)

Check for
updates

UAV-D2D Assisted Latency Minimization
and Load Balancing in Mobile Edge
Computing with Deep Reinforcement
Learning

Qinglin Song and Long Qu(®

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo,
Zhejiang, China
{2211100149,qulong}@nbu.edu.cn

Abstract. Now Unmanned Aerial Vehicle (UAV) with Mobile Edge
Computing (MEC) severs and Device-to-Device (D2D) communications
provide offload computing services for User Devices (UDs). However, the
UAV has relatively high transmission latency. And D2D lacks the nec-
essary flexibility. In this paper, we introduce a novel MEC system that
utilizes the collaborative advantages of flexible movement of UAV and the
low latency transmission of D2D communication to process tasks from
UDs. We formulate an optimization problem focused on minimizing the
tasks transmission and execution delay of UDs. The problem involves
joint optimization of user scheduling, UAV trajectory, and resource allo-
cation of Virtual Machines (VMs) on the MEC server. To tackle this non-
convex problem, we propose a Deep Reinforcement Learning (DRL) algo-
rithm with Deep Deterministic Policy Gradient (DDPG). Through sim-
ulation results, we demonstrate that DDPG reduces the latency by 41%
compared to Deep Q-Network (DQN) and Actor-Critic (AC) algorithm.
Our collaborative UAV-D2D model has 16% and 32% lower latency than
when only the UAV or D2D works alone.

Keywords: Mobile Edge Computing - Unmanned Aerial Vehicle -
Device-to-Device - Virtual Machines - Deep Deterministic Policy
Gradient

1 Introduction

In the era of 5G, mobile networks cater to a wide range of devices, including
computers, mobile vehicles, and various types of sensors. With the rapid prolif-
eration of Internet of Things (IoT) devices [1], there is a growing demand for
applications with stringent requirements for low latency, such as Virtual Reality
(VR), Augmented Reality (AR), and video streaming [2]. The traditional core
networks are unable to meet the demands of latency-sensitive tasks. To address
this challenge, Mobile Edge Computing (MEC) has emerged as a promising solu-
tion. MEC aims to reduce processing latency and enhance user experience by

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Jin et al. (Eds.): GPC 2023, LNCS 14504, pp. 108-122, 2024.
https://doi.org/10.1007/978-981-99-9896-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9896-8_8&domain=pdf
https://doi.org/10.1007/978-981-99-9896-8_8

UAV-D2D MEC System 109

offloading compute-intensive tasks to edge servers close to the users [3]. Nev-
ertheless, conventional MEC servers are typically deployed on static Base Sta-
tions (BSs) and lack the necessary flexibility. This limitation poses challenges
in scenarios where infrastructure is scarce or compromised(such as post-disaster
situations or remote mountainous areas) [4]. Therefore, there is a growing inter-
est in leveraging Unmanned Aerial Vehicle (UAV) and Device-to-Device (D2D)
assisted communications. These innovative approaches offer unique advantages
in terms of mobility, adaptability, and coverage, which make them particularly
suitable for addressing the limitations of traditional MEC deployments.

The research on UAVs primarily focuses on their trajectory and task schedul-
ing [5]. UAV fly between fixed users to fulfill their computational offloading
requirements. Meanwhile, there has been considerable research on the utiliza-
tion of D2D communication as an emerging technology for MEC services [6].
The short-range and low-latency advantages of D2D communication assist MEC
in task processing [7]. In the context of MEC servers, Virtual Machine (VM)
reuse is a fundamental technique [8]. MEC servers utilize multiple VMs to per-
form parallel computing tasks, resulting in a significant reduction in compu-
tational latency. However, existing work has rarely explored the collaborative
efforts of UAV-D2D communications and VM workloads on UAV to meet user
task demands.

In this paper, we propose a system that leverages the collaborative advan-
tages of UAV and D2D communication to assist MEC. UD splits and offloads
tasks to UAV and D2D for joint calculation. We also optimize the workload on
MEC servers to achieve optimal computational efficiency. The main contribu-
tions of this work are summarized as follows:

(1): We present the system of using UAV and D2D communication together to
support MEC services. This novel approach harnesses the unique advan-
tages of UAV mobility and D2D communication low latency. Compared to
scenarios using only UAV or D2D, the task execution delay is reduced by
16% and 32%, respectively.

