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Abstract. A plane-strain Finite Element (FE) analysis has been performed on a composite model consisting of a 
homogeneous, side-cracked elastic material with a single, symmetrically located elastic particle under pure mode-I 
loading, in an attempt to simply characterize the crack-particle interaction for a general two-phase composite. 
In order to uniquely characterize the geometry of a given model (crack length, particle size and crack-particle 
separation) it is necessary to introduce a new comprehensive 'geometric' parameter. For the purpose of making 
this analysis broadly applicable, a wide range of elastic moduli for both the matrix and the reinforcement are 
incorporated into the analysis. The results indicate that the particle has a strong influence on the crack-tip stress 
intensity factor (SIF) only when the particle is relatively near the tip as determined by the geometric parameter. 
Within this crack-tip region it is found that particles elongated parallel to the crack are more able to affect the 
crack-tip SIF than identically sized particles elongated perpendicular to the crack. Finally, the differential SIF 
of the composite is given as a general function of the geometric variables, particle shape (aspect ratio) and 
Dundurs' parameter ~ which characterizes the elastic mismatch of the constituents. With this relation, a simple 
and accurate estimate of the elastic interaction between a crack and particles of various shapes can be made on 
many combinations of materials without an extensive numerical analysis. 

1. In troduct ion  

It is increasingly common in new engineering applications to make use of  dual-phase com- 
posites that combine a matrix material with certain desired properties and a second phase 
reinforcement with complementary properties, in order to reach better overall performance 
than is possible for either independent component. One example of this type of composite is 
the AI-SiC system [1, 2]. The addition of short SiC fibers significantly increases the stiffness, 
creep resistance and yield strength of  aluminum, although much ductility is sacrificed. Implic- 
it in the combination of dissimilar phases are the problems of  phase distribution, interfacial 
bonding, secondary chemical reactions, and misfit stresses. These problems can occasionally 
be suppressed through altering the chemistry of  the composite, or by a subsequent thermal or 
mechanical treatment. Other examples are metal-metal and ceramic-ceramic composites [3, 
4]. All material combinations must overcome these same implicit problems in order to show 
the maximum mechanical improvement. 

This class of  new materials has led to the development of  models for calculating the effec- 
tive elastic constants, yield strength and fracture toughness of various combinations of  phases 
in hopes of  predicting and optimizing material behavior [5-9]. Restricting ourselves to mate- 
rial fracture leads naturally to the specific problem of  a crack in a two-phase material, which 
has also been addressed in [10-12]. The concensus of composite failure models suggests that 
the toughness enhancing mechanisms associated with second-phase inclusions are generally 
twofold: First, inclusions decrease crack growth driving force by deflecting cracks, increasing 
energy dissipative processes and decreasing stresses ahead of  the crack. Simultaneously, the 
plastic deformation, fracture or interfacial debonding of  the second phase in the wake of  a 
crack further increases the energy required for specimen failure [12-14]. Prior to the onset of  
these mechanisms, cracks must form and extend to the particles. The crack-inclusion inter- 
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action studies in previous fracture models have generally simplified the composite fracture 
problem to a system involving only a crack and a circular particle, or a crack and an infinite 
interface [15]. In order to address the practical material problems more appropriately, it is 
important to consider not only finite particles with various elastic constants and locations, but 
also various particle shapes because different processing techniques generate second-phase 
particles that range from equiaxed to highly elongated. It is known that the interaction between 
an inclusion and a crack tip is influenced by geometrical factors such as crack length, crack- 
particle separation and particle size in addition to elastic and thermal misfit stresses, therefore 
particle shape is one of the remaining important variables which requires investigation. 

