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Abstract. The computation of the stress intensity factor at a crack tip can be determined from the nodal displacements 
along the crack face. Amongst the existing techniques available are the Displacement Correlation Technique (DCT), 
the Quarter-Point Displacement Technique (QPDT) and the Displacement Extrapolation Technique (DET). As each of 
these techniques are popular in general LEFM analysis, an evaluation of their relative performances would seem 
appropriate. Previously, only limited comparisons have been made. In this paper the comparison is made on the basis 
of extensive numerical analysis. In addition two new variants to the DET are introduced and shown to be more efficient 
computationally. 

The results indicate that the QPDT is generally more accurate and consistent in performance than the DCT. The 
DET, however, exhibited some erratic characteristics. Detailed examinations revealed that the linear regression analysis 
employed in the DET for the extrapolation is highly sensitive to the nodal displacement distribution. Both the new 
variant DETs exhibited much more consistent behaviour. 

Nomenclatures 

a = crack length LN = size of normal  element 

K *i -- K . . . .  t LQ = size of Q P E  element e . i  _ 
K exact Ls = size of singular element 

e D c T =  error in SIF computa t ion  associated Lr = size of transition element 

with D C T  N = number  of  K *~ in the set evaluated 
eQPDT = e *i, error  in SIF computa t ion  asso- r *~ = distance between ith node and the 

ciated with Q P D T  crack tip 

G = shear modulus  u', v' = local displacement along and normal  

Knu m = numerically computed  SIF to crack axis 

Kana~ = analytical solution for SIF p = linear regression coefficient 

K *~ = SIF computed  from ith nodal pair v = Poisson's ratio 

along crack face 

K xT = SIF computed  using X technique 

1. Introduction 

The finite element method has been employed extensively in fracture mechanics to model the 
stress singularity at the crack tip. In linear elastic fracture mechanics (LEFM) analysis, 

determination of the stress intensity factor (SIF) at the crack tip is often a major  considerat ion 

and has to be evaluated as accurately as possible. A wide range of finite elements have been 
devised to achieve this. One approach  is to utilise singular elements. Amongst  those, the 
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quarter-point element (QPE) conceived by Barsoum [1] has found considerable popularity 
because of its simplicity and ease of implementation. In relation to the QPE, a number of SIF 
computation techniques have also been developed. The choice of the SIF computation 
technique is of importance as it should extract the best possible accuracy from a given 
deployment of singular elements. 

In this study, only a number of displacement based methods will be examined. In particular, 
Displacement Correlation, Quarter Point Displacement and Displacement Extrapolation Tech- 
niques will be evaluated as they have been popular in general LEFM analysis. Their popularity 
stems from their ease of application and the reasonable accuracy possible. Although a number of 
comparative studies have been performed in the past on the above methods, they have usually 
been quite limited in scope. This study will examine the effect of QPE size variation on each SIF 
computation technique over a range of problems as well as the effect of employing transition 
elements. A number of variations to the Displacement Extrapolation Technique will also be 
proposed here. 

2. SIF computation from QPE displacements 

In this study, the following SIF computation techniques will be examined. 

(a) Displacement Correlation Technique (DCT) 
The SIF is easily computed using 

G K~CT - 
~ c + l  

2/2/~ 4 , - - - / ~  { (v~ - vb) - (v~ - v~)}, 

K~cT _ G ~2/ -,_S_~ 
~c + 1 ~/LQ {4(u~' -- ub) -- (u~ -- u~)}, 

(1) 

where G is the shear modulus, x is (3 - o)/(1 + o) for plane stress and also 3 - 40 for plane 
strain and axisymmetry, v is the Poisson's ratio, LQ is the length of QPE along crack face, 

V t and u, is the local displacement along and normal to crack axis as depicted in Fig. 1. 

y~v' 

Quarter ~ .  
point / e l e m ~  A 

Crack W 

x(u ~ 

~t y,v 
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Fiq. 1. Nodal lettering for stress intensity computations. 
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(b) Quarter Point Displacement Technique (QPDT) 
The SIF is given by 

KQPDT__ 2G ~2/~._~.{v~_ v~}, 
g + l  ~ L e  

K~PO x 2G ~ , 
- K + l X / ~  {uB -- ub}, 

(2) 

where all variables are as defined in (1). 

