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Abstract. Crack bridging from an elliptical hole in fiber-reinforced ceramic composites is studied. For some 
fiber-reinforced ceramic composites, matrix toughness is much less than the toughness gained in the bridging 
zone, i.e. the bridging zone runs across the entire width of a specimen at a small load. In such case, load-carrying 
capacity of the specimen only depends on one parameter which is the measure of notch sensitivity. Solving the 
crack bridging problem for various aspect ratios of the elliptical hole and various bridging law shapes, the role 
of crack bridging from the hole is determined. The results presented may be used to guide design in addition to 
providing an improved understanding of the mechanism of fiber-matrix failure. 

1. Introduction 

Brittle materials are reinforced by high strength fibers to produce larger tensile strength than 
the unreinforced brittle materials. If cracking occurs in the brittle matrix, there is a region 
behind the crack tip, called the bridging zone, in which fibers remain intact; these fibers in 
the bridging zone enhance the toughness of the composite. Research has been carded out 
in this area since fiber-reinforced ceramics have many applications, for example, they can 
be used at high temperatures. To understand this toughening mechanism, the study has been 
done to determine the toughness by viewing the bridging zone as a localized band which is 
characterized by a so-called bridging law. The bridging law is a constitutive relation between 
the stress and deformation of the bridging zone. 

Early work using a localized band to study material failure can be traced back to the early 
stage of fracture mechanics when the Dugdale model [1, 2] was proposed to deal with the 
fracture of ductile materials. Among recent works, Marshall, Cox and Evans [3], Marshall 
and Cox [4], Suo, Ho and Gong [5] and Budiansky and Cui [6] have investigated the crack- 
bridging problem using a square-root bridging law. Reviews of recent progress in this area are 
given by Bao and Suo [7] and Cox and Marshall [8]. 

In this paper, we consider a problem as shown in Fig. 1 (a), an elliptical hole in a specimen 
made of  fiber-reinforced ceramic. Although Suo, Ho and Gong [5] have treated a circular hole 
problem, it is important to consider the elliptical hole problem since it is the general shape 
of a hole. For some fiber-reinforced ceramic composites, matrix toughness is negligible, i.e. 
a bridging zone initiates and extends to the boundary of the specimen at a small load. In this 
study, we assume the bridging zone extends over the net section of the specimen as shown 
in Fig. 1 (a). We also assume that the size of the hole is much smaller that the size of  the 
specimen. Then, the problem in Fig. l(a) is reduced to an asymptotic problem shown in 
Fig. 1 (b), where the composite is taken as infinitely large and the bridging zone is infinitely 
long. In the asymptotic problem, geometrical lengths are the major and minor axes of the 
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Fig. 1. Specimen geometry. (a) Finite geometry problem. (b) Asymptotic problem. 

elliptical hole. Outside the bridging zone, the composite is linear elastic and isotropic; the 
condition of either plane strain or plane stress is applied. 

We calculate load-carrying capacity of the asymptotic problem in terms of a parameter 
that is the measure of notch sensitivity, and we show the effects of the hole geometry and 
bridging law shape on load-carrying capacity. In the case of notch insensitivity, i.e. either 
the fiber strength is high or the hole is small, load-carrying capacity is not reduced much 
by presenting the hole. In the case of notch sensitivity, i.e. either the fiber strength is low 
or the hole is large, load-carrying capacity approaches to that obtained from an elastic hole 
problem without the bridging zone. Load-carrying capacity in the regime between notch 
sensitivity and notch insensitivity (brittle-ductile transition regime), in which many fiber- 
reinforced ceramics belong, is presented. Our results may be used to guide design in addition 
to providing an improved understanding of the mechanism of fiber-matrix failure. 

2. Crack bridging 

2.1 CRACK BRIDGING MECHANISM 

A brief review of crack bridging is given here. Consider a bridging crack growing from an 
elliptical hole in a fiber-reinforced ceramic with still intact fibers behind the crack tip, as 
shown in Fig. 2. The length of the bridging zone is L, and the elliptical hole has major axis a 
and minor axis b. The deformation inside the bridging zone is governed by a bridging law. 