(2): We address the workload on MEC servers to maximize their computing
capacity. By optimizing the allocation of VMs on the servers, we achieve
a balanced workload and efficient resource utilization. Compared with no
VMs allocation, task execution delay decrease 6%.

(3): We compare our proposed Deep Deterministic Policy Gradient (DDPG)
with Deep Q-Network (DQN) and Actor-Critic (AC). Through simulations
and experiments, we demonstrate that the DDPG reduces latency of tasks
about 41%.

In the rest of this article is organized as follows. The Sect.2 discusses related
work. We introduced the system model in Sect.3. In Sect.4 we present the
algorithm. The simulation and experimental results are presented in Sect. 5. The
Sect. 6 summarizes.

110 Q. Song and L. Qu

2 Related Work

In recent years, there has been extensive research in the academic community
focused on MEC assisted offloading. Arash et al. [9] aimed to minimize delay
and energy consumption by finding the Pareto optimal frontier. Li et al. [10]
proposed an online learning method that reduces task processing cost through
multi-hop assisted collaboration. However, the static deployment of MEC servers
mentioned above is not adaptable to various scenarios. Asim et al. [11] tackled
the issue by minimizing system energy consumption through the optimization of
the hovering position for each time slot of the Unmanned Aerial Vehicle (UAV).
Wang et al. [12] employed Deep Reinforcement Learning (DRL) to plan multi-
ple UAV trajectories while considering UAV load balancing to minimize energy
consumption. Umber et al. [13] focused on D2D shared spectrum and aimed to
minimize the sum of all device task execution delays under energy constraints,
utilizing an offloading framework based on Orthogonal Frequency Division Mul-
tiple Access (OFDMA). Dai et al. [14] designed a framework that integrates
migration and offloading willingness in D2D communication, aiming to mini-
mize task latency and migration costs. However, there are limited studies on
UAV and D2D co-assisted MEC computations. Pu et al. [15] found that opening
multiple VMs in the same Physical Machine (PM) could impact overall perfor-
mance due to I/O interference between VMs. Koushik et al. [16] employed the
DQN algorithm, to design UAV trajectories and optimize network throughput.
However, the DQN algorithm may face challenges in scenarios with continuous
action spaces due to the curse of dimensionality, making convergence difficult.
To address this, Ding et al. [17] proposed the DDPG algorithm to handle high-
dimensional continuous motion of UAV and achieve improved performance.

In comparison to the reviewed related studies, we propose the DDPG algo-
rithm to jointly leverage UAV and D2D communication for MEC offloading. Our
approach aims to optimize the UAV trajectory and workload of MEC servers,
leading to a reduction in task execution delay. By employing DDPG, we effec-
tively address the challenge of high-dimensional continuous motion in UAV. In
addition, offloading between close D2D is able to get low transmission latency.
This jointly utilize advantages which enables efficient task distribution, ulti-
mately resulting in a smaller task execution delay.

3 System Model

In this section, we will consider the issue of minimizing the latency of UDs. As
shown in Fig. 1, we assume the D2D-assisted UAV-MEC system without BSs,
which consists of a UAV and M UDs, denoted by the set M = {1,2,...,M}.
Besides, We assume that the UDs are divided into two groups, one for D2D
transmitter and one for D2D receivers, which set Z = {1,2,...,4,...,I},Vi e M
and J ={1,2,...,4,...,J},Vj € M, respectively. The UAV is equipped with
MEC servers and provides offloading services for the D2D transmitters. Simul-
taneously, the D2D receivers also assist in offloading tasks for the transmitters.

