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Abstract.  This paper presents the use of fracture mechanics for the plate bonding technique. Plates of steel or 
carbon-fibre reinforced plastic are bonded with an epoxy adhesive to rectangular concrete prisms and loaded in 
shear up to failure, what is normally known in fracture mechanics as mode II failure. In this special application 
a linear and a nonlinear approach are presented. The nonlinear equation derived for a realistic shear-deformation 
curve can only be used for numerical calculations. However, for simplified shear-deformation curves, the derived 
formula can be solved analytically. Results from tests, which are compared with the theory, are also presented. 

Notation and symbols 

A = cross-section [m 2] 

Al = cross-sectional area, adherent no. 1 [m 2] 

A2 = cross-sectional area, adherent no. 2 [m 2] 

a = crack length [m] 

b = width of strengthening plate [m] 

C = compliance [m/N] 

E = modulus of elasticity [Pa] 

El  = modulus of elasticity, adherent no. 1 [Pa] 

E2 = modulus of elasticity, adherent no. 2 [Pa] 

E~ = modulus of elasticity, adhesive [Pa] 

F = force [N] 

Gf  = fracture energy [Nm/m 2] 

G/~ = fracture energy, mode I [Nm/m 2] 

Gfn = fracture energy, mode II [Nm/m 2] 

G~ = modulus of shear, adhesive [Pa] 

9 = shape function [ - - ]  

g = length [m] 

go = length [m] 

P = force [N] 

Pmax = maximum tensile load [N] 

s = thickness of adhesive layer [m] 

t = thickness [m] 

t~ = thickness, adherent no. 1 [m] 

t2 = thickness, adherent no. 2 [m] 

U~ = elastic energy INto] 

W = crack energy [Nm] 

z = coordinate [m] 
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c~ = ratio between adherents [--] 
= deflection, slip [m] 

t~o = deflection [m] 
tfl = deflection [m] 
t~2 = deflection [m] 
7 = shear angle [rad] 
~- = shear stress [Pa] 
7-1 = shear stress [Pa] 
~'~v = local shear stress [Pa] 

= constant [l/m] 
a)~ = brittleness ratio for lap joints [l/m] 

1. Background 

At Luleh University of Technology, Sweden, research has been carried out in the area of 
plate bonding, i.e. the problems that arise when concrete members need to be strengthened 
using epoxy bonded plates. The research was started in 1988 and is still continuing. Both 
comprehensive experimental work and theoretical work have been carried out. The laboratory 
tests include strengthening for bending as well as for shear. A full scale test on a strengthened 
bridge has also been performed. In the area of theory, the shear and peeling stresses in 
the adhesive layer at the end of the strengthening plate have been studied in particular, but 
the theory of fracture mechanics introducing nonlinear behaviour in the joint has also been 
investigated. 

There is great potential for, and considerable economic advantages in, the method of 
strengthening existing concrete members with epoxy bonded steel or composite plates. If 
the technique is to be used in an effective manner, it requires a sound understanding of 
both the short-term and long-term behaviour of the adhesive used. It also requires reliable 
information concerning the adhesion to concrete and steel or composites. The execution of the 
bonding work is also of great importance in order to achieve a composite action between the 
adherents. The utmost importance of knowing within what limits the strengthening method 
can be used also needs to be mentioned. Although the method of strengthening a structure 
with plates bonded to it has been used since the mid 1970's, not much attention has been 
paid to the theory behind the strengthening method. However, since the mid 1980's different 
theories have been studied and methods to calculate forces and stresses in the adhesive" layer 
have been presented, see Theillout [1], Yuceoglu and Updike [2], Roberts [3-6], Vilnay [7]. 
Some theories regarding linear fracture mechanics conditions have also been presented, e.g. 
Hamoush [8], and Hamoush et al. [9, 10]. 

2. Introduct ion 

The expressions derived in this paper are related to bars strengthened with bonded plates and 
tested in pure shear, i.e. mode II failure. In the study, both symmetric and non-symmetric 
overlap joints are considered and analysed with LEFM (Linear Fracture Mechanics) based on 
energy criteria. Thereafter a one-dimensional NLFM (Nonlinear Fracture Mechanics) analysis 
is presented for non-symmetric joints. 