Differing opinions presently exist regarding the preference of one method over the other. 
Traditionally, the DCT has been widely accepted to be the more accurate method. This was 
possibly initiated by Shih et al. [2] and Tracey [3] who both pointed out that the DCT is more 
rational in its formulation than the QPDT. This view was reinforced by limited numerical 
analyses performed by Shih et al. [2]. More recently, Yehia and Shephard [4] and Lim et al. [5] 
both reported that the QPDT is generally more accurate and less sensitive to the QPE size 
variation compared to the DCT. Their conclusions were based on a wider range of problems 
than that of Shih et al. [2]. An in-depth examination into the performances of both techniques 
was undertaken by Lim et al. [5]. They showed that the DCT was related to QPDT by 

K DCT = 2K .1 - K . 2 ,  (3) 

where K DcT is the SIF computed according to DCT and K *~ is the SIF computed from the ith 
nodal pair using a similar form to (2). Hence K *~ = K °PDT. 

This leads to 

e DcT = 2e .1 - e . 2 ,  (4) 

w h e r e  e DCT is the error in SIF computation associated with DCT, e *i is (K *i - K . . . .  t)/K . . . .  t and 
e .1 is equal to e QPDT. 

From the above, they showed that when the QPE size (LQ) reduces to zero, eDCT~ e QPDT. 
However, as LQ increases then in general le°CTI > leQPDTI, as (4) tends to amplify the errors for 
the DCT over that associated with the quarter-point node. Numerical results forwarded 
affirmed their arguments. However, their investigation did not consider the effect of employing 
transition elements [6]. This study will also examine this aspect. 

3. SIF computation by extrapolation 

(a) Displacement Extrapolation Technique (DET) 
This technique was first employed by Chan et al. [7] who estimated the SIF by extrapolating the 
nodal displacements along the crack face. The expression is given as 

K DET= lim K *i, 
r*i~O 

K D E T =  l i m  K *i, 
r*i~o 

(5) 
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and 

K , i  G 2~, , i  
~c + 1 ~ / ~  v(r )' 

K , i _  G 2~n, ,i 
K+ 1 ~ / ~  u(r )' 

(6) 

where r *i is the distance between ith node and the crack tip. 

The extrapolation was applied to the nodal K *i along the crack face since along any other 
ray, additional terms to r -  1/2 must be considered [8] thereby rendering it more difficult and less 
accurate. Originally, the 'best' straight line was fitted empirically. This lack of consistency was 
addressed by Bank-Sills and Einav I-9] who advocated the use of linear regression techniques. In 
essence, all possible sequential combinations of the nodal K *~ are evaluated. Figure 2 depicts 
some possible combinations. It is important to note that the K *i associated with the 
quarter-point node is never included in the combinations because it has been found to provide 
unreliable SIF estimates when utilised in DET. With each combination set of the nodal K *i, the 
linear correlation coefficient p is evaluated given that 

' 
(7) 

where xi is equal to r *i, Yi is equal to K *~ and N is the number of K *~ in the set evaluated. 
The 'best' straight line is one which produces a value of p closest to unity. Its corresponding 

intercept with the ordinate at r = 0 is K DET. In such an approach, 0.5(N - 1)(N - 2) combina- 

tion sets must be evaluated. Consequently, the DET requires a substantially increased computa- 
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Fig. 2. Sequent ia l  c o m b i n a t i o n s  of  K *~ are  eva lua t ed  us ing  l inear  regression.  
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tional effort in SIF estimation as compared to either DCT or QPDT. However, Bank-Sills and 
Einav [9] advocated the use of the DET as it appeared to provide more accurate results than 
the DCT. 

A major shortcoming in this method is its implicit assumption that the nodal K *i should 
vary linearly along the crack face. Carpenter [10] proved analytically that the displacements 
(and stresses) along any ray emanating from the crack tip generally do not vary linearly. 
However, for the case of the single edge crack configuration under uniform tension, it was 
demonstrated that the displacements do vary linearly along the crack face. This explains the 
excellent results procured by Chan et al. [7] for this configuration. In analyses involving 
discrete crack propagation, this weakness may well be exacerbated. For such analyses usually 
involve complex interactions between the cracked body and applied tractions. The possibility 
of obtaining a linear variation in displacements along the crack face may be expected to be 
extremely remote. 