UAV-D2D MEC System 111

3.1 UAV Trajectory Model

In our model, we set a square region in Cartesian coordinates. Then, we assume
that the UAV has sufficient power to maintain flying [2] at a fixed altitude H and
serve the users dynamically during the flight cycle time of T'. The flight period
is divided into equal and sufficient small time slots N denoted by the set N' =
{1,2,...,n,...,N}. Besides, We assume that the UAV remains hovering in each
time slot n, so the position coordinate of the UAV is q(n) = [X(n), Y(n), H],
n € N. The flight direction and speed is controlled by the angle of §(n) € (0, 27|
and v(n) € [0, vnaz], respectively. Therefore, we get the coordinate of the UAV
flies to the new hovering position at the nth time slot

a(n+1) = [X(n) +v(n)tcosd(n),Y(n) + v(n)tsind(n), H|

with a flight time ¢. Moreover, we have UAV flight constraints as the following

0<X(n+1) < X(n)+ vmaztcosd(n),Vn e N (1)
0<Y(n+1) <Y(n)+ vnetsind(n),Vn e N (2)

/:/ /} \\\ ‘ MEC sever
/ X / s ./\\\ \\\ & User Device T
// \» \ Ml User Device J

Uplink D2D link

Fig. 1. UAV-D2D MEC System.

3.2 Communication Model

We assume that the UAV schedules one UD 4 per time slot to communicate, while
this UD i generates a D2D link with the nearest UD j. Besides, we assume the
positions of transmitter ¢ and receiver j are fixed in our model, which are denoted
as q; = (x;,¥;,0) and q; = (z;,y;,0), respectively. The communication link
between the UAV and the UD 4 is dominated by the line-of-site(LoS) channel,
so their channel gain in time slot n be expressed as

112 Q. Song and L. Qu

Bo

) = P00 = g — a7

VneN,Viel (3)
where (3 is the channel power gain at a reference distance of 1m, and d;(n)
denotes the Euclidean distance between UD i and UAV. Moreover, we obtain
the D2D channel link between UD ¢ and UD j be modeled as

i,;(n) = h(n)Bod; *(n)
:%,Vne/v,\ﬁez,wej (4)
lai — qj|

where h(n) represents the small-scale fading coefficient of obeying CN ~ (0, 1).
Then, the transmission rate between UAV and UD i is given as

ri(n):B110g2(1+%),VnEN,Vz€I (5)
where By is the ground-to-air channel bandwidth, P;(n) denotes the transmission
power of the UD i, and o2 represents the noise power. Let By denotes the ground-

to-ground channel bandwidth, and the interference between links is ignored, so
the data rate of the D2D link between UD i and UD j is given by

9i,j(n) P j(n)

ri;(n) = Bylogy(1 + g), VneN,VieI,VjeJ (6)

3.3 Task Offloading Model

We assume that each time slot per UD i will generate different task [D;(n), V],
where D;(n) denotes the task sizes, V indicates the CPU cycles to process each
byte of the unit. Besides, we consider a partial ofload mode, where a part of the
tasks offload to the UAV and its ratio set to R;(n) € [0,1], and the remaining
(I — Ri(n)) is offloaded to the connected D2D device UD j. Because the size
of the tasks returned after the calculation is very small, so they are usually
negligible [11]. Therefore, the offloading transmission time from UD i to UAV
at time slot n is

ri(n)

The transmission time from UD ¢ to UD j is given as

£t (n) = ,Vn e N,Viel. (7)

ey = (=000

NneN,VieI, VjieJ. (8)

Hence, the transmission time of the scheduled UD ¢ to offload tasks in time slot
n is
Tiran(n) = 7" (n) + ;77" (n),Vn e N\,Vie I,Vj € J. (9)

UAV-D2D MEC System 113

3.4 Task Computing Model

In our model, we incorporate load balancing for the MEC server. As depicted
in Fig.2, upon receiving tasks, the MEC server creates multiple VMs on the
same PM to process the tasks in parallel. However, turning on more VMs leads
to increased load, which negatively impact the overall performance of the MEC
server. We denote Z > 0 [18] as the attenuation factor, representing the per-
centage of overall computing capability degradation when multiple VMs are
simultaneously active. Additionally, we assume that the tasks received by the
MEC server can be randomly divided into multiple sub-tasks, with the number
of sub-tasks denoted as k(n) in time slot n. Consequently, the parallel computing
time of S(n) VMs on the MEC server in time slot n can be expressed as follows:

£ (n) = tH (14 2)5™ " vn e N\ Vie T (10)
where t’éff,? denotes the maximum computing time for a VM to process parallel
sub-tasks, and it is expressed as

k() —

max

Dsub 1%

max VM (n) 7V’I’L c N (11)

fvm
where D5%0 .. (n) represents the maximum sub-task size for a VM computing,
fvr denotes computing capability of virtual machine. Moreover, the computing
time of UD j is
(1= Ri(n)) Di(m)V
i

where f; denoted the computing capability of UD j. Therefore, the total com-
puting time of the task D;(n) at time slot n is

1557 () =

,VneN,VieZ,VjeJ, (12)
Teomp(n) = ;""" (n) + ;5" (n),Yn e N,Vi € I,Vj € J. (13)

VM

‘ PM
— —

S(n)

Fig. 2. VMs Parallel Computing.

