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Abstract. A circular disc of radius a, made of homogeneous, isotropic, linearly elastic material, contains a radial 
edge crack of length b. The disc is rotating with constant angular velocity about an axis through its centre and 
perpendicular to its plane. The problem of determining the resulting stress and displacement fields throughout the 
disc is solved (within the two-dimensional linear theory) exactly and in closed form. In particular the stress 
intensity factor and the crack opening displacement are evaluated for both the plane stress and plane strain cases 
with any crack length b (0 < b < 2a) and any values of the elastic constants. 

1. Introduction 

The role of  two-dimensional linear elastostatics in crack mechanics is well established; see 
for instance Sih (ed.) [1] where are described the techniques available for determining the 
stress intensity factor for various specimen geometries and loadings. However, exact closed 
form solutions corresponding to practical (rather than contrived) loadings are in very short 
supply. Indeed, the only exact solutions available for an edge crack in any two-dimensional 
body of finite size (subjected to realistic loadings) still seem to be those given by the author 
[2, 3] for the geometry of the circular disc with a radial edge crack, Such solutions have an 
importance beyond their intrinsic analytical interest, since they are the "benchmark solutions" 
against which approximate techniques can be tested. 

In the present paper we give a further exact closed form solution for this geometry for the 
practically important case in which the loading is induced by the disc spinning with constant 
angular velocity about an axis through its centre and perpendicular to its plane. This 
problem is solved (within the two-dimensional linear theory) exactly and in closed form. In 
particular we obtain the stress intensity factor K for any crack length "aspect ratio" (even 
for crack lengths longer than a radius) and any value of Poisson's ratio; similarly we evaluate 
the crack opening displacement U at the mouth of  the crack. A brief account of the necessary 
analysis is given in Sections 2. 3, 4 and the results are presented in an easily usable form in 
Section 5. 

The existing literature on this problem is sparse. Delale and Erdogan [4] consider the more 
general problem of a rotating annulus with a radial crack which may be at an edge or 
embedded: the method involves the approximate numerical solution of a singular integral 
equation. However although the authors remark that their method could have been used to 
find K for the case of a solid disc, they did not investigate this case. Rooke and Tweed [5] 
have investigated the actual problem solved in the present paper. For the case in which the 
crack length b is less than the radius a, they used Mellin transforms to reduce the problem 
to a singular integral equation. They solved this integral equation approximately for a 
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selection of values of b in the range 0 < b < a to obtain estimates of K and of the strain 
energy; this procedure becomes ill conditioned as b approaches a, and is invalid for b > a. 
(It should be noted that the graphs of K/Ko given in [5] are for theplane strain case; moreover, 
since the loading in the rotating disc problem involves Poisson's ratio explicitly, one cannot 
immediately deduce the plane stress case from results given.*) Our results for K/K o, when 
restricted to the case of  plane strain and b < a are in agreement with those in [5]. The 
problem of determining the crack opening displacement is not considered in either [4] or [5]. 

2. The rotating elastic disc with an edge crack 

The problem to be solved is depicted in Fig. 1. A circular disc of radius a, made of 
homogeneous, isotropic, linearly elastic material, contains a radial edge crack of length b 
(0 < b < 2a); the disc is spinning about an axis through its centre perpendicular to its plane 
with constant angular speed co. In the frame of reference Oxyfixed in the disc, the disc is in 
an equilibrium state of plane stress* with its boundary free of tractions and loaded by the 
"centrifugal body force" 

F = Oco2r, (2.1) 

where 0 is the uniform density of the disc, and O is the origin of position vectors. 
The solution for the case in which the crack is absent is given by Love [7], p. 146. 

In particular the stress %0 (where r, 0 are plane polar co-ordinates centred on O) can 

Y 
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Fig. 1. 