Another possible difficulty is envisaged in partial crack closure problems as depicted in Fig. 3. 
If the extrapolation was applied to section A where the crack face is separated, it would differ 
greatly from that obtained from section B. It is likely that any lack of linearity in the 
displacements along the crack face will be accentuated in such situations. 

(b) Reduced Displacement Extrapolation Technique (RDET) 
As the DET requires a much greater computational effort than the DCT or QDPT, it may be 
desirable to improve its efficiency. This may be achieved by restricting the possible sequential 
combinations of the nodal K *i to start only at a given node. It is proposed here that a suitable 
starting node is the QPE corner node. This node is closest to the crack tip after the 
quarter-point node. The quarter point itself was not considered because it has proved to be 
unsuitable for use with such extrapolation techniques [9]. The use of the next closest node was 
chosen to ensure that the possible combinations of the nodal K *i adequately reflect the SIF at 
the crack tip. However, it does not completely overcome the shortcomings associated with DET. 

P 

,~ A B 

P 

Fig. 3. A partial crack closure problem. 
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For the set consisting of a combination of nodal K *i may still include nodes far removed from 
the crack tip where the assumption of linearity in the nodal K *~ may be inappropriate for the 
displacements associated with such a wide range of nodes. However, its computational effort is 
reduced to only (N - 2) evaluations. 

(c) Limited Displacement Extrapolation Technique (LDET) 
Another variant to the DET is to apply further restrictions to the possible combinations of K *i. 
It is proposed that only three nodal K *i values associated with an element immediately adjacent 
to the QPE be utilised. Mathematically, it means 

KLDET = lira F(K .2, K .3, K*4), (8) 
r*i ~ o 

where F is a 'best' fitted line through K .2, K .3 and K .4 and i ranges from 2 to 4. This technique 
requires only one linear regression analysis, thereby reducing the computational effort consider- 
ably. 

This approach does not eliminate all shortcomings associated with DET. However, it does 
substantially reduce the possibility of being affected by those shortcomings. For example, if the 
element from which K LDET is computed is small and located very near the crack tip, it is 
reasonable to assume that any non-linear displacement variation in the crack tip vicinity may be 
adequately represented by a linear function. In partial crack closure problems, the possibility of 
K LDET representing the actual SIF is enhanced considerably as it is unlikely that any of the three 
nodes would lie in a section which is not representative of the crack tip SIF. On the other hand, 
this method is now much more sensitive to the local variation in displacements near the crack tip. 
The performance of all the proposed variants in displacement extrapolation techniques will be 
examined in this study. 

4. Numerical analyses 

Three test problems of increasing complexity were selected. The first is the centre cracked panel 
(CCP) under uniform tension [113. Second is the standard ASTM three point bend (TPB) 
specimen [12]. Last is the inclined single edge crack (ISE) subjected to a uniform bending 
moment [13]. Mixed-mode conditions apply to the ISE configuration. Both the CCP and TPB 
problems are of practical significance in fracture testing whereas the ISE was chosen to provide 
indications of performance for more general problems. In order to concentrate solely on the 
effect of QPE and transition element size variations, attempts were made to eliminate other 
possible influencing factors. In all crack configurations as depicted in Fig. 4, the finite element 
mesh was delineated into an outer and inner (shaded) mesh. The outer mesh was kept 
unchanged while all variations occurred within the inner mesh. The only mesh parameters 
modified were the number of element layers, the element type and their relative sizes. By so 
doing, the variation in SIF is dependent solely on changes within the inner mesh. 

The optimal shape and arrangement identified by Lira et al. [14] were employed. Eight 
equilateral triangular QPEs were arranged symmetrically in a rosette around the crack tip. 
Other additional layers of transition and/or normal elements may be placed symmetrically 
surrounding the QPE rosette. The outer-most element layer within the inner mesh always 
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consisted of normal elements designated as 'buffer' elements. Double precision was utilised for 
all nodal co-ordinates and for the finite element analyses. Attention to such details was made to 
minimise all possible sources of SIF computation error. Three point Gauss integration was 
employed for the QPE (consisting of natural isoparametric triangle elements) and all other 
triangular elements. The remaining elements were isoparametric quadrilateral elements. Ana- 
lyses were made, employing both exact (9 Gauss) and reduced (4 Gauss) integration, but only the 
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Fig. 4(a). Centre cracked panel under uniform tension. 
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Fiq. 4(c). Inclined single edge cracked configuration subjected to uniform bending moment. 

results for the former will be presented here for reasons of brevity. It should be noted, however, 
that essentially similar characteristics were observed between the two integration orders. The 
only major difference was a slightly larger spread of errors evident for the analyses using 
reduced integration. 

