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Abstract 

Due to their extensive growth potential, transgenic root systems arising from inoculation with Agrobacterium 
rhizogenes became popular in the last decade as model systems in domains as diverse as production of secondary 
metabolites, interactions with pathogens and symbionts, examination of gene importance in control of root devel- 
opment or in regulation of gene expression in roots. Wild-type bacterial strains have also been considered as useful 
tools to stimulate rooting on recalcitrant cuttings or microcuttings as they cause abundant root initiation at the site 
of inoculation. 

Root initiation and the in vitro growth characteristics of transformed roots result from the transfer of genes 
located on the root-inducing plasmid (Ri) to plant cells and their expression therein. Two sets of pRi genes are 
involved in tlhe root induction process: the rol (root loci) genes located in the TL region and the aux genes of the 
TR region. Some of these genes being able to interact, the system appears also as a new tool to study the role of 
auxin in the process of root initiation. The distinctive phenotype of the transformed roots which are capable of 
hormone autonomous growth seems to be controlled mainly by the rol genes. These rol genes, i.e. the genetic loci 
rol A, rol B, rol C and rol D correspond to open reading frames ORFs 10, 11, 12 and 15. In vitro experiments 
determined the functions of the Rol B and Rol C proteins but the functions of Rol A and Rol D are still unknown. 
Altered metabolism of developmental regulators or modified sensitivity to auxin have been suspected to mediate 
root induction and morphological abnormalities of transformed roots and plants. 

The target cells for transformation and the cells which are competent for root initiation will be characterized as 
well as the subsequent development of transgenic roots provided with various constructs from the whole T-DNA to 
single rol genes. Results dealing with auxin contents in relation with root growth kinetics, phenotype and structure, 
will also be presented and discussed with the potential use of the rol genes to control root biomass. 

Introduction 

Phylogenetically, roots are recent organs the appear- 
ance of which was correlated with landing, vascu- 
lar tissue differentiation and new metabolic pathways 
leading to phenolics and lignins. Rhizogenesis is now 
a developmental process interesting for both tradition- 
al and biotechnological strategies of plant production 
in agronomy, horticulture aad forestry. However, for 
many species of commercial importance, this process 
lacks of efficient root-inducing factors and/or funda- 
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mental knowledge on what determines the rooting 
potential and the subsequent root morphogenesis. In 
other sectors such as biotechnological production of 
secondary metabolites, it appeared during the last past 
years that cell suspensions were frequently too vari- 
able to insure a stable production and could be use- 
fully substituted by axenic cultures of isolated roots 
that are apparently characterized by a high biosynthet- 
ic capacity and a good genetic and biochemical sta- 
bility (Nautila et al., 1994). Also rhizosphere studies 
about interactions of roots with pathogens and sym- 
bionts are looking for model systems including root 
clones provided with efficient growth potential (Mug- 
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Fi,qure 1. Hairy root disease induced on decapitated tobacco vit- 
roplantlet by inoculating the wounded surface with Agrobacterium 
rhiz,ogenes, strain A4. Abundant root production both at the decapi- 
tated surface (transformed roots) and along the stem (untransformed 
roots). 

nier and Mosse, 1987). In this context, transgenic root 
systems arising from inoculation with Agrobacterium 
rhizogenes became popular in the last decade and the 
wild strains of this bacterium were also considered as 
useful to manipulate the rooting potential of recalci- 
trant cuttings or microcuttings as they cause abundant 
root initiation at the site of inoculation. 

Agrobacterium rhizogenes, the Ri plasmid and the 
rol genes 

Agrobacterium rhizogenes, a Gram-negative soil-born 
bacterium belonging to the Rhizobiacea family, is the 
etiological agent of the hairy root disease. It was stud- 

ied mainly as a pathogen since its discovery (Riker et 
al., 1930) until a recent period. The disease is char- 
acterized by an abundant root formation at the infect- 
ed sites (Figure 1) for a wide host range (De Cleene 
and De Ley, 198 1; Tepfer, 1989) mainly restricted 
to dicotyledonous plants. Experimentally, hairy root 
induction was also reported for some Gymnosperms 
(McAfee et al., 1993; Magnussen et al., 1994). It 
is also possible that some species were reported as 
non susceptible for the only reason that inoculations 
were performed at inadequate developmental stages, 
during unfavourable seasons or on non-competent tis- 
sues (Chriqui et al., 1988, 1991). As for the crown 
gall induced by A. tumefaciens, the hairy root disease 
is neoplastic and results from a natural gene transfer 
from a plasmid, the root-inducing plasmid (pRi), to 
the host nuclear genome (Chilton et al., 1982), and 
the molecular basis of the phenomenon is very similar 
to that of crown gall. The pRi carries a transferable 
region, the T-DNA, that becomes integrated into the 
plant DNA during the course of infection (TempC and 
Casse-Delbart, 1989). The integration and the expres- 
sion of the transferred genes induce many changes 
in growth and developmental pathways in the trans- 
formed cells, in the subsequent transformed roots and 
in the transgenic plants that can be regenerated from 
these roots and their progeny (Tepfer, 1984). 