2. Approach 

This work is focussed on the relation between a single particle ahead of a crack tip and the 
crack-tip stress intensity factor for various crack-particle geometries. The model presented here 
is intended to characterize the behavior of a crack in the initial stages of composite fracture. A 
crack in a three-dimensional matrix which encounters fibrous or spherical inclusions behaves 
differently than any two-dimensional model can predict, although the effects will likely be 
similar given identical volume fractions in both cases. To directly compare the results of 2- 
dimensional and 3-dimensional models consider a homogeneous notched specimen loaded in 
tension. In this case it has been shown that for both elastic and plastic deformation, either a two- 
dimensional plane-strain or a full three-dimensional analysis can be used to calculate nearly 
identical stress maxima [16]. As composite cracks are believed to originate largely in the core 
of specimens, plane strain is chosen over plane stress. Presently, two-dimensional modelling is 
preferred to three-dimensional in order to simplify the analysis and shorten computation time. 
Given the fact that the particle nearest the crack tip affects the stress intensity factor directly, 
the overall volume fraction and distribution of particles are not considered here. Additional 
distant particles clearly change the overall modulus and stress state but that problem can be 
roughly analyzed by changing the elastic properties of the matrix to some new 'composite' 
values [9]. We thus limit ourselves to the elastic interactions in the plane-strain case between a 
single particle and a crack tip for a side-cracked specimen geometry. This geometry is chosen 
to maximize the crack-particle interaction effects. A representative schematic of the side- 
cracked sample geometry is shown in Fig. 1. Characterization of the geometric variables is 
systematically accomplished through situating cracks of various lengths a fixed distance from 
an inclusion as shown in Fig. 2, as well as placing a given particle a variable distance from the 
crack as shown in Fig. 3. The aspect ratio, defined as the dimension of the rectangular particle 
in the crack plane normalized by the particle height w/h loosely characterizes the shape. The 
particle aspect ratio as well as the size can then vary for each d and a value. Following this 
definition, an aspect ratio of 1 applies to a square inclusion, but calculations are also made for 
a circular particle in order to compare these results with work done by other authors. Aspect 
ratios here range from ~ 0.05-10 and particle area is _<0.5 percent of the model area. 

Mathematical modelling of the mechanical properties of idealized materials is an increas- 
ingly important method for interpreting deformation and failure in real materials. Specifically, 
Finite Element (FE) modelling can be applied to a diverse array of shapes and materials with 
accurate results. These models can be used to calculate stress, strain and displacement fields 
as well as energy release rates and stress intensity factors [17]. The PERMAS finite element 
computer model developed by INTES Corporation is used for the current linear elastic analysis 
as well as for related elastic-plastic analysis (not reported here) for a more realistic computer 
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Fig. 1. Schematic of analyzed plane strain 
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Fig. 2. Variation in a for constant d and far-field 
stress, ~r. Particle volume fraction remains below 
0.1 percent. 

model [18]. The types of plane-strain elements in use here are both 6-noded triangles, and 
8-noded quadrilaterals. Boundary conditions are such that only the upper edge of the specimen 
is given displacement in the y-direction, less than 0.1percent of the specimen's y dimension, 
while the vertical faces are stress-free and move without constraint, Fig. 1. Internal stresses 
and strains arise from the condition that displacements are continuous in the entire model 
and thus the particle-matrix interface is perfectly bonded. The aspect ratio of the model is 
approximately 1 : 2 with dimensions a, d, w, h _< 10 percent of the model width. Therefore, 
the crack-particle interaction can be studied without interference from the horizontal bound- 
ary conditions. The specimen is subjected to these displacements, and no thermal or residual 
stresses are considered at this time. All calculations are based on tensile loading and it is 
assumed that stresses remain within the elastic range of both the matrix and the inclusion. 
The specimen was not simplified to one-half its full size because in the course of related 
calculations some asymmetric features existed in the model [19]. 

The finite element model described above is used with the modified crack closure integral 
method to calculate the energy release rate and stress intensity factor at the crack tip [20, 21]. 
Figure 4 is a reconstruction of the actual crack-tip finite element mesh. The scale of the smallest 
element at the crack tip is approximately 10 percent of the minimum crack length. For clarity 
the crack location is shown by the line to the left of the expanded area, and all calculations 
begin with an infinitely sharp crack. The problem is approached by first calculating the nodal 
point forces near the crack tip. Figure 5 shows the location and origin of such nodal-point 
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Fig. 3. Constant particle volume fraction for constant far-field stress and a with variable d. Particle size and 
orientation are unchanged. 
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Fig. 4. Symmetric finite element mesh at crack tip. 
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forces. Initially, upper and lower nodes at locations a and fl are attached by the forces F~ 
and F;~, thus translate together as the specimen deforms. The nodes are then released from 
this constraint and the crack propagates a small distance, Aa, from point A to point B. These 
nodes now have unequal displacement vectors, thus A u  ~ and Au/~ are no longer zero. The 
Griffith energy release rate is then calculated as 