* In a recent communication, Sukere [6] has used the work of Rooke and Tweed to obtain an empirical formula 
for the stress intensity factor. In view of the exact solution obtained in the present paper, such a formula is no 
longer required. 
* Corresponding results for the cylinder under plane strain conditions will also be given. 



be written 

I < ) 1  Zoo = P0 1 - e - ~ - -  1 , 

where 

P0  = 
1 QO)2 a 2, 

2 for plane stress, 

(1 + 2v) 
8(1 - v) for plane strain, 
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(2.2) 

(2.3) 

(2.4) 

v being Poisson's ratio for the disc. 
When the crack is present the solution will consist of Love's solution plus another solution 

for the cracked disc corresponding to the symmetrical loading 

zyy(x,O+_) = -P0  1 - e \ a 2  - 1 , (2.5) 

Zyx(X, 0+_) = 0, (2.6) 

on the crack faces, with no body force; note that Poisson's ratio v appears explicitly in this 
loading and that, as a consequence, the stress intensity factor will depend on v. In a previous 
paper (Gregory [2]) the author has given an exact closed-form solution for the constant 
pressure loading 

Zyy (x, 0 +_) = -po ,  (2.7) 

and so it remains to solve for the case of the quadratic loading 

_ • yy(x, 0+_) = -P0 \ a -  

It is convenient to solve this problem in a bipolar co-ordinate system (4, r/), where 
4(= ~ + itl) is related to z(= x + iy) by 

= log [z----~a]Z- a (2.9) 

with 0 ~< t/ ~< 2re. The bi-harmonic equation for the Airy stress function X(X, y) is not 
preserved by (2.9), but if we define the Jeffery potential ~o(~, t/) by 

Z 
q~ j ,  (2.10) 
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where 

j = d~ = a 

cosh 4 - cos ~/ 

then ~o(4, r/) satisfies 

~-~ + 2 a{2&/----- 7 + --8714 - 2 ~-5 + 2 ~q2 + 1 q~ = O, 

(2.11) 

(2.12) 

0q~ 
- = ! ~  ~rc,  ( 2 . 1 3 )  

{ ~  --P°a (2.14) 
~o = 1 + cosh (4 + 40) '  

0~o 0 (2.15) 

on r/ = ~c_+, - ~ < 4 < 0. In (2.14), 40 is related to the crack length b by 

b = a (1 + tanh½40). (2.16) 

The above problem for cp(~, r/) is clearly of  the Wiene r -Hopf  type (see Noble [8]) but it would 
be difficult to proceed directly since the left-hand Fourier  t ransform 

a ei~- d4 fo (2.17) 
1 + cosh (4 + 40) 

cannot  be evaluated. However  (2.14) may  be written 

q~(4, ~+-) = --2poa ~ (-- l)n+ln e ~° e =¢, (2.18) 
==1 

where the series in (2.18) is convergent for 4 ~< 0 provided that 40 < 0 i.e., when the 
crack length b is less than the disc radius a. For  the moment  we will assume that this is so, 
but this restriction will be removed later. Thus it suffices to solve for the sequence of  

and 

an equation with constant coefficients. I f  we also translate the (4, q)-region parallel to the 
axis of  4 so as to bring the image of  the crack tip to the point ~ = 0, r/ = n, then the 
(4, q)-region becomes that shown in [2], Fig. 2, with the governing equation (2.12) and the 
boundary  conditions 
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"loadings" 

&P = 0, 

(2.19) 

(2.20) 

f o r n  = 1 , 2 , 3  . . . . .  
The determination of  q~n(~, t/) corresponding to the loading (2.19), (2.20) is achieved using 

the Wiene r -Hopf  technique. The method is similar to that described in [2] and the extensive 
details are omitted. The result is 

- ia 
(Pn(~, t/) -- [COS r/ H,({,  t/) + sin t/H2(¢, t/)], (2.21) 

27cK+ (ni) 

where 

_ _ -- sinh e ( r c  - -  r / )  "~ e -i~e de HI (4, /1) = f~o¢ -- K+ (0 0 cosh c~(~z 17) -t- j 
e - ni 0~(e -- ni)(e 2 + 1)K (~) 

(2.22) 

(cosh  ~(7c - r / ) -  coth 17c~ sinh e(~ - r/) ] e_i < 
H~(~, r/) = L2 (e -- ~)(~5 7+- - i ) -K_~ ; - d e  (2.23) 

In (2.21)-(2.23) the functions K_+ (e) are certain analytic functions of  the complex variable 
which are defined in Appendix 1 by an explicit product  formula. 
In particular for ~ > 0 

- ia K+ (~)e -i=e- d~ (2.24) 
q~(~' ~) - 2rcK--~+(ni);~o~ e - ni ' 

and, by letting ~ ~ 0 + ,  the stress intensity factor at the crack tip corresponding to the 
loading (2.19), (2.20) is found to be 

al/2( cOsh 4o + 1) 1/2 

nl/2K+(ni) 
(2.25) 