It is common to denote the fracture energy Gf by Gfli in mode II, but when the mode of 
fracture is evident from the context the notation Gf is used for the actual mode. However, 
before starting the derivations we must make the following assumptions: 
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Figure 1. Concrete prisms with bonded plates. The figure also shows a stress-displacement diagram during action 
of a load P .  (a) Non-symmetric case with different materials and stiffness in the adherents; (b) Symmetric case 
with the same material and stiffness in the adherents. 

• the materials are homogenous, isotropic and linear elastic; 
• the adhesive is only exposed to shear forces; 
• the thickness of the adherents and the adhesive are constant throughout the bond line; 
• the width of the steel plate is constant throughout the bond line. 

First consider a non-symmetric overlap joint as shown in Figure 1. The energy required for 
crack growth must be delivered as release of energy. If the adherents are free to move during 
crack propagation, work is done by the external load. In this case the elastic energy content 
will increase. For an overlap joint with unit width b, the condition for crack growth can be 
written as: 

dad (Ue - F + W) <" O or ~aa F -  Ue >" --d--~a ' (1) 

where Ue is the elastic energy stored in the structure, F is the work done by the external load 
and W is the energy for crack propagation. Furthermore G = d ( F  - Ue)/da is the energy 
release rate and dW/da is the crack resistance force. 

Consider the cracked overlap structure (a) in Figure 1. During the action of the load P ,  
the load application point undergoes a relative displacement 6 = 61 + 62. When the crack 
increases in size by an amount da the displacement will increase by an amount d6. Thus, the 
work done by the external force is Pd6 and (1) can then be rewritten as: 

d ( F -  Ue) : 1 f e d 6  dUe 
G =  ~aa b k, da ~ ] .  (2) 
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The deformations are elastic and, as long as there is no crack growth, the displacement ~ is 
proportional to the load ~ = PC,  where C is the compliance (inverse of stiffness) of the 
structure. The elastic energy stored in the structure is: 

Ue = ½P(f = ½P2C. (3) 

Hence, by using (2) and the chain role it is then possible to write: 

1 ( p 2 0 C  p c d P  , _20C _ p c d P  ~ p 2 0 C  
G = -g l, Oa + da - ~F Oa ~-a]  = ~ a a '  (4) 

or 

P = bG Oa " (5) 

It can be shown that (5) also is valid for symmetric overlap joints, see e.g. Wemersson, [11]. It 
would now be interesting to derive the maximum possible tensile load for a simple symmetric 
case and for a more complex nonsymmetric case as shown in Figure 1. This will be done next. 

2.1. LINEAR APPROACH 

If the deformations in the bars can be considered to be small, and if the influence of moments 
are neglected and the deformation in the bond layer is not taken into account, then the following 
change in compliance can be described with the help of simple beam theory: 

c= 2 } 2EA (6) 
Symmetric oc 1 

Oda 2EA 

C = ~o+a a ) 
EIAI -J- ~ i (7) Nonsymmetric oc _ 

With A1 = tlb, A2 = t2b and A = tb, (5), (6) and (7) give us the following expressions for 
the maximum tensile load: 

Symmetric Pmax = 2 b ~ .  (8) 

/ 2 E l t l G I  
Nonsymmetric Pmax = o v i - ~ a  ' 

where 

El t l  
c ~ -  E2t2" 

(9) 

If we compare these equations using the same adherents, i.e. a = 1, we see that the equations 
differ by a factor of 2. This depends partly on the change in compliance and partly on the 
equilibrium equation for the symmetric case. The derived LEFM equations above give a rough 
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Figure 2. Shear-displacement curve of an adhesive joint according to NLFM. 

estimation of the maximum load at failure. If we want a more precise value of the load, more 
accurate methods are necessary. Hence, it is possible to use NLFM. In this application it is 
even possible to use a one-dimensional nonlinear fracture mechanics approach. 