° 
- -  = ~ , (1) 
~7 o 
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Fig. 2. Crack bridging model• 

where a and 6 are the stress and stretch of the bridging zone, respectively. The bridging law 
sets two scales, the failure stress a0 and limiting stretch tS0. It provides a means to simulate 
the failure of the localized zone. The failure of the bridging zone occurs when the stretch 
reaches its critical value tS0. By considering the interfacial friction of the fiber and matrix, it 
has been shown that 

O" ( t ~  1/2 

ao - \ ~ o ]  ' (2 )  

can be applied for fiber pull-out [3], where 

ao = f So, 

(1 - f ) R S g E m  
t50 = 

2rEyE 

(3) 

In the above two expressions, So is the fiber strength, f is the fiber volume fraction, R is the 
fiber radius, 7- is the sliding frictional stress at the fiber-matrix interface, and Ey, Era and E 
are the Young's moduli of the fiber, matrix and compostie, respectively. 

In a more general way, the bridging law follows the power form 

a = (m 1> 0). (4) 
¢7 0 

In (4), m = 0 corresponds to a rigid-perfectly plastic spring; m = 1 corresponds to a linear 
spring; ra = 0.5 corresponds to (2). The three bridging law shapes are shown in Fig. 3. For 
the power bridging law, the bridging law shape is controlled by the exponent m. 



256 Pei Gu 

CJO 

Linear 

6 o 

G O 

Rectilinear 

5o 

(Y 

GO ~ Square-root 

, 5  
5 o 

Fig. 3. Three bridging law shapes. 

In general, the opening displacement at the tail of the bridging crack, 6ta i l  , and the energy 
release rate at the bridging crack tip, Gtip, take the following forms 

60 a ' ' 

- -  g a ,  - - ,  . 

(5) 

The two functions in (5), f and 9, relate to the external load, hole geometry, bridging zone 
length, the failure stress of the bridging zone and the parameter a. The two functions also 
depend on the bridging law shape. The parameter a is the hole size a normalized by a material 
length E~6o/cro, i.e. 

( z  

= 6oE,/cro, (6) 

where E '  = E for plane stress and E'  = E / (  1 - t/2) for plane strain (u is the Poisson's ratio of 
the composite). The material length represents fracture process zone length [9]. Failure starts 
as matrix cracking from the boundary of the hole. The bridging zone grows as the external 
load increases. The catastrophic failure is when fiber failure occurs at the boundary of the 
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hole, which is the tail of  the bridging zone. Load-carrying capacity Orma x and the bridging 
zone length L can be obtained from (5) by letting 6tail = 60 and Grip = F0, where F0 is matrix 
toughness. The maximum load is given in the form 

O'max -- 79 0~, , . (7) 
o" 0 a 

The function 7 9 also depends on the bridging law shape. 
The parameter a is the measure of notch sensitivity. It represents the competition between 

elastic stress concentration caused by the hole and inelastic stress relaxation caused by the 
crack bridging, since it is the hole size measured in units of  the fracture process zone length. 
When a = O, there is no stress concentration (a crack parallel to the loading direction), or the 
fracture process zone length is infinite; so, load-carrying capacity is not reduced in this case, 
i.e. O'ma x ---- tr 0. When a is infinitely large, the hole size a is infinitely large, or the fracture 
process zone length is zero; so, there is no bridging effect, i.e, ~rmax = ~tr0, where r/is the 
inverse of the stress concentration factor of the hole. For example, the stress concentration 
factor of a circular hole is 3, so load-carrying capacity is one third of tr0 for a circular hole 
with a = oo. If a is small, a specimen is said to be notch insensitive; if a is large, it is said to 
be notch sensitive. There is a regime between notch insensitivity and notch sensitivity, where 
load-carrying capacity is between r/a0 and a0; it is the regime of brittle-ductile transition. 
The reduction of load-carrying capacity in this regime only depends on the parameter a for a 
given aspect ratio of the elliptical hole. Both the hole size a and the material length 6oF_/~fro 
are important to control notch sensitivity. Given a hole size, a large 6oElfiro reduces notch 
sensitivity and a small 6oE'/cro increases notch sensitivity. For fiber pull-out, the material 
length is in the order of I mm [7]. Given a material length, a large hole increases notch 
sensitivity and a small hole reduces notch sensitivity. From the design point of view, we 
would like a to be as small as possible so a component can sustain high external load. This 
can be achieved by either avoiding large holes or selecting composites with large values of 
the material length. 