3.5 Problem Formulation

In this paper, we jointly optimize user scheduling, UAV trajectory, UD ¢ launch
power, offload ratio, and number of VMs to achieve MEC server load balancing

114 Q. Song and L. Qu

and minimize tasks execution latency. Specifically, we minimize the delay with
transmission time and computation time which is formulated as

N I
Tran +Tcom 14

as(m, a(ntD), R, (n),zz wran{) () 14

Pi(n),P;,;(n),S T

st. a;(n)€0,1,Yne N,Vie T, (14a)
> ai(n) =1,Vi€1, (14b)
0<X(n+1) < X(n)+ vmagtcosd(n),¥n € N, (14c)
0<Y(n+1) <Y(n)+ vmastsind(n),Vn € N, (14d)

1 <k(n) < Kpaz,Vn €N, (14e)

1 < 8(n) < k(n),¥n € N. (14f)

The constraint (14a) and (14b) ensure that only one user is scheduled for offload-

ing in time slot n. Constraint (14c) and (14d) guarantee UAV flight trajectory
is not exceeding its capacity limits. Constraint (14e) denotes the number of sub-
tasks split on the MEC sever does not exceed the maximum. Constraint (14f)
limit the number of VMs no more than the amount of sub-tasks.

4 Proposed Approach

In this section, so we propose a DRL algorithm DDPG to slove the above com-
plex optimization problem with multiple non-convex constraints and multiple
optimization objectives.

4.1 Algorithm DDPG

Reinforcement Learning (RL) methods involve an agent continuously interact-
ing with the environment to determine the best action strategy for each step
through trial and error [19]. When RL is combined with Deep Neural Networks
(DNN), it forms DRL. Traditional DRL algorithms such as Q-learning, Sarsa,
and DQN [20] are designed for problems with discrete action spaces. However,
when dealing with continuous action spaces, the DDPG algorithm, as shown in
Fig. 3, is utilized as a model-free off-policy AC [21] approach. In the DRL, the
environment is typically modeled as a discrete-time Markov Decision Process
(MDP). Following the Markov framework, the agent selects an action based on
the current state of the environment and receives an immediate reward, which
guides its subsequent actions. The primary objective of the agent is to maximize
the accumulated reward by making optimal decisions based on the current envi-
ronment state.

UAV-D2D MEC System 115

Actiona, l 7(s,)

o
Gradient
Gradient

a=m(s,)

Store(S,, ., ',y $1u1)

sample b
experience
replay buffer

Fig. 3. DDPG Schematic Diagram.

(80 €ty 7y 800}

The DDPG as a deterministic policy algorithm where the continuous action
spaces output is a deterministic action. The actor network 7 is defined as a

function
an = 7(5,|07) (15)

where s,, is current state to get deterministic action a,, and ™ is actor network
training parameters. The critic network is Q(s,, a,|0<) to approximate Q-value
function. Besides, both the actor network and the critic network contain the
same structural target network as they are, which updates the approximate
7 (5,07) and Q' (sn, a,|02), respectively. In addition, DDPG has an experience
replay mechanism that randomly selects the mini bitch b input network in the
experience buffer to accelerate convergence. The critic network minimize the loss
function to update

@I»—t

b
Z Qtarget Stvatwg)]Q (16)

where Q'79¢t — r, 4 ~Q(s441, 7 (s:/0™)[02")). Moreover, the strategy gradient
update formula is

VQWJ == (17)
Eﬂ" [VGQ(S7 a|og)|s=st,a=7r(st|9")v0‘"77(8|97r)|S=St]'

Hence, the parameters of the target network are updated as
09 — 162 + (1 - 7)0< (18)

07 — 767 + (1 —7)6" (19)

where 7 € (0,1) is a constant to update target network softly.