This is the stress intensity factor corresponding to the term e "~ in (2.18) and so summing gives 
the stress intensity factor due to the required loading (2.8), (2.6); this is 

2/9° a 1/2 (cosh 40 + 1) 1/2 ~ ( -  l)n+l H e n~° 
K - 7c 1/2 .=1 K+(ni) 

(2.26) 

In terms of  the crack length b (see (2.16)) this becomes 

 2 ,3/2 0 l,n+lnE b in  227, 
K = ( ~ b ) ~  Z b)l/Z,=l K+(ni) 2a - b 
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This formula can be used to find K due to the loading (2.8), (2.6) for b < a; the series 
converge rapidly for small b/a. All that is required to apply it are the (real) values K+ (ni), 
n = 1, 2 . . . . .  The first ten of these are given in Appendix 1. Using a ten term series gives 
three figure accuracy for K for b in the range 0 < b/a < 0.45. An integral formula, valid for 
all b will be obtained in Section 4. 

3. The crack opening displacement 

In order to calculate the opening at the mouth of the crack in the spinning disc, it is necessary 
to obtain the displacement fields corresponding to the sequence of loadings (2.19), (2.20). 
The calculation of displacement fields corresponding to a given Jeffery potential q)({, q) is 
described by Coker and Filon [9] p. 168 and involves the determination of a displacement 
potential Q({, ~/). The displacement potential Q,({, r/) corresponding to the Jeffery potential 
q%(4 - 40, q) given by (2.21) is 

[ l C, cos t/ H3(4 - 40, t/) -- (n + 1)K+(i)J 
Q,(~,t/) = c o s h 4 -  cos~/ 

ne ¢°-¢ sin ~/ Cn sin r/ H4(4 - 40, q) - (3.1) ] 
+ cosh 4 - cos r/ (n + 1)K+(i) ' 

where 

a 2 

Cn - ~K+(ni) '  (3.2) 

- cosh e(n - ~) ~ e -i~ de, H3(#, q) = ; ]~  - K+(~) sinh e(n q) + (3.3) 
- ni e(e - ni)(e 2 + 1)K_(e) J 

H4(4, t/) = f_~ {sinh c~(n-  t / ) -  coth 1roe cosh e(n - r/)} e_i~¢ 
(~ - n i ) -~  ~-- O-K_---~-) &z. (3.4) 

In (3.3), (3.4) the contour of integration is taken below the pole at e = 0. 
The displacement u, (4, t/) is then given by 

1 - v  0 10Q , 
Eu. - J (j o) + 2 a-7' (3.5) 

for the case of plane stress, where E is Young's modulus and v Poisson's ratio. The crack 
opening displacement U is given by 

U = - 2 u , ( - - ~ ,  ~), (3.6) 
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and on performing the necessary analysis, the crack opening corresponding to the loading 
(2.19), (2,2) is found to be 

4a I 1 e~° ] 
-- EK+(ni) nK~(O) + (n + 1)K+(i) ' 

(3.7) 

By summing we can now find the crack opening U due to the required loading (2.8), (2.6). 
This is 

U = 8 p ° a [  1 ~ (-l)"+~en¢° e¢° (-1)"+lne"¢° I (3.8) 
E K+(0) .=~ K+(ni) + K+(i------) ,,= ~ (n + 1)K+(ni) " 

This can be written in terms of the crack length b by substituting 

e¢ o _ b 
2a - b" (3.9) 

The formula (3.8) can be used to find U due to the loading (2.8), (2.6) for b < a; the series 
converge rapidly for small b/a. The (real) values of K+ (ni), n = 0, 1, 2, . . . are given in 
Appendix 1 up to n -- 10. Using ten term series gives three figure accuracy for U for b in 
the range 0 < b/a < 0.5. An integral formula, valid for all b will be obtained in Section 4. 

