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Abstract. A model is proposed for predicting the non-linear stress-strain relations and ultimate failure of micro- 
composite specimens as a function of interfacial characteristics. The description of the matrix cracking process 
and fiber failure is based on fracture statistics. The microeomposite specimen consists of a single fiber coated with 
concentric layers of interracial material and matrix. It is representative of the constituents in the actual composite 
and is appropriate for designing interphases. 

This approach was applied to practical SiC/SiC microcomposites specimens made by Chemical Vapor Depo- 
sition. The predictions of matrix cracking compare satisfactorily with experimental data. Important trends in the 
influence of interfaces upon the stress-strain behavior are thus predicted and discussed in relation to available 
experimental results. 

Key words: ceramic-matrix composites, microcomposites, tensile behavior, matrix fragmentation, fracture statis- 
tics, failure, interfaces. 

1. Introduction 

It is now well acknowledged that the fiber/matrix interfacial region exerts a profound influence 
on the mechanical response of ceramic matrix composites (CMCs). The effect of interphase 
(i.e. fiber coating) properties and interfacial damage on the stress-strain response has been 
evidenced by several experimental studies on 1D [1] and 2D [2, 3] composites and on micro- 
composites [4]. Therefore, it may be expected that composites could be tailored as a function 
of end use applications, provided that quantitative relations between mechanical behavior and 
interphase characteristics are established. 

Fiber/matrix interphases favor crack deflection, eventual further matrix cracking and fiber 
pull-out. A dense network of matrix cracks is created in the presence of rather strong 
fiber/matrix interactions and limited interfacial damage [3, 5] whereas fiber pull-out requires 
rather weak fiber/matrix bonding. The former effect is preferred in 2D CVI composites where- 
as the latter phenomenon seems to be recommended by authors for a variety of 1D composites. 
High stresses and a high toughness have been measured on 2D SiC/SiC CVI-composites pos- 
sessing rather 'strong' interphases [3, 5]. The related tensile stress-strain curves exhibit typical 
features. In the presence of weak fiber/matrix interfacial regions, a plateau-like stress-strain 
behavior is obtained (Figure 1): the non-linear domain attributed to matrix cracking extends 
over a narrow range of stresses and strains and the stress at matrix cracking saturation is 
distinct from ultimate strength. In contrast, in the presence of rather strong interphases, the 
stresses are higher, the non-linear domain is wider and the stress at saturation is now close to 
or coincides with ultimate strength (Figure 1). 

There have been several attempts in the literature directed at predicting the basic features 
of the tensile stress-strain response of CMCs. Most studies have been mainly concerned 
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Figure 1. Schematic diagram showing the typical tensile stress-strain behaviors which are observed with current 
2D woven SiC/SiC composites: (A) weak interphase, (B) strong interphase, (D) no interphase [2]. 

with the failure and toughness aspects [6--11]. Aveston, Cooper and Kelly were the first to 
provide a closed form equation for the first critical matrix cracking strain [6]. Then, a number 
of micromechanics-based analyses have been developed for predicting the onset of matrix 
cracking, taking into account various fiber/matrix interactions [7-9]. A number of theories 
of ultimate strength have also been proposed for unidirectional ceramic matrix composites 
[12-15]. Relatively little effort has been devoted to the subsequent accumulation of matrix 
cracks and the associated non-linear stress-strain response prior to failure. Few attempts are 
directed at predicting the effect of interfacial damage [16] or interfacial shear stress [17] on 
stress-strain response. They are restricted to considering a uniformly degraded interphase [16] 
or a uniform crack spacing [17], neglecting the random defect-induced aspect of cracking in 
brittle matrices. 

The primary purpose of this present paper is, therefore, to establish a model which describes 
the influence of interfacial damage on matrix cracking and on the associated stress-strain 
response of microcomposite specimens. Fiber/matrix interphase characterstics expressed in 
terms of a shear stress or a debond length. Formation of matrix cracks and fiber failure are 
described using strength-probability equations derived from statistical approaches to brittle 
failure. This approach differs from the conventional one which considers the total volume 
of cracked material. In paper, matrix cracking is described as the brittle failure of uncracked 
volume elements (matrix fragments). This allows one to solve problems involving non-uniform 
stress-states. The model was then applied to predict the stress-strain behavior of practical 
SiC/SiC microcomposite specimens made by Chemical Vapor Deposition (CVD). 

