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Abstract. Dynamic crack growth is analysed numerically for a plane strain double edge cracked specimen subject 
to symmetric impulsive tensile loading at the two ends. The material behavior is described in terms of an 
elastic-viscoplastic constitutive model that accounts for ductile fracture by the nucleation and subsequent growth 
of voids to coalescence. Two populations of second phase particles are represented, including large inclusions or 
inclusion colonies with low strength, which result in large voids near the crack tip at an early stage, and small 
second phase particles, which require large strains before cavities nucleate, The crack growth velocities determined 
here are entirely based on the ductile failure predictions of the material model, and thus the present study is free 
from ad hoe assumptions regarding appropriate dynamic crack growth criteria. Adiabatic heating due to plastic 
dissipation and the resulting thermal softening are accounted for in the analyses. Different prescribed impact 
velocities, inclusion spacings and values of the inclusion nucleation stress are considered. Predictions for the 
dynamic crack growth behavior and for the time variation of crack tip characterizing parameters are obtained for 
each case analyzed. 

I. Introduction 

Investigations of rapid crack growth have mainly focussed on determining critical values of  
crack tip characterizing parameters such as the energy release rate, the stress intensity factor, 
or the crack-tip-opening displacement. Once a measure of the frature toughness is known as 
a function of crack speed, this relationship can be used in computations to predict crack 
growth. 

For a crack travelling at constant speed in an infinite elastic plate Broberg [1] and Freund 
[2] have obtained exact analytical results for the energy release rate as a function of the crack 
growth rate, G(d). The infinite plate problem is special in that stress waves reflected from the 
boundary are absent. In the more general case, where a structural component or a test 
specimen is analyzed, stress waves are reflected from the boundaries and may have a strong 
effect on the crack growth behavior. In such cases the dynamic stress-intensity factor as a 
function of the crack growth rate, Kij(gt), has often been used as a crack propagation 
criterion, e.g., by Brickstad and Nilsson [3] who analyzed crack growth and arrest processes 
in prestressed sheets of hardened carbon steel. 

Experimental investigations are necessary to obtain the fracture toughness versus crack 
speed relationships for different materials. Kalthoff [4] has recently reviewed such exper- 
imental work, with the main focus on the shadow optical method of caustics, which can be 
used on transparent specimens as well as non-transparent specimens (by reflection of light 
from the surface). In this method the size of the shadow pattern is a measure of the stress 
intensity factor, and the development of this pattern is followed by a high speed camera. 
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Kalthoff [4] emphasizes the need to account for dynamic effects in procedures used to 
evaluate the dynamic fracture toughness, e.g., by applying the concept of impact response 
curves. 

Elastic-plastic finite element analyses of rapid crack propagation have been carried out by 
Ahmad et al. [5] for a number of cases, using either the crack-tip-opening displacement, the 
crack-tip-opening angle, the dynamic stress-intensity factor, or a conservation integral to 
characterize crack advance. These authors find that even for a high-strength steel the effect 
of crack tip plasticity is significant, so that a conventional elastodynamic analysis is not 
sufficient. In a viscoplastic finite element analysis of  dynamic crack growth carried out by 
Hoff et al. [6] good qualitative agreement with experiments has been obtained by using 
crack-tip-opening displacement versus crack advance results for slow growth in the initial 
part, and subsequently using a fixed critical value of the crack-tip-opening angle as the 
fracture criterion. 

A simple strip yield model has recently been used by Freund and Lee [7] to gain insight 
in the effect of material rate-dependence on fracture mode transition. Here, the crack 
advances at constant speed in an infinite elastic solid, with inelastic material behavior 
represented by a rate-dependent cohesive stress in the yield zone. A critical value of the 
crack-tip-opening displacement is used as a ductile mode crack growth criterion, while a 
critical stress at a fixed distance ahead of the crack tip is used as a criterion for cleavage crack 
growth. Solutions to this problem make it possible to construct curves of critical stress 
intensity factor versus crack speed for different levels of viscosity, showing the transition 
between the two different fracture modes. 

In the present paper an elastic-viscoplastic model of a ductile porous solid is used in a 
numerical analysis of dynamic crack growth. Thus, instead of specifying a fracture criterion 
in terms of a selected crack tip characterizing parameter, the speed of crack growth is directly 
determined by the micromechanisms of failure incorporated in the material model. Voids 
nucleate and grow near the crack tip, where high levels of stress and strain occur, and the 
crack advances when failure by void coalescence is predicted. Ductile porous material 
models have been used in quasi-static crack analyses by Aoki et al. [8] and Aravas and 
McMeeking [9] to predict the onset of crack growth, and Needleman and Tvergaard [10] and 
Becker et al. [11] have carried such analyses further to consider stable crack growth. An 
extended version of the elastic-viscoplastic porous ductile material model has also been used 
by Tvergaard and Needleman [12, 13] to analyze the transition between fibrous fracture and 
cleavage fracture in Charpy V-notch specimens. 

A plane strain double edge cracked specimen under dynamic axial loading is considered 
and adiabatic heating due to plastic deformation is taken into account. It is assumed that 
the main effects of a temperature increase are changes of the yield strength and thermal 
expansion. Attention is focussed on circumstances where ductile void growth is the sole 
micromechanism of failure. 

2. Problem formulation 

The analysis is based on a convected coordinate Lagrangian formulation of the field 
equations with the initial unstressed state taken as reference. All field quantities are con- 
sidered to be functions of convected coordinates, yi, which serve as particle labels, and time 



Dynamic  ductile crack growth 43 

t. The position, relative to a fixed Cartesian frame, of  a material point in the initial 

configuration is denoted by x. In the current configuration the material point  initially at x 

is at ~. The displacement vector u and the deformat ion gradient F are defined by 

0~ 
u = ~ -  x ,  F - ( 2 . 1 )  

c3x" 

Base vectors in the reference configuration (unbarred) and in the current configuration 

(barred) are given by 

c~x ( ~  
- , - ( 2 . 2 )  gi 0yi gi 0y"  

ff = g~igj, ~' = ~!J~/, (2.3) 

where g~J and ~J are, respectively, the inverses of  the metric tensors g~j = gi • gj and ~j -- 

~," f~j. 
The dynamic principle of  virtual work is written as 

Gq 2 ui 
J'~r!J'SE~J d V  = fs T i f u i d S  - f J ' P - ~  6 u i d V '  (2.4) 

where V, S and p are the volume, surface and mass density, respectively, of  the body in the 
reference configuration. 

