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Abstract. Stresses near the free edges of the interface of bonded dissimilar materials can be described by the sum of a 
regular stress term and one or two stress singularity terms. A method for the calculation of the corresponding stress 
intensity factors from finite element results is presented which is useful to determine two stress intensity factors together. 
Results for some geometries show that all three terms may contribute significantly to the stress distribution near the 
free edge of the interface for thermal stress. 

1. Introduction 

In Fig. 1 the general configuration at the interface of bonded dissimilar materials is shown which 
is characterized by the angles 01 and 02. The stresses near the free edge of the interface can be 
described by 

%(r,O)= ~ K~ 
= o ( r / - ~  ~'~ fi jk(O), (1) 

where r and 0 are defined in Fig. 1 and L is a characteristic length of the component. The 
angular functions f~jk and the stress intensity factors K k  are defined in such a way, that 

fok(O = O) = 1 (k = O, 1 . . . . .  N) .  ~Ok and f~jk depend on the elastic constants El, vl, E2,  v2 and on 
the angles 01 and 02, but are independent of the loading conditions. They can be calculated 
analytically by solving the general stress function taking into account the boundary conditions 

Fig. I. General configuration at the free edge of a joint. 
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at 0 = 0, 0~ and 02 I l l .  The resulting cog can be positive real, negative real or complex. For 
complex values of cog (1) is no longer useful and separate considerations are necessary [1, 2]. 
For COg > 0 a stress singularity exists. One solution for COk is COO = 0 leading to a stress term, 
which is independent of r 

aoo(O) = K o f  oo(O). (2) 

Instead of Ko, the designation a0 is used in the following text. This term can be calculated 
analytically for any combination of angles 0a, 02 and any loading condition [3]. 

The other stress intensity factors Kk (k -- 1, 2 . . . . .  N) have to be calculated numerically from 
the stress distribution for small values of r, for instance by using the finite element method. They 
depend on the material properties, the applied loading condition and the geometry of the 
component. 

If, besides coo = 0, more than one value of [cokl is less than about 0.5, then all of them may 
contribute to the stress field near the edge of the interface. This will be shown in this paper and 
the corresponding values of Kk are calculated for some examples. 

2. Method of determination of several stress intensity factors 

For two cog > 0 Knesl et al. [4] calculated the two stress intensity factors for mechanical 
loading. They first obtained K1 from the stress distribution for small r neglecting the second 
term and then K2 from the stress distribution at larger r taking into account the first term. 
Theocaris [5] used a similar method. In many cases this method cannot be applied, because the 
term with k = 2 contributes significantly to the stress distribution also very close to the free 
edge of the interface as will be shown in the examples in Section 3. Therefore it is necessary to 
develop a method by which two or more stress intensity factors can be determined simulta- 
neously. In the following such a method is presented. 

Equation (1) can be rewritten by using (2) as 

rrii(r, O) = ~. Kk k =1 (r/L) ~ "  fijk (0) + rrijo (0), (3) 

where COk, aijo and f~jk can be obtained analytically. By the finite element method the stresses 
rr~E(r, O) can be calculated. Then a quantity FI~j is defined as 

Kk t 2 Ilij = ~ rr~iL(rt, Ot) - rrijo(Ot)-- ~, (rt-~L~fjk(Ot) • 
I = 1  k = l  

(4) 

M is the number of points used for determining K k. According to the least squares method, the 
minimum of FIij with respect to the values of Kk has to be found. It is given by 

~II~j _ 0 (5) 
OKk 
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leading to N equations 

N M 1 1 
Kk ~ (rt/L)~fiJ k(Ot)'(rt/L)o" fiJq(O') 

k = l  / = 1  

M 1 0 
= ~ EaSE(r,, 0,) - a,io(0~)] ~ f , ~ , ( , ) ,  (6) 

/ = 1  

with q = 1, 2 . . . .  , N. The values of Kk are obtained by solving these equations. 

3. Results 

The method given in Section 2 can be used for any geometry, material combinations and 
loading conditions. To show the applicability of the method two geometries are chosen 
somewhat arbitrarily. With these examples the general behavior of joints can be discussed. 

Cooling down of the joint by AT is considered as one loading condition. The stresses are 
proportional to AT. All results for 6ij and K k a r e  given for AT = - I°C. 

A second loading is mechanical loading with a constant load distribution applied at the upper 
and lower surfaces. 

The selected geometries are shown in Fig. 2. For  convenience symmetric joints are considered. 
The angles are 01 = 165 °, 0 2  = --55 ° (combination A) and 01 = 115 °, 0 2  = - 4 5  ° (combination 
B). 

