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On localization in ductile materials containing spherical voids 
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A B S T R A C T  
Macroscopic properties of a porous ductile medium are analysed on the basis of an axisymmetric numerical 
model and on the basis of a set of approximate constitutive equations for a voided material suggested by 
Gurson. Both models are used to analyse bifurcation into a localized mode. A number of predictions 
obtained by the two different approaches are in reasonable agreement; but it is found under several 
different loading conditions that the critical strain for localization is considerably overestimated by the 
approximate continuum model. A relatively simple modification of the constitutive equations for a voided 
medium results in considerably improved predictions. 

1. Introduction 

Microscopic voids in ductile materials play a crucial role in various fracture 
mechanisms. In some cases fracture is a direct consequence of the continued growth 
of voids with stretching, since finally the voids coalesce [1,2,3]. In other cases 
localization of the plastic deformations occurs before the general coalescence takes 
place. It has been shown by Rudnicki and Rice [4] and by Yamamoto [5] that a theory 
of plasticity, which accounts for the plastic dilatation that would be the overall effect 
of void growth, does predict significantly reduced critical strains for shear band 
instabilities. 

In a recent paper [6] shear band instabilities in a void containing medium have 
been investigated by a numerical model that accounts in detail for the interaction 
between neighbouring voids and for the nonuniform stress field around each void. The 
computations in [6] were carried out for a material containing a doubly periodic array 
of circular cylindrical voids in the initial unstressed condition, which allows for the 
use of various symmetries in a plane strain solution. These predictions of shear band 
instabilities were compared with predictions based on the approximate constitutive 
equations for a voided ductile medium suggested by Gurson [7]. Good qualitative 
agreement was found and, based on this comparison, an adjustment of Gurson's 
constitutive relations was proposed. However, since the version of these constitutive 
equations that has been used is based on assuming spherical voids, a comparison with 
a numerical model for this void geometry is of considerable interest. The rapidly 
increasing number of applications of Gurson's model to study the influence of void 
growth on various failure mechanisms [5, 8-12] adds to the interest in an investigation 
of the accuracy that can be obtained by this continuum approximation. 

Computations analogous to those in [6] are possible for an array of spherical 
voids periodic in three directions, but this would require three dimensional numerical 
solutions of the field equations. The investigations in the present paper are instead 
limited to configurations and load histories that can be analysed, at least ap- 
proximately, in terms of an axisymmetric model problem. This model does not 
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facilitate analyses of localization into shear bands of arbitrary inclination to the 
maximum principal stress direction; but the special case of bands perpendicular to 
this direction is easily accounted for. A few results obtained by a spherically 
symmetric model are presented as well. 

In an actual material most of the voids are nucleated during the plastic defor- 
mation, when second phase particles crack or debond from the surrounding matrix. 
However, the analyses in the present paper rely on the simplifying assumption that all 
voids are initially present in the material. This approximation will be reasonable in a 
number of cases, in which the voids of interest nucleate at a very early stage of the 
deformation. 

2. Axisymmetric model problem 

The model to be used here for studying the influence of spherical voids in a ductile 
medium is an axisymmetric model, as shown in Fig. 1. The voids of initial radius R0 
are taken to be located along the axis of a circular cylindrical body with an initial 
spacing 2B0 between the centres. The cylindrical body has an initial radius Ao, and the 
surface of this body is taken to remain cylindrical throughout the deformation. Thus, 
in the direction perpendicular to the x3-axis this axisymmetric model may be con- 
sidered an approximation of a hexagonal cell in the void distribution sketched in Fig. 
lb, where an initial distance V'2rr/X/-3Ao between neighbouring void centres cor- 
responds to the initial void volume fraction in the cylindrical body. Due to symmetries 
only the region hatched in Fig. la needs be accounted for in the axisymmetric analysis 
of the deformation history. 