Here, riJ are the contravar iant  components  of  Kirchoff  stress on the deformed convected 
coordinate  net, • = Ja,  with a the Cauchy stress and J = det(F). Also, 

T i = (r ij + ZkJUlk)V ,, (2.5) 

Ei/ 1 U~Ukj), (2.6) • = ~ ( U i , ~  + U~,,. + , , 

where v is the surface normal in the reference configuration, u~ are the components  of  the 

displacement vector on base vectors in the reference configuration, and ( ),i denotes covariant 
differentiation in the reference frame. 

The computat ions  are carried out for a double edge cracked rectangular bar as shown in 
Fig. 1. Plane strain conditions are assumed to prevail and a Cartesian coordinate  system is 
used as reference, with the y~-y2-plane being the plane o f  deformation.  The specimen 
dimensions are taken as w = 100mm and b = 200ram, with an initial crack length 
a = 17.5 mm. Symmetry about  both the y~ and y: axes is assumed. The boundary  conditions 
on the quadrant  analyzed numerically are 

T t = 0, T 2 = 0 o n y l  = _ w ,  (2.7) 

u I = 0, T 2 = 0 on yl = 0, (2.8) 

T I = 0, T 2 = 0 ony2  = 0and) ,~  < - ( w  - a), (2.9a) 

u2 = 0, T ~ = 0 o n  y2  = 0 and yl > _ ( w  - a), (2.9b) 

u2 = U(t), T ~ = 0 o n v  2 = b. (2.10) 
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Fig. 1. Geometry of the double edge cracked specimen. 

The function U(t) in (2.7) is taken as 

u(t) 
V1 t 2/(2t, ), 

V~ (t - t~/2), 

for t ~< t~; 

for t > tl, 
(2.11) 

with V 1 being a prescribed velocity and tl the rise time. 
The basis for the constitutive model is a flow potential, introduced by Gurson [14, 15], that 

characterizes the porosity in terms of  a single scalar internal variable, Jl the void volume 
fraction 

a~ (3q2ah )  q~j.,2 
¢b = 6- ~ + 2qLf* cosh -- 1 -- = O. (2.12) 

\ 2~ 

Here, ~ is the average strength of  the matrix material and 

crT,~ = ~_~3 ' : a '  o" h = ~ : I  a '  = a - c y h l .  (2.13) 

In the rate-independent constitutive relations proposed by Gurson [14, 15] (I) serves as a yield 
function. In the viscoplastic formulation, Pan et al. [16], there is no yield condition and 
is a plastic potential. 

The parameters q~ and q2 were introduced by Tvergaard [17, 18] to bring predictions of  
the model into closer agreement with full numerical analyses of  a periodic array of  voids..The 
function f *  was proposed by Tvergaard and Needleman [19] to account for the effects of  
rapid void coalescence at failure. Initially f *  = f a s  originally proposed by Gurson [14, 15], 
but at some critical void fraction, f the dependence of . /*  on f is changed. The function is 



Dynamic ductile crack growth 45 

expressed by, 

I f f ~< f ;  

f *  = ~ .£* _ f .  (2.14) 

I f .  + . ~ . _ f - - ( f - f )  f ~ > f .  

The constant f *  is the value o f f *  at zero stress in (2.9), i.e.,f,* = 1/q~. As./  ~ .~ , f*  ~ f *  
and the material loses all stress carrying capacity. 

In general the evolution of the void volume fraction results from growth of existing voids 
and nucleation of new voids, 

? = Low,  +  ,oc,o ,on. (2.15) 

The rate of increase of void volume fraction due to the growth of existing voids is determined 
from the condition that the matrix material is plastically incompressible, 

.fgrowlh = (1 - f ) d  p '  1. (2.16) 

The contribution resulting from the nucleation of new voids is taken to be given by, 

./",,uc,~tion = ~ + .~(d,. + 6h). (2.17) 

As suggested by Chu and Needleman [20], void nucleation is taken to follow a normal 
distribution. For plastic strain controlled nucleation, 

- SNX/~ exp -- -2 \  SN / A  

while for stress controlled nucleation 

'~3 - sNx/~fv e x p [  1 ( ( ~ +  ° h ) -  0"Ut2] ~ = 0 " - -  2 S,v (2.19) 

The plastic part of the rate of deformation, d p is taken in a direction normal to the flow 
potential, 

0@ 
d p = A #a (2.20) 

By setting the plastic work rate equal to the matrix dissipation, 

a ' d  p = ( 1 - f ) a ~  (2.21) 

the plastic flow proportionality factor, A is determined to be, 

A - (1 - j ) a ~  (2.22) 

#a 
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The matrix material is characterized as a thermally softening viscoplastic solid. The matrix 
plastic strain rate, ~, is given by 

= ~o g ( L T ) J  " (2.23) 

Here, T is the temperature and 

g(L T) = %[1 - / ? ( T -  T0)][1 + ~/~o1 u. (2.24) 

The heating due to plastic dissipation is accounted for and adiabatic conditions are assumed 
so that balance of energy gives 

~T 
pCp (~l - -  )~: de, (2.25) 

where p is the density in the reference configuration, cp is the heat capacity, and the 
parameter Z specifies the fraction of  plastic stress working converted to heat; )~ is taken to 
have the value 0.90, which is a typical value for metals, Taylor and Quinney [21]. 

The rate of  deformation is as the sum of an elastic part, a plastic part and a part due to 
thermal straining. Hence, 

d = d e + d p - t -  d r (2.26) 

with d p as given by (2.20), with the elasticity approximated by the hypoelastic relation 

de ~_ ~ 1 ] ~ (2,27) 

and with 

dr = ~7~!, (2.28) 

where ~ is the Jaumann stress rate, 5 a is the tensor of  elastic moduli and c~ is the thermal 
expansion coefficient. Substituting into (2.26) and inverting gives 

(3¢I) 
gr = ~ : d  - A S e : - -  - ~ T f : l .  (2.29) c?a 

On the current convected coordinates 

5gik/ __ E ½(~ik~/t + ~jk~?il) + 1 -- 2V ~?~j~/ (2.30) 
I + V  

In the calculations here, the material parameters are specified to have values representative 
of structural steels; E = 211GPa, v = 0.3, o0 = 1000MPa, N = 0.1 and m = 0.01. The 
reference temperature T0 is taken as 20°C, /3 = 0.0016 per °C, c, = 465J/(kg°C) and 
:t = 1 x 10 5perOC. 
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For the viscoplastic material, wave speeds are determined by the elastic moduli. With 
p = 7800kgm -3 = 7.8 x 10 3MPa/(ms t)2, the speeds of the elastic distortion and 
dilatation waves are 