4. Formulae for K, U valid for all b 

The formulae (2.26), (3.8) give the stress intensity factor K and the crack opening displace, 
ment U due to the loading 

ryy(x, O+) = -P o  - 1 , 

%~(x, O+ ) = O, 

(4.1) 

(4.2) 

on the crack faces a - b < x ~< a, y = 0_+. (The formula (3.8) for U is for plane stress; 
to get the plane strain formula, multiply by (1 - v2)). These formulae are valid only for b 
in the range 0 < b < a, since the three infinite series involved are actually divergent for 
40 >~ 0, that is b >~ a. Consider, for instance, the series 

Sl(4o) = ~ ( -  1)"+lne"¢° 
,=~ K+ (ni) ' (4.3) 

which appear in (2.26) and which converge only for 40 < 0. However for 40 < 0, Si(G) can 
be written as the integral 

- i c ~ 4 o  

$1(4o) = f_~ ~ e dec, (4.4) 
2K+ (c0 sinh ~e 
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where K÷ (e) is defined by (A1.1). This can be shown by closing the contour of integration 
in (4.4) around the poles of the integrand (at e = ni, n /> 1) in the upper half-plane. But the 
function S~ (G0) defined by (4.4) exists for all real ~o and thus represents an analytic con- 
tinuation of the series formula (4.3). Thus (4.4) can be used instead of (4.3) in (2.26) to give 
a formula for K valid for all crack lengths 0 < b < 2a. 

Similar remarks apply to the series 

S2(¢o) = ~ (--1)"+1 e'~° 
~=1 K+(ni)  ' (4.5) 

( - -  1)'+lne n~° 
83(40) = n~l (H + 1)K+(ni) ' (4.6) 

which appear in (3.8). These may be written in the form 

i e - i~°  2co 
S2(~O) d~, (4.7) 

J'-o~ 2K+ (a) sinh ~e 

i0~ e -i~{° 
&(~o) d~, (4.8) 

J-~ 2(c~ + i)K+(e) sinh rc0~ 

valid for all 40, - oo < G0 < 00. Thus (4.7), (4.8) can be used instead of(4.5), (4.6) in (3.8) 
to give a formula for U valid for all crack lengths 0 < b < 2a. 

5.  R e s u l t s  

The final values of K and U for the spinning disc can now be deduced from (i) the values 
/£1, U~ due to the loading (2.7) and given explicitly in [2], and (ii) the values K2, U2 due to 
the loading (2.8), and derived in the present paper. Our results will be normalized by Ko, U0, 
where 

K o = po(b/2) 1/2 (5.1) 

I4Pob/E for plane stress, 

U° = (4p 0b(1 - v 2)/E for plane strain, 
(5.2) 

1 2 2 ( 5 . 3 )  Po = ~0co a .  

(Ko, U0 are associated with the problem of a Griffith crack of length 2b expanded by constant 
internal pressure P0.) 

Thus recalling (2.5) 

K _ K 1 ~(v) K2 (5.4) 
Ko K0 K0 ' 
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Table 1. Values of Kl /K  o, K2/K o, U1/Uo, U2/Uo for 0 ~ b/a < 2. 

b / a K~ / K o 1<22/Ko U~ / Uo Uz / Uo 

47 

0.00 1.122 2.243 1.454 2:909 
0.10 1.211 2.008 1.640 2.983 
0.20 1.314 1.786 1.860 3.050 
0.30 1.431 1,578 2.121 3,111 
0.40 1.567 1.382 2.435 3.165 
0.50 1,727 1.200 2.817 3,212 
0.60 1.915 1.031 3.287 3.250 
0.70 2.140 0.875 3.874 3.281 
0.80 2.413 0.732 4.619 3.303 
0.90 2.750 0,602 5.583 3.316 
1.00 3.172 0.485 6.860 3.320 
1.10 3,715 0.382 8.598 3.314 
1.20 4.433 0.291 11.045 3.297 
1.30 5.416 0.212 14.639 3.268 
1,40 6.825 0.147 20.215 3.227 
1,50 8,972 0.094 29.526 3.172 
1.60 12.539 0.054 46.787 3.102 
1.70 19.305 0.025 84.335 3,014 
1.80 35.466 0,008 192.362 2.908 
1.90 100.312 0.001 779,877 2.782 

where 

! ] - 3/2 
K 1 _ 2 2 - (5.5) 
K 0 7cl/2K+ (i) 

I 1 + 3_v for plane stress, 

c~(v) = J l - + -  2v_ (5.6) 
1,8(1 - v) for plane strain, 

and the value of K+ (i) is given in Appendix 1. The value of K2/Ko can be deduced from (2.27) 
and (4.4); some numerical details are given in Appendix 1. Table 1 gives numerical values 
of K1/K o and K2/K o for various b/a. These values are independent of Poisson's ratio v. 