A Lagrangian formulation of the field equations is used, with reference to a 
cylindrical coordinate system, in which x 1 is the radius, x 2 is the circumferential angle, 
and x 3 is the axial coordinate. The displacement components relative to the reference 
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Figure I. Axisymmetric model of a material containing spherical voids. 
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coordinate system are u ~ and the Lagrangian strain increments are given by 

• 1 • ~/ij = ~(uij + ui.i + ftk.iuk,J + Uk.itik.i) (2.1) 

where ( ).~ denotes covariant differentiation in the reference configuration and ( ' )  
denotes differentiation with respect to a loading parameter. The contravariant com- 
ponents r ° of the Kirchhoff stress tensor on the embedded deformed coordinates are 
related to the Cauchy stress tensor ~r ~j by 

r ii = V'-G[g 0 "ii (2.2) 

Here,  g and G are the determinants of the metric tensors gii and G~j in the reference 
configuration and in the current configuration, respectively. 

The equilibrium equations are written in the form of the incremental principle of 
virtual work 

fv  {?ii8~" + r'itik"ftik"k'i} dV = fs "~i8fii dS  (2.3) 

where the volume and surface of the body in the reference configuration are denoted 
by V and S, respectively, and the nominal traction increments on a surface with 
reference normal nj are given by 

"Fi = ( /Fij _}. ,~kiui,k + ,rkJlj i,k )n  i (2.4) 

As in [6] a large strain generalisation of J2 flow theory is used for the elastic- 
plastic material behaviour,  with an incremental stress strain relation of the form 

~.ij = L iikl.ilkl (2.5) 

The expression for the instantaneous moduli L ~ik~ shall not be repeated here. The 
uniaxial stress-strain curve that defines the tangent modulus at a given level of the 
effective Mises stress is taken to be given by 

o r  

E '  for or ~< ory 
= (2.6) 

" "{or}", for or>try 
E \O'y/ 

where ¢ is the logarithmic strain, or is the true stress, E is Young's modulus, ory is the 
uniaxial yield stress, and n is the strain hardening exponent.  

The boundary conditions specified for the axisymmetric region considered are 

.~i = 0, at (x~)2+(x3) 2= RZ0 (2.7) 

ti 3=0 ,  ~ r t = T Z = 0 ,  a t x  3 = 0  (2.8) 

ti 3= /]ni, T I = T 2 = 0 ,  a t x  3=B0 (2.9) 

/~1 = ~ J l ,  "~2 = ~'3 = 0, at x I = Ao (2.10) 

where the two constants 0~ and 0m are displacement increments to be prescribed. 
The corresponding average nominal traction increments in axial and radial direction, 
respectively, are given by integrals along the surfaces 

2 fAOr÷3 ~. 
~r'=---I fS°[Ttlx'=A°dXa'B0J0 Ttt,=~00J ° t "  x lx-=a0dx t (2.11) 

Now, in the present investigation we choose to focus on situations in which the 
ratio of the average true stresses ort and ors perpendicular to the axis and in the axial 
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direction, respectively, is a constant p 

o'1/o'3 = &1/6"3 = p (2.12) 

while the axial displacement Ua~ grows monotonically. Introducing the current 
dimensions A = A0 + U~ and B = B0 + U m  of the region considered, the stresses are 
given by ~rl = TIAoBo(AB) -~ and ~r3 = TmAZoA -2, and the incremental form of (2.12) can 
be written as 

Ao . B f~ BA 
"F' ~- P R o  [TIIIA + TIIIA- TIII~-I (2 .13)  

Thus, in solving the incremental equilibrium equations (2.3) with the boundary 
conditions (2.7)-(2.10) the ratio between U~ = A and 0H~ = B is determined by (2.11) 
and (2.13), so that (2.12) is satisfied. 

Localization into a band perpendicular to the x3-axis requires, according to a 
standard shear band analysis (see for example [6]), that a slice of material can undergo 
an increment of deformation different from that in the surrounding material. In the 
following the difference between an increment of the bifurcation mode and the 
corresponding increment of the fundamental mode is denoted by (-). Now, localiza- 
tion in a band limited by x 3 = 0 and x 3 = Bo occurs, if a solution increment ~i satisfies 
the incremental equilibrium equation (2.3) and the boundary conditions (2.7)-(2.10), 
with ( ' )  replaced by (-) everywhere,  for /?/~ = 0 and for the two conditions 0i~i ~ 0, 
Tm= 0 satisfied simultaneously. However,  with fil.j = 0 outside the band, this mode 
would only on the average satisfy compatibility of the radial displacement increments 
ti~ on the band interfaces. 