~/2G(1 - v)/(1 - 2v) 
c0 = = 3.23 x 1 0 3 m s  - I  c t = P = 6.03 x 103ms t, 

(2.31) 

where 2G = El(1 + v). 
For a plane strain crack, growing along the y~-axis, the energy released per unit crack 

advance is, Nakamura et al. [22], 

= lim Iv [(W + L)dy 2 - TiUi, l ds], (2.32) 
F ~ 0  

where F is a path in the reference configuration surrounding the defect tip and W and L are 
the stress-work and kinetic energy density, respectively, with [23] 

f~i, (?u i ~?ui (2.33) 
W = "c 0 dEi i  - o~ f ~  "r~ d T  L = ½p ~t Ot 

Using the general procedure for treating crack tip contour integrals, Moran and Shih 
[24, 25], ~ can be expressed as 

J = iv [(W + L)dy 2 - TiU,,l ds] + fA ~ T k T I  + ui ' l  - -  a M ,  

(2.34) 

where A is the area inside the contour F. In obtaining (2.34), the relation W 1 = r i l E i j ,  l - 

0~rkk k T 1 has been used. 
The expression (2.34) gives the generalization of Rice's [30] J integral for dynamic loading 

conditions. The main significance of J for stationary cracks under quasi-static loading 
conditions stems from its role as a characterizing parameter for near tip field quantities, even 
for a path dependent Mises flow theory solid. In the circumstances analysed here, J in (2.34) 
does not necessarily serve as such a characterizing parameter. 

3. Solution procedure 

The transient analysis for the double edge cracked specimen is carried out using a finite 
element approximation for the displacement components in the dynamic principle of virtual 
work (2.4). Due to symmetries of the specimen and the assumed symmetry of loading, as 
specified by (2.7) to (2.11), only one quarter of the specimen needs to be analyzed numeri- 
cally. The mesh used for the computations is shown in Fig. 2, where each quadrilateral is 
built up of four triangular, linear displacement elements. In front of the crack tip a uniform 
mesh is used in a small rectangular region to describe crack growth, Fig. 2b. The length of 
this region in the direction of crack advance is chosen as 0.015w (1.5 mm) and the height is 
0.7 x 10-3w (0.07mm). The quadrilateral elements in the uniform region are rectangles of 
dimension 0.0214mm x 0.0175mm. 
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(a) 

,,'k\\\\\) 

L initial crack tip 

(b) 

F(g. 2. Finite element mesh. Each quadrilateral consists of four "'crossed" triangles. (a) Quadrant analyzed 
numerically. (b) Inner mesh showing the location of the initial crack tip. In presenting the numerical results, 
attention will focus on distributions of" field quantities in this region. 

The crack growth mechanism analyzed here involves two populations of void nucleating 
particles; large particles that nucleate voids at relatively small strains and smaller particles 
that nucleate voids at much larger strains, see also Needleman and Tvergaard [10]. The small 
scale particles are taken to be uniformly distributed and nucleate by a plastic strain con- 
trolled mechanism (2.18). The large particles are modelled as "'islands" of the amplitude of 
the void nucleation function (2.19) corresponding to stress controlled nucleation. Thus, in 
the present plane strain analysis the large particles are cylindrical in shape, and the spatial 
distribution of the amplitudef~, in (2. i 9), defining an island with radius r0 and center at ( .V~o, 
Y0) is taken to be of the form 

.lk. .~,.exp{ [(yt ),~)e + (ye ,,~,, ,I . . . .  ya)-l/~,.  (3.1) 
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The "islands" of void nucleation amplitude in (3.1) will be referred to as particles or 
inclusions, although only the void nucleation characteristics of second phase particles or 
inclusions are modelled. Since the difference in material properties between the particle and 
the background material is not accounted for, any difference in response between the particle 
and the background material is a consequence of void nucleation and growth. 

The equations resulting from substituting the finite element approximation of u into (2.4) 
are of the form 

Z U  
M O t  2 - F, (3.2) 

where M is a mass matrix, U is the nodal displacement vector and F is the nodal force vector. 
As in a previous transient analysis for the Charpy V-notch test, Tvergaard and Needleman 
[13], the equations of motion (3.2) are integrated numerically by an explicit integration 
procedure, the Newmark fl-method with /~ = 0, Belytschko et al. [26]. A lumped mass 
matrix is used instead of the consistent mass matrix, since this has been found preferable for 
explicit time integration procedures, from the point of view of accuracy as well as compu- 
tational efficiency, Krieg and Key [27]. The boundary conditions (2.11) are expressed in 
terms of a prescribed OU/Ot, which is constant, apart from an initial time interval [0, t~] where 
the velocity is ramped up linearly. 

In the explicit time integration procedure the maximum stable time step is limited by the 
criterion At ~< min (Al/c), where Al is the minimum element dimension, c is the maximum 
wave speed (see (2.31)), and the minimization is taken over all elements. Another limitation 
is due to the elastic-viscoplastic constitutive description. After each time step the values of 
the stress components, void volume fraction, matrix flow stress, etc., are updated using (2.15) 
to (2.29). Due to the large exponent 1/m in (2.23), small oscillations in 6 may result in violent 
oscillations of the stresses obtained from (2.29) during updating, unless the time step is 
sufficiently small. This limitation on At can be relaxed somewhat by using the forward 
gradient method proposed by Peirce et al. [28]. 

Since heating due to plastic dissipation is accounted for in the present analysis, the 
forward gradient method has to be modified accordingly. In the constitutive relations the 
matrix plastic strain rate, ~, is expressed as a linear interpolation between the rates at time 
t and t + At, respectively, 

= (1 - 0)~, + 0~,+A, (3.3) 

and a Taylor series expansion is used to estimate the value of the rate at time t + At 

~?~ ~?~ ~ + - -  . (3.4) 

Here, with the assumption of adiabatic conditions, (2.25) and (2.21) give the following 
expression for the rate of change of the temperature 

_ Z 
- - - ( I  - f ) 6 ~  (3.5) 
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to be substituted into (3.4) and the last term of (2.29). Apart from these two modifications 
due to the non-zero value o f / ' ,  the remaining part of the derivation of the rate dependent 
tangent modulus expression follows that given by Peirce et al. [28] and is not repeated here. 