The fiber failure at the tail of the bridging zone can occur at a finite bridging zone length 
or at an infinite bridging zone length. At the early stage of loading, the bridging zone length 
increases as the external load increases. Fiber failure occurs if the stretch 6 at the tail of  the 
bridging zone reaches its limiting value 60, and load-carrying capacity is the external load 
corresponding to the fiber failure. If the fiber failure does not occur, the external load increases 
to reach a peak value and then decreases to approach the steady-state matrix-cracking stress at 
the bridging zone length L = ~ [6, 10]. The external load can still increase at L = cx~ if the 
fiber failure still does not occur at this time, and this is the problem shown in Fig. 1, which we 
shall study in this paper. This is the case that matrix toughness is very small so the bridging 
zone runs across the entire width of the specimen at a small load. In this case, (7) takes the 
form 

° =  ,8, 
(7 0 

where ~" also depends on the bridging law shape. 
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2.2. PROBLEM FORMULATION 

The mathematical problem shown in Fig. l(b) is considered. A bridging zone emanates from 
x = + a  and coincides with the x axis. Far from the hole, the hole's effect vanishes so the 
opening displacement of the bridging crack approaches to 

go - X , (9) 

as x ~ -t-oc, y = 0. At an arbitrary point on the x axis, x > a, y = 0, we have the following 
expression for the opening displacement of the bridging crack 

(10) 

where 

05( ) (11) = -  

In order to have a finite opening displacement, b(~) decays in the order 

as ~ ~ 4-oc. The condition (12) guarantees that the integral in (10) is well defined. The 
deformation of the bridging zone is simulated by an array of dislocations, and the dislocation 
density is given by (11). The stress in the bridging zone at the position, x > I, y = 0, is equal 
to the stress due to the external load plus that due to the dislocation array. This relation leads 
to an integral equation 

X[X-1 (~o) + f±~b(¢)d~] 

= a._F(x ) + 1 fl +°° ao -d [H(x, ~) - H(x, -~)]b(~) d~ (13) 

for x > 1. In deriving this equation, b(~) is normalized by 6o/a; x and ~ are normalized by a. 
These normalizations will be used in following derivations. The function F(x) is ay u at the 
position, x > 1, y = 0, in the solution to an elliptic hole in a plate subjected to a unit remote 
load a = 1, which can be found in [11]; and H(x, ~) is auu at the position, x > 1, y = 0, due 
to a single unit dislocation at ~ > 1 (or ~ < -1) ,  y = 0, in a plate with an elliptic hole. To 
obtain the solution to the dislocation problem, the two complex potentials of linear elasticity 
can be written as 

= - ¢ . ( z ) ,  

e ( z )  = , o ( z )  - , . ( z ) .  
(14) 

In (14), ¢0(z) and ~P0(z) are the solution to a single dislocation in an infinite homogeneous 
plate without the hole; the second terms, ¢ . (z )  and ¢ . (z ) ,  are used to adjust the first two 
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Fig. 4. L o a d - c a r r y i n g  c a p a c i t y  v e r s u s  n o t c h  s e n s i t i v i t y  f o r  b/a = O. 
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Fig. 5. L o a d - c a r r y i n g  c a p a c i t y  v e r s u s  n o t c h  s e n s i t i v i t y  f o r  b/a = 0 . 5 .  

potentials so ~b(z) and ~b(z) satisfy the traction-free condition on the boundary of the elliptical 
hole. Expressions for $ . (z )  and ~b.(z), which can be found in [12], are given in Appendix A. 
Expression for H(z, ~) is given in Appendix B. The term 11(z, -~) is the contribution from 
the other branch of the bridging zone, z < - 1, in Fig. 1 (b). 