A rather similar bifurcation mode, illustrated in Fig. 2, is one that strictly satisfies 
compatibility and equilibrium together with all the prescribed boundary conditions 
(2.7)-(2.13), except that the symmetry condition (2.9) is replaced by the corresponding 
symmetry condition at x 3= 2B0. This bifurcation mode is antisymmetric about x 3= 
B0. Thus for the region considered (hatched in Fig. la) the symmetry condition (2.9) is 
replaced by the following condition of antisymmetry 

~1 ~--- 0, T2 = ~'3 = 0, at x 3 = Bo (2.14) 

Figure 2. Bifurcation mode for axisymmetric void model indicated by dotted lines. The current state of 
deformation before bifurcation is shown by solid lines. 
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This eigenmode, in which some layers of voids are being compressed and the 
neighbouring layers are being expanded, occurs without additional overall straining 
and without changes of the average stresses, /]i = Um= 0 and T1 = TI. = 0 for a cell 
enclosed by x 1 = A0 and x 3 = 0, 2B0. The bifurcation analysis is based on the general 
theory of Hill [13], and is carried out as described in [6]. 

Both the above mentioned bifurcation analyses are applied to each case con- 
sidered, and for all the results to be presented in Section 4 the critical strains 
predicted by the two analyses are virtually identical. 

3. Cont inuum model  of a ductile porous m e d i u m  

An approximate continuum representation of the response of a ductile void-containing 
material can be obtained by accounting for the plastic dilatancy that will be the 
apparent macroscopic effect of void growth. This was already suggested by Berg [14], 
and subsequently various authors have included plastic dilatancy into elastic-plastic 
constitutive equations. Of particular interest are the approximate constitutive equa- 
tions proposed by Gurson [7, 15], since here modifications of the classical Prandtl-  
Reuss equations, dependent on the current void volume fraction, have been specified 
in detail, on the basis of approximate rigid-perfectly plastic computations for special 
void geometries. This set of equations has already been used in a number of 
investigations of the influence of voids on various fracture mechanisms [5, 8-12]. 

Gurson's equations are formulated in terms of the average macroscopic Cauchy 
stress tensor ~r ij, with the corresponding stress deviator s ~j = or ° - G%r~J3 and effective 
Mises stress Ore = (3S~iS~J/2) m. The actual microscopic stress state in the matrix material 
is represented by the equivalent tensile flow stress crM. The approximate yield 
condition 

2 ~q2 cr~ 
= o'--~M°'e + 2fql cosh [~- ~ j  - (1 + q3f 2) = 0 (3.1) 

in which f is the current void volume fraction, is that suggested by Gurson (for 
ql = q2 = q3 = 1) based on spherically symmetric deformations around a single spheri- 
cal void. The additional adjustable parameters q~ in (3.1) were introduced in [6]. 

It may be noted that alternative yield conditions ~(tr ~j, orM, [ ) =  0 could be used, 
such as the conditions suggested by Gurson [7] on the basis of axisymmetric flow 
around cylindrical voids or on the basis of plastic flow with rigid sections near each 
void. However, here we shall concentrate on the yield condition of the form (3.1), 
which has been used so far in all applications of this continuum model. 

In Gurson's model the increment ~P of the effective plastic strain in the matrix 
material is assumed to satisfy the following two relations 

(1  , )  _ 
4~a= E - E  6M, ~ r" ' h~=(1- f )o -M~ (3.2) 

where E, is the current tangent modulus in the matrix material and ~i~ is the plastic 
part of the macroscopic Lagrangian strain tensor. Thus, the increment of cru is given 
by 

EE, °"J49 ~ (3.3) 
ff~a - E - E, (1 - f)~rM 

Obviously, the quantities o~M, eu and E, can only represent some average of the field 
quantities in the matrix, since the actual stress state around the voids is strongly 
nonhomogeneous. 
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The increment of the current void volume fraction is given by the expression 

)/= (1 - f)Gii'il ~ (3.4) 

since the matrix material is taken to be plastically incompressible. Furthermore, the 
argument is used [14, 7] that normality for the matrix material implies macroscopic 
normality 

0~r~ (3.5) 

The parameter A is determined from the consistency condition ~ = 0, required for 
continued plastic loading. The detailed expressions are shown in [6], including the 
expression for the tensor of instantaneous moduli L ~jk~ to be used in the constitutive 
equation of the form (2.5). 

