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Abstract 

This study demonstrates that nutrient solutions can be defined as 'mixture systems'. A general 
methodology for design and analysis of mixture optimization experiments is developed. The emphasis is 
centered on multivariate investigation of the zone of optimal solution properties as a function of the ion 
composition and the total ionic strength of the solution. The study of the effects of ion interaction on 
well-defined solution properties is also possible by this multivariate approach. This work is a valuable 
tool in mineral nutritional research, because for the first time the chemical feasibility conditions of such 
solution, combined with additional chemical, physiological or economical constraints, form the 
foundation of the statistical experimental design theory, which makes the optimization of complex 
mixtures of ions in relation to well-defined response variables possible. 

Introduction 

Nutrient solutions play an important role in 
many fields of scientific research: plant nutrition, 
plant and animal tissue cultures, fermentation 
technology and so on. Within the last decade, the 
use of hydroponic installations for horticultural 
production has grown exponentially. The need 
for 'optimal' nutrient solutions is widely felt. 
Although different nutrient solutions have been 
proposed by different authors for specific situa- 
tions, it seems that many investigators have 
chosen solutions based on trial and error ap- 
proaches or based on intuitive arguments, and 
that, where the results have been partially suc- 
cessful, invariably a specific solution is recom- 
mended as being optimal for the particular 
situation. The fact that a given nutrient solution 
has seemingly desirable properties, does not 
necessarily rule out the possible existence of 

other solutions with equally desirable or better 
properties. 

Another important argument for undertaking 
a systematic investigation of a nutrient system is 
that in many situations the user is not so much 
interested in finding a single point or mixture 
that is optimum for the system, but rather in 
finding a zone or group of optimal operating 
conditions. Finding a zone of optimal blends for 
a particular response or property of the solution, 
increases the likelihood that other properties 
might be optimized within this zone as well. In 
this context optimization means an as exact as 
possible description of the optimal zone as well 
as the boundaries of this zone. 

In this study the emphasis is centered on the 
development of a method to optimize the nu- 
trient solution for hydroponic plant cropping as a 
research tool as well as a method for commercial 
plant production, making use of 'mixture 
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theory'. Although the theory of mixture experi- 
ments dates from the late fifties and has been 
discussed extensively during the past two or 
three decades, this theory was never put to use 
in plant nutrition. 

In this study for the first time the design and 
analysis of mixture experiments is applied to the 
problem of nutrient solutions (Schrevens, 1988). 

Design and analysis of mixture experiments 

The original mixture problem 

The distinguishing feature of mixture experi- 
ments is that the independent variables represent 
proportionate amounts of the mixture rather 
than unrestrained amounts. These proportions 
must be nonnegative, and if expressed as frac- 
tions they must sum to unity. So in a q-com- 
ponent mixture if we let x i be the proportion of 
the i-th component in the mixture, then 

O<-xi<~ l f o r i =  l , 2 , 3  . . . .  q (1) 

q 

Z xi = 1 (2) 
i - 1  

The q-components of this system are called 
'mixture variables'. By virtue of the above re- 
striction, the totality of the unrestricted factor 
space of q dimensions is reduced to a ( q -  1) 
dimensional simplex, as was first noted by 
Claringbold (1955). 

A most important consequence of the com- 
ponent dependencies in mixtures is the necessity 
for multivariate experimentation. This is because 
the effect of a single component can only be 
understood when studied in combination with 
the effects of one or more of the other com- 
ponents of interest. The accuracy of estimation 
of a single component effect increases not only 
with an increasing number of components but 
also with the design strategy used in looking at 
different combinations of the components. 

If, in addition to the mixture variables certain 
other variables are present in the system where 
the latter variables are not bounded by the above 
restriction, they are called 'process variables' 
(Cornell, 1971; Scheff6, 1963). 

In the original mixture problem developed by 
Scheff6 (1958), the response is only a function of 
the proportions of the components present in the 
mixture and is not a function of the total amount 
of the mixture. In later generalizations (Piepel 
and Cornell, 1985; 1987), mixture models and 
designs where developed where the response 
depends on the total amount as well. In these 
cases the total amount could be viewed as a 
process variable when at the different amounts, a 
separate simplex or mixture design is set up and 
the experiments performed. 