Material failure by void coalescence is implemented in the numerical computations via the 
element vanish technique of Tvergaard [29]. When the failure condition is met in an element, 
the contributions of this element to the virtual work are neglected, and the nodal forces 
arising from the remaining stresses in a failed element are gradually released in subsequent 
increments. As in previous analyses, e.g., [10-13], failure of an element is taken to occur 
slightly before the total loss of stress carrying capacity, when f *  = 0.9f*. In the present 
investigation the speed of crack growth is directly determined by this occurrence of material 
failure, leading to vanishing element stiffnesses ahead of the crack tip. 

4. Results 

Although no attempt is made to model a specific real material, the material parameters have 
been specified to be representative of  high strength steels. The uniformly distributed small 
particles are taken to represent carbide particles that are typically of the order of 0.1 #m in 
size, while the larger particles represent inclusions. The size and spatial distribution of the 
larger void nucleating particles is given by (3.1), with the inclusion size specified by r 0 = 
l0 x 10 6 m -- 10/~m. In the present calculations, attention is confined to inclusions lying 
along the initial crack line. The initial spacing between inclusion centers is denoted by D, 
which serves as a characteristic length scale. It is worth noting that fully ductile dynamic 
crack growth, where the fracture mechanism involves two size scales of voids as modelled 
here, has been observed in steels by Cho et al. [35]. 

Inertial effects on void growth are not incorporated into the porous plastic constitutive 
relation described in Section 2. Hence, inertial effects are ignored for the small carbide 
particles. However, when failure occurs in the large inclusions discrete voids form and the 
inertia of the material surrounding these discrete voids is accounted for in the analysis. 

Void nucleation in the large inclusions is governed by the stress nucleation criterion (2.19), 
w i th .~  = 0,04 in (3.1) and SN = 100MPa in (2.19). Void nucleation at the uniformly 
distributed small particles is strain controlled with amplitude f~, = 0.02, eu = 0.3 and 
s~. = 0.10 in (2.18). Void growth is described by employing q~ = 1.25 and q2 = 1.0 in (2.12), 
a n d f  = 0.12 and/ i  = 0.25 in (2.14). The values q2 = 1.25 and q2 = 1.0 are chosen based 
on the analyses in [3 l, 32] which indicated good agreement between the predictions for void 
growth and stress-strain response of the Gurson [14, 15] constitutive relation and finite 
element cell model calculations for this choice of parameter values. 

Attention is focussed on four cases: (a) a+~ = l l00MPa,  D = 100~m, V~ = 20m/sec; 
(b) a~ = l l00MPa,  D = 100#m, VL = 3 0 m s  ~; (c) ~ = 2200MPa, D = 100~tm, 
V t = 2 0 m s  ~; and (d)aN = l l00MPa,  D = 200pm, V~ = 20ms  +~. Case (a ) se rvesas  a 
reference case. In case (b) all material properties are identical to those in the reference case, 
but the imposed velocity is increased. Cases (c) and (d) each differ from the reference case 
by one characteristic of the large inclusions. For case (c) the nucleation stress is a factor of 
two larger than in the reference case, but the reference spacing is maintained. For case (d) 
the particle spacing is twice the reference spacing and the nucleation stress is the same as in 
the reference case. In the following, cases (b), (c) and (d) will be denoted by the value of the 
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Fig,. 3. Traction, force per unit initial area, at the impacted end versus time. The traction is normalized by the 
reference strength a0- In all calculations here a 0 = 1000 MPa. 

parameter that differs from the corresponding reference value. Note that the elastic proper- 
ties, the strain and strain rate hardening properties, and the parameters characterizing void 
nucleation, growth and coalescence in the background Gurson material are identical for all 
four cases. 

Figure 3 shows computed curves of  traction versus end-displacement. The rise time of  
t~ = 10 psec in (2.11) is evident in this figure. The oscillations on the traction-displacement 
curves are a consequence of  the discretization. Calculations were also carried out for an 
uncracked specimen with the material characterized as a rate dependent Mises solid having 
the same elastic and plastic properties used for the calculations in Fig. 3. The quadrilateral 
mesh for these calculations consisted of  a 20 x 40 array of  identical squares (each com- 
posed of  four crossed triangles). For  both V~ = 20 m s-~ and V 1 = 30 m s- l, the traction- 
displacement curves computed using the square mesh are the mean curves about which the 
traction-displacement curves in Fig. 3 oscillate. Crack growth has no effect on the traction- 
displacement curves in Fig. 3, since the calculations are terminated before there is time for 
a wave to reflect back from the crack line (y2 = 0) to the impacted end y2 = b = 200 mm 
(this time is (2 x 0.2 m)/(6030 m s ~) ~ 66 ps). Hence, the three cases with V~ = 20 m s- 
have traction-displacement curves that coincide in Fig. 3. 

For  the reference case, Fig. 4 shows contours of  constant Mises effective stress in the 
quadrant  of  the specimen analyzed numerically. In this figure, as in subsequent figures 
showing stress contours, the stress values are normalized by ~0. Since in all the calculations 
here ~r 0 = 1000 MPa, the stress contour levels noted on the figure are stress values in units 
of  GPa. Figure 4a shows a stage shortly before the wave has reached the crack line. The stress 
state prevailing in Fig. 4a is in very good agreement with that obtained from the square 
20 x 40 mesh calculation with V~ = 20m s -~. Figure 4b is before the initiation of  crack 
growth and Fig. 4c is shortly after the onset of  crack growth. At t = 46.25ps, the crack has 



52 A. Needleman and V. Tvergaard 

0.8 
% 

m 0.6 

0.2 

(o) 

(:re I 0.8 

0.4 

(b) 

% 

0.8 

I \ 
0.4 0.2 

(c) 

% 
~00 0.8 

0.8 

0.6 

1.0 

~ 0 . 8  
/ \ \  

0.4 0.2 
(d) 

Fig. 4. Contours of constant Mises effective stress, a,., for the reference case in the quadrant analyzed numerically. 
(a) t = 29.20#s (b) t = 37.15#s (c) t = 41.70/~s (d) t = 46.251,s, a, = IO00MPa. 

grown to near the end of  the uniform mesh region in Fig. 2b. With V~ 2 0 m s  ~, the 
specimen remains elastic except for the plastic zone emanating from the crack. With 
V~ = 30 m s -~ some yielding occurs near the end y2 = b, which results in the traction 
decrease seen in Fig. 3. Nevertheless, fully plastic condit ions are not  achieved over the 
time interval, t ~ 43.91#s ,  considered in the case with 1/i = 3 0 m s  --~. For the 
V~ = 30m s -~ calculation, the stress and plastic strain distributions at the impacted end 
obtained from the non-uniform mesh of  Fig. 2 and from the square 20 x 40.mesh are in very 
good agreement. 

