Rates and pathways of nitrous oxide production in a shortgrass steppe

W.J. PARTON,¹ A.R. MOSIER² & D.S. SCHIMEL³

¹Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA; ²USDA-ARS, P.O. Box E, Fort Collins, CO 80522, USA; ³Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA

Key words: N₂O, model, annual emission, long-term estimate, N mineralization, nitrification

Abstract. Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5-9.0% of annual wet deposition inputs of N. These estimates were determined from an N₂O emission model based on field data which describe the temporal variability of N₂O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N_2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha⁻¹ for a midslope location and 160 g N ha⁻¹ for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha⁻¹ y⁻¹ at the midslope, but the variability was not high. N₂O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C₂H₂ to inhibit nitrifiers suggested that 60-80% of N₂O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N₂O flux were coupled to variations in mineral N dynamics, with high rates of N₂O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha⁻¹ y⁻¹ from the shortgrass landscape, and a flux of 2.6 \times 109 g N y⁻¹ from all shortgrass steppe (25×106 ha).

Introduction

Nitrous oxide (N_2O) plays an important role in biogeochemistry at local and global scales (Crutzen 1983). Nitrous oxide influences the climate as a greenhouse gas, participates in the destruction of ozone (O_3) and can be an important vector for loss of nitrogen from terrestrial ecosystems (Lacis et al. 1981; Crutzen 1983; Bowden 1986). Despite the importance of N₂O, fluxes in and out of terrestrial ecosystems are not well known. Data are particularly scanty from ecosystems where emissions are not thought to be significant to nitrogen budgets. Such data may nonetheless be important in defining global atmospheric balances. While there are many difficulties in measuring

 N_2O fluxes, a key difficulty is the characteristically high degree of spatial and temporal variability. High variability in N_2O fluxes is found both within plots and between sites which vary in vegetation, soils or hydrology.

In this paper we consider variations in rates and pathways of N_2O production in the shortgrass steppe ecosystem. Inputs of N into these shortgrass ecosystems are relatively low $(4-8 \text{ kg N ha}^{-1} \text{ y}^{-1})$ from wet and dry atmospheric deposition. Nitrogen fixation is generally considered to contribute little to the N balance of the ecosystem (Woodmansee 1978). Grazing influences the N budgets by N redistribution and regulation of gaseous ammonia (NH₃) emission (Schimel et al. 1986). From previous studies in this system (Mosier et al. 1981) we found that although nitrous oxide losses from the native soil were small $(1-2 \text{ g N ha}^{-1} \text{ d}^{-1})$, they accounted for about 10% of total N inputs into the system. Urine from grazing cattle may also influence nitrous oxide emission since losses from ureatreated sites were larger than from untreated soils.

Nitrous oxide is produced both by denitrification and during nitrification. Other pathways may exist but have not yet been shown to be significant (Kaplan & Wofsy 1985; Bowden 1986). Poth & Focht (1985) have recently proposed a mechanism for the production of N_2O during nitrification; "nitrifier denitrification" which may account for most N_2O production during nitrification. Both field and laboratory studies suggested that in the shortgrass soils N_2O is the primary nitrification–denitrification product when N_2O and N_2 were measured; therefore, by quantifying N_2O alone, denitrification could be measured (Mosier & Parton 1985).

Utilizing field N_2O gas flux and soil nitrate, ammonium, water, and temperature measurements, a model was developed to describe the temporal variability of N_2O produced from nitrification and denitrification during a 2-y period. The work reported on here is a continuation of an overall study (see Mosier & Parton 1985; Schimel et al. 1986) on gas fluxes from the Shortgrass Steppe, that emphasizes the role of herbivores in modifying gas fluxes.