Experimentation over the whole simplex 

In many mixture situations the region of interest 
is the whole simplex. In this case, experimental 
designs that have been proposed in the literature 
are the simplex lattice design (Scheff6, 1958), 
the simplex centroid design (Scheff6, 1963), the 
symmetric simplex design (Murty and Das, 
1968), the simplex screening design (Snee and 
Marquardt, 1976) and axial designs (Cornell, 
1975). While some of these designs are D-opti- 
mal and would be strong candidates for studying 
nutrient systems, most were developed in the 
chemical or other industries and were based on 
rather pragmatic and empirical grounds. For 
these designs specific mixture models were de- 
veloped and are based on the incorporation of 
the mixture constraints (Eq. 1 and 2) resulting in 
polynomial or other model forms: Scheff6 
canonical polynomials (Scheff6, 1958; 1963), 
Cox's mixture models (Cornell, 1975; Cox, 1971) 
mixture models with inverse terms (Draper and 
St John, 1977) and adaptations of some theoret- 
ical model to the mixture situation (Gorman and 
Cornell, 1985). 

Mixtures with additional constraints on the 
component proportions 

Frequently chemical, physical and/or economical 
considerations impose additional restrictions on 
the component proportions. These restrictions 
are in the form of lower bounds (O<Li~xi) 
and/or upper bounds (x i ~< U/< 1). Due to these 
additional constraints on the component pro- 



portions, the factor space of interest is reduced 
to a subregion of the (q-1)-dimensional simplex. 
So, in addition to constraints 1 and 2, it is 
possible that the following constraints are im- 
posed: 

Single component constraints: 

O<~Li<~x i <~ Ui<~ 1 (3) 

Multicomponents or multivariable constraints 
(Snee (1976): 

C~ <~ A ~]x~ + A2ix  2 + " • + Aqix  q <~ 19] (4) 

where the L,, Ui and A# are constants. 
In situations were bounds of the form (3) are 

specified, it may not be possible for every com- 
ponent to attain its lower bound or its upper 
bound. In such a situation the bounds are said to 
be inconsistent. Piepel (1983) presented a meth- 
od for checking what he called 'consistency' of 
the constraints in (3). 

In some situations, constraints are imposed by 
the experimenter. For instance, if a good esti- 
mate of the optimum or sub-optimum is avail- 
able and a description of the immediate vicinity 
of this point is needed. The aim of such experi- 
ments is twofold. Firstly when in this limited 
region of interest no differences in response are 
found, then the experiment results in the de- 
scription of an optimal zone. Secondly, if signifi- 
cant differences are found, then by 'steepest 
ascent methods' the sub-optimum can be 
ameliorated (Box and Wilson, 1951). 

In other situations the constraints (3) are 
inherent properties of the system, for instance 
dissociation, precipitation and complexation con- 
straints of nutrient solutions. 

Exper imenta t ion  in constrained mix ture  spaces 

As a result of the nature of the additional 
constraints (Eq. 3 and/or 4), two possibilities 
c a n  o c c u r .  

1. The resulting subspace is h o m o m o r p h i c  with 
the whole simplex. This occurs when lower 
bounds L i ~<xi only are imposed or in some 
cases when the ranges L i - U  i of the x~ are 
equal in value. In such cases, the subregion is 
simplex shaped and the subregion is defined 
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in terms of 'pseudocomponents' (Kurotori 
1966; Crosier 1984, 1986) or 'L-pseudo- 
components' (Cornell, 1990). Since the sub- 
region is a simplex, designs used to explore a 
simplex region, such as the simplex-lattice or 
simplex-centroid designs, when expressed in 
the pseudocomponents, can be used. 