2.2. NONLINEAR APPROACH 

Before we start this analysis we must make the assumptions that the bond line is a pure shear 
medium, i.e. deformation in the bond layer is considered, and the adherents are linear elastic 
bars in pure tension/compression with no bending effects. The mechanical properties of a bond 
line are composed of the relation between the local stress Tzy and the local shear displacement 

across the bond line, see Figure 2. If these assumptions are to be valid in mode II fracture it 
is necessary to introduce a crack model for shear, the physical meaning for this model being 
shown in Figure 3. 

Furthermore, the shear strength of the bond zone is denoted 7-I" Another important para- 
meter in NLFM is the fracture energy G I which is defined as the energy required to bring an 
area of a bonded surface to complete fracture. This corresponds to the area below the 7- - 
curve: 

f0 ~° 
Gf = TdL (10) 

Since the compatibility and equilibrium equations are the same for nonsymmetric and sym- 
metric joints respectively, the NLFM approach can be applied to both. In Figure 4, a graphic 
representation of the two types, together with the shear distribution is shown. However, only 
the nonsymmetric case is presented in the present paper. The derivations in this paper have 
been made from here following a discussion with Gustafsson, [12]. 

Study Figure 3 once more. We want to find the critical force Pmax, corresponding to fracture 
growth in the bond zone, i.e. when G = G f, where G is the energy release rate and Gf the 
fracture energy for the joint. The original length of the bond zone is, g. We have a crack length 
of a and the adherents are homogenous, isotropic and linear elastic where the bond zone is 
only exposed to shear forces. This means that the bond zone has an actual length of ~ - a. The 
derived expression for the shear stress can therefore be written as: 

PmaxW cosh(wx) 0 ~< x ~< ~ - a (11) 
r(x) = b s i n h ( w ( g - a ) ) '  
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Figure 3. Crack model for shear. 
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and 

where s is the thickness of the adhesive Gs, the shear modulus in the adhesive, and E1 tl and 
E2t2 are the stiffness for the adherents respectively, see also Taljsten, [13]. 

Study Figure 5 (a) and (b). We have two situations. One when the size of the crack is a, 
and one when the length of the crack has increased from a to a + da. To move from (b) to (a), 
a certain amount of work is needed (to bring the crack together). This work can be expressed 
as :  

We = - ( a + a a )  ~ ~,~ 

force/unitlength distance 

As the opposite of the work needed to bring the crack together, the energy release rate G 
when we move from (a) to (b), over the crack surface bda, can consequently be written: 

G =  ~ -(a+aa) 

and if we enter the limits for the integrals in (14) we obtain: 

a = [ ( e - a )  - ( e -  ( a + e a ) ) ]  

(15) 
= s/ '~(s)r(7)d in general. 

./0 

However, ~-(7) = r = Gs7 in the case when the bond zone is linear elastic. Equation (15) 
can then be written: 

C -  8CsTl: 
2 - 2Gs '  (16) 

where ~q is the shear stress at the end of the bond zone, i.e. at the loaded end of the specimen 
in the case studied. 

When x = £ - a (11) together with (16) can be expressed as: 

s w2P 2 1 
G - 2Gs b E tanhE(w(~- a))" (17) 

When G = Gf  then P = Pmax, i.e.: 

s w2p2ax 1 
Gf - 2Gs b E tanh2(w(g - a ) ) '  (18) 
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Figure 5. Crack growth in the studied bond zone. 

o r  

Pmax = ~ wb tanh(w(g - a)) (19) 

and 

s~ (20) 
G f  = 2Gs" 

Figure 6 (a)  gives, when x = g - a ,  that  -q = "r I and (20) can be written as: 

s'r} (21) 
G f  = sGs" 

Consequently (19) can be written as: 

Pmax = brl  tanh(w(g - a)). (22) 
03 

Equation (22) can be normalised if we divide the expression by Tlb(~ - a): 

Pmax _ t a n h ( w ( / -  a)) (23) 
~sb(e - a) w(e  - a) 