The analytical expressions for the SIF are provided in Fig. 4. The percentage errors as used in 
this study are defined as 

Knum --  Kanal 

Kanal 
× 100% (9) 

where Knu m is the computed SIF and Kanal is the analytical solution for SIF. 
Over 500 analyses were performed. However, not all results are depicted in the figures 

presented in this study to avoid unnecessary congestion. Others were omitted simply because 
they lie beyond the specific area of interest. The trends and characteristics are presented by 
employing 'error curves' that link sets of results together. 

5. Effect of the QPE size 

The first set of analyses examined the effect of QPE size (Le) variation on the performance of the 
various SIF computation techniques. No transition elements were employed. Therefore, the 
inner mesh is now composed only of the QPE surrounded by a layer of buffer elements. In 
Fig. 5, it is obvious that the QPDT generally performs better than the DCT. In the comparison 
between the LDET and RDET, both appear to provide very similar results. The only exception 
is for ISE (mode I) where the RDET gave slightly better results compared to the LDET, as 
shown in Fig. 5(c). 

In the comparison between the QPDT and the LDET or RDET, no clear conclusions can be 
made. For the case of the CCP problem as depicted in Fig. 5(a), the QPDT appears comparable 
in performance to either the LDET or RDET. However, for the ISE (mode II) configuration, the 
QPDT is clearly superior in performance (Fig. 5(d)). On the other hand, the LDET and RDET 
provided better results for the TPB problem as depicted in Fig. 5(b). Both techniques appeared 



Displacement-based stress factor computations 201 

9 . 0 -  

co 

7 . 0 -  

o~ 

z 
5 . 0 -  

o_ 
(.9 (O 

3 . 0 -  

n-  
O 

eT- 
uJ 1.0- 
~2 

-1 .0  - 

-3.0 
0 

I I I 

• QPDT 
• DCT 
O LDET 
X RDET 
• DET 

0.1 0.2 0.3 0.4 0.5 
Le 

7.0 

5 . 0 -  

3 . 0 -  

o~ 

~Z 1 . 0 -  

:D 
rn 
13. 
I'- 
,.,- -1.0 

,9 
n -  

O 

~ -3.0 

~2 

-7.0 I I 
0.6 0.1 0.2 0.3 

L.a 
a 

-5.0 

• QPDT 
• DCT 
O LDET 
X RDET 
• DET 

0.4 

7.0 10.0 

5.0- 

3 . 0 -  tj') 

O~ 

1.0-  Z 

w 

n'- -1.0 - 

¢,r- 

o 
~ -3.0 

ff  

-5.0 

- 7 . 0  

~ •  QPDT 
DCT 

O LDET 
X RDET 
• DET 

"Z 
0.1 0.2 0.3 

LQ 

o~ 

Z 

n-' 
o 

rr 
,,'5, 

8.0 

6.0 

4.0 ¸ 

• QPDT 
• DCT 
O LDET 
X RDET 
• DET 

-20  ] I I 
0.4 0.1 0.2 0.3 0.4 

LQ 

a 
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to be much less sensitive to the QPE size variation in contrast to the QPDT. In the case of the 
ISE (mode I) configuration, both LDET and RDET performed better when LUa is small. With 
increasing LQ, the QPDT soon performed comparably with either the LDET or RDET. It can 
only be concluded here that none of the three techniques are clearly superior to the other in 
terms of their performance. 