1 
G - 2 tAa[EF~Au~  + EFyAuy],  (1) 

where t is the specimen unit thickness, Aa is the incremental crack increase, and EF~Au~ is 
the summation over points a and fl of the x-component of the nodal-point forces multiplied 
by the corresponding displacements. Stress intensity factors are subsequently calculated as 

I a  E (2) 
K =  l _ u 2  , 

where E is the stiffness, and u is Poisson's ratio of the matrix. Stress intensity factors are 
first calculated for the finite element mesh containing only one material in order to verify a 
value within 2 percent of the analytical handbook value. The appropriate mesh elements are 
then assigned the material properties of the inclusion and the calculations are repeated. To 
insure that this procedure yields correct results, the mesh resolution at both the crack tip and 
particle-matrix interface is reduced until the K values converge to a constant. 

3. Resul ts  

The stress intensity factors arising from the FE model for various crack lengths, particle aspect 
ratios and particle-crack separations are summarized in the following sections. The results 
are plotted with SIF data on the ordinate and the corresponding crack-particle geometric data 
on the abscissa. The differential stress intensity, AK,  is defined as K c  - K H  where K c  
is the stress intensity factor of the composite and K H  is the stress intensity factor in the 
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Fig. 6. Results for differential stress intensity factors for (a) rectangular, and (b) square versus circular inclusions. 
Particles are separated a constant distance d from the crack tip. 

homogeneous case. Only the curves for particle aspect ratios 0.08-3.2 are plotted because 
outside of this range almost no additional changes occurred. The Poisson ratio of 0.3 was used 
in all reported calculations for both the matrix and inclusion because varying the v values for 
both the matrix and inclusion between 0.2 and 0.4 had an insignificant effect on A K .  

The results of calculations for constant d (0.8 mm) with various particle aspect ratios w/h 
and crack lengths a for a composite with a hard matrix (Em = 210 GPa, vm = 0.3) and a soft 
inclusion (E~ = 100GPa, v~ -- 0.3) are plotted on Fig. 6a. The curves exhibit maxima for 
small values of d/a with AK/KH values that tend toward zero for more extreme values of 
d/a. The most extreme peak height corresponds to the aspect ratio 0.31, but is still relatively 
low at a AK/KH value near 5 percent. Figure 6b contains a comparison of the results for a 
circular inclusion and a square inclusion for similar calculations. For both of these inclusions 
the aspect ratios are equal to one and the areas are equal to 0.8 mm 2, but there are obvious 
geometrical differences. The same general trends shown for rectangular particles exist for the 
circular particle, although the peak height for the circular inclusion is roughly double the peak 
height of the w/h = 1.25 rectangle, and 30 percent higher than for the square. The data on 
Figs. 6a and 6b show that crack length has only a weak influence on A E  for these values of 
d and A. 

Stress intensity factor-geometry results for the alternate problem involving a variable 
crack-particle distance and constant crack length are plotted in Fig. 7. The particles retain the 
same area and aspect ratios as above, while the crack length is kept constant (a = 0.8 mm) 
and d is variable. No maximum exists for the data plotted here, rather a monotonic decrease 
in ordinate values corresponds to an increase in abscissa values for all aspect ratios. For 
(d/a) > 1, the effect of the particle on the differential stress intensity factor diminishes to 
less than 4 percent of the homogeneous E .  The particle begins to have a significant influence 
only when (d/a) < 1. For small d, the effects of the particle become large because of the 
proximity of the inclusion to the crack tip. In this effective d/a range (<_ 1) the particle shape 
effects are strong. For example, at a d/a value of 0.15, the AK/KH values for the various 
shapes can range from 17 to 27 percent. Particles elongated parallel to the crack show the 
greatest SIF enhancement while the circular particle shows the least. 
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Fig. 7. Influence of crack-particle distance on differential stress intensity factors for two rectangular particles 
compared to a circular inclusion. 

4. Discussion 

The interaction between a crack and a particle, as seen in the idealized case above, is influenced 
by many parameters. The details of actual material failure processes are therefore expected 
to be hopelessly complex and constantly changing. However, information can be extracted 
from the current static analysis that facilitates further understanding of the initial stages of 
deformation and failure in a two-phase composite. 