Equation (23) can be simplified if we introduce a new notation wl (different from w in 
(12)). 

w 2 = 2w2(g - a) = -r}(e - a)2(l + a) 
E l t l G  I ' (24) 
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Figure 6. Different simplified shapes of r - 5 curves, from Gustafsson, [14]. 

where the normalised load-carrying capacity is governed by the ratio w 2 = 7-}(g - a)2(1 + 
a) / El tl G f, which is commonly referred to as the brittleness ratio for lap joints, see e.g. 
Gustafsson, [14] and Wernersson, [11, 15]. High values of the brittleness ratio correspond to 
fracture by crack propagation and low values to a fairly uniform stress throughout the bond 
line during fracture. Hence, it is clear that the maximum normalised load in general can be 
written as: 

) vb-~- - - a )  - F \ E--l-ltlG--}- , a , 9  , 
(25) 

where 9 represents the shape function of the T -- ~ curve. Different simplified shapes of ~- - 
curves have been presented in [14], see Figure 6. From these simplified curves it is possible 
to solve (25) analytically. For a more realistic shape of the 7- - 5 curve, numerical stepwise 
calculations are needed. For curve (a) in Figure 6, (25) can be expressed in the following way: 

Pmax 
7./b(e - a) 

- x/2tanh ( w~ ) 
W1 ~ " 

(26) 

It is now possible to establish two extreme cases for a joint. In the first case we have a ductile 
adhesive with a low value of w f, and in the second case we have a more brittle adhesive with 
a quite high value of Wl. In the first case rf  is the governing bond zone parameter and in the 
second case Gy is the governing bond zone parameter. The latter is the case for most of the 
epoxy adhesives used. Equation (26) can then be written as: 

Ductile Pmax ~ Tfb(g -- a) when wt < 0.1, 

In general rfb--~--- a) tanh ~ all wl, 
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The cases are illustrated in Figure 7. The curve marked 'In general' is plotted here for (26). A 
similar figure for symmetric joints was presented in [14], [16] and [17]. 

3. Comparison with theory and tests 

To gain an understanding of what happens during the propagation of a crack in the adherent 
along the bond line parallel with a steel or a FRP (Fibre Reinforced Plastic) plate, tests in shear 
have been made. One of the aims of these tests was to determine the anchor lengths which 
give a more effective force transfer between the adherents. This is not recorded here, instead 
you are referred to [13]. However, the main objective is to explain what happens during the 
propagation of a crack in the concrete. 

The test equipment used is shown in Figure 8, where a schematic sketch is presented. In 
the sketch a concrete prism on two supports is placed on a steel beam. The tensile force is 
applied by a hydraulic jack and transferred through a moment-free link to the strengthening 
plate. The hydraulic jack can also be moved in the vertical direction to minimise the negative 
effect of any moment introduced by the angle between the strengthening plate and the load 
level arm. All of the tests were position-controlled by an LVDT gauge. The load rate varied 
between 0.0002 mm/s and 0.0020 mm/s, but were kept constant during each type of test. 
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Figure 8. Schematic sketch of the test equipment used in the tensile test series. 

The results from the tests can be compared with the fracture mechanics model derived 
earlier, i.e. (26). 

Pmax _ : t a n h  (~22)  ) 

In the case of a quite stiff bond zone, a good approximation can be written: 

(27) 

or 

2Gf 
e ~ Est(1 +a) '  (28) 

where e is the measured strain at the top strengthening plate. In (27) and (28) we can notice that 
the fracture energy for the concrete is needed (since the failure always happens in the concrete). 
However, it is very difficult to measure the pure mode II fracture energy and extensive test 
equipment is required, see e.g. Hassanzadeh, [18]. Since we were not able to measure the 
pure mode II fracture energy, tests were performed in mode I and only approximation tests 
to try to find the mode II fracture energy were performed, see [13]. However, the measured 
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Table I. 