The microcomposite specimen consists of a concentric cylinder element containing a single 
fiber, with a coating (i.e. the interphase) plus a matrix annulus (Figure 2). It is representa- 
tive of the constituents of the actual composite fabricated by using identical vapor deposi- 
tion conditions. The microcomposite configuration is appropriate for designing interphases. 
Tension experiments on microcomposite test specimens are currently used for investigating 
fiber/matrix interactions and their influence upon matrix cracking, ultimate fracture and the 
associated stress-strain relations [4, 18-22]. The procedures used for producing and testing 
these specimens, as well as for extracting interfacial characteristics from experimental load 
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Figure 2. Scanning Electron Micrograph of a microcomposite test specimen which failed under tension showing 
the Carbon coating on the surface of the pulled out fiber as well as a matrix fragment delineated by two transverse 
cracks. 
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Figure 3. Typical tensile stress-strain curves measured on various batches of SiC/BNISiC microcomposite test 
specimens with a range of interphases. The numbers identify the batches. The interphases were rather weak in 
batches 1, 4, 6 and 7, whereas they were stronger in batches 2, 3 and 5. The volume fraction of the matrix was 
smaller in batches 2, 5 and 7. The stress refers to that acting on the fiber at the location of matrix cracks. 

displacement curves have been described elsewhere [4, 18-20,  22]. The tensile load dis- 
placement  curves exhibit the typical features previously discussed with practical CMCs: non 
linearity induced by matrix cracking and debonding, and an eventual linear domain dominated 
by matrix crack opening and fiber deformations. The load-displacement curves obtained for 
various microcomposi te  specimens are summarized in Figure 3. 
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Figure 4. Statistical distributions of matrix cracking stresses measured on SiC/C/SiC microcomposites (gauge 
length = 10 ram) [4]. 

2. Analytical relationships 

Experiments show that in a microcomposite test specimen loaded in tension parallel to the fiber 
axis, transverse cracks form sequentially in the matrix at increasingly applied stresses. Each 
crack propagates unstably through the matrix and perpendicular to the fiber, and then deflects 
in the fiber/matrix interphase. The matrix thus becomes subdivided into fragments which are 
like tubes in shape (Figure 2). The fragments are thus uncracked volume elements. They 
become smaller and smaller as cracking proceeds. Features of the matrix cracking process are 
reflected by the non-linear domain of the load-displacement curves (Figure 3) and by acoustic 
emission recorded during tensile tests [4, 18, 22]. 

It is worth pointing out that matrix cracking involves the brittle failure of matrix fragments 
and that each new crack in the matrix is the result of the brittle failure of an uncracked fragment 
of given volume. Weakest link statistics are appropriate for describing the brittle failure of a 
matrix fragment. The brittle failure of a matrix fragment as well as the fracture of the fiber 
are probabilistic-statistical events as a result of the presence of flaw populations. They are 
characterized by statistical distributions of stress data [4, 19]. Figure 4 shows an example 
of the statistical distributions of strength data pertinent to the matrix fragments generated 
by the first and the second cracks in SiC/SiC microcomposites under tension. The strength 
increase with the number of cracks results from the decrease in the volume of fragments. Such 
scale effects are now well established in brittle ceramics. They are described using statistical- 
probabilistic approaches. In paper, the Weibull approach is applied to the brittle failure of 
the uncracked matrix fragments and the fiber in microcomposites subject to uniaxial tensile 
loading conditions. This approach thus differs from the conventional one which considers the 
total volume of cracked material. It takes into account the stress gradients induced by the 
fiber/matrix interactions. The Weibull approach provides a satisfactory approximation in the 
presence of essentially uniaxial stress-states. 
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Figure 5. Schematic diagram showing the local stress-states induced in the fiber and in the matrix by a matrix 
crack; also shown is the function a(x) appearing in Equation (1). 

2.1. INTERFACIAL DAMAGE 

Debonding caused by the deflection of matrix cracks into the interphase locally affects the 
applied stress-field, inducing stress gradients in the fiber and in the matrix as exemplified by 
Figure 5 for a constant interfacial shear stress. Stresses in the fiber are maximum over the 
distance (u + 10), where u is the crack opening displacement and 10 is the distance along which 
Poisson's effect is dominant. 