Materials and methods

Field measurements

The study site was located in the Central Plains Experimental Range, 56 km northeast of Fort Collins, Colorado. The site and experimental methods are explained in detail by Mosier & Parton (1985). Individual plots were established in blue grama (*Bouteloua gracilis* Lag.) swards that were as similar

Position depth (cm)	Clay (%)	Organic C (mg/kg)	Organic N (mg/kg)	Net N Mineralization (kg/ha)
Midslope	15.0	5700	665	41
Swale	28.2	20400	1937	55

Table 1. Selected soil properties for surface horizons of midslope and swale soils (from Schimel et al. 1985).

as possible in cover, exposure, and soil type at two slope positions. Plots were established at a midslope (July 1981) and a swale (May 1982) site on a northwest-facing slope having a 6% slope. The midslope soil was classified as a Ustollic Haplargid with a solum depth of 25 cm. The swale soil was an Aridic Argiustoll with a solum depth greater than 1 m. The soils differed significantly in organic carbon and N content, texture, and N mineralization rate (Table 1). The slope positions also differed in observed gravimetric water contents, ranging from 3 to 13% in the midslope and 6 to 23% in the swale. To determine the effects of urine deposition on nitrous oxide flux, urea equivalent to $450 \text{ kg N} \text{ ha}^{-1}$ in 1.5 cm H₂O (0.76 g urea in 120 ml H₂O) was added uniformly to the surface of each treated plot. Nothing was added to control plots. Four replicate urea-amended and untreated plots were sampled at each sampling period. Adjacent to each of the plots, a 5-m² area was treated with natural ¹⁵N abundance urea at the same rate as the amended plots to allow intensive sampling of soil NH_4^+ , NO_3^- , and NO_2^- at each N₂O flux measuring date (see Mosier & Parton 1985).

Laboratory experiments

A laboratory study was conducted to evaluate effects of soil moisture on the contribution of nitrification and dentrification to nitrous oxide flux. Unfertilized soils were collected from both the midslope and bottom sites to 15-cm depth and passed through a 2-mm sieve to remove plant material and stones. On the day that the soils were collected, powdered KNO₃ or $(NH_4)_2SO_4$ was added to 500-g portions of sieved soils to attain a NO₃-N or NH₄⁺ -N content of 100 mg N/g soils and mixed thoroughly in a twin-shell blender. Soils were incubated at a range of gravimetric water contents from 2.5 to 30% (Fig. 1). This represents the range of water contents observed in the field, plus saturated conditions. Ten-gram portions of the field-moist, N-amended soil were placed in 125-ml serum bottles. Water was added to the desired moisture content, and the bottles were sealed with rubber serum stoppers and incubated 1 to 7 d at 25 °C. The flask air was amended with 0.11/l acetone-free acetylene in some treatments to block the nitrification process

Fig. 1. (A) N_2O production after 7-d incubation with NO_3^- added for midslope and swale soils with and without acetylene. Standard error bars are included for each data point. (B) Effect of soil water content on the production of NO_3^- and N_2O from NH_4^+ -amended shortgrass midslope and swale soils during 7-d of laboratory incubations. Standard error bars are included for each data point.

and N_2O production associated with that process (Walter et al. 1979) Headspace N_2O concentration was determined by gas chromatography (Mosier & Mack 1980) and total N_2O production was corrected for solubility in soil H_2O . At the end of the desired incubation period the soils were extracted with 50 ml of 2 M KCL and the extract analysed for NO_3^- and NH_4^+ as described above.

Results

Effects of soil water on nitrification/denitrification

The effect of increasing soil water content on NO_3^- and N_2O production in NH_4^+ -amended soils (see Fig. 1b) was to greatly enhance N_2O and NO_3^- production as water content increased to 5% and 7% for midslope and swale soils. Little change was observed in N_2O production as water content increased from 10% to 20% for both soils. At 30% H₂O (6% greater than was ever observed in the field), the swale soil NO_3^- recovery was not increased but N_2O production increased markedly. The midslope soil behaved similarly. Nitrate and N_2O production rates were highly correlated (R^2 of 0.88), and maximum N_2O production occurred when the soil water content exceeded 50% of available soil water (8 and 15% for the midslope and swale soils).