Test No. 1/7 t a Pm~x emax /~ VII E1 Eli 

[MPa] [mm] [kN] ~us] ~ s] 

$400 40A 205 2.9 0.123 41.1 1728 15.2 45.1 641 1905 
$400 60A 205 2.9 0.123 58.4 1637 22.9 68.0 641 1905 
$400 60B 205 2.9 0.123 53.0 1486 22.9 68.0 641 1905 
$500 80C 205 2.9 0.123 67.3 1415 30.5 90.6 641 1905 
$600 80B 205 2.9 0.123 71.4 1501 30.5  90.6 641 1905 
$800 80A 205 2.9 0.123 61.6 1295 30.5 90.6 641 1905 
G200 80A 23 0.9 0 21.9 13 225 6.0 17.8 3640 10 817 
G500 80A 23 0.9 0 24.1 14553 6.0 17.8 3640 10817 
C300 50A 162 1.2 0.04 35.1 3611 11.3 33 .6  1164 3459 
C400 50A 162 1.2 0.04 26.9 2768 11.3 33 .6  1164 3459 

fracture energies in mode I underestimates the load-carrying capacity at fracture whereas the 
approximation mode II fracture energies overestimates it. Nevertheless, the measured fracture 
energies give the limits within which the load-carrying capacity should be contained. 

In Table 1 comparison is made between test results from pure shear tests and (27) and 
(28). Notice also that (27) and (28) do not consider the length of the anchor zone; therefore 
the comparison is made for those tests having anchor lengths exceeding the critical one, i.e. 
300mm, see [13]. In the calculations, the mean value from the fracture energies has been 
used, i.e. GfI = 137.1 + 14.9 nm/m 2 and a f l I  = 1210.7 + 462.1 nm/m 2, and o~ is calculated 
for each series in accordance with (9) with Ec = 25.0 GPa. In Table 1, Pmax and ~max denote 
measured force and calculated strain in the steel plate related to this force. Furthermore, Tests 
No. $400 40A shows tests with mild steel plates, length 400 mm and width 40 mm, test A, G 
denotes glass fibre reinforced plastic and C plates of carbon fibre reinforced plastic. 

No finn conclusions can be drawn from the comparison of the performed tests in Table 1. 
This is mainly due to the fact that it is very difficult to measure pure mode fracture in concrete. 
However, what can be seen in Table 1 is that the measured values for all the test specimens 
studied, except for test series G, lie between the values calculated from the measured fracture 
energies. A preceding source of error that needs to be mentioned is the use of the simplified 
load-deflection curve, curve (a) in Figure 6. Thus this error cannot be very large since tests 
of the adhesive used correspond quite well with the assumed curve. However, when using 
different types of adhesives or very weak adherent materials, the bond zone curve for the case 
studied should be used and numerical calculations are needed. 

4. Conclusions 

Pure shear tests on concrete prisms strengthened with mild steel, CFRP and GFRP plates 
have been performed. In connection with these tests linear and nonlinear fracture mechanics 
equations have been derived. 

It is quite easy to study these test specimens in the elastic domain by use of linear fracture 
mechanics (LEFM) methods; however, when the concrete starts to fracture, nonlinear methods 
have to be used. 
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In this paper, a new nonlinear fracture mechanics (NLFM) approach has been derived, 

introducing a new model  called the fictitious crack model for shear. This model  is based on 
the fracture mechanics criterion from Hillerborg, [ 19], and Gustafsson, [14]. The fundamental  
idea with the N L F M  theory is that all the elastic energy created by the shear stress over a unit 
length will be used to create a new crack in the bond zone. The elastic energy is calculated, 
and by using a known or assumed shear slip curve, the nonlinear behaviour of  the studied 
joint can be predicted. Since quite stiff adhesives have been used in this study, the shear-slip 
curve is almost linear and the complicated equations derived can be simplified for calculation 
purposes. The fracture is a shear failure (mode II). The shear (mode II) fracture energy is 
difficult to measure and therefore, only rough tests could be made and compared to theoretical 
values. Nevertheless, the test results indicate that this method can be used to calculate fracture 
in concrete joints loaded in pure shear. However, for weak bond zones, the calculation can be 
complicated and numerical methods are needed. 
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