4.1. GEOMETRICAL EFFECTS 

A significant difference in the level of crack-particle interaction exists for not only the different 
particle aspect ratios, but the variables relating crack size and particle location as well. In 
Fig. 6 the AK/KH results for a constant d and variable a are plotted for particles with 
constant area and various w/h values. The nature of these curves is related to the stress and 
displacement fields near the crack tip and inclusion. The stress and displacement fields of the 
crack and particle are comparable in magnitude and in interactive contact only for values of 
d ~ a (~  0.8 mm). For more extreme values of d/a, the displacements due to the inclusion 
and the crack tip are too unevenly matched in magnitude to affect the other to any significant 
extent. The maximum value of AK/I(H is the point where the interaction is most extensive. 
It is suggested here without proof that this maximum is related to the interaction between the 
regions of increased tensile stress that necessarily exist between the crack tip and soft particle. 
Figure 8 shows the probable expansion and overlap of these regions between the crack and 
the particle for d ,-~ a ,,~ w. 

Changing the crack-particle geometry variable from a to d reveals that the dominant 
influence on AK/KH comes from d. The curves in Fig. 7 approach zero for large values 
of d/a, although for small d/a values interaction can become as high as 30 percent of the 
homogeneous SIF. Whereas the curves in Fig. 6 decrease at low d/a values, the data in 
Fig. 7 continue to increase because the weaker component in close proximity to the crack tip 
concentrates the stress on the remaining matrix ligament and therefore increases the differential 
SIF. 



352 P. Lipetzky and S. Schmauder 

ttigh 
c; region 

particle 
Y 

L ~ X  

Fig. 8. Schematic  showing the stress fields near the crack tip and the inclusion. Shaded regions depict  area where 
O'yy > 20"appl for a << d, a = d, and a >> d. 

4.2. DATA CONSOLIDATION 

In order to more clearly interpret the crack-particle interaction in a general sense, it is necessary 
to reconcile the differences between the effects of variable d and variable a. Figures 6 and 
7 show that the aspect ratios and d/a ratios can be identical for certain geometries, while 
the AK/KH results are different. The magnitudes of a and d must account for this apparent 
inconsistency. This is not surprising considering that increasing both a and d an order of 
magnitude for a given particle does not affect the d/a ratio, although a different AK/KH 
must result. A new factor is now introduced to the analysis in order to bring the magnitudes 
of d and a into consideration. This factor arises in an attempt to define the relative scale of the 
entire problem. Erdogan and others used a factor similar to a + d + R/a for this purpose where 
R was the circular particle radius, but only considered specific values or combinations of these 
variables [10, 11 ]. We attempt to further generalize this factor for a range of values by taking 
d normalized to a, multiplied by (d + a) normalized to 'R '  (here v/-A). This combination 
now specifies the crack-particle separation relative to the crack length as well as the crack 
length plus separation relative to the particle size, respectively. Figure 9 contains the previous 
AK/KH values for A = 0.8 mm 2 now plotted as a function of 

1 
a ~ '  (3) 

for abscissa values less than or equal to 3. Three additional data points are also plotted and 
will be discussed below. The data now show a single trend over the entire abscissa range and 
the differences between the data are primarily due to the particle aspect ratio. This geometric 
factor has the advantage of including particle area in AK/KH calculations as well as the 
magnitudes of d and a. 

The means now exist to express the relationship between the crack driving force (A K / KH) 
and the geometric variables of the specimen in a consistent way. The data shown on Fig. 9 
roughly follow a parabolic dependence for abscissa values between 0.15 and 1.0. For abscissa 
values greater than 1.0, ordinate values are a constant ~ 3 percent. Analyzing the data in Fig. 
9 indicates that given constant a and A, the influence of a particle on the crack tip decreases as 
d 2 increases. Conversely for constant d and A, the particle influence can remain small in spite 
of an increasing a because the abscissa value given by (3) approaches d/x/A as a increases. 
The deviation in the AK/KI~ values for a given abscissa value is due to the shape effects. 
For example, at an abscissa value of 0.28 the different aspect ratio particles yield effects that 
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are roughly a factor of 2 different (11-19 percent). A general second-order relation can be 
written for the various aspect ratio data in the form 

AIE-U(h )  Z 2 + V ( h ) X + W ( h  ] (4) 
Y - K ~ -  

for 0.15 _< x < 1.0. For a range of aspect ratios between 0.31 and 3.2, approximate relations 
for these coefficients can be written as 

V ( h  ) = - 0 . 0 2 4 6 ( h ) - 0 . 3 4 2 ,  (6) 

and 

W ( h  ) = 0 . 0 3 1 5 ( h  ) +0.219.  (7) 

At the abscissa value of 0.28, the relation here predicts normalized differential stress intensity 
factors of 21 percent for an aspect ratio of 3 and 14 percent for w/h = 0.31. 