The following equation was used to describe the shear stress r along the interface taking 
into account the contribution of the applied stress-dependent phenomena: 

= + (2.1) 

where r0 is the interfacial shear resistance, a is the remote stress applied to the microcomposite, 
k is a coefficient accounting for the stress-dependent fiber/matrix interactions in the debond 
portion involving friction, residual stresses and Poisson's effect, k > 0 when compression is 
dominant, k < 0 when residual tension is dominant. The function oL(x) allows one to take into 
account the Poisson's effects. In this paper, a step function 1 was selected for c~(x) (Figure 5), 
thus subdividing the matrix fragments into three different regions in the vicinity of the cracks: 

(i) Region I: Poisson's effect; c~(x) = 0 and r ( x )  = 0(0 < x < u + lo) 
(ii) Region 2: sliding friction; a(x)  = 1 along the debond (u + lo < x < u + ld) 

(iii) Region 3: undamaged interphase (x > u + la) 

The determination of the stress field in Regions 1 and 2 is straightforward. The stress field in 
Region 2 was derived from the following equations of equilibrium: 

do F 2 do'M 2 ( VF \ 
- -  - r - -  = ~ r  ~ ) ( 2 . 2 )  
dx rF dx rF 1 ~TdF ' 

where aF and aM are the stresses operating on the fiber and the matrix respectively; rE is the 
fiber radius; and VF is the volume fraction of fiber. 

i Any functional form for a(x) may be considered 
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Integrating Equations (2) leads to the following relations for aF and a M  along the debond: 

a ( a xz cf0  
gr F (X)  ~-~ ~FF 1 - 1 + a "  ~d --  ~0 ] 

x i> u + £0 (2.3) 

a a x - u - g 0  x~>u+g0,  (2.4) 
O" M (X) - -  1 - - ~ F  1 + a gd -- gO 

where a = F/Az (F is the applied force and Az is the microcomposite cross sectional 
area), and a = (EM(1 -- VF)/EFVF) (EM and EF are moduli of the matrix and the fiber 
respectively). 

The debond length as a function of the applied stress (Fxluation (6)) is derived from 
the following particular values of Equation (3) at the boundaries of Region 2 of the matrix 
fragments 

d r a 
aF(U + 10) = VF' aF(U + ld) = VF(1 + a) '  (2.5) 

a.a.rF ~o 
ld = 2.VF.(1 + a).(1 - fl).(~'0 + ka) where fl = ~d" (2.6) 

2.2. STRESS-STRAIN RELATIONSHIPS 

Deformations of the microcomposite were determined from fiber elongations in the regions 
delineated by the debond. 

In the presence of a single crack, fiber elongation in the vicinity of the debond (including 
Regions 1 and 2) was derived from the stress state. 

= f u+ld G F 
UF(a) Jo EF .dx (2.7) 

Integration of Fxluation (7) gives: 

v r ( o )  - Ep.VF" + 1 2. (1  ' (2 .8)  

A similar analysis leads to the following equation for associated matrix displacements: 

a.ed a.(1 -- f~) (2.91 
UM(a) = EM.(1 -- VF)" 2.(1 + a)" 

The difference between fiber elongation (Equation (8)) and matrix displacement (Equation 
(9)) provides the matrix crack opening 2u: 

a.Q (1 + fl) (2.10) 
U -~ (UF -- V i )  ~-~ E F . V  F _ a" 2 

In the presence o fn  matrix cracks, microcomposite elongation (UT(n, a)) is the sum of fiber 
elongations in the debonded regions (UF) and in the intact region (~mt). 

UT(n,a) = Uint(L - 2.n.(ld + u)) + 2.n.Ug, (2.11) 
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where L is microcomposite length. 
Inserting the expressions of U]n t and UF into Equation (11), UT(n, a) can be expressed in 

the following simple manner: 

UT(n,a) = -~o.L. 1 + - -  2"n'e'a'a( I + L  EFVF--aa)(I~-/3)] (2.12) 

where E0 is the initial Young's modulus of microcomposite. 
Considering that elongations remain essentially small (L ~ Lo, Lo is the initial length of 

microcomposite), microcomposite strain, eT and Young's modulus, E, in the presence of n 
matrix cracks were derived from equation (12): 

eT : ~0. 1 +  S-----~" + 1  2 ' 

E = 1 + 2.n.,a.aLo " ((EF¢-a + 1)1+2~)" (2.14) 

Equations (13) and (14) require the number n of matrix cracks as a function of the-applied 
stress a. Determination of n as a function of a is based upon strength-probability equations. 

2.3. STRENGTH-PROBABILITY EQUATIONS 

Formation of a new crack in the matrix results from the brittle failure of an uncracked matrix 
fragment. Occurrence of a single crack in a matrix fragment causes its failure perpendicular 
to the fiber. The fragment is thus split into two new fragments. 

Matrix cracking can be described by applying weakest link statistics to the brittle failure 
of each fragment. 