In order to determine load-carrying capacity, an additional equation for the fiber failure is 
required. The maximum load Crmax is attained when the opening displacement at the tail of 
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the bridging crack, ' ta i l ,  reaches its maximum value, '0. The opening displacement 'tail can be 
written in terms of the external load a and the dislocation density b(~) as 

'tail -i(~0 ) j~ 'o  - X + b(~)dE.  (15)  

The maximum load amax together with the dislocation density are solved from integral equa- 
tions (13) and (15) by letting 't~l = '0 in (15). The maximum load is given in the form 

O'ma x 
= f * ( a ) ,  (16) 

t70 

for the given aspect ratio b/a and bridging law shape. Equation (16) reconfirms that a is the 
parameter measuring notch sensitivity. 

The solution for Crma x can be determined analytically in the following special cases: 
(a) If a = oo, we have from (13) that 

X-1 (ffmax~ 4" fll+~b(')d~mx-1 ['~o if(l)] GO / 

Substituting (17) into (15) yields 

Noting that X(1) = 1, (18) can be rearranged as 

O'max 1 
fro - r / -  F ( 1 ) '  (19) 

(17) 

(18) 

where F(1)  is the stress concentration factor of the elliptical hole. This agrees with the analysis 
in Section 2.1. 

(b) I f a  = 0, we have from (13) that 

b ( ~ ) : 0 .  (20) 

Then, (15) gives 

O'ma x 
- 1. (21)  

O" 0 

This also agrees with the analysis in Section 2.1. 
(c) If b/a = oo, this is equivalent to the case a = 0(a = 0). So, the maximum load is still 

given by (21). 
In the above three cases, the maximum load is independent of the bridging law shape. 

3. N u m e r i c a l  s o l u t i o n  

For general values of a,  (13) and (15) are solved numerically to determine amax. We obtain 
algebraic equations using the Gauss--Chebyshev quadrature rule developed by Erdogan and 
Gupta [13]. The Gauss-Chebyshev quadrature rule was modified by Lo [14] to solve the 
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Fig. 6. Load-carrying capacity versus notch sensitivity for b/a = 1. 

crack kinking problem. Lo's treatment of no singularity at the original crack tip is employed 
here since we do not have a singularity at the boundary of the hole, { = 1. Also, there is no 
singularity at { = +oo according to (12). These requirements can be satisfied by writing b({) 
in the following form 

b(t) = ( 1  - t)s/2f(t) 
x / i - -  t 2 ' (22) 

using a transformation 

2 
c = 1 - t '  (23) 

where - 1  < t < 1 and f ( t )  is a regular function (continuous, without singularity). In (22), 
b(t) --+ oo if t --+ - 1 ( ~  -+ 1). Using Lo's treatment, we enforce f ( - 1 )  = 0 to remove 
the singularity. Note that (22) does not have a singularity at t = 1(~ = +oo). The resulting 
nonlinear algebraic equations from the Gauss--Chebyshev quadrature rule are solved by the 
Newton-Raphson method. Details about the numerical procedure is given in Appendix B. The 
convergence of the numerical method is very satisfactory. If 90 quadrature points are used, 
the error is less than 0.2 percent. In addition, we check the accuracy of the method by letting 

and b/a be equal to, or approach, the particular cases whose solutions are analytically given 
in the last section. Comparison of solutions obtained from the two methods gives us more 
confidence about our numerical scheme. 

An appropriate bridging law to represent the constitutive relation of the bridging zone is 
very important to understanding the fracture mechanism of fiber-reinforced ceramics. Assum- 
ing both the fiber and matrix are linear elastic and the interfacial friction stress between the 
fiber and matrix is a constant over the region of slipping, it has been shown that the exponent 
m in (4) is equal to 0.5 for fiber pull-out [3, 15]. On the other hand, other bridging law shapes, 
linear and rectilinear, can also be used to study crack bridging and other problems. The linear 
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Fig. 7. Load-carrying capacity versus notch sensitivity for b/a = 1.5. 