2. The resulting subspace is a convex ,  irregular 
hyperpolyhedron .  

In practice most mixture systems are subjected 
to constraints of the form (3) which results in 
constrained or irregularly-shaped factor spaces. 
In the case of an irregularly-shaped experimental 
region, the only way to achieve an optimal 
experimental design is the use of optimal design 
theory. For hyperpolyheders of high dimen- 
sionality computer aided design of experiments 
becomes essential. 

The methodology to construct discrete optimal 
designs in constrained mixture spaces, and dis- 
cussed in this work, consists of the following 
steps: initially one determines a list of candidate 
points by assuming some form of mathematical 
model. Then one chooses an optimal design 
criterion and an optimization algorithm that can 
be used to select a group of points from the 
candidate list. These steps are discussed further 
as: 
a. To generate a list of candidate points, the 

'extreme vertices' algorithm 'of Mc Lean and 
Anderson (1966) can be used. This algorithm 
generates only the extreme vertices of the 
irregularly-shaped hyperpolyhedron. Other 
algorithms that have been developed for the 
same purpose are XVERT (Snee and Mar- 
quardt, 1974), CONSIM (Snee, 1979), 
XVERT1 (Nigam et al., 1983). Once the list 
of extreme vertices has been generated, other 
boundary points such as the mid-points of the 
edges or the centroids of the two-dimensional 
faces, etc, of the hyperpolyhedron, can be 
defined. This list can eventually be extended 
with a number of interior checkpoints. 

As an alternative to generating the list of 
extreme vertices from which the mid-points of 
the edges and/or the centroids of the faces 
are defined, one could generate a list of 
candidate points by imposing a grid of points 
over the experimental region. This second 
approach, that of imposing a grid of points, 
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has not proven to be as successful or as 
popular as that of generating the extreme 
vertices. 

b. Next comes the choice of an adequate mix- 
ture model to describe the response as a 
function of the mixture variables. 

c. The next step is the choice of a criterion to be 
used to select an 'optimal' set of points from 
the candidate list. These points form an 
optimal design in the sense of allowing for the 
efficient estimation of the parameters in the 
model or for providing a value of the pre- 
dicted response, assuming the functional 
form, with the highest degree of accuracy. For 
design selection, with respect to optimal pa- 
rameter estimation, the following criteria 
have been proposed in literature: D-optimali- 
ty (Kiefer and Wolfowitz, 1959; Wald, 1943), 
A-optimality (Elfving, 1952) and E-optimality 
(Ehrenfeld, 1955). To select design points for 
optimal response estimation the following 
criteria are described: G-optimality (Kiefer 
and Wolfowitz, 1959; Smith, 1918) and V- 
optimality (Fedorov, 1972; Welch, 1984). In 
the optimization of nutrient solutions both D- 
and G-optimality are used. 

d. The last step is the calculation of the optimal 
design using exchange algorithms. These 
iterating procedures start with a non-singular 
n-point design and then add and delete one or 
more candidate design points in order to 
minimize the selection criterion, resulting in 
the optimal set of points. A major advantage 
of exchange algorithms is that they can be 
used to expand a given n-point design to a 
m-point design (m > n) in an optimal way, 
which makes optimal sequential experimenta- 
tion possible. For D-optimality these algo- 
rithms were developed by Fedorov (1972) 
and Mitchell (1974a; 1974b). This was later 
extended to G- and V-optimality by Welch 
(1984) who made use of branch-and-bound 
optimization algorithms. 

Several optimal design criteria have been pro- 
posed and applied on constrained mixtures (Ken- 
nard and Stone, 1966; Mitchell, 1974; 1976; 
Nigam et al., 1983; Snee, 1975; Snee and Mar- 
quardt, 1974; 1976; Welch, 1984; Wynn 1970; 
Zemroch, 1986). 