The probability of failure of the fragments and the fiber was derived from the following 
2-parameter simple Weibull's equation for volume-located fracture origins: 

P - - 1 - e x p [ -  f (~o)m.dW]. (2.15) 

a refers here to the stresses in the fiber or the matrix (aF and ffM respectively) rather than to 
the stress in the composite; m and a0 are the statistical parameters. 

In the presence of n matrix cracks, the matrix is subdivided into (n + 1) fragments (Figure 
6). The probability of brittle failure of the ith matrix fragment of length 21i is given by the 
following equation: 

PMi = 1 --exp -2SM. .dx , (2.16) 

where SM is the cross-sectional area and mM and aOM are the statistical parameters pertinent 
to the matrix, aM in Region 2 of matrix fragments, is given by equation (4). aM in Region (3) 
is uniform: aM = (aa/VM(1 + a)). 

Incorporating the appropriate equations for aM and integrating equation (16) gives: 

cr a Q ,  

PMi = 1--exp [--2SM. (aoM'VM.(-I+a)) " [~.i (raM+ 1) "(raM+ ,(2.17) 
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Figure 6. Schematic diagram showing the fragments created by matrix cracks in a microcomposite. 

where lai is the debond length in ith matrix fragment. 
This approach implicitly assumes that a single population of flaws is responsible for matrix 

cracking, and that the Weibull equation still describes scale effects as fragments become 
shorter and shorter. The plots in Figure 4 and the Weibull moduli obtained at successive crack 
steps [4] indicate that the flaw strength parameters are not affected by small numbers of cracks. 
Other failure probability equations, such as the Weibull one as modified by Phani [23], could 
be used for larger numbers of cracks. 

The strength cr~f of the ith matrix fragment of volume V~ is derived from equation (17). It 
may be expressed as a function of a reference matrix strength cr:~ which measures the strength 
of the initial volume of matrix (VoM) is the uncracked microcomposite: 

\ aOM}  J 

Equating PM i and PM O gives cr~r: 

• ( V o M ~ I / m M ( l a i r a M + ~ )  -1/mu (2.19) 
= o §  1 ti r a M +  

It may be considered that the ith fragment fails when the stress acting on the matrix (aM) 
exceeds the fragment strength. A criterion for the formation of a crack is thus: 

The evolution of the number of matrix cracks versus stress which can be derived using equation 
(19), depends on fragment lengths 21i. A simple approximation of the matrix strength at 
saturation may be obtained by considering the average crack spacing at saturation (21n = 
(Lo/n)) and assuming that the debonds extend over the entire microcomposite length (la = 

o s  = + 1)] (2.20) 

A similar approach was applied to determine the failure probability of the fiber in the presence 
of matrix cracks. For a single matrix crack, the failure probability of the fiber may be calculated 
from the following equation assuming a volume-located failure origin: 

PF(1) = 1 - exp[--2SF dx], (2.21) 
\ a O F }  
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where SF is the cross-sectional area of the fiber, mF and aoF are the statistical parameters 
pertinent to the fiber and aF is the stress acting over the fiber. 

Incorporating Equations (3) and (5) for ae  and integrating equation (21) by considering 
that the fiber consists of (n + 1) volume elements associated to the matrix fragments, leads 
to the following equation for the failure probability of the fiber in the presence of n matrix 
cracks: 

p T ( n ) = l - - e x p -  a--~FVF(l+a) V o F [ 2 n ~  + l  , (2.22) 

where 

A = ((°) 1 - 3  
m F + l  

The effective volume of fiber VFE(n) which gives the same failure probability under the 
uniformly distributed stress aF is: 

VOF [1 + 2 n ~ A ] .  (2.23) V f ( n )  - (1 -F a) m~ 

The failure stress of the fiber in the presence of n matrix cracks aF(n) may be related to the 
reference fiber strength the aF R defined as the initial strength of the single fiber (length L0) 
under uniform tensile loading. This relation is obtained by equating the failure probability of 
the microcomposite (Equation (22)) and the failure probability of a single fiber under uniform 
tension: 

[ (v~) J  (1 + 2n~oA)'/mF" 
(2.24) 

3. Application to SiC/SiC microcomposites 

3.1. SIMULATION OF MATRIX CRACKING 

The determination of the number of matrix cracks as a function of the applied stress is based 
on the strengths of matrix fragments (Equation (19)) and on the failure criterion: a' M <~ aM. 

The matrix strength data exhibit a statistical distribution. The mean strengths were used in 
the analysis. Therefore, the average behavior of a batch of microcomposites was computed. 

The debond length ldi is given by Equation (6). An explicit equation of the evolution of li 
is not available yet. li was determined by using an iterative procedure. 