Two soils were amended with NO_3^- and incubated in the absence and presence of actylene (Fig. 1a). The data for both soils at water content less than 28% shows C_2H_2 addition reduces N_2O production by approximately 80%. Because C_2H_2 inhibits nitrification, this suggests that 80% of N_2O production comes from nitrification and 20% from denitrification. At 28% H_2O above, the C_2H_2 -treated soil produced more N_2O than did the non- C_2H_2 -treated soil, suggesting the dominance of the denitrification process. These data suggest that nitrification (or nitrifier denitrification) is dominant over denitrification until soils become very wet. In addition, nitrification must be the main source of N_2O in the field, since observed water contents never exceeded 24%.

Revised model

Because of the data presented above, we reevaluated a model presented earlier (Mosier & Parton 1985) to estimate N_2O production from denitrification and nitrification using microclimate and mineral data (Fig. 2) in control and urine-amended soils. We omitted several sample dates from the data because analysis of field data indicated that the error terms for predicted versus observed N_2O flux were quite high soon after the studies were initiated in both slope positions. We suspect that the high soil pH and high NH_4^+ level during the first week after urea was added reduced microbial

Fig. 2. The effect of soil NH_4^+ level on nitrification (a), the effect of relative water content on nitrification and denitrification (b), and the impact of soil temperature on nitrification and denitrification (c).

Fig. 3. Comparison of simulated and observed N_2O loss for the midslope site with (a) and without (b) urea-N addition.

Fig. 4. Comparison of simulated and observed N_2O emission from the swale site with (a) and without (b) urea-N addition. Note the change in scale on the ordinate between (a) and (b).

activity for this brief period (Schimel et al. 1986), although other explanations are possible. The new model cannot be used to estimate N gas fluxes under such conditions.

Using this rationale we omitted the data for the first five data collection periods for each slope position and refitted the model parameters (see Eq. (1), Table 2). As a result, the agreement between observed and simulated N_2O flux density was greatly improved (R^2 was increased from 0.57 to 0.82; Figs. 3, 4).

We used slightly different models to simulate N_2O flux from urine amended and control soils. In urine-amended soils, inorganic N levels were high. We used measured concentrations of inorganic N species to drive simulations of N_2O flux from the urine treated soils. Inorganic N levels in untreated shortgrass soils were consistently low and probably do not reflect levels of flux through mineral pools (see estimates of mineralization in Schimel et al. 1985; Schimel & Parton 1986). Since we did not have appropriate field data on flux through mineral N pools in control soils, we used a single empirical parameter to reflect the fact that the swale site had higher mineral N turnover rates than the midslope (Schimel et al. 1985).

The N₂O production equation for urine-amended soils (Mosier & Parton 1985) is shown in Eq. (1), where the N₂O produced by nitrification and denitrification (${}^{P}N_{2}O$, in g N ha⁻¹d⁻¹) are represented by separate functions that are dependent on soil water content, soil temperature (C), NO₃⁻ level (mg g⁻¹), and NH₄⁺ level (mg g⁻¹).

Denitrification Nitrification (1)

$${}^{P}N_{2}O = [(a \cdot NO_{3} \cdot M_{T} \cdot M_{D}) + (b \cdot M_{NH_{4}} \cdot M_{T} \cdot M_{N}) + C] \cdot S,$$

where M_T is the soil temperature term (Fig. 2c), M_d and M_N are the effect of relative water content (actual water content minus the minimum water content divided by the difference between maximum and minimum water content) on denitrification and nitrification (Fig. 2b), respectively, $M_{NH_4^-}$ and $M_{NO_7^-}$ are the effects of soil NH_4^+ and NO_3^- levels on nitrification (Fig. 2a), and S is the site term, which is equal to one except when slope positions are combined, when S is equal to 3.25 and 1 for the swale and midslope, respectively. The parameter values in Eq. (1) were determined using a nonlinear data-fitting routine (Powell 1965), which minimizes the difference between the observed and simulated N_2O loss data (1981–1982) from the swale and midslope soils. The importance of nitrification in the production of N_2O is shown (see Table 2) by the fact that a version of Eq. (1) that does not include denitrification has a substantially higher r² than a version of the