The expression “hairy root phenotype” has been 
used to define the morphology of the clones estab- 
lished from transformed roots that are frequently able 
of extensive growth on hormone-free medium (Tepfer 
and Temp, 1981). Also the modified phenotype of 
transgenic plants harbouring the Ri T-DNA and pro- 
vided with wrinkled leaves and shortened internodes 
was referred to as “hairy root phenotype”. So this label 
covers quite different sitations and might be used cir- 
cumspectly. For agropine-type strains in which the Ri 
T-DNA is present as two sub-fragments, it was demon- 
strated that most of the phenotype modifications were 
due to the expression of genes from the leftward sub- 
fragment (IL-DNA) (Cardarelli et al., 1987; Durand- 
Tardif et al., 1985; Ooms et al., 1986; Schmulling 
et al., 1988; Vilaine et al., 1987). It was also found 
that the various TL-DNA genes interplay to confer 
specific traits to the hairy roots (Capone et al., 1989; 
Schmtilling et al., 1988) and that the TR-DNA auxin 
synthetic genes auxl and aux2 (Huffmann et al., 1984) 
play a rather accessory role, being useful merely when 
endogenous plant auxin is insufficient to trigger dif- 
ferentiation of cells made competent to respond to the 
hormone by the expression of the TL-DNA genes (Car- 
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Figure 2. Func t iona l  o rgan iza t ion  o f  the T - D N A  of  the agrop ine - type  strains ofAgrobacterium rhizogenes ( f rom Huf fman  et al., 1984; Jouanin .  
1984; W h i t e  et  al., 1985; S l i g h t o m  et al., 1986; Bouchez  and Cami l le r i ,  1990). 

darelli et al., 1987). As most of the common traits of 
the phenomenon were observed when only the open- 
reading frames ORF10, 11 and 12 of the TL-DNA 
(Figure 2) were transferred and expressed together, 
these ORFs were qualified as root loci, respectively 
rol A, B and C (White et al., 1985) and special atten- 
tion was directed to their key role. These genes are 
capable of triggering, to different extents, root dif- 
ferentiation and morphogenesis. They represent trans- 
ferrable "root-forming" genes susceptible to have had 
an important impact during evolution (Barlow, 1994; 
Harper et al., 1991) although this is very speculative. 
They represent also morphogenetic genes that can be 
used as tools to study morphogenesis. 

The reported effects of single rol genes on root 
induction and root development are summarized on 
Table 1. Their functions are still undetermined or dis- 
cussed. The Rol A protein has a highly basic isoelectric 
point, so it was suggested that it could interact with pos- 
itively charged macromolecules as a regulatory protein 
(Levesque et al., 1988). It was also found that the veg- 
etative shoot apices of transgenic plants harbouring the 
rol A gene were characterized by reduced auxin con- 
tents (Prinsen et al., 1994) and a 40-60% reduction in 
immunoreactive gibberellin A1 was found in leaves 
of rolA and 35S-rol A transgenic clones (Dehio et al., 
1993). In addition, the rol A protein was found to be 
located in the plasma membrane of transgenic tobac- 
co lines harbouring a rol A-gus gene fusion under the 
control of the rolA promoter (Rembur et al., submit- 