It is of interest to note that, independent of the additional parameters q~, the 
constitutive relations based on (3.1) and the following equations reduce to the 
equations of J2 flow theory in the limit f = 0. This is consistent with the use of J2 flow 
theory in the numerical model of Section 2. 

Bifurcation in a shear band mode occurs when deformations different from the 
otherwise homogeneous state of deformation are possible in a thin slice of material. 
Such bifurcation coincides with loss of ellipticity of the governing differential equa- 
tions. Here, the conditions for shear band formation shall be given quite briefly, 
with reference to a Cartesian coordinate system, and with quantities inside and 
outside the band denoted by ( )b and ( )0, respectively. Compatibility requires zero 
jump in tangential derivatives of ti~ over the band interface, as expressed by the 
equations 

/,ib '0  i,j- u i,j = njc~ (3.6) 

in which nj is the normal of the band and ci are parameters to be determined. 
Substituting (3.6) into the equilibrium requirement of equal tractions on the two sides 
of the band interface 

T ~ -  T~= 0 (3.7) 

using (2.4), (2.5) and (2.1), leads to the three homogeneous algebraic equations for c~ 
that govern bifurcation. 

4. Results for axisymmetric model 

In the examples to be considered here the initial void volume fraction is denoted by 
f0. For the Gurson model this one parameter is the only specification of the voids, 
whereas for the axisymmetric model problem described in Section 2 the initial 
geometry is specified in more detail by R0, A0 and B0, and in terms of these 
dimensions the initial void volume fraction is f0 = 2R3(3A~Bo) ~. In the cases con- 
sidered in Fig. 3, with Bo/Ao = 1, the void dimensions Ro/Ao = 0.25, 0.30, 0.35 and 0.40 
correspond to f0 = 0.0104, 0.018, 0.0286 and 0.0427, respectively. 

The numerical solutions for the axisymmetric model problem are obtained by a 
linear incremental method based on finite element approximations of the displacement 
increments in terms of eight-noded isoparametric elements. The mesh used for the 
hatched area in Fig. la is identical to that used in the plane strain computations of [6], 
with 4 elements along lines through the void centre and 6 elements along the quarter 
circle. Computations with a finer mesh and with a cruder mesh indicate that the 
solutions obtained by this 4 x 6 mesh are sufficiently accurate. 
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F i g u r e  3. N o m i n a l  t r a c t i o n  v e r s u s  a v e r a g e  s t r a in  f o r  p = 0.7 a n d  Bo/Ao = 1. M a t r i x  m a t e r i a l  c h a r a c t e r i z e d  

b y  Cry/E = 0.004,  n = 10 a n d  v = I/3.  

For the material considered in Fig. 3 the initial yield stress is specified by 
o-y/E -- 0.004, Poisson's ratio is u--  1/3 and the strain hardening exponent  is n = 10. 
Furthermore,  the stress ratio (2.12) is taken to be p = oq/cr3 = 0.7. The figure shows a 
plot of the nominal traction T,I~ in the axial direction versus the axial logarithmic 
strain eiii -- log(1 + Um/Bo). Clearly, the strain at which the maximum load occurs is 
strongly reduced by the presence of voids and also the maximum loads are somewhat 
reduced. Furthermore,  in the range considered the critical strain for bifurcation is 
very sensitive to the initial void volume fraction. 

In Fig. 4 the numerical results of the previous figure are compared with predic- 
tions of the approximate constitutive relations. The predictions based on the yield 
function originally proposed by Gurson (q~-- q : =  q3= 1 in (3.1)) are shown by solid 
curves,  while the dashed curves correspond to the set of parameters ql = 1.5, q2 = 1 
and q3-- q~ that was also chosen in [6]. No attempt has been made here to determine 
the set of parameters qi that give the best agreement with the numerical results of the 
axisymmetric model problem. However ,  the comparison with predictions based on the 
two different sets of parameters in (3.1) gives a useful indication of the accuracy that 
can be obtained by the Gurson model. In the following the two different choices of 
parameters are indicated by q~-- 1 and q~ = 1.5, respectively. 