a	b	c	⁺ R _a (g N ha ⁻¹ d ⁻¹)	r²
0.32	14.62	-0.15	2.47	0.86
0.66	54.6	-0.52	4.4	0.82
2.59	_	0.57	7.1	0.56
_	58.9	0.55	4.84	0.72
0.56	12.85	0	1.24	0.73
1.97	-	0	1.56	0.53
-	15.36	0.11	1.32	0.68
	a 0.32 0.66 2.59 - 0.56 1.97 -	a b 0.32 14.62 0.66 54.6 2.59 - - 58.9 0.56 12.85 1.97 - - 15.36	a b c 0.32 14.62 -0.15 0.66 54.6 -0.52 2.59 $ 0.57$ $ 58.9$ 0.55 0.56 12.85 0 1.97 $ 0$ $ 15.36$ 0.11	a b c $+R_a$ (g N ha ⁻¹ d ⁻¹) 0.32 14.62 -0.15 2.47 0.66 54.6 -0.52 4.4 2.59 - 0.57 7.1 - 58.9 0.55 4.84 0.56 12.85 0 1.24 1.97 - 0 1.56 - 15.36 0.11 1.32

Table 2. Summary of the error terms and values of the parameters in Eq. (1) for urine amended soils.

 $^{+}R_{a} = \frac{\sum_{i=1}^{N} ABS(x_{i}^{0} - x_{i}^{S})}{N},$

where N = number of data points, x_1^s = simulated data, and x_i^o = observed data.

model that includes only denitrification. This pattern is shown for both data sets and the relative contribution to N_2O flux by nitrification and denitrification for the combined version of Eq. (1) was 0.75 and 0.25, respectively. Adding the denitrification term to the swale site model results in a greater increase in the r^2 than including this term to the midslope site model and suggests that denitrification may be slightly greater on the fine-textured, high organic matter swale soils.

The N_2O production equation for untreated soils is shown in equation 2:

$$^{C}N_{2}O = (a' \cdot M_{d} \cdot M_{T} + b')S', \qquad (2)$$

Where ${}^{C}N_{2}O$ is the N₂O loss (g ha⁻¹d⁻¹), a' and b' are coefficients given in Table 3 for the two sites, and S is the site multiplier. The site multiplier accounts for differences in inorganic N supply when data are not available and is equal to 1 for all cases except the combined site equation, where it is equal to 2.42 for the swale site. Comparison of the site coefficients for the

Site	a'	b′	R _a (g N ha ⁻¹ d ⁻¹)	r ²
Swale	2.87	0.39	0.58	0.075
Midslope	2.46	0.17	0.23	0.27
Combined	2.46	0.29	0.40	0.30

Table 3. Summary of the error terms and values of the parameters in Eq. (2); untreated soils.

54

two sites shows that the N_2O flux rates are higher for the swale site and reflect the higher mineralization and nitrification rates (see Fig. 1; Schimel et al. (1985); Schimel & Parton (1986) and greater denitrification potentials in the swale (see Fig. 2).

A comparison of the observed and simulated N_2O data for the midslope (Fig. 3) and swale (Fig. 4) shows that the model compares well with observed data for the urine amended case, while the comparison for the control data is substantially poorer. The poorer fit to control data is probably caused by the greater measured errors for the lower flux rates and because the model did not include the temporal variation in soil NO_3^- and NH_4^+ levels (Table 3).