Figures 5-9 display contours of  various field quantities at four stages of  crack growth for 
the reference case. These four stages are at t = 41.70/~s, t = 44.54/~s, t --- 45.11 #s and 
t = 46.25/~s. In each figure the region displayed corresponds to the deformed configuration 
of  the region in Fig. 2b. 
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Fig. 5. Contours of  constant void volume fraction, ,[~ for the reference case. The initial particle spacing, 
D = 0.1 mm, is marked to set the scale. (a )  t = 4 1 . 7 0 # s  (b)  t = 44 .54 /~s  (c) t = 45 .11 /~s  (d )  t = 46.251~s.  

Porosity development is shown in Fig. 5. As seen in Fig. 5a, the stresses generated when 
the wave reaches the symmetry plane are large enough to induce void nucleation at each of 
the inclusions. However, the void volume fraction in the inclusions remains small (less than 
1 per cent) until the advancing crack tip approaches the particle. The position of the crack 
surface is identified with t h e f  = 0.1 contour emanating from the initial crack location, since 
this gives a good picture of the region within which the stress carrying capacity of the 
material has vanished. The amount of crack growth is denoted by Aa and defined by the 
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Fig. 6. Contours of  constant matrix plastic strain, L for the reference case. The initial particle spacing, 
D := 0.1 mm, is marked to set the size scale. (a )  t = 4 1 . 7 0 f f s .  (b )  t = 44 .54 /~s  (c)  t = 45 .11  Its (d )  t = 46 .25 /~s .  
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Fig. 7. C o n t o u r s  o f  c o n s t a n t  Mise s  effect ive stress,  a , ,  for the reference case ,  The  initial  partic le  spacing ,  
D = 0.1 ram, is m a r k e d  to set the  s ize  scale.  (a) t = 41 .70/as .  (b) t = 44 .54/as .  (cj t = 45.1 l/~s. (d) t = 46 .25/~s ,  

a0 = 1 0 0 0 M P a ,  

intersection of t h e f  = 0.1 contour with y2 = 0. The four stages of crack growth in Figs. 5a 
through 5d correspond to Aa = 0.025ram, Aa = 0.34ram, Aa = 0.64mm and Aa = 
1.44mm, respectively. Note that the void volume fraction in the background Gurson 
material is negligible away from the fracture surface. 

At t = 41.70#s, Fig. 5a, the crack has begun to grow but has not yet linked up with the 
first particle. The crack speed increases until the crack has engulfed three inclusions (in Fig. 5b 
the crack is between the third and fourth inclusions). Thereafter the crack speed is essentially 
constant at 651 m s -~ , which is 0.202 times the shear wave speed. The crack opening angle, 
defined as twice the angle between the linear portion of the f - - -  0.1 contour and the 
symmetry line, is nearly constant after the initial stages of growth. For the reference case 
shown in Fig. 5, the crack opening angle is ~ 7 deg from Fig. 5b, t = 45. l I #s, on. The 
calculation is terminated at t = 46.25/as, at which point the crack has grown 1.44 mm and 
is near the end of the uniform mesh region. 

The strain concentration above the crack in Fig. 6 is expected from the HRR field, 
[33, 34], which gives the greatest strain concentration at about 98 deg from the crack tip for 
N = 0.1, and from previous finite deformation analyses of crack tip fields, e.g., [36, 8-10]. 
Crack tip blunting at the initial tip gives rise to strains of order unity. However, the strains 
that develop along the crack line during propagation are only moderate, becaue of  the rather 
sharp crack profile. 
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Fig. 8. C o n t o u r s  o f  c o n s t a n t  hydros ta t i c  tension,  a h, for  the reference case. The  initial particle spacing,  

D = 0.1 m m ,  is m a r k e d  to set the size scale. (a) t = 41 .70ps  (b) t = 44 .54ps  (c) t = 45.11 ps  (d) t = 46 .25ps ,  

cr 0 = 1000 MPa .  

Contours of Mises effective stress, ae, are shown in Fig. 7. At t = 41.70#s the near tip 
effective stress contours have the form associated with a stationary crack. In Figs. 7c and 7d, 
the "backward leaning" of the higher valued stress contours is an effect of the higher crack 
speed. By way of contrast, the hydrostatic stress contours in Fig. 8 have a similar shape at 
all four times. 

Figure 9 shows contours of constant temperature near the initiation of crack growth, at 
t = 41.70ps, and during rapid crack propagation, at t = 46.25ps. The large strains 
accompanying crack tip blunting give rise to a maximum temperature of about 320°C in the 
current fracture process zone in Fig. 9a, which is a 300 deg increase above the initial uniform 
background temperature of 20°C. The strains that occur in the process zone during propa- 
gation are smaller and so is the temperature rise. The maximum temperature near the crack 
tip in Fig. 9b is about 220°C. 

Figures 10 and 11 show contours of various field quantities at two times for the case with 
I/1 = 30ms- l ;  in Fig. 10 t = 42.30#s, Aa = 0.34ram, and in Fig. 11 t = 43.91ps, 
Aa = 1.45 mm. The main effect of the higher impact velocity is to lead to a somewhat greater 
speed of crack propagation than in the reference case. With V~ = 30 m s -1 , the crack speed 
(as measured by the propagation speed of t h e f  = 0.1 contour along the symmetry line) is 
690ms -~ , which is 0.214 times the shear wave speed. As in the reference case this speed is 
attained after the crack has advanced about 0.4 mm and is essentially constant thereafter. 
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Fig. 10. C o n t o u r s  o f  var ious  field quant i t ies  for the case with Vt = 3 0 m / s  at t = 42.30/as and  Aa = 0 .34mm.  
The  initial particle spacing,  D = 0.1 m m ,  is marked  to set the  size scale. (a) Con tou r s  of  cons tan t  void vo lume 
fraction./~ (b) C o n t o u r s  o f  cons tan t  Mises effective stress, a,.. (c) C o n t o u r s  o f  cons tan t  matr ix  plastic strain,  L (d) 
C o n t o u r s  o f  cons tan t  hydros ta t ic  tension,  cr h, crn = 1000 MPa.  