The quantities compared in Fig. 4a are the maximum nominal traction Ti l l  and the 
corresponding strain em in the axial direction, for various initial void volume fractions 
f0. In Fig. 4b the critical strains and corresponding tractions are compared for 
localization into a band perpendicular to the maximum principal stress direction. The 
most drastic difference in Fig. 4 is that of the critical bifurcation strains, where the 
strains predicted by the unmodified Gurson model are far too large, whereas the 
predictions of the modified model are considerably closer and could be still better if a 
larger value of q~ was chosen. Neither of the traction comparisons show a clear 
preference of any of the two curves, and regarding the strains at the maximum the 
agreement with the dashed curve is only slightly better than with the solid curve. Note 
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Figure 4. Axial strains and tractions versus initial void volume fraction fo computed numerically for p = 0.7 
and Bo/Ao= 1 and by continuum model (curves). (a) Values at maximum axial load. (b) Values at 
bifurcation. Matrix material characterized by ~y/E = 0.004, n = 10 and v = 1/3. 

that the strains at the maximum are strongly sensitive to very small void volume 
fractions. 

In Fig. 5a the corresponding comparison is made of the total material dilatancy 
for various initial void volume fractions. The volume increase A V plotted here for 
• = 0.04, 0.08 and 0.12, respectively, is mainly due to void growth, but includes also 
elastic volume changes. It is seen that the dilatancy and thus the void growth in the 
numerical model is considerably better approximated by the modified version of 
Gurson's equations than by the unmodified version. This may partly explain the strong 
delay of the bifurcation predicted by the solid curve in Fig. 4b, since an underestimate 
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Figure 5. Dilatancy at various levels of axial strain computed numerically for p = 0.7 and by continuum 
model (curves). (a) Bo/Ao = 1 and varying initial void volume fraction. (b) [0 = 0.018 and varying dimensions 
Bo/A o. Matrix material characteriTed by o,,/E = 0.004, n = 10 and v = 1/3. 

of the void growth also results in an underestimate of the corresponding material 
softening. However, another reason for this discrepancy may be the interaction 
between neighbouring voids, which results in highly strained zones that link up the 
voids. Due to the strongly nonlinear material behaviour these highly strained zones 
may soften the macroscopic material response, and thus lead to earlier localization. 

It is also of interest to see how the initial void configuration affects the material 
response for a given void volume fraction, since such a dependence is not accounted 
for in the approximate constitutive equations for the porous medium. Therefore, in 
Fig. 5b and in Fig. 6 the ratio Bo/Ao is varied and the initial void radius R0 is varied 
simultaneously, such that the initial void volume fraction remains constant, f0 -- 0.018. 
The figures show that in fact, both the dilatancy, the strain at the maximum load and 
the bifurcation strain vary considerably with Bo/Ao. This does represent a noteworthy 
limitation on the accuracy that can be obtained by the approximate constitutive 
equations; but still the constitutive equations with ql = 1.5 appear to give the better 
approximation. 

In Fig. 7 the stress ratio p = ~r~/tr3 in (2.12) and (2.13) is varied for a fixed initial 
void volume fraction, f0= 0.018. The strain at the maximum load increases rather 
strongly for decreasing p in a range around p = 0.6; but for smaller p (not shown in 
the figure) the curves flatten out leading to e]~-0.1 at the maximum for uniaxial 
tension. As in the previous figures the agreement between numerical and continuum 
theory results is rather good at the maximum (Fig. 7a) and less good at bifurcation 
(Fig. 7b), with the better agreement for ql = 1.5 in the continuum approach. 

