 

For an ordinary concrete we may take Gr ~ 100 N/m, aR ~ 3 MPa, and E' ~ 30 GPa, which 
give a characteristic length lch ~ 0.33 m. Therefore the required beam depth for 5 percent 
accuracy in peak load estimates becomes about 50 m. We may conclude that in most, if not all, 
practical experimental situations for ordinary concrete we are very far from the linear elastic 
fracture mechanics approach. 

If we repeat these procedures for alumina (A1203) with Gr ~ 55 N/m, aR ,~ 220 MPa, E' 
280 GPa, we find lch ~ 0.32 mm, and Dso/o is about 48 mm, a reasonable size for laboratory testing. 

Remark that the length of the softening tail (i.e. w*) plays a paramount role in determining the 
required size of the specimen. If the classical approximation using rectangular softening is used, 
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the sizes are smaller by a factor of 20. However, experiments tend to show that the softening tails 
are quite long in quasi-brittle materials. In particular, values of w* as large as 12 have been 
measured for concrete [19]. For alumina, wc values of about 1/4 of the grain size, corresponding 
to values of w* of 3-5, have been reported [6]. 

5.2. Simplified computations for large sizes 

Even in the large size limit where the asymptotic expansion may be truncated to order zero, the 
only way to obtain reliable information of the behavior of the fields at or close to the cohesive 
zone is by numerical methods, such as those described in Section 3. However, if remote fields are 
all that is needed, the first order effective crack extension theorem may be invoked and the fields 
determined from a classical ~-AA formulation, using the ,Q-curves discussed in Section 4.3 and 
depicted in Fig. 14. From such an analysis, values such as compliances, remotely applied loads, 
remote crack profiles and path-independent integrals may be obtained. 

It may be reasonably argued that the determination of the ~-curve for a given softening still 
requires the complete numerical solution. This is true. But the use of the asymptotic ~-curve 
may still be helpful because of its ease of use in graphical reasoning. And at any rate, the 
asymptotic ~-curve for a given softening shape is unique and has to be computed only once for 
this particular softening. 

It is possible to use an approximate ~-curve having an explicit (closed-form) expression in 
terms of the CTOD. In the end, this approximation consists of substituting the effective crack 
extension AA~ by its lower bound (17), which has a closed form expression in terms of the 
CTOD. More formally, this substitution stems from a special equivalence, called the J-CTOD 
equivalence [17] in which the load and the crack extension of an equivalent elastic specimen 
are computed in such a way that the J-integral and the CTOD are identical to those in the 
actual specimen. The effective crack extension in the J-CTOD equivalence is denoted as 
AA s-cT°D, and the parametric equations (with parameter CTOD) of the ~-curve are found 
[17] as 

- - =  W * ( C T O D * ) ,  (39) 
GF 
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Fig. 15. Comparison of the true far field ~-curves and the approximate ~-curves obtained from the J-CTOD 
equivalence. 



Asymptotic analysis of a cohesive crack: 2. 237 

AA J'cT°D rc C T O D  .2  
= 

l~h 32 W~(CTOD*)" 
(40) 

Figure 15 compares the true far-field ~-curves with those obtained from the foregoing 
approximation. It is obvious that they are very close, particularly for long-tailed softenings. 
Therefore, the J-CTOD equivalence may be a useful short-cut to get fast and fairly accurate 
solutions for the remote fields and related variables. 
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