The DET appears to perform in a distinctly different manner in comparison with the other 
methods. In the ISE (mode I) problem, the DET provides the best SIF estimation compared to the 
other methods as seen from Fig. 5(c). It also appears to be quite insensitive to the QPE size. For the 
ISE (mode II) given in Fig. 5(d), it performs adequately although there appears to be a kink in its 
result around LQ/a = 0.1. However, for the CCP configuration (Fig. 5(a)) its estimation is the worst 
amongst the techniques examined here. Its error is at least 5 percent. A similar pattern emerges for 
the TPB problem. In addition, an obvious aberration occurs at LQ/a = 0.05 as depicted in Fig. 5(b). 
The reason for such irregularities will be discussed at length in a later section. 

6. Use of transition elements 

A second series of analyses was performed to study the effect of using transition elements on the 
performance of the SIF computation techniques. A wide range of transition element sizes (LT) 
was examined, including several sizes of normal elements (LN). The results from the first set of 
analyses were included for comparative purposes. They were distinguished from the rest as 
having 'no transition elements'. Typical results are depicted in Fig. 6 for the TPB problem. In 
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Fig. 6, Ls is defined to be Lr or LN (size of the normal elements immediately surrounding the 
QPE) as the case may be. For the most part, Ls represents the length of transition element used. 
When normal elements were employed in place of transition elements, it is noted in the figure. It 
is obvious from Fig. 6 that no optimal transition size exists regardless of the SIF computation 
technique employed. 

The results were then replotted with (Ls + LQ)/a as the abscissa as shown in Fig. 7. In effect 
(L s "+" L(2 ) = LSR z which is the Singularity Representation Zone (SRZ) size proposed by Lim et 
al. [14]. The SRZ is utilised to indicate whether adequate singularity modelling capability is 
being provided by the elements in that zone. The results in Fig. 7 now show clear trends in 
behaviour. Hence it confirms the importance of correctly defining and applying the SRZ 
concept. This concept appears to be valid regardless of the SIF computation techniques utilised 
here. 

It is also noted that the results for Lr/LQ = 1 and LN/LQ = 1 are almost identical regard- 
less of the SIF computation technique employed. For that reason, this pair of results are 
combined together and represented as Ls/LQ = 1 in Fig. 7. This provides further affirmation to 
Lim et al.'s [14] observation that normal elements behave similarly to transition elements when 
L r / L  0 = L N / L Q  = 1. 

The overall behaviour corresponding to each technique is shown in Fig. 8 for each of the three 
problems. A number of observations may be made: 

1. The DCT appears to exhibit the largest spread of error in SIF estimation as well as the worst 
accuracy, with the possible exception of the DET. The DCT consistently performs poorer than 
the QPDT. This lends weight to Lim et al.'s [5] argument that [e DcT > [e °PDT] in general. 
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2. The Q P D T  appears to perform well in general. Its performance seems to be comparable to 

that of RDET and LDET. It provides a better range of SIF for the CCP and ISE (mode II) 

than either RDET or LDET. However, the reverse is true for the remaining problems. When 
adequate SRZ size is used, it would appear that the Q P D T  can estimate the SIF well within 
_+ 2 percent even though the meshes used were quite coarse. 

3. The DET seems to behave in a totally different manner from the other techniques. It is 
obvious from Fig. 7(e) that there appears to be some irregularities in its performance. An 
in-depth examination of this anomaly will be conducted in the following section. 

4. Generally, the LDET performs as well as the QPDT. In addition, it does not appear to 
exhibit any irregularities unlike the DET. 

5. The RDET appears to perform similarly to the LDET in general. For the CCP and TPB 
problems, its behaviour almost mirrors that of the LDET. On the other hand, it shows a 
definite departure in performance for the ISE configuration. Some minor irregularities in the 
error curve pattern is evident in Fig. 8(c). Presumably this is because the RDET still has 
some of the characteristics associated with the DET. 

6. While the use of transition elements generally tends to improve the results, it does not 
significantly alter the essential performance characteristic associated with the various 
techniques. 