Formation of matrix fragments is dictated by the distributions of flaws. Fragment lengths 
depend on the location of the fracture-inducing flaws. Fragment lengths may be regarded as 
statistical data. They were derived from the probability (),i) of location of the critical defect in 
the fragment: ),i = lj/21i, where lj indicates the location of the critical flaw (i.e. the distance 
from the matrix crack plane), and 2li is the fragment length. Therefore, the lengths of both 
matrix fragments created at step i by the failure of a fragment of length 21i are respectively 
2Aili and 2(1 - Ai)li. The Ai data were computer generated random numbers (0 < )d < 1). 
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Initiating this procedure for the uncracked cylinder of matrix (length Lo, volume VOM ) 
allows the iterative determination of the successive fragment lengths as a increases, and 
therefore the use of Equation (19) for the computation of cracking stresses. 

The simulation of matrix fragmentation may be summarized as follows. The first crack is 
created when the stress operating on the matrix aM exceeds the mean matrix strength for the 
initial volume VOM. The lengths of the resulting fragments are respectively: 

Ii = 2ALL0 and 1~ = 2L0(1 -)~l) .  

The corresponding fragment strengths al and a~ are derived from the reference matrix strength 
using Equation (19). Stress for the formation of the second crack is aM = crl (assuming for 
simplicity that a~ > trl). The trl-fragment is subdivided into two new fragments of lengths 
12 = 2A2/~ and l~ = 2(1 - )~2)/2. The fragment strengths tr2 and cr~ are derived from Equation 
(19). The formation of the third crack occurs when aM exceeds the lowest fragment strength 
(a~, a2, a~). The procedure is repeated unless one of the following conditions is no longer 
satisfied: 

(i) fragment strengths are smaller than the corresponding fiber strength given by Equation 
(24), 

(ii) debond length (Equation (6)) within the critical matrix fragment at each step does not 
exceed fragment length: 

21di <~ 21i. 

As soon as this second condition is no longer fulfilled, it is considered that saturation of matrix 
cracking occurred. The mechanical behavior of the microcomposite becomes dominated by 
the fiber. Ultimate failure occurs when the fiber strength (Equation (24)) is smaller than the 
stress applied to the fiber. 

Computations were performed at a constant debond length ld and also for debond lengths 
growing with the applied stress, according to Equation (6). Simulation of the matrix cracking 
process is illustrated in Figure 7 which shows the distribution of cracks at saturation for various 
debond lengths. Matrix cracking was allowed in the region surrounding interfacial debond 
only in Figure 7c. 

3.2. MICROCOMPOSITE PROPERTIES 

The mean characteristics of the SiC/SiC microcomposites (Table 1) that were used for the 
computations were measured in a previous paper [4]. The statistical parameters pertinent to 
the SiC matrix deposited by CVI, were estimated from the statistical distributions of stresses 
at the onset of matrix cracking measured in batches of SiC/SiC microcomposites of various 
lengths [4]. 

Figure 4 shows an example of the statistical distributions of matrix strength data determined 
on a batch of SiC/SiC microcomposites (10 mm gauge length). The strength data were derived 
from the applied forces at the formation of matrix cracks, identified by acoustic emission and 
using features of the load-displacement curves shown in Figure 3~ The strength data at each 
crack were treated using the ranking statistics method and were ordered from lowest to largest. 
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Figure 7. Simulated matrix crack distributions at saturation for short debonds ((a) and (c): Id/L = O, 0125) and 
for long debonds ((b): la/L = 0, 125). In (c) formation of cracks was allowed in the portions of matrix adjacent 
to debonds. 

Table 1. Mean characterisitics of the tested SiC/SiC 
mmrocomposites (scatter is indicated in brackets) [4], 

VF 0.26 [0.16--0.41] 
EM 300 GPa 
EF 180 GPa 
rUM 4.9 
my 3.9 
aou(Vo = 1 m 3) 3 MPa 
croF(Vo = 1 m 3) 2.5 MPa 
Lo 10 mm 
#M 589 MPa 
#F (25 ram) 2200 MPa 
dF 15/~m [10--20] 
Number of cracks at saturation 3 [1-5] 
Debond lengths 1.6 mm [1-2] 
Number of test specimens 13 

Then ,  the fa i lure  p robab i l i ty  P j  was  assoc ia ted  to the  j t h  da ta  us ing  the  fo l lowing  es t imator :  

j -0,5 
PJ = N ' (26) 

whe re  N is the total  n u m b e r  o f  the stress da ta  at each  step o f  c rack ing .  
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Table 2. Mean matrix cracking stresses (MPa) predicted for the SiC/SiC microcomposites 
tested in this paper. 