116 Q. Song and L. Qu

Our DDPG is shown in Algorithm 1, we first initialize the network param-
etersthe (Algorithm 1: line 1-3). Then, we initialize the UAV state for each
episode (Algorithm 1: line 4-5). UAV chooses action a, in the actor network
according to the state space. Because of the independence of exploration and
learning in DDPG, we add the Gaussian noise N,, to the action exploration in
order to avoid getting into local optimal solutions,

ap = (s, |07) + N,,. (20)

After executing action a,, based on s,,, the next state s,, 1 and immediate reward
ry, are observed. Then, the agent stores the transition four tuple in experience
replay buffer (Algorithm 1: line 6-8). During training, if experience replay buffer
B is full, the agent randomly selects b which sets of transition tuples in the buffer
and puts them back into the network. The actor network and the critic network
update their parameters to obtain the cumulative optimal reward (Algorithm 1:
line 9-14). In the end, we get the best flight strategy for UAV (Algorithm 1: line
16-17).

Algorithm 1. DDPG-based Dynamic Computation Resource Allocation and
Task Offloading algorithm

1: Initialize actor network with weights #™ and critic network with weights 0<.

2: Initialize the weights of target network 0™ = 0™ and 62 = 02, respectively.

3: Set the experience replay buffer B = 0.

4: for each episode do

5 Reset the UAV initial position and observe the initial state s1

6 forn=1,2,...,N do

7 Perform exploration actions a, = 7(sn|0™)+Nn, get the reward r,, and observe
next state sp41.

8: Store tuple (s, an, Sn+1,7») in the experience replay buffer B.

9: if B is full, then

10: Randomly sample tuple with mini-batches of b from B.

11: Update the # of critic network by minimizing the loss (16).Update the 6™
of actor network by policy gradient (17).

12: Update target network of critic network and actor network by (18) and
(19), respectively.

13: end if

14: end for

15: end for

16: return 07
17: Select the optimal action a;?.

UAV-D2D MEC System 117

4.2 MDP Model

In our system, UAV act as agent to creat MDP. We model the MDP as three
tuples (S, A, R), where S indicates state space, A is a set of action, and R
represents the reward function.

State Space. The state space of the environment in our model consists of UD
i task size D;(n), the number of sub-tasks k(n) and UAV position q(n) in time
slot n. Therefore, the state space is given as

sn = [Di(n), k(n), q(n)]. (21)

Action Space. The action space consists of continuous flight actions and
scheduling calculation of UAV, including flight speed v(n), flight angle d(n),
offloading ratio R;(n), scheduling UD i(n), UD launch power P;(n), P; j(n), and
number of VMs S(n). Thus, the action space is modeled as

an = [v(n),d(n), Ri(n),i(n), Pi(n), P ;(n), S(n)]. (22)

Since the output actions of the actor network are continuous, the action variables
i(n), S(n) need to be discretized, e.g. if i(n) = 0 ,then discretization i’ = 1; if
i(n) # 0, the ¢’ = [i(n)], where [-] is rounding up.

Reward Function. The reward function is a crucial component in evaluating
the rationality of actions chosen by the agent. In our approach, we utilize the
optimization objective as the basis for the reward function. Additionally, we
incorporate a penalty factor, denoted as p,, to account for the UAV flying out
of the designated boundary. Consequently, the reward function can be expressed
as follows:

N I
Z Z n)(Tiran (1) + Teomp(n)) + pn (23)

Table 1. Simulation parameters

Parameter | Value Parameter | Value

H 100m | o° ~100 dBm
Umaz 50m/s |V 1000 cycles/bit
Bo -50dB | f; 0.6 GHz

B 1MHz | fvm 1.2 GHz

By 0.8MHz | Z 0.2

t 1s D;(n) [1.5, 2]Mbits

118 Q. Song and L. Qu

5 Simulation Results

In this section, we conduct simulations using the DDPG algorithm with specific
parameter values, and compare its performance with other baseline algorithms.
Our simulations use the CPU of AMD 5800H with 3.2 GHz. All algorithms are
implemented in Python 3.6 and Tensorflow 1.5.0. The DDPG algorithm uses a
4-layer fully connected neural network with two hidden layers [300,10] neurons in
both actor and critic networks. Our model considers a square area with dimen-
sions of 100m x 100 m. We have a total of I = 4 UDs positioned at [75, 19], [40,
88], [47, 17], and [93, 55] meters, respectively. Additionally, there are J = 2 des-
tination points located at [0, 0] and [100, 100] meters. The initial position of the
UAV is set to [50, 50] meters. For the simulation, we utilize various parameters
which are specified as follows Table 1.