The stress exponents ogk have been calculated for the material parameters E1 = 280 GPa, 
Vl = 0.26, v2 = 0.3 and variable E 2 .  The values of o9k for which IRe(o9)l < 0.5 are plotted in 
Fig. 3 versus E2/E1. The complex exponents are described by o9 = s + ip. 

Different ranges of E2/E1 can be distinguished: 
Combination A: 

E2/E1 < 0.0182 o91 < 0, o92 < 0 (no singularity term), 
0.0182 < E2/E1 < 8.51 o91 > 0, o92 < 0 (one singularity term), 

E1 ' V l ,a l  H1 
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Fi9. 2. G e o m e t r i e s  o f  i n v e s t i g a t e d  j o i n t s  (A:L/H1 = 1.016,  L/H 2 = 1.233,  B:L/HI = 1.424,  L/H 2 = 1.986). 
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Fig. 3. Stress exponent co versus E2/E 1 (El = 280 GPa, v~ = 0.26, v2 = 0.3). 

8.51 < E 2 / E  1 < 30.35 091 > 0, 09 2 > 0 (two s ingu la r i ty  terms), 

E z / E  1 > 30.35 091 a n d  60 2 complex  (Sl = s2 > O, Pl > O, P2 < 0). 

C o m b i n a t i o n  B: 

E 2 / E  1 < 3.931 

3.931 < E 2 / E  1 < 43.61 

E2/E1 > 43.61 

o31 < 0, no  ]Re(092)[ < 0.5 (no s ingu la r i ty  term), 

091 a n d  e32 complex,  Sl = $2 < 0, Pl > 0, P2 < 0, 

091 > 0, 092 < 0 (one s ingu la r i ty  term). 

The  a n g u l a r  func t ions  a n d  the ~ru0 te rms  can  be represen ted  as 

f.irk(O) = {Ask(2 + 09k) sin(09k0) + Bjk(2 + COk) COS(09k0) -- Cjk(2 -- 09k) sin[(2 -- 09k)0] 

-- DSk(2 -- 09k)COS[(2 -- 09k)0]}/{(2 -- COk)(Bjk + Djk)}, (7a) 

frog(O) = {Ajk sin(09k0) + Bjk COS(09k0) + Cjk sin[(2 -- 09k)03 + Djk COS[(2 -- 09k)03} 

/(Big + D2k)}, (7b} 

J),ok ( O) = - { A jk 09k COS(09k0) - B jk 09k sin(09k0) + C jk ( 2 -- 09k ) COS[( 2 - 09k )0] 

-- Djk(2 -- 09k)sin[(2 -- 09k)0]}/{(2 -- 09k)(Bjk + Djk)}, (7c) 

ajro(O) = 2(Ajo0 + Bjo - Cjo sin(20) - Djo cos(20)), (8a) 

ajoo(O) = 2(Ajo0 + Bjo + Cjo sin(20) + Djo cos(20)), (8b) 

Zj,oo(O) = - 2(½Ajo + Cjo cos(20) - Djo sin(20)), (8c) 

with j = 1, 2 for the two mater ia ls .  

In  a g r e e me n t  with (2), cr o = 2(Bjo + Djo). 

It  can  be shown  that  the regular  stress terms crij o are p r o p o r t i o n a t e  to ~1 

(1 Jr- V l )  - -  ~2(1  Jr- V2) for p lane  s t ra in  [6]. F o r  the fo l lowing ca lcu la t ions  ~1 = 2.5 x 10 6 / K  and  

~2 = 18.95 × 1 0 - 6 / K  have been  chosen.  The  stresses in the j o i n t  have been  ca lcu la ted  with the 

F E - c o d e  A B A Q U S .  The  stress in tens i ty  factors have been  d e t e r m i n e d  from the FE- re su l t s  of  a0 
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at 0 = 0. Different values of M in (6) according to different ranges of  r/L have been used. The 

lower bound was fixed to (r/L)min = 1.6 × 10-5.  

Results of Kk as a function of the selected upper bound (r/L)max for combination A with 
E2/E1 = 21.42 and for combinat ion B with E2/E1 = 50 are shown in Fig. 4 for thermal loading. 

In both cases the values of  Kk are calculated for two terms (N = 2). There is a range where the 
determined K-values are nearly constant. If the upper limit of the selected range in r/L is too 
high, there will be deviations because terms with N > 2 are important. If the upper limit is too 

low there will be deviations, because of  inaccuracies in the FE-results [7]. The range of 
1.6 × 10 -5 < r/L < 5 x 10 -4  was used to determine the stress intensity factors. 