First crack Second crack Third crack 

Mean strengths 589 671 749 
Experimental 

P~ (n) = 0.5 582 649 749 

constant la = 1.66 #rn 564 619 705 
Predictions 

stress dependent la: 
7-0 = 5 MPa 564 611 699 

o~s/oMa 3 L 
2 • 

1 + 

O I  I I I I I 

0 0,1 O,Z 0,3 0,4 0,5 

dimensionless debond length Id/L 0 

Figure 8. Prediction of the influence of debond length on the stress at saturation for a SiC/SiC microcomposite 
(for a uniform distribution of matrix cracks at saturation). 

4. Results and discussion 

4.1. MATRIX CRACKING STRESSES 

Table 2 gives the mean matrix cracking stresses predicted for the batch of SiC/SiC micro- 
composites examined here. The predictions agree with the experimental data. The slight 
discrepancy which is observed between predictions and experiments must be attributed to 
the inherent uncertainty and variability in certain characteristics (including la, "r0, statisitical 

parameters, etc.). 
The results also show that the propagation of debond did not significantly influence matrix 

cracking for the range of debond lengths which was considered here (ld/> 1 ram). However, 
it can be noticed that, as logically expected, interfacial crack growth may cause fragment 

strength decrease. 
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Figure 9. Prediction of the dependence of the stress at saturation on the number of matrix cracks, for SiC/SiC 
microcomposites (for a uniform distribution of matrix cracks). 

4.2. FEATURES OF THE STRESS-STRAIN BEHAVIOR 

Features of the stress-strain behavior, including the stress at saturation and ultimate failure 
were calculated for various debond lengths using Equations (20) and (24). It will be noticed 
from Figures 8 and 9 that the stress at saturation a s  is strongly affected by the debond length 
and by the associated number of cracks. High stresses at saturation require short debonds 
whereas the numbers of associated matrix cracks are large. Theory predicts that matrix strength 
at saturation can reach infinity in the presence of very short debonds. Obviously, at this stage, 
matrix cracking becomes limited by fibre fracture. On the basis of the mean reference strengths 
for the fiber and the SiC matrix given in Table 1 and taking into account the scale effects 
(Equation (24)), an average maximum value of around 5 may be estimated for s n aM/a M for 
the SiC/SiC microcomposites. It is worth mentioning that this limit may be affected by fiber 
degradation during processing. Figures 8 and 9 thus allow the estimation of the debond length 
and the associated number of cracks required to reach the maximum saturation stress. For the 
SiC/SiC microcomposites examined here s lz (aM/a M = 5), the following requirements were 
estimated: la/Lo ,~ 0.001,ld = 10#m for L0 = 10 mm and n = 400. Below this debond 
length, saturation is dictated by fiber strength. Higher stresses at saturation require stronger 
fibers. 

Equations (20) and (24), can also be used to anticipate the influence of preponderant fiber 
and matrix properties on the stress at saturation and at ultimate failure. 

Figure 10 shows that the microcomposite ultimate failure depends strongly on the total 
debond length 2nla. High strengths coincide with short debonds. Such improvement of load 
bearing capabilities through strong fiber/matrix interactions is in agreement with experimental 
observations. Long debonds lower microcomposite strengths which is indicative of fiber 
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Figure 10. Prediction of the effect of total debond length on ultimate failure of SiC/SiC microcomposites. 

weakening by overloading. The debond growth is observed in fatigue. Lifetime in fatigue is 
determined by debond-induced fiber overloading. 

Fiber weakening due to matrix cracking or debond growth is also reflected by the effective 
volume Vff(n) (Equation (23)). Computations show that V~(n) is initially significantly 
smaller than fiber volume, which reflects the contribution of the matrix to load bearing. 

The above results highlight the influence of interfaces on the saturation stress, the micro- 
composite strength and the associated number of matrix cracks. The debond length reflects the 
magnitude of fiber/matrix interactions. Short debonds are indicative of strong interactions and 
long debonds of weak interactions. The above predictions show that strong fiber/matrix inter- 
actions enhance matrix cracking and improve, the microcomposite strength. Matrix cracking 
saturation tends to be dictated by the fiber, therefore, it tends to be coincident with microcom- 
posite strength. This implies the presence of a wide non-linear domain of deformations and a 
large number of matrix cracks. By contrast, microcomposite strength and the stress at satura- 
tion are smaller in the presence of weak fiber/matrix interactions, and they are distinct, leading 
to a narrow non-linear domain of deformations and a smaller number of matrix cracks. The 
same features are observed on practical CMCs (Figure 1). For comparison purposes, rough 
estimates of fiber/matrix interactions and the extent of matrix cracking may be obtained from 
the simple inspection of the stress-strain curves measured under tensile loads. 