The bifurcation strains compared in Fig. 7b and in all the previous figures are 
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Figure 6. Axial strains and tractions versus Bo/Ao computed numerically for f0 = 0.018 and p = 0.7 and by 
continuum model (curves). (a) Values at maximum axial load. (b) Values at bifurcation. Matrix material 
characterized by ~y/E = 0.004, n = l0 and v = 1/3. 

those  c o r r e s p o n d i n g  to loca l i za t ion  in a band  with an angle  of  inc l ina t ion  g, = 0 ° 
b e t w e e n  the normal  v e c t o r  and  the x 3 axis .  This  is the  on ly  t ype  of  m o d e  d i s c u s s e d  in 
Sec t ion  2 for  the  a x i s y m m e t r i c  mode l  p rob l em.  H o w e v e r ,  the  inc l ina t ion  of  the  shea r  
band  tha t  is first c r i t ica l  is u sua l ly  d i f fe ren t  f rom zero ,  and t h e r e f o r e  the  a p p r o x i m a t e  
cons t i t u t ive  equa t i ons  have  been  used  to c o m p u t e  the  cr i t ical  shea r  band  b i fu r ca t i ons  
and the c o r r e s p o n d i n g  inc l ina t ions ,  as shown  in Fig. 8. I t  is seen  tha t  a r o u n d  p = 0.85 
the re  is a smal l  in te rva l ,  in which  g, = 0 ° is ac tua l ly  the  cr i t ica l  inc l ina t ion .  F u r t h e r -  
more ,  c o m p a r i s o n  with Fig. 7b shows  that ,  even  when  the cr i t ica l  inc l ina t ion  is a round  
20 °, b i fu rca t ion  in the  cr i t ical  m o d e  occur s  on ly  s l ight ly  b e f o r e  the  mode  with g, = 0 °. 
Both  Fig. 7b and Fig.  8 show tha t  the  b i fu rca t ion  s t ra ins  g row rap id ly  for  d e c r e a s i n g  p. 
In un iax ia l  t ens ion  (p = 0) loca l i za t ion  in a shea r  band  requ i res  ve ry  large p res t r a ins .  
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Figure 7. Axial strains and tractions versus stress ratio p computed numerically for f0 = 0.018 and Bo/Ao = l 
and by continuum model (curves). (a) Values at maximum axial load. (b) Values at bifurcation. Matrix 
material characterized by try/E = 0.004, n = l0 and u = 1/3. 

On the other hand for p close to unity, where all principal strains are positive, no 
bifurcation is found. 

Finally, in Fig. 9 the effect of varying the strain hardening exponent n is studied 
for a fixed initial void volume fraction f0=0.018 and stress ratio p =0.7.  The 
sensitivity of the bifurcation strain to varying n is somewhat underestimated by the 
Gurson model, which is opposite to the tendency found by comparison with the 
numerical results for cylindrical voids [6]. However, the variation of the maximum 
load and the corresponding strain is well represented by this continuum theory. 
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5. Spherically symmetric model problem 

The simplest among the models that can be used to obtain an estimate of the response 
of a void containing ductile medium is that of spherically symmetric deformation 
around a spherical void. This model requires only a one dimensional analysis; but, in 
contrast to the axisymmetric model of Section 2 and the plane strain analysis for 
cylindrical voids in [6], the spherically symmetry model can only give an estimate of 
the behaviour under purely hydrostatic loading. This model was in fact the one used 
by Gurson [7], assuming rigid-perfectly plastic material behaviour, to derive the 
approximate initial yield condition (3.1). 

Here, the comparisons shown in the previous Figs. 4-9 shall be concluded by a 
few results obtained for this spherical model, on the basis of a strain hardening elastic 
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Figure 9. Axial strains and tractions versus strain hardening exponent n computed numerically for 
[0 = 0.018, p = 0.7 and Bo/Ao = 1 and by continuum model (curves). (a) Values at maximum axial load. (b) 
Values at bifurcation. Matrix material characterized by try/E = 0.004 and v = 1/3. 

plastic material. The spherical body has an initial radius Co, the initial radius of the 
concentric spherical void is R0, and thus the model may be considered approximately 
representative of a solid with an initial void volume fraction f0 = (Ro/Co) 3. The 
macroscopic response of this solid is represented by the variation of the nominal 
traction T on the surface versus the true strain of the radius e = log(1 + AC/Co). The 
programme used to compute this relationship is described in [ 16]. 