Model results

Simulated annual losses

Annual N_2O losses were estimated using a soil water flow model (Parton 1978) and a soil temperature model (Parton 1984) to simulate daily soil water content (0-15 cm) and average daily soil temperature 5-cm depth) from 1950 through 1984. The models were used to calculate soil temperature and moisture from the long-term climatic record of air temperature and precipitation. Driving variables for the models were the monthly mean value of live and dead standing plant biomass (plant biomass differs between the two sites), daily precipitation and maximum and minimum air temperatures at 2 m. Daily soil water and soil temperature simulated by the models were used as inputs into Eq. (1 and 2) to calculate N₂O fluxes under control and urine-amended conditions at the two sites. The N₂O loss from a urine patch was simulated using the daily soil temperature and soil water content as inputs into Eq. (1) and using the observed time series of NO_3^- and NH_4^+ levels (0- to 15-cm depth) for the 1981 urine addition at the midslope site as the inputs for the NO_3^- and NH_4^+ levels in the soil. This assumption is crude, but we had no basis for making other assumptions from our data. Initial NH_4^+ levels were greater than 150 mg g⁻¹ and declined to less than 5 mg g⁻¹ at the end of the time series, while NO_3^- increased rapidly after application of urine to greater than $30 \,\mathrm{mg}\,\mathrm{m}^{-1}$ and then declined to near zero at the end of the time series. During most of the time series NO_3^- and NH_4^+ levels were greater than 20 mg g^{-1} .

Simulated annual N_2O fluxes over 24 years from the urine amended treatments were three to four times greater than control N_2O losses and the variation between years was substantially greater from urine-amended soils

(see Table 4). Annual N₂O fluxes ranged from a low of $172 \text{ g N ha}^{-1} \text{ y}^{-1}$ to a high of $1432 \text{ g N ha}^{-1} \text{ y}^{-1}$ for urine-amended treatment in the swale. The ratio of N₂O flux to N added was small in all treatments, ranging from 6 to 14% in midslope and swale, respectively. Even though fluxes from urine patches can be high, they do not contribute significantly to the total N₂O flux from a pasture because less than 1% of the area of a typical pasture is affected by urine each year (Senft 1983).

Simulated nitrous oxide fluxes (Table 4) from unamended soils ranged from $82 g N ha^{-1} y^{-1}$ for the midslope to $161 g N ha^{-1} y^{-1}$ for the swale. Variations between years were fairly small, with estimated N₂O fluxes ranging from a minimum of $73 g N ha^{-1} y^{-1}$ to a maximum of $100 g N ha^{-1} y^{-1}$ for the midslope site. N₂O fluxes were highest during wet years and lowest during dry years. The flux rates were highest for all sites in 1979, when the precipitation was 40 cm, and lowest in 1964, when precipitation was 10 cm. N₂O fluxes were approximately twice as great from the swale as from the midslope site.

Conclusions

Nitrification appears to be the dominant source of nitrous oxide in the Shortgrass Steppe, contributing 60 to 80% of the total flux. Rates of emission were not high, but accounted for a measureable fraction of annual precipitation inputs. Simulated control (non-urine-amended) N_2O losses from the two sites as a percentage of the atmospheric N inputs (NADP 1982) ranged from 5.1 to 8.5% for the swale and from 2.4 to 4.8% for the midslope. Nitrous oxide production in urine is a minor pathway. While these fluxes are not large, in the long-term they influence the site's steady state N levels (Parton et al. 1987).

Differences in N_2O production seasonally and between sites were closely coupled to mineral N dynamics. Soil NO_3^- concentration, nitrification and mineralization rates all peak in June, along with the N_2O production rate (Schimel 1982; Schimel et al. 1985; Schimel & Parton 1986). Because much N_2O flux occurs at water contents which do not favor denitrification, we suggest that patterns of temperature and water availability have their effect on N_2O production by controlling N mineralization and nitrification. The formation of oxygen stressed microenvironments during very wet periods may also be of importance.

The significant spatial heterogeneity observed must be considered in calculating the average N_2O flux from a shortgrass steppe ecosystem. The average flux from the shortgrass, assuming the same ratio of upland to

Site	Mean loss ± SD	Highest annual loss	Lowest annual loss
Midslope	82 ± 7	100	73
Midslope + N	295 ± 112	614	85
Swale	161 ± 9	178	151
Swale + N	690 ± 290	1432	192

Table 4. Simulated annual $N_2O loss (g N ha^{-1}y^{-1})$ for two soil types with (+N) and without urine amendment from a 24-year simulation. Standard deviations reflect variability between simulated years.

lowland (70:30) is in Schimel et al. (1986) and assuming that the sites chosen for intensive study were representative, would be $104 \text{ g N} \text{ ha}^{-1} \text{ y}^{-1}$. This flux is small relative to the standing pools and inputs of N to the system but could be a significant input of N₂O to the atmosphere. The Shortgrass Steppe would contribute $2.6 \times 10^9 \text{ g N}_2 \text{ O N y}^{-1}$ to the atmosphere, assuming approximately 25 000 000 ha of shortgrass steppe worldwide (Milchunas, pers. comm.). This suggests lower fluxes from worldwide grasslands and steppes than those presented in Bowden (1986) or Banin et al. (1984).