The use of the Weibull equation may lead to an overestimation of matrix strengths as 
fragments become shorter and shorter, thus leading to an underestimation of the number of 
cracks. For Carbon fibers, the discrepancy between the measured strengths and Weibull's 
equation-based predictions tends to be significant for lengths more than hundred times shorter 
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Figure 11. Prediction of the influence of debond length upon the stress-strain curves for SiC/SiC microeomposites 
(fl = 0 ;k  = 0): (1) la = 0.1 ram, constant debond (r0 = 100 MPa), (2) ld = 0.1 ram, growing debond 
0-o = 100 MPa), (3) la = 1 ram, constant debond 0-o = 10 MPa), (4) la = 1 mm, growing debond 0"o = 10 MPa). 
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Figure 12. Influence of interfacial shear stress upon stress strain curves for SiC/SiC microcomposites (fl = 0; 
k = 0). 

than the initial length [23]. On the basis of these results it may be foreseen that matrix 
strength overestimations may become significant for fragment lengths smaller than 100 #m 
and the associated numbers of matrix cracks larger than 100 (for Lo = 10 ram). Therefore, 
the number of matrix cracks may be underestimated for large numbers of cracks and for those 
microcomposites with very strong interphases. This will not affect the trends predicted in 
paper. 

STRESS-STRAIN CURVES 

The computed stress-strain curves (Figures 11-14) agree with those measured on practical 
SiC/SiC microcomposite specimens: they exhibit comparable ranges of stresses and strains. 

Figures 11-14 confirm the above conclusions on the influence of fiber/matrix interactions 
through interfaces upon the stress-strain curves, which may be s u ~  as follows: strong 
fiber/matrix interactions favor matrix cracking, high stresses and a high stress at saturation 
which tends to coincide with the ultimate strength. Let's examine now the influence of the 
different interfacial characterisitics defined in the previous section. 
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Figure 13. Influence of the/~ parameter upon the stress-strain curves for SiC/SiC microcomposites (7"o = 
150 MPa; k = 0). 
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Figure 14. Influence of the k parameter upon the stress-strain curves for SiC/SiC microcomposites (fl = 0; ro = 
150 MPa). 

Figure 11 describes the influence of debond length. As previously mentioned, the stress- 
strain curves exhibit a wide non-linear domain and a high stress at saturation coincident 
with the ultimate strength when the debond is short (rather strong fiber/matrix interactions: 
7-0 = 100 MPa). By contrast, the non-linear domain appears more narrow and the stress at 
saturation tends to be much lower than ultimate strength when the debond is long (rather weak 
fiber/matrix interactions: 7-0 = 10 MPa). 

Finally, it can be noticed from Figure 11 that the propagation of interfacial debond signif- 
icantly affects the stress-strain curves only in the presence of weak fiber/matrix interactions 
(7-0 ~< 10 MPa). This result is in agreement with logical expectation, 

Figure 12 shows the dependence of the stress-strain behavior on the interfacial shear 
stress. The trends previously discussed and evidenced by Figure 11 are confirmed. The results 
are in agreement with the experimental data obtained on practical 2D woven SiC/SiC CVI- 
composites. Thus, for those CMC exhibiting a plateau-like behaviour, low To were estimated 
(< 10 MPa) [24, 25]. In contrast, significantly larger 7-0(> 100 MPa) have been measured on 
those composites exhibiting higher stresses, a wide non-linear domain of deformations and a 
stress at saturation close to ultimate failure [24]. 

Figure 13 describes the influence of the distance along which fiber/matrix interactions are 
effective. When fiber/matrix interactions operate over a significant distance (rather significant 
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Figure 15. Influence of the volume fraction of matrix upon the stress-strain curves for SiC/SiC microcomposites 
(to = 150 MPa). 

interactions) fl(= lo/la) is low. Interactions along a short distance are characterized by large 
values of/~ (weak interactions). Figure 13 confirms the previously mentioned trends. Non- 
linearity and high stresses are favoured by very small fl values. A plateau-like behavior and a 
low stress at saturation are obtained for large/~ values. 

Figure 14 shows the influence of radial compression or tension on the interface, as accounted 
for by coefficient k. The predicted stress-strain curves confirm the previously discussed 
trends. Higher stresses and a wide non-linear domain are obtained when the interface is under 
significant compression (k > 0). Decreasing k towards negative values (the interface tends to 
be under tension) diminishes the stresses. The stress-strain behavior tends to be characterized 
by a plateau-like curve. 