In Figs. 10a and b the initial void volume fractions are f0 = 0.01 and f0 = 0.03, 
respectively,  in a material with strain hardening exponent  n = 10. Comparison with 
predictions of the continuum model of a voided material shows that in this case of 
hydrostatic tension (p = 1 in (2.12)) the unmodified version of (3.1), originally sug- 
gested by Gurson [7], gives the better agreement with the numerical results for  the 
spherical body. However ,  both for q~ = 1 and for q~ = 1.5 the curves are clearly 
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Figure 10. Nominal  traction versus  strain under  hydrostat ic tension as predicted by spherically symmetr ic  
model (solid curves),  by cont inuum model (dashed curves)  and by axisymmetr ic  numerical  model (dotted 
curves).  Matrix material characterized by oy/E = 0.004, n = 10 and v = 1/3. 

parallel with that obtained numerically. The deviations between the initial parts of the 
curves depend on the fact  that in the actual spherical model yielding starts at the void 
surface for T/t~y ~ 0 . 8  and reaches the external surface around the maximum load, 
whereas in the continuum approximations yielding occurs everywhere  simultaneously,  
when the yield condition (3.1) is satisfied. 

A few results computed  by the axisymmetr ic  model of Section 2 are included in Fig. 
10a. In these cases the values plotted are those in axial direction, Txn/(ry v e r s u s  e.~, since 
in the axisymmetr ic  model there is no guarantee that hydrostat ic  tension (p = l in (2.12)) 
will result in uniform principal strains. Thus, for Bo/Ao = l the axial strain EM grows 
considerably faster  than the t ransverse strain e~, already before the maximum is reached, 
and therefore this curve starts to rapidly deviate f rom that obtained by the spherical 
model. Better agreement  is found for Bo/Ao = 0.85, but even here the principal strains 
deviate increasingly after the maximum. If an average strain measure  E = ~ log(1 + A V/V) 
based on the volume increase A V is used instead of eM for these plots, both results of the 
axisymmetr ic  model come out much closer to parallel with the solid curve in Fig. 10a. On 
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the other hand, equality of the macroscopic principal strains is an inherent part of the 
spherical model, and in the continuum model the same equality results for ~r~ = trH -- trm, 
due to the effective isotropy of the constitutive relations. It may be noted that in the 
results of Section 4 the agreement of strain ratios predicted by the different models for a 
given prescribed stress ratio is checked by the plots of dilatations versus axial strains 
shown in Fig. 5. 

6. Concluding remarks 

The comparisons made in the present paper for spherical voids and previously for 
cylindrical voids under plane strain conditions indicate that the approximate constitutive 
equations for a ductile porous material suggested by Gurson provide a very useful basis 
for estimating the influence of void growth on material behaviour. Under the conditions 
of hydrostatic tension that formed the basis of Gurson's approximate macroscopic yield 
criterion the behaviour is well predicted by this continuum approach. Also for various 
other loading conditions the continuum model gives a reasonable representation of a 
number of properties of the voided material. However, in several different cases the 
critical strain for localization is considerably overestimated. It is found that these 
predictions can be much improved by a relatively simple modification of the equations 
suggested by Gurson. This is particularly noteworthy, because localization is one of the 
important mechanisms of ductile fracture that is of interest in most applications of the 
constitutive equations for a voided material. 

Descriptions of void nucleation have not been investigated here. However, 
confidence in the accuracy of the predictions of the void growth model is also important 
in applications of the Gurson model that accounts for nucleation. 
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RI~SUMI~, 

On analyse les propri6t6s macroscopiques d'un milieu poreux ductile sur base d'un mod61e num6rique 
axysim6trique et d'une s6rie d'6quations constitutives repr6sentant avec une approximation suffisante un 
mat6riau comportant des vides, ainsi que le sugg~re Gurson. Ces deux modules sont utilis6s pour analyser la 
biffurcation dans un mode local. Les deux m6thodes, qui sont diffgrentes, permettent d'6tablir plusieurs 
prgdictions qui sont en accord raisonnable. On trouve n6anmoins que sous des conditions de charge diff6rentes 
la d6formation critique conduisant /~ localisation est consid6rablement surestim6e par le module d'ap- 
proximation du continuum. Une modification relativement simple des 6quations constitutives dans le cas d'un 
milieu comportant des vides entra~ne des pr6dictions consid6rablement am61ior6es. 
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