With the more consistent method of plotting results for different crack-panicle geometries 
and inclusion aspect ratios, it is reasonable to expect that independently changing all of the 
geometric variables will result in a AK/KH value that conforms to the current data. For 
example, with A = 0.8 mm 2 and w/h --- 1.25, the previously unused d/a values of 1.5/2.3 
and 1.1/1.6 yield values ofAK/KH = 1 percent and 1.7 percent for z = 2.77, and z = 2.07, 
respectively. These data points show good agreement with the other data plotted in Fig. 9. 
The d/a values for these two cases are almost identical (0.7) although a necessary separation 
exists on the abscissa of Fig. 9 because they are clearly two different geometries. Similarly, 
the d, a and w/h values of 0.8 mm, 1.3 mm and 1.25 respectively, combined with a fourfold 
increase in particle area (3.2 mm 2) yields a AK/KH value of 8 percent for an abscissa value 
of 0.72. This value is also plotted and shows good agreement with the previous data. With 
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this consistency now confirmed it is possible to estimate values of A I ( / K H  for a given d, a 
and A based either on this data or (4) where 

x =  d + a  <_1, 
a 

(8) 

0.08 _< w/h <_ 3.2 and U(w/h), V(w/h) ,  W(w/h)  are given by (5-7). For the similar case 
of a radial, plane-strain matrix crack in the vicinity of a circular inclusion Mueller et al. have 
shown analytically that for arbitrary Dundurs' parameters, a and/3, the particle effects on 
the crack tip vary in a manner similar to the data in Fig. 9 [15]. Recall that elastic constant 
mismatch in two-phase materials is conveniently characterized by the Dundurs' parameters a 
and/3 for plane strain as: 

Ei - E m  
a - Ei + E~ '  (9) 

and 

1-2u) 
/ 3 -  2 ( l - u )  ' (10) 

where E is the stiffness of the matrix (Era) and the inclusion (Ei) and u is the single value of 
Poisson's ratio for both materials [22]. This comparison will be expanded in Section 4.4. 

4.3. APPLICATION 

Withthese principles in place, it is now possible to use the results of this model to approximate 
the level of crack-particle interaction in actual composites. The NiAI-Nb composite is chosen 
as an example because failure initiates on the NiA1 grain boundaries prior to any appreciable 
plastic deformation [23, 24]. Approximate values for a and d can be taken as roughly one-half 
of the grain size and one-half of the particle spacing. Particle spacing is necessarily affected 
by the processing method and the volume fraction. In this composite the Nb volume fraction 
is kept relatively low (less than 10 percent) in order to retain the favorable high-temperature 
properties of the matrix as well as the 1 : 1 NiAI stoichiometry. Metallurgical observations of 
this material reveals that the average grain size for the HIPed NiA1 is near 25 #m, although 
the fluctuation is very large. The average spacing between the 50 #m diameter particles is 
approximately 200 #m, and the aspect ratios are ~ 1.0-1.5 [25]. Using these approximations 
for a (10 #m), d (100 #m) and A (2500 #m 2) in (3) indicates that the elastic interaction between 
the crack and the particle is virtually zero for this configuration. However, due to residual 
stresses it is more likely that failure will initiate in the regions near the inclusions [26]. Cracks 
near inclusions would then be strongly attracted to the neighboring particle where plastic 
energy release may arrest the crack and delay failure thereby stabilizing deformation. 