ted). The Rol B peptide is a cytosolic enzyme able 
to hydrolyse in vitro indoxyl-glucoside and other glu- 
cosides(cytokinin-O-glucosides, indoxyl-galactoside) 
(Estruch et al., 1991a; Spena et al., 1992). On the oth- 
er hand, it was shown that rol B expression enhances 
the sensitivity to auxin of transformed cells (Filippi- 
ni et al., 1994; Maurel et al., 1991). Recently, it was 
reported that the product of the rolB gene has a tyro- 
sine phosphatase activity and that it is localized in the 
plasma membrane of transformed cells (Filippini et al., 
1996). This suggested that a kinase/phosphatase cas- 
cade could be involved in the signal transduction of 
auxin. The Rol C peptide is a cytosolic enzyme able 
to hydrolyse in vitro cytokinin-O-glucosides (Estruch 
et al., 1991b). However, these functions failed to be 
confirmed in vivo. It is clear that each of these genes 
provokes specific effects and that these effects could 
vary according to the host genotypes and experimental 
conditions. In situ localization of rol gene expression 
in transgenic tobaccos indicate that the rol A promot- 
er is constitutive (Guivarc'h et al., 1996a) while the 
rol B promoter is mainly expressed in the shoot and 
root apical meristems (Altamura et al., 1991; Maurel 
et al., 1990; Schmtilling et al., 1989). The rol C pro- 
moter is expressed in the phloem-companion cells in 
all the organs and in the initials of root protophloem 
(Guivarc'h et al., 1996b). 
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Table 1. Effects of single rol genes on root induction and root develooment 

rol A rolB rol C 

Gene function Not determined Indoxyl-fl-glucosidase Cytokinin-/~-glucosidase 
(1,2) (2,3) 

- Carrot discs (4) Carrot discs (4) Carrot discs (4) 
Effects on root + Tobacco Xanthi (5) Tobacco Xanthi (5) ++ Apple rootstock (7) 

induction ++Tobacco SRI (6) +++Tobacco SR1 (6) Tobacco SR1 (6) 
- Kalanchoe (6) Kalanchoe (6) Kalanchoe (6) 

Rooting potental of 
transgenic organs 

++Tomato (8) ++ Tomato (8) +++Tomato (9) 
++Juvenile Tobacco +++Tobacco SRI (9) 
- Mature Xanthi (5) 
++Tobacco SR1 (6) 

Development of roots - Light Tobacco + Tobacco SRI (9) ++ Tobacco SR1 under 
- excised + Dark Xanthi (5) + Carrot discs (4) darkness (9) 

- attached to normal 
or transgenic plants 

- Tobacco Xanthi (it) No effect 02) ++ Apple rootstock (7) 
+++Tobacco SR I. (t3) 

Sources: (1) Estruch et al. (1991a); (2) Spena et al. (1992); (3) Estruch et al. (1991b); (4) Capone et al. 
(1989); (5) Vilaine et al. (1987); (6) Spena et al. (1987); (7) Lambert and Tepfer (1991); (8) Van Altvorst et 
al. (1992); (9) SchmUlling et al (1988); 00) Grelon (1991); (ll) Guivarc'h et al. (1996a); 02) Nilsson et al. 
(1993); 03) Guivarc'h (personal observation). 

E a r l y  s t e p s  o f  t r a n s f o r m e d  r o o t  i n i t i a t i o n  

It is now accepted that the plant response to A. rhizo- 
genes depend upon various parameters including host 
genotype and bacterial strains, some strains acting with 
respect to polarity. On carrot root discs, mannopine- 
type strains induced transformed roots only at the 
apical surface while agropine-type strains may act 
indistinctly on both apical and basal sides (Ryder et 
al., 1985). This polarity suggested the influence of  
endogenous compounds that move basipetally. Kinetic 
studies of  free endogenous IAA levels on both sides 
after wounding indicated a rapid IAA accumulation 
at the apical side resulting from both migration from 
the basal side and IAA neosynthesis at the wounded 
surface (Guivarc 'h  et al., 1993). The developmental 
stage is also a limiting factor to get transformed roots. 
For example,  only juveni le  seedlings of both Euca- 
lyptus gunnii and E. globulus are able to respond to 
inoculations by a rooting response and mature plants 
never display any symptom (Chriqui et al., 1991) but 
whether the absence of  root initiation results from a 
lack of  transformation or from a lack of  cells competent 
for rhizogenesis was not determined. Consequently, a 
disarmed Agrobacterium strain provided with the gus 

reporter gene modified by an intron in the coding region 
to prevent its expression in bacteria (Vancanneyt et al., 
1990) and controlled by the 35S CaMV promoter  was 
used to localize the target cells for transformation. On 
carrot root discs, only the cells of the intrafascicular 
cambium and the immature phloem strands displayed 
a fl-glucuronidase activity, the first GUS positive cells 
being detected 48 h following inoculation. This sug- 
gested a relationship between transformation efficien- 
cy and the dividing capacity of  the host cells. This 
was evidenced by pretreating the carrot discs by 25 
# M  acetosyringone; this treatment both advanced the 
reentry of potentially dividing cells into the S phase of  
the cell cycle and increased the number of  transformed 
cells in the cambial ring (Guivarc 'h  et al., 1993). 