bridging law is used by Rose [16] and Budiansky, Amazigo and Evans [17]; the rectilinear 
bridging law is used in the Dugdale model and other works. At this time, we would like to 
examine the effect of the bridging law shape on load-carrying capacity. To do this, plots of 
Crmax/<r 0 versus a for m = 0.01,0.5 and 1 are shown in Figs, 4, 5, 6 and 7 for the cases 
of b/a -- 0, 0.5, 1 and 1.5, respectively. It can be seen that load-carrying capacity decreases 
rapidly with increasing a for small a, and the decrease becomes slow for large a. This is 
particularly true for m = 0.5 and 1. The case for m = 0.01 is somewhat different: at very 
small a the decrease of load-carrying capacity is slow, then the decrease becomes fast as a 
increases and slow again at large a. In each of these figures, load-carrying capacity increases 
as m decreases. This is because the smaller m means more fracture energy in the bridging 
zone. The difference in these plots between m = 0.5 and 1 is less than the difference between 
m = 0.5 and 0.01. 

We examine the effect of the hole geometry on load-carrying capacity. In practice, an 
arbitrary hole shape may be found in a fiber-reinforced ceramic composite. The hole shape 
depends on many factors which are mainly related to manufacturing process and the application 
of the composite. An ellipse is enough for understanding the effect of a hole from the mechanics 
point of view, since it results in stress singularity and stress concentrations which the hole 
can have as b/a varies from 0 to ~ .  For comparison, the maximum stress O'max for several 
b/a's are shown in Figs. 8, 9 and 10 for the cases of m = 0.01,0.5 and 1, respectively. 
Load-carrying capacity is reduced as b/a decreases from ~ to 0, and the lowest <rma x is 
attained when b/a = 0 (crack). This is because the smaller aspect ratio results in the larger 
stress concentration near the tail of the bridging zone, and the crack has the largest stress 
concentration, i.e. stress singularity. The geometry effect becomes significant for large t~. 
This is because load-carrying capacity is inversely proportional to the stress concentration 
factor of the elliptical hole as a approaches infinity, where different b/a's have different stress 
concentration factors. The hole geometry has little influence on O'ma x for small a. It can be seen 
in Fig. 9 that, if a ~< 0.2, elliptical holes with aspect ratios b/a between 0 and 1 have almost 
the same trmax. This means that there is a value of a,  namely a*, such that for a small hole or 
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Fig. 8. Geomet ry  effect on load-carrying capaci ty  for ra = 0.01.  
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Fig. 9. Geomet ry  effect  on load-carrying capaci ty  for m = 0.5. 

a large material length which gives a ~< ~*, it is not necessary to distinguish whether the hole 
shape is ellipse, circle or crack as far as load-carrying capacity is concerned. Note that for 
a homogeneous ceramic plate, a circular hole, even if it is very small, reduces load-carrying 
capacity to one third of the strength of the material; an elliptical hole with a/b = 2, even if it is 
very small, reduces load-carrying capacity to one fifth of the strength of the material (the stress 
concentration factor for the elliptical hole is 5). In other words, a fiber-reinforced ceramic 
has the hole size effect while a homogeneous ceramic does not. This is one of the advantages 
of using composites! We also find from these figures that different m gives different a*, for 
example, a* is about 0.3 in Fig. 8, the case for m = 0.01. 
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We compare our solution in the case of a crack (b/a = 0) and rectilinear bridging law with 
the solution to the Dugdale model. In the Dugdale model, the plastic-zone length together 
with load-carrying capacity are determined by letting the stress intensity factor at the tip of 
the plastic zone be equal to zero and specifying a critical opening displacement at the tail of 
the plastic zone, 60. This gives an analytic solution 

Crma x 2 - - sec -1 e'~/(8~). (24) 
o" 0 7r 

In our integral equations, (13) and (15), the rectilinear bridging law can be approached by 
letting the exponent ra be sufficiently close to 0. It is interesting that the difference between 
the two solutions in the interval 0 ~< a ~< 2 is so small that we can not see it in a plot. In other 
words, in this interval, the solution to the Dugdale model may be viewed as an upper bound 
for load-carrying capacity in our integral equation solution for ra > 0. 