—90 4

wibe m

-110 1

Reward

-120 1

-130 4

-140 4

T T T T T
200 400 600 800 1000
Episode

o4

Fig. 4. Reward Convergence of DDPG.

First, we analyze the reward of DDPG as shown in Fig. 4. After conducting
tests, we have observed that the best convergence performance when the learning
rate of the critic network and the actor network is set to ¥,ctor = 0.001, Yeritic =
0.002, respectively. Meanwhile, our discount factor set as v = 0.001, exploration
parameter set as o, = 0.01. Initially, due to the lack of previous knowledge
about the environment, the UAV explores actions in an almost random manner.
As aresult, the reward experiences significant fluctuations. However, as the UAV
accumulates enough samples and gains more information about the environment,
the reward gradually increases and eventually converges. This convergence indi-
cates that the UAV has found the optimal flight strategy.

Furthermore, in Fig. 5, we compare the delay performance of various algo-
rithms. As the training episodes increase, the AC algorithm fails to converge

UAV-D2D MEC System 119

81 AC
—&— DQN
—— DDPG
7 4
6 -
)
254
[
el
44
34
2
0 200 400 600 800 1000
Episode

Fig. 5. Different Algorithm Delay Performance Comparison.

due to simultaneous updates of its actor and critic networks. The difficulty in
converging the critic network prevents the accurate guidance of the optimal
action through the value function. In contrast, both DQN and DDPG employ
evaluation networks and target networks, which ensure relatively independent
training data and enable convergence. Because the DQN is limited to scenarios
with discrete actions, when dealing with problems involving a large number of
action dimensions, we need to quantify continuous actions into finite discrete
values which will result in lower cumulative rewards. The DDPG converges to
smaller delay values eventually because of the extensive exploration of continu-
ous actions. As a result, DDPG has 41% lower latency than DQN and AC.

Figure 6 (a) illustrates a comparison of the delay performance between DDPG
with and without dynamic VM allocation. We observe that both systems con-
verge after 300 episodes as the UAV finds the best strategy. However, the alloca-
tion of VM results in lower task processing latency. This is because optimizing
the distribution of VM leads to a further reduction in computational latency,
causing a decrease in latency of 6%.

In Fig.6 (b), we simulate the delay performance of UAV or D2D working
alone, and compare them with our system. When only D2D is working, due to
the limited computing capability of D2D receiver devices, they are unable to
quickly complete all task processing. Besides, only relying on UAV operation
unable guarantee low-latency transmission for all tasks. Our model allows the
user to partially offload to the UAV and partially offload to the D2D receiver
device, which leverages the respective strengths of UAV and D2D. Therefore,
the latency of our model is 16% or 32% smaller than when only UAV or D2D
works alone, respectively.

120 Q. Song and L. Qu

—— DDPG-Without VM allocation
—+— DDPG-Dynamic allocation VM

delay(s)

0 200 400 600 800 1000
Episode

(a) Delay Performance of DDPG with and without VM Allocation.

—— UAV-D2D
—#— Only-D2D
Only-UAV

4.5 A

4.0 A

3.51

delay(s)

3.01

2.51

0 200 400 600 800 1000
Episode

(b) Comparison of UAV-D2D combined and solo operation delay.

Fig. 6. Delay comparison of different system models.

6 Conclusion

In this paper, we consider a system that D2D and UAV-MEC collaborate to
assist in user task offloading. We optimize the UAV trajectory and achieve load
balancing on the MEC server to minimize the sum of the tasks’ transmission
delay and computation delay. Specifically, to solve the integer nonlinear problem,
we propose the DDPG algorithm to obtain the optimal strategy.