Dynamic ductile crack growth 57 

f 
0.01 0.002 

0.1 

-~% 

(o) 

o- e 
% / 

(b) 

0.0O2 / 0,01 
/ 

0,03 / 

\ 0.5 / 1.0 

% 2.0 

(c) (d} 

Fig. l l. Contours of various field quantities for the case with V~ = 30 m s ~ at t = 43.91 #s and Aa = 1.45 ram. 
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Again,  as in the reference case, the crack opening angle becomes essentially constant  and is 
also ,~ 7 deg. 

In the two cases considered in Figs. 5-11, a part icular  material  has been subject to two 
loading condit ions.  Figures 12-14 exhibit the effect o f  variat ions in the mater ial  with the 

loading as in the reference case. In Fig. I2, the nucleation stress is given by aN = 2200 M P a  

and contours  of  field quantit ies are shown at t = 44.73 #s and Aa = 1.24 ram. Somewhat  

surprisingly, crack growth with aN = 2200 M P a  initiates earlier than for the reference case. 

It  appears  that  the increased nucleation stress leads to a greater concentra t ion  of  defor- 

mat ion  at the initial crack tip which leads to an earlier initiation of  crack growth.  Stated 
another  way, the more  extensive early nucleation that  occurs in the reference case has a crack 
shielding effect. The crack speed is 6 3 8 m s  -1 . As in the previous cases the crack opening 

angle is essentially constant  after the early stages of  crack growth and is ~ 7 deg. 
Figures 13 and 14 show contours  of  field quantit ies for the case with D = 200#m = 

0.2 ram, which is twice the reference value of D, at t =- 45.11 #s, Aa = 0.46 ram, and at 
t = 49.66#s, Aa = 1.28ram, respectively. Qualitatively, crack growth  proceeds as in the 
previous cases. Quanti tat ively,  there is a significant difference. The crack opening angle is 
increased to ~ l 5 deg and the crack speed is decreased to 182 m s-  i. Accordingly,  the strains 
that  develop are larger than  in the previous cases. It  is wor th  noting that  since the finite 
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Fig. 12. Contours of various field quantities for the case with a N = 2200 MPa at t = 44.73 ~s and Aa = 1.24 mm. 
The initial particle spacing, D = 0.1 mm, is marked to set the size scale. (a) Contours of constant void volume 
fraction f. (b) Contours of constant Mises effective stress, a<. (c) Contours of constant matrix plastic strain, L 
(d) Contours of constant hydrostatic tension. %. tr 0 = 1000 MPa. 

element mesh used in this calculation is identical to that used in the previous three calcu- 
lation, the results in Figs. 13 and 14 show that neither the crack opening angle nor the crack 
speed are set by the mesh. 

Crack growth versus time curves for the four cases analyzed are plotted in Fig. 15. The 
points marked in the figure correspond to times at which the crack length was measured and 
the curves consist of  linear interpolation between these points. In each case, the crack grows 
at an essentially constant speed for Aa >~ ~ 0.3 mm and the crack speeds quoted previously 
were obtained by a least squares linear fit to the points in Fig. 15 for which Aa > 0 .3mm,  
except for the case with tru = 2200 MPa where the first point used for the linear fit is 
Aa --- 0.24ram. It is worth emphasizing that the development o f  an essentially constant 
crack speed in Fig. 15, as well as the crack propagating in each case with a near constant 
crack opening angle, are outcomes of  the solution to the initial-boundary value problem 
posed here and are in no way imposed by the formulation. 

Initially, the crack growth versus time curve is the same for each case with I/1 = 20 m s- ~. 
It is plausible that this occurs because both the imposed loading and the background Gurson 
material are identical for each of  these cases. The time at which constant speed growth 
initiates and the speed of  crack propagation depend on the properties o f  the large inclusions. 
For the range of  parameters considered in this investigation, the large inclusion spacing, 
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b;ig. 13. Contours  of  var ious  field quant i t ies  for the case with D = 0 . 2 m m  at t = 45.11~s and Aa = 0 .46mm. 

The initial particle spacing, is twice the value for the reference case and is marked to set the size scale. (a) Contours 
of constant void volume fractionf (b) Contours of constant Mises effective stress, ~<,. (c) Contours of constant 
matrix plastic strain, L (d) Contours of constant hydrostatic tension, a~,. a0 = 1000 MPa. 

D, has the greatest effect on crack speed. However, it appears clear that high enough values 
of  the inclusion nucleation stress, aN, would significantly delay the onset of  crack growth and 
slow the rate of  crack propagation. 

Figure 16 shows crack growth versus crack opening displacement, COD, for the reference 
case and the case with V~ = 30 m s i. All material properties and particle characteristics are 
identical for these two cases. The crack opening displacement is the opening at the initial 
crack tip (the point marked in Fig. 2b) and is the full COD, i.e., twice the distance between 
the crack flank and the symmetry line. The two curves are very close, but in Fig. 16 
Aa/ACOD is slightly smaller for the case with the higher imposed loading velocity and the 
higher crack speed. 

Figure 17 shows curves of  J versus time and COD versus time for the four cases. In 
Fig. 17a, J is given by (2.34). The contour F is through the ring of  elements that intersect 
the crack line about 15 mm in front of  the initial crack tip. As noted previously, the COD 
is the crack opening displacement at the initial crack tip. In addition to the remote value of  
J plotted in Fig. 17a, J was calculated on eight other contours surrounding the uniform mesh 
region (see Fig. 2b), progressively closer to the initial crack tip. In the early stages of  crack 
blunting, say up to J/(Dao) = 0.2 for the reference case, J is essentially path independent 
over the outer eight contours and the area contribution in (2.34) to the remote J is of  a 



60 A. Needleman and V. Tvergaard 

0.01 0.002 

0 . 1  

(a) 

/o.oo2 f 

\ 

D 

0.03 / 
/ 

% 

1.15 
, /1 .2 / t"11.25 \ ' ,  1.2 ; ' o il 1j I .. 

\ / , 
,, I I' / ' .' 1.15 '\ '~, / / 

/ / j 

1.o 

{b) 

0.01 / 0,03 

( c )  

0,002 

% 

0.5 

0.5 // 1.0 / 
/ 

/ / 
/ / / 1 . 5  / / 

~, / / /  
/ / /  

/ / /  
~ 2.0 i / 

' 'i !//<" 
t i ~ / I 

~ i f / 2.5 i 
. . . . . . . . . .  J . . . . .  