Similarly 

U UI /L  
- ( 5 . 7 )  

No No No' 

where (from [2]) 

U~ 1 (5.8) 

and c~(v) is given by (5.6); values of K+ (0), K+ (i) are given in Appendix 1. The value of U2/U o 
can be deduced from (3.8), (4:7), (4.8), and numerical values are given in Table 1. These 
values are independent of Poisson's ratio v. 
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Fig. 2. K/Ko for plane stress and strain with v = 0.5. 
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Fig. 3. U/Uo for plane stress and strain with v = 0.5. 

> 8/A 

The values of K/Ko in plane strain, when restricted to the case b < a, are in agreement  with 
the results of  Rooke  and Tweed [5]. 

The crack opening U may  be significant when the disc is made  o f  (e.g.,) polymer  whose 
Young 's  modulus  is much  smaller than that  o f  metals. Suppose for example that  the disc has 
radius 20 cm, contains an edge crack 16 cm long, is rotat ing at 60 revs/sec, and has the 
material  propert ies E = 2 x 108Nm -2, v = 0.45, ~ = 6 0 0 k g m  -3. Then  the calculated 
value o f  U is 1.33 cm. (The max imum displacement which would occur in the same disc, but  
with the crack absent, is 0.047 cm.) 
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Appendix 1. The function K+ (~) and numerical procedures 

49 

The function K+ (e) is defined (see [2], Appendix 1) by 

1 + ~ ) ( 1 - - ~ )  
(~2 -- 4)I/2 2i~ 1~I , (AI.1) 

K+(c0 = 2 ~  c~ 
n=l 1 + 7  

In 

where {c~n} (n ~> 1) are the complex roots of 

sinh2½~e - cd = 0 (A1.2) 

lying in the first quadrant  and arranged in order of increasing modulus. The {en} were 
determined numerically by a complex Newton iteration method using as starting values the 
asymptotic formula for e. valid for large n. Although (AI.1) can be used to evaluate K+ (c 0, 
the terms of this infinite product  are only t + O(1/n 2) as n ~ oo and so convergence is 
rather slow. It is more efficient to use the modified product  

= (7C2 -- 4)1/22i~sinz f i  (1 -~- ~n) ( l  -- ~ )  (A].3) 
z K+ (c0 2-~ n = l  1 + ~n 1 + 4n 2 

where z = rt(~ 2 - 2ic@/2/2, whose terms are 1 + O(log2n/n3). If this product  is combined 
with an integral estimate of the truncation error in stopping the product after N terms, then 
the truncation error is reduced to O(log 2 N/N 3) compared with O(1/N) for the original 
product  (AI.1). Values of K+ (ni) for n = 0, 10 are given in Table 2. 

Values of K+ (hi) for n = 1,100 were used in the series $1, $2, $3 in (4.3), (4.5), (4.6). K+ (c0 
was also evaluated for e real and numerical integrations were performed to evaluate the 
integral expressions for $1, $2, $3 in (4.4), (4.7), (4.8). These numerical values were all found 
to be consistent in the common region of validity. The values of K2/Ko, U2/Uo in Table 1 were 
calculated using the integral expressions for $1, $2 $3 and are correct to the number of places 
given. 

Table 2. Values of K+ (ni) to 4 figures 

n K+ (ni) 
0 0.9665 
1 0.3557 
2 0.1947 
3 0.1265 
4 0,0905 
5 0.0688 
6 0.0545 
7 0.0446 
8 0.0373 
9 0.0319 

t0 0.0276 
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R6sum6. Un disque circulaire de rayon "a", en un mat6riau homog6ne, isotrope et 61astique lin6aire, comporte une 
fissure radiale de bord de longueur "b". Le disque tourne gt vitesse angulaire constante autonr d'un axe normal 
passant par son centre dans les limites de th6orie lin6aire ~ deux dimensions. On r6sout le probl6me de la 
d6termination des champs de contraintes et d6placements dans le disque, sous une forme exacte on sous une forme 
ferm6e. En particulier, le facteur d'intensit6 de contraintes et la COD sont 6valu6s en condition d'6tat plan de 
tension et d'6tat plan de d6formation pour toute longueur de fissure comprise entre 0 et 2a et pour tonte valeur 
de constantes 61astiques. 