Usually, the transformed roots are not of  direct ori- 
gin and arise from a callus previously differentiated at 
the inoculated region. Wounding and inoculation are 
rapidly followed by cell proliferation, then cambial-  
like layers redifferentiate inside the neoformed cal- 
lus and root meristems organize from these layers 
(Bercetche et al., 1987; Grima-Pettenati  et al., 1989). 
Using a co-integrated strain harbouring a wild pRi and 
the gus reporter gene controlled by a 35S CaMV pro- 
moter with a double enhancer (Robaglia et al., 1987) 
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Figure 3. Early step of transformed root initiation from cambial-like 
layers in a callus resulting from inoculation with the A4 M70 GUS 
strain. The arrow indicates the GUS-positive cells. C: callus; cll: 
cambial-like layers. Bar: SO pm. 

inside the TL-DNA, gus expression was found only in 
a few number of callus cells, either isolated or clus- 
tered, but belonging to the cambial-like layers (Figure 
3). In this way the clonal origin of hairy root lines pre- 
dicted by Chilton et al. (1982) and David et al. (1984) 
after genetic analysis was visualized. 

Development of hairy root lines 

Although the hairy roots are usually reported as pro- 
vided with the capacity of extensive and hormone- 
autonomous growth and lateral branching, it must be 
noted that not all the root lines described in the litera- 
ture display such characteristics and that detailed map- 
ping of the T-DNA was not included in most reports. 
Following inoculation with wild strains, it is clear 
now that spontaneous deletions of Ri T-DNA in hairy 
roots and their subsequent regenerants occur frequent- 
ly (Amselem and Tepfer, 1992; Hanisch ten Cate et al., 
1990). 

Inoculation of carrot discs with the strain A4 M70 
GUS harbouring the wild T-DNA supplemented with 
the gus gene inside the left subfragment leads to roots 
that display a diversity of phenotypes and behaviours 
when excised and grown in vitro on hormone-free MS 
medium (Guivarc’h et al., submitted). Apices of roots 

arising from inoculated discs were first subcultured on 
liquid or solid media containing antibiotics to define 
the optimal conditions for root development. 30 root 
clones were established on solid MS medium added 
with 500 mg L-t cefotaxime and subcultured every 
two weeks. After 20 subcultures, only 8 clones were 
still able to develop while the others progressively lost 
their growth capacity and died. These clones varied 
in their phenotypes with more or less lateral branch- 
ing and growth ability. They were characterized using 
the opine test to reveal the expression of the opine 
synthetic genes (ops) located on the TR-DNA and the 
GUS assay to check the expression of the gus gene 
as a marker of the TL-DNA. Also tests for response 
to naphthalene acetamide (NAM) were carried out in 
order to reveal the presence of an active aux2 gene 
product. The aux2 gene, located on the TR-DNA, is 
able to convert NAM into active auxin (Depicker et al., 
1988), naphthalene acetic acid, leading to root growth 
inhibition. The study was completed by Southern blot 
analysis using a probe corresponding to the gus gene. 
In this way, the root clones were characterized for their 
TL and/or TR content. Only clones provided with TL 
or TL + TR survived and displayed a good potential 
for longitudinal growth with more or less ramifica- 
tions, leading to the idea that genes of the TL-DNA 
are essential for long-term growth. In addition, some 
clones provided with many copies of the gus gene were 
GUS negative raising the question of a possible methy- 
lation of the gene (DeVries-Uijtwaal et al., 1989; Otta- 
viani et al., 1993). This was not observed for the native 
genes ops and aux2 of the TR-DNA (Guivarc’h et al., 
submitted). These results revealed that large variations 
in morphology, molecular constitution and physiology 
characterized the carrot hairy root lines as it was also 
the case for potato (DeVries-Uijtwaal et al., 1988) but 
no strict relation between phenotypes and transforma- 
tion events was found. This was not the case for pea 
and Cucumis root clones. 

In pea root clones established following inoculation 
with strains harbouring either the wild T-DNA, or only 
the TL- or the TR-subfragment, the TL roots were long 
and thin, the TR roots were short and ramified and 
the TL + TR roots were intermediate. Interestingly, 
high endogenous IAA and IAM levels characterized 
roots bearing only the TL-DNA (Prinsen et al., 1992). 
This perhaps reflected the functionality of the earliest 
observed homology of the TL 0@3 with a tryptophane 
monoxygenase gene (Levesque et al., 1988). 