Figure 15 predicts the influence of the volume fraction of the matrix on the stress-strain 
curves for a microcomposite possessing a rather strong interface (r0 ~, 150 MPa). Results 
show that the features of the stress-strain curves are tremendously affected when the volume 
fraction of matrix is modified around the reference value of 0.7. Reduction of the volume 
fraction of the matrix causes the behavior to be increasingly dominated by the fiber, leading to 
higher stresses and strains. For large volume fractions of matrix, the initiation and saturation 
of matrix cracking occurs at low stresses and strains. These trends reflect scale effects. 

The above trends are in agreement with the data available in the literature and with the 
stress-strain behaviors measured on various practical 2D SiC/SiC composites and microcom- 
posites. Phoenix [26] anticipated that increases in r0 lead to a reduction in the matrix crack 
spacing in brittle matrix fibrous composites. Curtin predicted the same effect of 7"0 on the 
fiber characteristic strength and on the ultimate tensile strength in unidirectional CMCs [12]. 
The predicted influence of the volume of matrix on the stress at the onset of matrix cracking 
has been observed in microcomposites [22] and in CMCs [27]. As previously mentioned the 
highest stresses at saturation and at ultimate failure have been observed on CMCs possessing 
the strongest interphases [24, 25, 27]. The largest numbers of cracks at saturation have been 
detected in the presence of strong fiber/matrix interactions [25]. 

For reasons of simplicity, the axial thermally induced residual stresses were not incropo- 
rated in the stress-strain equations. However they were taken into account in the simulation of 
matrix cracking through the experimental value of tr R (Table 1). The influence of the radial 
residual stresses is incorporated in the equation proposed for 7". The direct determination of 
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thermally-induced residual stresses is not straightforward, owing to a result of a big uncer- 
tainty in the thermoelastic properties available for the fiber, the carbon interphase and the 
CVI-SiC matrix. 

Conclusions 

An approach to the relationships existing between interfacial parameters and the stress-strain 
behavior was proposed for microcomposites. Stress-strain relations were derived from fiber 
elongations in the regions delineated by matrix cracking and debonding. 

A Weibull type statistical-probabilistic model was developed for the description of the 
matrix cracking process and fiber failure. This model provided stress-probability equations as 
a function of the number of matrix cracks and interfacial parameters. The interfacial parameters 
included debond length (la), interracial shear stress ('r0), and stress dependent fiber/matrix 
interactions involving Poisson's effect, friction and residual stresses. 

This approach was applied to SiC/SiC microcomposites. The predicted matrix cracking 
stresses were found to be in excellent agreement with the data measured on a batch of SiC/SiC 
microcomposites. 

Predictions of the stress-strain curves as well as features of the stress-strain behavior 
as a function of interfacial parameters evidenced various trends which are readily observed 
on practical microcomposites and CMCs. Predictions thus showed that strong fiber/matrix 
interactions (as measured by short interfacial debonds (ld), large interfacial shear strength 
(TO), limited Poisson's effect (10 << la), and significant radial compression (k > 0)) favor 
matrix cracking, high stresses and a high stress at saturation which tends to coincide with 
ukimate failure. In the presence of weaker interfaces, stresses are low, the nonlinear domain 
of deformations is narrow, and the stress at saturation is significantly smaller than ultimate 
strength. The growth of interfacial debond significantly affected the stress-strain curve only 
in the presence of weak interfaces. 

Therefore, observation of the above features on the stress-strain behavior of CMCs, allows 
a rough estimate of the importance of fiber/matrix interactions. 

The analysis indicated that the stress-strain behavior involves scale effects. The influence 
of interfacial properties operate through the stress field acting on the matrix fragments and 
on the fiber. Fragmentation improves matrix strength and degrades fiber efficiency and the 
interfacial debond dictates the stresses acting on the fragments. In the presence of strong 
interfaces, larger volumes of matrix are stressed, which causes more significant cracking 
when compared with weak interphases. The fiber strength depends on the total debond length 
(2nld). 

The model provided the relationships between the four basic criteria for damage and 
failure in CMCs: stresses, failure probability, debond length (or interracial shear stress), and 
the number of matrix cracks. We can go around this square in any way to predict a given set 
of data. For instance, we can predict reliability as a function of applied stresses and interfacial 
characteristics. We can also derive interfacial characteristics from applied stresses and the 
number of matrix cracks. Therefore, this model provides a tool for extracting interfacial 
characteristics from the stress-strain curves measured on microcomposites. 
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