The problem of nutrient solutions 

In the context of this study a nutrient solution is 
defined as an aqueous solution of a given 
number of chemical substances, whose effects on 
a certain process are of interest. The nutrient 
solutions for plant growth consist exclusively of 
inorganic ions (exception made for certain 
chelating agents). Some ions are essential, some 
are beneficial while still others may be toxic 
elements. The fact that plants need ions but the 
solution is made up of dissociated salts, imposes 
the major constraint upon nutrient solutions, 
namely the balance of charge: the sum of the 
cation equivalents must be equal to the sum of 
the anion equivalents. This constraint is the 
major reason for the impossibility of using classi- 
cal experimental designs (factorial-type designs) 
with nutrient solutions and the main argument 
for defining nutrient solutions as 'mixture' sys- 
tems, because it is easily understood that the 
ionic balance constraint equals the mixture con- 
straint (Eq. 1 and 2). Moreover dissociation, 
precipitation and complexation reactions further 
reduce the region of chemical feasibility. These 
additional constraints define the factor space as a 
'constrained mixture' system (Eq. 3 and/or 4). 
Furthermore, the total ionic strength can be 
considered as a process variable. Thus the prob- 
lem of experimentation with nutrient solutions in 
plant nutrition can be dealt with by using the 
theory of mixture designs and model forms. 

Results 

In what follows two simplified examples are 
presented to illustrate the application of mixture 
and optimal design theory in hydroponic, plant 
nutritional research. 

Example 1. A whole simplex design to 
investigate the effects of  cation composition of  
the nutrient solution on the head production in 
hydroponic chicory forcing 

Nutrient solutions were made up consisting of 
each of the three cations K ÷, Ca ++ and Mg +÷ 
individually and combined. A six-point simplex 



Table 1. The matrix of  the design points (proportions),  the 
mean  and s tandard  error of  the mean  for the head weight (g) 
for Example  1 

Point  K* Ca ++ Mg ~ ~ Mean  S tder r  

1 1 0 0 128.1 6.2 
2 0 1 0 Vertices 119.5 6.6 
3 0 l) 1 97.1 5.8 

4 0 0.5 0.5 131.2 7.1 
5 0.5 0 0.5 Edge 136.5 6.8 
6 0.5 0.5 0 centroids 120.3 7.0 

7 0.33 0.33 0.33 Overall 135.4 8.1 
centroid 

lattice design (points 1 to 6, Table 1) in the 
cation space (K ÷, Ca ++, Mg++), combined with 
an average composition of anions (0.33NO 3, 
0.33 H2PO 4 and 0.33 SO 4 ), was set up to 
screen the effects of the different cations over 
the whole cation simplex. The six-point design 
was extended with the overall centroid (point 7, 
Table 1) as a check-point for testing goodness of 
fit of the proposed second-order model. The 
design consisting of points 1 to 6 is D-optimal 
with respect to a second order Scheff6 canonical 
model. The design points are shown in Figure 1. 

25 cut roots were assigned to each treatment 
solution and forced. At harvest, production and 
quality parameters were measured per root. The 
average head weights (g) and the standard 
deviation of the mean of the 25 roots per 
solution are listed in Table 1. 
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The model was fitted to the data where the 
cations are expressed as proportions of half the 
total ionic strength, which was 50 mval L -1. 

The regression equation for the second order 
model of the yield (FW) as a function of the 
cation composition is: 

FW = 128.0"K + + 119.4"Ca +* + 97.0*Mg ++ 

-12.2*K+*Ca ++ + 97.4*K+*Mg ++ 

+93.3*Ca++*Mg ++ 

with R 2= 0.995 and R A = 0.992. The estimated 
head fresh weight surface, generated from the 
model, is plotted in Figure 2. 

Significance tests were performed on the co- 
efficient estimates of the nonlinear blending 
(crossproducts) terms in the fitted model to 
determine if the head fresh weight of the 50:50 
blends of the cations differed from the average 
of the head fresh weights corresponding to the 
single cation solutions. All three estimates 
( -12.0 ,  97.6 and 93.2) were significantly differ- 
ent from zero (p < 0.01). Based on the signs of 
the coefficient estimates, head fresh weights of 
the two cation blends with Mg ++ were signifi- 
cantly higher, meaning Mg ++ blended synergisti- 
cally with K + and Ca ++. The average head fresh 
weights of the binary blend of K + and Ca ++ was 
significantly lower than expected from additive 
blending of K + and Ca ++. These nonlinear 
blending characteristics of the two-cation blends 
are reflected in the nonplanar shape of the 