Culture of transformed roots resulting from the 
inoculation of cucumber stem explants with a wild- 
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Figure 4. Phenotypes of cucumber root lines established following inoculation of stem fragments with tile wild A. rhizogenes strain A4. a: 
roots provided only by the TL-DNA, b: roots containing both the TL- and the TR-DNA; c: roots harbouring the TR-DNA. 

0 -I : 
A4a A4 3-4 El5 A4d 362b A4c S6 

a b c 

Figure 5. Endogenous auxin levels in 5 week-old culture root lines 
displaying the phenotypes a, b or c described on Figure 4. A4a: 
TL-DNA; A43--4: TL-DNA and TR-DNA partly deleted of uux2; 
E15: part of TL-DNA covering the rolA+B+C genes; A4D, 362B 
and A4C: TL- and TR-DNA; S6: part of TR-DNA covering the awrl 
and aux2 genes. 

type agropine A. rhizogenes strain A4 were established 
and several classes of phenotypes were described and 
characterized at the molecular level (Amselem and 
Tepfer, 1992). A physiological study of these root lines 
revealed that roots provided only by genes from the TL- 
DNA or by the set of rol A + B + C genes were long, 
poorly ramified and with a reduced growth potential in 
long-term cultures (Figure 4a); this was accompanied 
by low levels of endogenous auxin (Figure 5). Roots 
provided with both TL and TR were either intermedi- 

ate (long and ramified) (Figure 4b) or short and very 
ramified (Figure 4~). The extent of reduced growth and 
lateral branching was closely related to the presence of 
the TR-subfragment with functional aux genes and to 
high auxin levels (Figure 5, Dewitte et al., submit- 
ted). Roots provided with high auxin levels displayed 
many structural modifications, including large central 
cylinder, triarchy instead of diarchy and exfoliation of 
peripheral tissues. It seemed that roots with the inter- 
mediate phenotypes appeared to be more adaptated for 
a good growth potential in long-term culture. 

As it was reported that transformed roots induced 
by A. rhizogenes on whole plants or on various explants 
seems to be modified in their gravitropic behaviour 
(Spano et al., 1987; White et al.,1985), root gravit- 
ropism was studied on normal and transgenic rapeseed 
seedlings harbouring the whole T-DNA of pRi A4 and 
it was found that rapeseed hairy roots were less sensi- 
tive to gravity than normal roots (LeguC et al., 1994). 
This was probably related with the difficulty of amylo- 
plast sedimentation in the statocysts as shown at ultra- 
structural level in pea hairy roots (Bercetche, 1987). 

Conclusions 

Important progress has been made in the last few years 
concerning the effects of the rol genes from A. rhi- 
zogenes on plants. A number of factors involved in 
host susceptibility and transformed root initiation have 
been determined and it is clear now that not only the 



host genotype but also the developmental stages and 
the cell types have to be considered when transformed 
roots are expected. Root formation appears secondari- 
ly following inoculations with A. rhizogenes, the first 
observed effects being transformation and cell prolif- 
eration. Later, transformed root primordia organized 
from cells redifferentiated inside the callus. These cells 
correspond to prerhizogenetic ceils previously identi- 
fied in normal aerial tissues (frequently cells from the 
vascular strands) submitted to rooting treatments. 

The growth potential of hairy root lines is influ- 
enced by the host genotype as root clones from woody 
species frequenfly failed to display the high growth 
rates observed in many herbaceous species. In addition, 
transformation events (transferred sequences, copy 
number...) strongly influence the patterns of growth 
and development of the various hairy root lines that can 
be established following inoculation with wild strains 
and the long-term stability of gene expression follow- 
ing subcultures. It could not be excluded that condi- 
tions of culture could also interfere with the expression 
of transferred genes but little is known about the fac- 
tors that controlled the expression of their promoters. 
The mechanism by which the rol genes control root ini- 
tiation and differentiation is not yet fully understood. 
Much evidence at this time indicates that expression of 
each rol gene leads to a succession of events including 
modifications in hormone balances and sensitivity but 
the primary effects are still unknown. Open questions 
are also raised concerning the possible interrelations 
between rol gene expression and the normal metabol- 
ic pathways of the roots. Up to now, optimization of 
root biomass through genetic engineering was mainly 
achieved with wild-type strains of A. rhizogenes. Fur- 
ther investigations on the function and regulation of 
the single rol genes and other genes born on the Ri 
T-DNA would allow a rational use of hairy roots for 
both secondary metabolite production and recalcitrant 
cuttings. 
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