4.4. GENERALIZATION 

In order to broaden the range of applicability of these findings we now examine other work 
in an attempt to generalize trends to different combinations of elastic properties. Typical 
two-phase engineering composites have a and/3 values that range between - 0 . 6  < a < 0.6 
and ~ = a/4 ± 0.1 [22, 27]. A comprehensive analysis of the plane-strain elastic interaction 
between an internal crack and a circular inclusion has yielded the A K / K H  values plotted on 
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our axis format in Fig. 10 [15]. The curves exhibit low, slowly decreasing values of AK/KH 
for abscissa values greater than 1 and roughly a parabolic dependence for abscissa values less 
than one in a manner similar to that displayed in the current model. The difference between 
the curves in Fig. 10 is the relative height based on the magnitude of a. The second Dundurs 
parameter, fl, has only a small effect on AK/KH and will be considered equal to ¼a and 
otherwise neglected. In an attempt to consolidate the AK/KH results for various a values, 
the ordinate format of 

- 1  A K  
(11) 

10a KH 

is introduced in Fig. 11. Good agreement exists between all of  the data for the range of 
- 0 . 6  < a < 0.6 and 0.14 < x < 2.1. Fitting these data to a single second-order analytical 
curve and rewriting gives the relation 

A K  
- -  ~ -lOa[H(a)x 2 + K(a)x + L(a)],  (12) 
KH 

for x values < 1.2, and for x > 1.2, 

AtC/KI-I + (13) 

where 

H ( a )  = L(a )  = 0.882a 2 - 0.088a + 0.094, (14) 

K(a) = -1 .787a  2 + 0.222a - 0.203, (15) 

and 

I(a) = 0.00667a - 0.01, (16) 

J ( a )  = 0.184a 2 - 0.201a + 0.0•86, (17) 

where x is given by (3). Equations (12-17) provide a very simple method for estimating the 
interaction effects between a circular particle and an internal, radial plane-strain crack in terms 
of the geometry of the specimen and its relative elastic constants. Mueller's analytical results 
for the internal crack are fully consistent with the calculations given above for a side-cracked 
specimen for various inclusion shapes and aspect ratios as shown by the additional data points 
on Fig. 11. 

The results plotted on Fig. 11 show that the elastic parameters of a two-phase system can be 
included easily into the present analysis. From Section 4.2 above, (4) is given for a -- -0.35.  
Utilizing the concepts on Fig. 11 we can now rewrite this equation as 

- - ~ - a  U' x 2 + V '  x + W  I (18) 
KH 

where 

U ~ ( h  ) = - 0 . 0 1 0 9 ( ~ ) + 0 . 3 9 4 ,  (19) 

oo703( )0977  2o, 
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and 

for abscissa values less than 1 and 0.08 < w/h _< 3. For values of  x between 1 and 5, the 
simple relation 

A K  c~ 
. . . . .  (22) 
Kit 10 

provides a good approximation for all reasonable c~ and w/h. This approximation eliminates 
the necessity of performing a lengthy numerical analysis for general estimates of  crack-particle 
interactions. Perhaps the most important aspect of  this result is that predictions of  the level of  
interaction can be made quickly for practically any material combination. As will be shown 
in Part II of this paper non-symmetric  geometries can also be approached in this way with 
implications for crack deflection and composite toughening. 
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5. Summary and conclusions 

The calculations detailed here show that for a wide range of material combinations and 
inclusion shapes a good estimate of the elastic crack-particle interaction ( A K / K H )  can be 
made by using a simple, closed form relation. The differential crack-tip stress intensity factor 
is found to vary strongly with crack-particle separation and elastic mismatch, less strongly 
with particle size and shape, and least strongly with crack length. Specifically, for the most 
significant elastic interaction between a crack and a symmetrically located particle, the crack 
tip must be relatively near the particle as stated in (8). Resolved in terms of components, (8) 
implies that 

d _< --~- 1 -  1 +  4 (23) 

for a given particle size (A) and crack length (a) in order for elastic interaction effects 
to be significant. Given this configuration, interaction is proportional to the magnitude of a. 
Negative a values correspond to an increase in crack driving force and positive a values lead to 
a decrease in driving force. The remaining variable, aspect ratio, is included in the closed form 
solutions of (18-21) in the range 0.08 < w/h  <_ 3.2. For model geometries corresponding 
to an abscissa value between 1 and 5, (22) provides a good estimate of A K / K H .  These 
closed form relations are thus powerful tools for estimating the relative strength of the elastic 
interaction between a crack and a particle given a wide range of specimen geometries and 
combinations of elastic properties in this symmetric case. 