Potossium 

Magnesium Calcium 

Fig. 1. A six point simplex-lattice design in the cation 
factorspace,  with the overall centroid as a checkpoint.  

wf 
J ig  
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84 

56 

. l, lg+÷ '2 
K + 

Fig. 2. The FW of chicory heads in function of cation 
composition. 
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estimated head fresh weight response surface 
that is plotted in Figure 2. Although generally 
not tested, the coefficient estimates (128.0, 119.4 
and 97.0) of the linear blending terms in the 
model represent average head fresh weights of 
solutions containing only K ÷, Ca ++ or Mg ++, 
respectively. 

The shape of the surface can be further ex- 
plored: 
--by calculating the expected response functions 

along different axes of the cation space 
--by locating the stationary point by canonical 

analysis of the response surface 
--by the evaluation of slope functions. 

Component interaction effects can be 
evaluated: 

--by comparing the estimated response value at 
points of interest with the estimated response 
at a reference mixture 

--by computing total and partial effects. 
As a result of the analysis performed, this 

response surface, along with the corresponding 
fitted model above, provides an accurate descrip- 
tion of the process under study, emphasizing the 
multivariate interactional (linear and nonlinear 
blending) nature of plant nutritional problems. 

Example 2. A constrained mixture design to 
explore the optimal zone of  cation composition 
of  the nutrient solution for growth and 
development of  tomato 

To study the effects of potassium, calcium and 
magnesium and their interaction, an experimen- 
tal design is set up in the vicinity of the actual 
operating conditions for tomato, namely the 
cation composition of the standard solution of 
the Research Center for Soilless Cultures (point 
13 of Table 2). The main question is 'How much 
deviation from the standard cation composition 
of the nutrient solution is allowed without sac- 
rificing the growth and development characteris- 
tics of tomato plants?'. 

For each ion a lower bound of 50% less and an 
upper bound of 50% more was considered pos- 
sible, resulting in the following constrained ex- 
perimental region. Cations are expressed in 
proportions of half the total ionic strength of the 
nutrient solution (80 mval L- l ) .  

Table 2. The matrix of  the candidate points for Example  2 

Point K ~ Ca ++ Mg +~ 

1 0.66 0.22 0.12 
2 0.22 0.66 0.12 
3 0.60 0.22 0.18 
4 0.66 0.28 0.06 
5 0.28 0.66 0.06 
6 0.22 0.60 0.18 

7 0.4l  0.41 0.18 
8 0.47 0.47 0.06 
9 0.63 0.22 0.15 

10 0.66 0.25 0.09 
11 0.22 0.63 0.15 
12 0.25 0.66 0.09 

Ext reme 
vertices 

Edge 
centroids 

13 0.44 0.44 0.12 Overall  
centroid 

0.22 ~< K ÷ ~< 0.66 (5) 

0.22 ~< Ca ++ ~< 0.66 (6) 

0.66 ~< Mg ++ ~<0.18 (7) 

Applying the XVERT algorithm to the con- 
straints above produced a region with six ex- 
treme vertices from which six edge centroids and 
an overall centroid point were generated. The 
matrix of the candidate points is shown in Table 
2. The candidate list is plotted in Figure 3. 

Out of these candidate points an 'optimal' 
design has to be selected. For this purpose, a 
model must be specified. Within this region it is 
assumed that the response can be approximated 

Potassium 
Simplex Design 

.... ~,__..-,: ..... 
..... ~_..__~___.-¢. 

.... • :.:'_.._::.:.'_.. :~__ __~: 

Magnesium 

"e  a,l" 

,. _ . . . ; -  . . . .  

i'----:,~"----:~'- .... 