References

- Banin, A., J.C. Lawless & R.C. Whitten (1984) Global N₂O cycles-terrestrial emissions, atmospheric accumulation and biospheric effects. In: Advances in Space Research (pp. 141–153). Proceedings of COSPAR XXV. Pergamon, New York
- Bowden, W.B. (1986) Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impact on local and global nitrogen budgets. Biogeochemistry 2: 249-280.

Crutzen, P.J. (1983) Atmospheric interactions – homogeneous gas reactions of C, N, and S containing components. In: B. Bolin & R.B. Cook (Eds) The Major Biogeochemical Cycles and Their Interactions (pp. 67–114). John Wiley & Sons, New York

- Kaplan, W.A. & S.C. Wofsy (1985) The biogeochemistry of nitrous oxide: a review. Adv. Aquatic Microbiol. 3: 181–206
- Lacis, A., G. Hanson, P. Lee, T. Mitchell & S. Lebedeff (1981) Greenhouse effect of trace gases, 1970–1980. Geophys. Res. Lett. 8: 1035–1038
- Mosier, A.R., M. Stillwell, W.J. Parton & R.G. Woodmansee (1981) Nitrous oxide emissions from a native shortgrass prairie. Soil Sci. Soc. Am. J. 45: 617–619
- Mosier, A.R. & W.J. Parton (1985) Denitrification in a shortgrass prairie: A modeling approach. In: D.E. Caldwell, J.A. Brierly & C.L. Brierly (Eds) Planetary Ecology. Selected Papers from the Sixth International Symposium on Environmental Biogeochemistry (pp. 441-452). Van Nostrand Reinhold, New York
- Parton, W.J. (1978) Abiotic section of ELM. In: G.S. Innis (Ed) Grassland Simulation Model (pp. 31-53). Ecol. Stud. Vol. 26. Springer-Verlag, Inc., New York

Parton, W.J. (1984) Predicting soil temperatures in a shortgrass steppe. Soil Sci. 138: 93-101.

Parton, W.J., D.S. Schimel, C.V. Cole & D.S. Ojima (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. (in press)

- Poth, M. & D.C. Focht (1985) ¹⁵N kinetic analysis of N_2O production by *Nitrosomonas* europaea: An examination of nitrifer denitrification. Appl. Environ. Microbiol. 49(5): 1134–1141
- Powell, M.J.D. (1965) A method for minimizing a sum of squares of nonlinear functions without calculating derivation. Comput. J. 7: 303-307.
- Schimel, D.S. (1982) Nutrient and organic matter dynamics in grasslands: Effects of fire and erosion. Ph.D. dissertation. Colorado State University, Fort Collins.
- Schimel, D.S., M.A. Stillwell & R.G. Woodmansee (1985) Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 66(1): 276–282
- Schimel, D.S., W.J. Parton, F.J. Adamsen, R.G. Woodmansee, R.L. Senft & M.A. Stillwell (1986) The role of cattle in the volatile loss of nitrogen from a shortgrass steppe. Biogeochemistry 2: 39-52
- Schimel, D.S. & W.J. Parton (1986) Microclimatic controls of N mineralization and nitrification in shortgrass steppe soils. Plant Soil 93: 347–357
- Walter, H.M., O.R. Keeney & I.R. Fillery (1979) Inhibition of nitrification by acetylene. Soil Sci. Soc. Am. J. 43: 195–196
- Woodmansee, R.G. (1978) Additions and losses of nitrogen in grassland ecosystems. Bio-Science 28: 448-453.