In Fig. 5 the parameters col, o92, Kz,  K2 and tro are plotted versus E2/E1 for combination A 
in the range where ~oz and co 2 are real. It can be seen that a o approaches infinity for ~ol ~ 0 

and for 092 ~ 0. This increase in ao is counteracted by an increase of K1 or K2 with different 

signs of ao and Kk. Finite stresses are only possible if for ~ = 0 the ratio K/ao is finite. This is 
shown in Fig. 6 where K1/ao is plotted versus ~o~ and K2/ao versus ~o2. For o91 = 0 there is 

K1/ao = - 1 and for ~02 = 0 there is K2/ao = - 1. 
For the already mentioned examples the stress distribution is considered in detail. Ka 

and K2, the exponents ~z  and ~o2, and the stress ao are given in Table 1. Figures 7 and 8 
show the stress distributions near the free edge of the interface for zr0 along 0 = 0, tr, along 

0 = 01 and 0 = 02 and a,, ao, Z,o along 0 = - 2 2 . 5  °. The calculated stresses by means of 
F E M  and analytical form are given. The stresses from the analytical form are the sum of 
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Table I. Parameters for two examples 

K1 K2 ao 
O1 02 Ez/EI ~ol 0)2 [MPa] [MPa] [MPa] 

165 ° -55  ° 21.42 0.4160 0.2491 0.121 2.223 0,499 
ll5 ° -45  ° 50.00 0.0879 0.0593 - 104.2 -210.3 306.1 

three  t e rms  

K1 K2 
~i j  = ~ijO Jr f f i j l  "~- 17ij2 = 17ijO -~- ~ J ' i j l  "~- ~ f ij2. (9) 

t r i l l )  t r i l lS-  

The  f igures s h o w  separa te ly  the  t e rms  aijo, a u l  and  ~Tij 2. 

F o r  the e x a m p l e  s h o w n  in Fig.  7 the  two  stress e x p o n e n t s  a re  pos i t ive  (~1 = 0.4160, 

co2 =0 .2491) .  The  stress in tens i ty  factors  have  different  signs (K1 = 0 . 1 2 1  M P a ,  KE = 

- 2 . 2 2 3  MPa) .  T h e  c o n t r i b u t i o n  of  crg~o is smal l  c o m p a r e d  to tha t  of  a~jl .and au2. It  can  
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Fio. 7. Stresses versus  r/L (01 = 165 °, 02 = - 5 5  °, thermal  loading,  E2/E 1 = 21.42, circles: FEM).  

be seen that the term aij 2 with the smaller stress exponent contributes significantly to the stress 
distribution. For ar at 0 = 02 the a,2 term dominates. 

For  the example shown in Fig. 8 the stress exponents are small and have different signs 

(tn~ = 0.0879, ~o2 = -0.0593). The stress intensity factors are negative and larger compared to 
the example in Fig. 7 (K1 = -104.2,  K2 = -210.3). The contribution of ~o is important  in this 

example. The nonsingular term aij2 (~o2 negative) contributes significantly to the stress 
distribution even at very small values of r/L. 

Figure 9 shows results for combination A with mechanical loading. A constant load 
distribution is applied at the upper and lower surfaces, leading to a nominal stress on at the 

interface. The regular stress term aijo is zero. In contrast to the thermal loading the stress 

intensity factors K1 and K2 are finite for ~o~ = 0 and ~oz = 0. For Ez/E 1 = 21.42, the stress 
terms Zl and T 2 are shown in Fig. 10. In contrast to the thermal loadings condition the 
contribution of the term ~2 is small. 

The Figs. 7, 8, and 10 show also a comparison of the results from the analytical relation and 

from FEM. The stress intensity factors K1 and K 2 for the analytical relation have been 
determined - as already mentioned - from a0 at 0 -- 0. The comparison shows that for all stress 
components and different 0 the agreement between analytical results and FE-calculations is 
excellent. Only very close to the free edge deviations occur due to the inaccuracies in the 
FE-method [7]. Thus it is proved that the method is accurate. 
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4. Conclusions 

1. A method based on finite element results was given, by which two or more stress intensity 
factors can be determined at the same time. There is a good agreement between the 

calculated stresses near the free edge of the interface of the bonded dissimilar materials from 

the analytical form with the determined stress intensity factors and those from FEM. 
2. The stress distribution also very close to the free edge can be considerably influenced by the 

second term with 0) 2 ~ 0)1. Even for (D E ~ O, i.e. no singularity, the second term may 

contribute significantly to the stresses. Also the term aoo, which is independent of the 
distance from the free edge, can be very important for cooling stresses. 

3. For a given geometry K1, K2 and ao approach infinity for specific material combinations. The 

corresponding stress exponent 0)1 and 0)2 are zero and the ratios K1/ao and K2/ao, respectively 

are - 1. Thus the stresses are finite because the ao-term is balanced by the K1- or K2-term. 
4. With the described procedure it is possible to select material combinations for a given geometry 

or a geometry (angles 01 and 02) for given material combinations with minimized stresses. 
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