Colcium 

Fig. 3. The list of  candidate points,  consisting of the vertices, 
the  edge centroids and the overall centroid. 
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reasonably well by a second-order Scheff6 model 
which consisted of six terms. In the next step a 
D-optimal design is searched for with the use of 
Welch's branch-and-bound optimization algo- 
rithm. The number of design points necessary for 
supporting the fit of the quadratic model is six 
but it is recommended that at least two or three 
additional points be selected in order to cover 
the experimental region better than would be the 
case with the minimum number. The results are 
listed in Table 3. 

The nine point design, consisting of the ver- 
tices, the centroids of the two longest edges of 
the polyhedron and the overall centroid was 
chosen. This nine-point design actually had a 
lower D-optimality value than all the other 
designs ranging in size from six to eleven points. 

The experiment was carried out with these 
nine nutrient compositions. Per treatment de- 
structive growth analysis was carried out on ten 
plants. The effects on the total leaf biomass (FW 
in g) are reported here (Table 4). First of all a 
quadratic canonical polynomial was fitted to the 
data. The statistical tests of the model parame- 
ters showed that the nonlinear blending esti- 
mates were not significantly different from zero, 
so they were dropped from the model resulting 
in the following linear blending model: 

FW= 102.8"K + + 109.2"Ca ÷+ + 107.3"Mg ++ 

Table 4. The matrix of the design points (proportions), the 
mean and the standard error of the mean for the total leaf 
weight (g) for Example 2 

Point K + Ca * ~ Mg + ÷ Mean Std err 

1 0.66 0.22 0.12 97.3 9.8 
2 0.22 0.66 0.12 106.1 6.5 
3 (/.60 0.22 0.18 110.4 6.0 
4 0.66 0.28 0.06 109.5 4.7 
5 0.28 0.66 0.06 109.2 6.5 
6 0.22 0.60 0.18 108.6 6.2 

7 0.41 0.41 0.18 107.1 6.6 
8 0.47 0.47 0.06 105.3 6.9 

13 0.44 I).44 0.12 102.3 7.5 

FW 
108 72// 
560 ~ Hg++ 

Ca ++ 
Fig. 4. Total leaf weight (g) of tomato in function of cation 
composition over an irregular shaped experimental region. 

with R 2 =  0.982 and R A = 0.980. The statistical 
evaluation of this model showed in an objective 
way that the response did not change with 

Table 3. The D-optimality criterion of designs with different 
numbers of treatments for Example 2" 

Number D-optimality Design consisting 
of criterion of 
points point numbers 

6 132.5 1345613  
7 126.5 1 2 3 4 5 6  13 
8 125.5 1 2 3 4 5 6 7 1 3  
8 125.5 1 2 3 4 5 6 8  13 
9 125.4 1 2 3 4 5 6 7 8  13 

10 126.6 123(2) 4567813  
10 126.6 1234(2) 5678  13 
11 126.6 1234(2) 5 6(2) 78 13 
l 1 126.6 1234(2) 5(2) 678 13 

Numbers between parenthesis indicate replication of that 
particular point. 

different cation composition within the region of 
interest. Thus Equations 5 to 7 give a first 
approximation of the zone of optimal response 
for the leaf weight. The response surface is 
shown in Figure 4. Of course, before claiming 
the zone as defined in equations 5, 6 and 7 as 
being optimal, other dependent variables or 
tomato plant characteristics, like production and 
quality, need to be investigated. 

Conclusion 

The application of mixture theory in terms of 
mixture designs and model forms is an indispens- 
able tool for investigating nutrient solutions in 
hydroponic plant nutritional research. 
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In the optimization of nutrient solution 
composition, the emphasis is placed on multi- 
variate investigation of the zone of optimal 
response as a function of the ion composition 
and the total ionic strength of the solution. This 
multivariate approach makes the study of ion 
interaction effects on well defined response vari- 
ables possible. This work is a valuable tool in 
mineral nutritional research, because for the first 
time the chemical feasibility conditions of such 
solution, combined with additional chemical, 
physiological or economical constraints, form the 
foundation of the statistical experimental design 
theory, which makes the optimization of com- 
plex mixtures of ions in relation to response 
variables possible. 
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