7. In-depth examination of extrapolation techniques 

It is clearly evident in the previous section that some irregularities exist in the DET 
performance. To better understand this anomaly, a more detailed scrutiny of the results are 

necessary. For  the purposes of this discussion, the results pertaining to the ISE (mode II) 
problem as shown in Fig. 9 is investigated. In Fig. 9, an obvious kink in the error curves 
at approximately (Ls + LQ)/a = 0.1 is observed. Now, the variation of K along the crack face at 
various LUa when Lv/LQ = 3 is depicted in Fig. 10(a). Table 1 lists the variation of p for 
particular combination sets of the nodal K *i corresponding to Fig. 10(a). In Table 1, it may be 
observed that there does not appear to be any clear relationship between p and LUa. In fact, 
the value of p appears to fluctuate as LQ/a increases. From (7), it would seem that p is a 
complicated function of the nodal location along the crack face as well as the nodal K *i 
variation along the crack face. It is therefore not surprising that p may have no direct 
relationship with LQ/a. For the most part, the combination set (6, 8) which represents the set of 
K .6 to K *s inclusive, is used for the best fit line. However, at LQ/a = 0.05, the combination set 

(3, 5) is chosen instead as it has a higher value of p. This abrupt switch in choice of combination 
sets resulted in a sudden dip in the error curve as seen in Fig. 9. Similar characteristics may also 
be observed in Fig. 10(b) and Table 2 where normal elements were employed in place of 
transition elements. Therefore this irregularity in the DET occurs regardless of the element type 
utilised. A close inspection of other configurations revealed similar characteristics. As an 
example, the erratic behaviour observed in Fig. 6(e) is explained by the selection of a particular 
combination set over another as LQ/a is varied. When LQ/a is small, combination set J is chosen 
over L. As LUa is increased slightly, combination set L is now preferred over J as its p is the 
most optimum. With further increase in LUa, combination set J is again chosen over L because 
its p is now the most optimum. The switching between the various combination sets results in 
erratic error curves. 
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Table 1. Effect of QPE size on the linear regression coefficient and the selected stress intensity factor when transition 
elements were employed 

(3, 5) + (6, 8) + Best fit 

La/a p K DET p K DET (a, b) K DET 

0.005 0.99603 - 12.94 0.99860 - 11.55 (6, 8) - 11.55 
0.001 0.98841 - 11.83 0.99865 - 11.59 (6, 8) - 11.59 
0.02 0.98410 - 11.41 0.99864 - l 1.62 (6, 8) - 11.62 
0.05 0.99973 - 11.37 0.99853 - 11.62 (3, 5) - 11.37 

+ (a, b) means the combination set includes K *a to K *b 

Table 2. Effect of QPE size on the linear regression coefficient and the selected stress intensity factor when transition 
elements were not employed 

(4, 6) + (6, 8) + Best fit 

Lo/a p K DET p K per (a, b) K DET 

0.005 0.75450 - 12.57 0.99858 - 11.55 (6, 8) - 11.55 
0.01 0.82735 - 11.69 0.99862 - 11.59 (6, 8) - 11.59 
0.02 0.96954 - 11.40 0.99859 - 11.61 (6, 8) - 11.61 
0.05 0.99952 - 11.40 0.99851 - 11.62 (4, 6) - 11.40 

+ (a, b) means the combination set includes K*" to K *b 

In the case of the LDET,  only the combina t ion  set (3, 5) is evaluated. Consequent ly,  the 

irregularity associated with D E T  is removed. However, for the RDET,  occasional switching 

between combina t ion  sets may still occur. 

F r o m  this study, it may be concluded that the D E T  should be used with care because of its 

erratic characteristics. This characteristic may be significantly reduced if the mesh is fine at the 

crack tip and  the element size varies gradual ly away from the tip. Nevertheless, one cannot  be 

completely assured that this erratic characteristic will be eliminated. It should be noted that 

Chan  et al. [17] and Bank-Sills and Einav [-9] did not  report any aberrat ions in the use of the 

DET. However,  they investigated simple mode I problems under  uniform tension. In  addit ion,  

fine meshes were employed at the crack tip with a gradual  progression of element sizes away 

from the crack tip. 

8. Conclusions 

It was found that  the Q P D T  generally performs better than the DCT. It was also shown that  the 

D E T  may produce erratic performance because of its sensitivity to both the dis t r ibut ion of 

nodes a long the crack face and  the var iat ion of K at each node. Amongst  the two variants  to the 

D E T  proposed in this study, the L D E T  avoids totally this erratic behavour.  

Overall,  both the Q P D T  and  L D E T  performed equally well and were superior to the other 

methods studied. The Q P D T  might be given preference as it is the easiest to implement  and the 

most  efficient computat ional ly .  
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