Closer inspection of the effects of particle shape indicates that soft particles elongated 
parallel to the crack plane attract cracks most strongly because of the enhanced displacements 
parallel to the loading direction around the particle and at the particle comers. Particles 
elongated perpendicular to the crack plane are less effective at increasing crack driving force 
and circular particles are least effective. If the trends shown here for 2-dimensions are followed 
in a composite, spherical or equiaxed particles will least effectively increase A K  and thus 
be the least effective crack attractors. However, following crack-particle intersection, particle 
shape may take on a very different ranking due to plasticity and debonding. 

For inclusions that deform plastically the analysis becomes more complicated due to 
variable yield stress and strain hardening tendencies. Furthermore, the nonlinear relationship 
between stress and strain in the plastically deforming particles indicates the A K / l f H  curves 
may display a stronger dependence on the magnitude of crack length and crack-particle 
separation. Nevertheless, first approximations can be made using this elastic model. 

Acknowledgments 

Discussions with Dr. A. Wanner regarding the mechanical behavior of NiAI are greatly appre- 
ciated. Financial support through the Max-Planck-Gesellschaft and Professor H. Fischmeister 
is also thankfully acknowledged. 

References 

1. T. Christman and S. Suresh, Acta Metallurgica 36 (1988) 1691-1704. 
2. T. Christman, A. Needleman, S. Nutt and S. Suresh, Materials Science and Engineering A 107 (1989) 49-61. 
3. K.K. Chawla, Composite Materials, Springer-Verlag, Berlin (1987). 



358 P. Lipetzky and S. Schmauder  

4. E.M. Lenoe, R.N. Katz and J.J. Burke (ed.), Ceramics for High-Performance Application III, Reliability 
(1983). 

5. Y.L. Su and J. Gurland, Materials Science and Engineering 95 (1987) 151-165. 
6. V. Tvergaard, Acta Metallurgica 38 (1990) 185-194. 
7. E Erdogan, Engineering Fracture Mechan&s 4 (1972) 811-840. 
8. G. Povirk and A. Needleman, Journal of Engineering Materials and Technology, in press. 
9. W. Kreher, ZAMM68 (1988) 147-154. 

10. E Erdogan, G.D. Gupta and M. Ratwani, Journal of Applied Mechanics (1974) 1007-1013. 
11. W. Mueller and S. Schmauder, International Journal of Solids and Structures 29 (1992) 1907-1918. 
12. T. Faber and A.G. Evans, Journal of the American Ceramic Society (1989) Parts I and II. 
13. M.F. Ashby, EJ. Blunt and M. Bannister, Acta MetaUurgica 37 (1989) 1847-1855. 
14. M.C. Shaw, D.B. Marshall and A.G. Evans, in Proceedings, Material Research Society Symposium 170 

(1990) 25-39. 
15. W. Mueller, S. Schmauder, A.G. Evans and R.M. McMeeking, International Journal of Fracture, in press. 
16. R. Twickler, M. Twickler and W. Dahl, Engineering Fracture Mechanics 24 (1986) 553-565. 
17. O.C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London (1971). 
18. INTES Corp., lndustriestr. 2, D-7000 Stuttgart 80. 
19. P. Lipetzky and S. Schmauder, Crack-Particle Interaction in Two-Phase Composites: Part II, Crack Deflection, 

International Journal of Fracture, submitted. 
20. EG. Buchholz and M.F. Kanninen, Paper presented at First Worm Congress on Computational Mechanics, 

(WCCM 1), Austin, Texas, USA (1986). 
21. E.F. Rybicki and M.F. Kanninen, Engineeering Fracture Mechanics 9 (1977) 931-938. 
22. S. Schmauder and M. Meyer, Z MetaUkd 83 (1992) 524-527. 
23. K.H. Hahn and K. Vedula, Seripta Metallurgica 23 (1989) 7-12. 
24. A.G. Rozner and R.J. Wasilewski, Journal oflnst Met 94 (1966) 169-175. 
25. Personal communication, Dr. A. Wanner, MPI, Stuttgart. 
26. P. Lipetzky, A. Wanner and B. Schietinger, manuscript in preparation. 
27. T. Suga, G. Elssner and S. Schmauder, JournalofComposite Materials 22 (1988) 917-921. 