4. Concluding remarks 

Crack bridging near an elliptical hole is solved and its solution is presented in terms of 
the notch-sensitivity parameter a/(~oE'/ao). The effects of the hole geometry and bridging 
law shape on load-carrying capacity of a specimen are determined. It is found that the 
hole geometry has a strong effect on load-carrying capacity for large a/(~oEI/cro), and the 
geometry effect is negligible for small a/(6oE~/cro). The bridging law shape also has an effect 
on load-carrying capacity, i.e. the smaller exponent ra in the power bridging law gives the 
higher load-carrying capacity. Our solution provides a lower bound when matrix toughness is 
considered, since we neglect matrix toughness and assume the bridging zone runs far away 
from the boundary of the hole in the present formulation. Nevertheless, this gives a good 
prediction for those fiber-reinforced ceramics with small values of matrix toughness. 

We also take the composite as an isotropic body in our calculation. The work to consider 
the orthotropy of the composite is done by Cui [18] for the case m = 0.5. For numerous 
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values of the moduli of the fiber and matrix, the values of the two parameters measuring the 
orthotropy are not far from those in the isotropic case, as noted in [18]. So, we do not expect 
the orthotropy of these composites to have a strong effect on load-carrying capacity. 

Appendix A 

We write the two complex potentials of linear elasticity for an edge dislocation at z0 in an 
infinite plate with an elliptical hole in the following form 

q~(z) = ~o(z) - gb,(z), (A.1) 

= C o ( z ) -  

where O0 (z) and ~0 (z) denote the solution to the dislocation in an infinite, homogeneous plate 
without the hole. The solutions for $.(z) and ~b,(z) are obtained as 

qL(() = - - ) ' l o g {  ( -m/(o}( .  - 7 l o g {  (" - ~ / ( o )  

(11¢o- m1¢o)(11¢o-¢o) + 
m (1/¢o - (o/m)(1/(o - ( ) '  

(A.2) 

+Tin 

where 
#b 

- + 1) '  

and 

m - 

Z = 

(m/¢o-  1/(o)(m/(o - (o/m) ( 1 + m¢.__~2qy,((), 
( m / ( o - ¢ o ) ( m / ~ o - ( )  

a - b  a+b 
a+b '  2 ' 

~ 2  _ m 

(A.3) 

(A.4) 

In these expressions, b is the Burgers vector; # is the shear modulus; t¢ = 3 - 4v for plane 
strain, and ~; = (3 - v)/(1 + v) for plane stress. The mapping is chosen such that the region 
outside the elliptical hole in the z plane is mapped onto the region outside the unit circle in 
the ( plane. 

Appendix B 

The function H(x,~) in (13) is O'yy at x(x >1 1) due to a single unit dislocation at ~(~ ) 1), 
calculated from the two potentials ¢(z) and ¢(z) in Appendix A. Using the following variable 
changes 

2 2 
x -  1 - u '  ~ =  1 t '  (A.5) 



266 Pei Gu 

the integral equation (13) can be written as 

1 b(t)  d r -  d t -  
l u - t  1 1 ( 2 - t  u - ~ - - t )  dt 

+ 1 G 1 - u ' l - t  1 - u '  1 - t  ( f - - / )  2dr 

+47ra ~r F - 47ra ~o + 2 dt 

= 0, (A.6) 

where G(x, ~) is cryy calculated from the two potentials ~b.(z) and ~b.(z) in Appendix A. 
We solve load-carrying capacity O'max from (A.6) and (15). As we discussed in the beginning 

of Section 3, b(t) may be written in the form 

b(t) = (1 - t)5/2f(t) 
- t 2 ' (A.7)  

where f ( t )  is a regular function to be determined. The Gauss-Chebyshev quadrature rule [13] 
is used to obtain algebraic equations from (A.6) and (15). There are N + 1 unknowns if we 
use N quadrature points: cr and fi(i  = 1 , 2 , . . . ,  N;  fi denotes f ( t )  at the quadrature point). 
On the other hand, there are N + 1 algebraic equations from (A.6), (15) and the condition 
that there is no singularity at t = - 1  [14]. Thus, the system is solvable and it is solved by the 
Newton-Raphson method. 
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