Fig. 14. Contours  of  various field quantit ies for the case with D = 0.2 mm at t = 49.66#s and Aa --- 1.28 mm. 
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comparable size to J. At later times, as plastic flow becomes more extensive, J decreases 
smoothly from its remote value to a value near zero at the innermost of  these contours. 
During crack growth, the area integral in (2.34) can contribute up to 18 per cent to the value 
of  the remote J, but with 8 to 10 per cent being a more typical contribution. The contribution 
of  the area integral term to the value of J on the inner contours is smaller. 

A value of  the mode 1 stress intensity factor Kl can be calculated from J using the plane 
strain small scale yielding relation 

''2 , 4 , ,  

Using (4.1) for the reference case, the value J/Dao = 1.00 at t = 41.26#s corresponds to 
K~ = 152 MPa  x/-m, while J/Da o = 3.41 at t -- 43.91/~s corresponds to KI = 281 MPa x/-m. 
This gives a nominal loading rate of/~1 = 26 x 106 MPa x/m s -~ . Similar calculations give 
nominal loading rates of/¢~ = 25 x 106 MPa  x/-ms-1 for the case with D = 0.2ram and 
/~l ----- 33 X 106 MPa v ~ / s  -~ for the case with V~ = 30ms  -I .  

In Fig. 18, J from Fig. 17a is plotted against the COD from Fig. 17b. Prior to crack 
growth, the J versus COD curves are identical, since the plastic properties of  the material 
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Fig. 17. (a) J versus time. J is defined by (2.34} and includes both an area integral term and a contour integral term. 
(b) COD versus time. The COD is measured at the initial crack tip. For three of the cases D = 0.1 ram. As noted 
on the figure D = 0.2 mm for the fourth case. In all cases o0 = 1000 MPa. 

are identical for all four  cases. The slope of  this curve gives C O D  = 0.53 J/o- 0, which is in 
good agreement  with the C O D  versus J relation expected f rom the H R R  field. Fo r  the H R R  
field under small scale yielding condit ions and with N = 0.1 and E/% = 250, Shih [37] 

reports  a slope o f  0.53. The  slope f rom the H R R  field is based on small strain theory,  and 
pertains to quasi-static de format ion  histories and to rate independent  material  response. 
Fur thermore ,  (2.24) is not  a pure  power  hardening relation and here E/a o = 211. The slope 
in Fig. 18 is also consistent with the value ~ 0.47 found in [10] in a quasi-static small scale 
yielding analysis based on a mater ial  descript ion similar to that  used here, but  with 
E/% = 500 (with E/% = 500, the slope o f  the H R R  small scale yielding C O D - J  relation is 
0.50 [37]). In [10] the initial crack tip was taken to be a semi-circular notch,  with a fine mesh 
a round  the notch to resolve local fields near  the initial crack surface. The finite element mesh 
in this s tudy has been designed to resolve extensive crack growth and does not  resolve the 
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initial blunting fields with the accuracy of  the mesh in [10]. Nevertheless, the present mesh 
appears to give a reasonably good representation of  the J versus COD relation during blunting. 

There is a fairly well defined point  in Fig. 18 at which the J -COD relation deviates f rom 
the blunting line (this point  o f  deviation is less abrupt  for the case with D = 0.2 mm than 
for the other  three cases). This deviation occurs when failure has just  begun in elements 
nearest the initial crack tip and occurs at about  t = 43.07#s for the reference case, 
t = 41.07#s for the case with V~ = 3 0 m s  ~, t = 42.72#s for the case with o N = 

2200 MPa  and t = 42.80 #s for  the case with D = 0.2 mm. This is shortly before the time 
at which the first void links up with the initial crack tip. The times at which this initial link 
up occurs are about  43.2ps for the reference case, 41.4#s for the case with V~ = 3 0 m s  - I ,  
43.1 #s for the case with o N = 2200 MPa  and 44.0/~s for the case with D = 0.2 mm. F o r  
reference, the loading wave first arrives at the crack line at t = 33.2/~s. The values of  J and 
C O D  at which the first void links up with the initial crack tip are: J ~ 2.0 x 105J m - z ,  

C O D  --- 0 .11mm for the reference case; J ~ 2.0 x 105 J c m  z, CO D  = 0.11ram for the 
case with Vl = 30m S -1", J ~ 1.7 x 105 J m  - 2 ,  C O D  = 0 .10mm for the case with aN = 
2200MPa  and J ~ 2.4 x 105Jm 2, COD -- 0 .14mm for the case with D = 0 .2mm. 

In addit ion to the four cases discussed so far, several other  calculations were carried out. 
One was a calculation with all parameters  at their reference value except that V1 = 5 m s ~. 
This calculation was only continued to the linking of  the first void with the initial crack tip. 
At this low loading rate, an unloading wave arrives at the crack tip prior to this initial link 
up, causing a considerable time delay. At  t = 137.6ps, the initial void has essentially 
coalesced with the initial crack tip. Although there is a large time delay the value of  J i s  about  
2.0 x 105 J m 2, as in the reference case, and the corresponding C O D  is about  5 per cent 
larger than in the reference case. 
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Fig. 19. Contours of constant void volume fraction for a specimen having w = 10mm, b = 20mm and a = 
1.75 ram. All material properties and particle characteristics are those of the reference case. Also, the size of the 
elements in the uniform near-tip mesh is the same as used in the calculations for the larger specimen. The initial 
particle spacing, D = 0.1 ram, is marked to set the size scale. (a) t = 16.81/~s. (b) t = 25.21 #s. 

Some calculations were also carried out for a specimen propor t ioned as in Fig. 1, but an 
order  of  magnitude smaller, i.e., with w = 10mm, b = 20mm and a = 1.75mm. The finite 
element mesh for the small specimen calculations was different f rom that shown in Fig. 2, 
but  near the initial crack tip a uniform mesh was used with a 0 .0208mm x 0 .0175mm 
quadrilateral  element size which is nearly the same element size as in the uniform region in 
Fig. 2b. The small specimen undergoes general yielding and the failure behavior is quite 
different f rom that for the larger specimens. Figure 19 shows contours  of  constant void 
volume fraction at two times, t = 16.81 #s and t -- 25.21 #s, for a small specimen where all 
material properties and particle characteristics are as for the reference case. Also, the 
imposed loading velocity is 1/1 = 20 m s - 1. The region of  high porosi ty extends further away 
from the fracture surface than in the large specimen calculations and the failure mode 
appears to be one of  ductile tearing rather than one of  crack growth. In addit ion to 
illustrating the dependence of  failure mode on specimen size, Fig. 19 provides further 
confirmation that the computed  failure mode is not  set by the mesh. 

5. Discussion 

The most significant feature of  the present computat ions  is that the crack growth rates 
determined here are entirely based on the predictions of  the micro-mechanical  material 
model, describing ductile failure by the nucleation and growth of  voids to coalescence. In 
previous studies of  dynamic crack growth a critical value of  the crack-tip-opening displace- 
ment, the dynamic stress-intensity factor, or some other  parameter  characterizing the near 
tip fields has been assumed; or the analyses have been directly based on the assumption of  
a constant speed of  crack growth. Compar ing with this type of  assumption it is interesting 
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to note from the present results that in each case an essentially constant crack speed is 
predicted, after a short initial stage (Fig. 15). For the same material and specimen geometry 
this constant speed of crack growth is only increased by about 6 per cent when the impact 
velocity is increased by 50 per cent, in part, at least, due to plastic yielding at the impacted 
end limiting the increase in stress. When the material parameters are changed by doubling 
the nucleation stress for the larger particles the crack growth speed decays only slightly, by 
2 per cent, whereas doubling the particle spacing gives a significant crack speed reduction 
by about 72 per cent. However, the crack growth speed is strongly dependent on the 
specimen geometry, and thus J as shown by the small specimen computation (Fig. 19), 
where general yielding and much lower crack speeds are found. 

In the initial stage some blunting develops, associated with rather large strains and a 
certain amount  of damage in a region around the initial crack tip. Subsequently the straining 
leading to crack growth by void coalescence is rather localized, and here an essentially 
constant crack tip opening angle is predicted in each case. This seems to support the type 
of crack growth criterion applied by Hoff et al. [6], where quasi-static COD versus Aa results 
were used for the initial part of growth, while a fixed critical value of the crack tip opening 
angle was used subsequently. For the reference material investigated here the critical value 
of this angle is about 7 deg when plastic flow is contained, but for the small specimen 
(Fig. 19), where general yielding occurs, the value is significantly larger, about 52 deg. Also, 
with contained plastic flow, it was found that doubling the particle spacing, D, led to a 
doubling of the crack tip opening angle. 

It is noted that the very localized damage found here in the material near the surfaces of 
the growing crack is partly dependent on the assumption that only a single row of larger 
inclusions straight ahead of the crack is taken into account. As shown in Fig. 5a all these 
larger inclusions have started to nucleate when the wave has hit the crack plane. Therefore, 
if a two dimensional array of larger inclusions had been accounted for, as in [10], a two 
dimensional array of partially nucleated larger voids would be expected in a region around 
the growing crack. Then, dependent on the initial particle distribution the crack could 
possibly grow off the initial crack plane or zig-zag; but any concrete knowledge about that 
would required further investigations. 

In the initial stage, where some blunting occurs, the speed of crack growth increases 
gradually, as shown in Fig. 15, and the initial parts of these predicted crack length versus 
time curves are essentially identical in the three cases where the imposed impact velocity is 
the same. This is significant since the prediction is entirely based on the failure criterion 
incorporated in the micro-mechanical material model describing ductile failure. As the larger 
inclusions have different nucleation stress or spacing in the three cases, it appears that the 
crack extension versus time relationship, during the early stages of growth, must be charac- 
teristic of the plasticity and failure criterion in the matrix material between the larger voids, 
for a given impact velocity and specimen geometry. 

It is also interesting that the two different crack growth versus time curves corresponding 
to different impact velocity but identical material (Fig. 15) are nearly coincident when Aa 
versus COD is plotted (Fig. 16). However, this result could be expected since it has been 
mentioned above that the crack-tip-opening angles during dynamic crack growth are nearly 
the same in these two cases. 

The double edge cracked rectangular bar analyzed here is assumed to be loaded symmetri- 
cally, so that equal and opposite impact velocities are prescribed at each end. It is anticipated 
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that this type of loading may be the result of two symmetrically placed explosive charges, 
which are triggered simultaneously, thus sending a symmetrical pattern of stress waves 
towards the cracked cross-section. It is noted that the time intervals considered in the present 
analyses are so short that the waves never reach the opposite end of the specimen, and 
therefore reflections from these ends do not play a role. 

The specimen considered is somewhat similar to the circumferentially notched round bar 
analyzed by Nakamura, Shih and Freund [38], to model experiments of Costin, Duffy and 
Freund [39]. However, in these experiments the load is applied at one end of the bar and is 
represented in the analyses as a linearly increasing applied load. One consequence of this 
loading arrangement is that the full specimen has to be modelled numerically; but another 
significant difference is that the loading in [38, 39] gives rise to a single stress wave coming 
from one end of the bar, whereas the two symmetric stress waves considered in the present 
analyses hit the cracks simultaneously. The superposition of these two stress waves gives rise 
to extra high stress levels in the crack tip regions, and therefore the present results for 
symmetric loading would not be directly comparable with results for the same specimen 
loaded only at one end. 

Since high strain rates occur in the crack tip region during dynamic crack growth it is 
expected that material strain rate sensitivity plays an important role. Such rate sensitivity is 
incorporated in the present analyses through the elastic-viscoplastic material model. One 
particular value of the rate hardening exponent, representative of structural steels, has been 
used here, but the increased strain rate sensitivity that appears to come into play at strain 
rates of ~ 106, Klopp et al. [40], is not accounted for. A detailed quantitative understanding 
of the effect of rate sensitivity could be obtained by a more extensive parameter study, using 
the present computational procedure. 

Adiabatic heating due to plastic dissipation is unavoidable at rapid crack growth in ductile 
materials. Here two effects of heating are accounted for, thermal softening viscoplastic 
behavior and thermal expansion. The computations show a maximum temperature increase 
of about 300°C in the fracture process zone (Fig. 9), which is clearly enough to have a 
noticeable effect on the local stress fields. However, a computation for the small specimen 
in which temperature changes were neglected indicated that these thermal effects do not 
greatly affect the crack growth behavior in the cases considered, because porosity has the 
dominant softening effect. 
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