UAV-D2D MEC System 121

Through extensive simulations, we evaluate the performance of DDPG in
terms of processing task latency and compare it with DQN and AC. The results
demonstrate that DDPG approach outperforms the DQN and AC about 41% in
terms of task latency reduction. This indicates the effectiveness and superiority
of our proposed solution in optimizing the UAV trajectory and achieving load
balancing on the MEC server.

By leveraging the collaboration between D2D and UAV-MEC, our system
demonstrates improved efficiency and reduced latency in task offloading. And
compared with only UAV or D2D wokrs alone, the task processing delay reduces
16% and 32%, respectively. In addition, the latency for dynamic VM allocation
is 6% lower than for fixed VM numbers.

Acknowledgment. This work was supported in part by the Ningbo Natural Science
Foundation under Grant 2021J070, in part by the Zhejiang Natural Science Foundation
under Grant LY20F010004, and National Natural Science Foundation of China under
Grant 61801254.

References

1. Cui, G., He, Q., Chen, F., Zhang, Y., Jin, H., Yang, Y.: Interference-aware Game-
Theoretic device allocation for mobile edge computing. IEEE Trans. Mob. Comput.
21(11), 4001-4012 (2022)

2. Zhang, J., Wang, Z.-J., Wang, K., Guo, S., Wang, B., Guo, M.: Improving power
efficiency for online video streaming service: a self-adaptive approach. IEEE Trans.
Sustain. Comput. 4(3), 308-313 (2019)

3. Tiankui Zhang, Y.X., Loo, J., Yang, D., Xiao, L.: Joint computation and commu-
nication design for UAV-assisted mobile edge computing in IoT. IEEE Trans. Ind.
Inf. 16(8), 55055516 (2020)

4. Li, X., Feng, W., Chen, Y., Wang, C., Ge, N.: UAV-Enabled accompanying cover-
age for hybrid satellite-UAV-terrestrial maritime communications. In: Proceedings
of 28th Wireless and Optical Communications Conference, pp. 1-5 (2019)

5. Wang, Z., Duan, L., Zhang, R.: Adaptive deployment for UAV-aided communica-
tion networks. IEEE Trans. Wirel. Commun. 18(9), 4531-4543 (2019)

6. Chatzopoulos, D., Bermejo, C., Haq, E.U., Li, Y., Hui, P.: D2D task offloading: A
dataset-based Q and A. IEEE Commun. Mag. 57(2), 102-107 (2019)

7. Cheng, Y., Liang, C., Chen, Q., Yu, R.: Energy-efficient D2D-assisted computa-
tion offloading in NOMA-Enabled cognitive networks. IEEE Trans. Veh. Technol.
70(12), 13441-13446 (2021)

8. Liang, Z., Liu, Y., Lok, T., Huang, K.: Multiuser computation offloading and down-
loading for edge computing with virtualization. IEEE Trans. Wireless Commun.
18(9), 4298-4311 (2019)

9. Bozorgchenani, A., Mashhadi, F., Tarchi, D., Salinas Monroy, S.A.: Multi-objective
computation sharing in energy and delay constrained mobile edge computing envi-
ronments. IEEE Trans. Mob. Comput. 20(10), 2992-3005 (2021)

10. Li, Y., Wang, X., Gan, X., Jin, H., Fu, L., Wang, X.: Learning-Aided computation
offloading for trusted collaborative mobile edge computing. IEEE Trans. Mob.
Comput. 19(12), 2833-2849 (2020)

122

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Q. Song and L. Qu

Asim, M., Mashwani, W.K., Shah, H., Belhaouari, S.B.: A Load-Balanced and
Energy-Efficient navigation scheme for UAV-Mounted mobile edge computing. Soft
Computing, pp. 1-14. Springer, Berlin, Germany (2021)

Wang, Z., Rong, H., Jiang, H., Xiao, Z., Zeng, F.: An evolutionary trajectory
planning algorithm for multi-UAV-assisted MEC system. IEEE Trans. Netw. Sci.
Eng. 9(5), 3659-3674 (2022)

Saleem, U., Liu, Y., Jangsher, S., Tao, X., Li, Y.: Latency minimization for D2D-
Enabled partial computation offloading in mobile edge computing. IEEE Trans.
Veh. Technol. 69(4), 4472-4486 (2020)

Dai, X., et al.: Task Co-Offloading for D2D-Assisted mobile edge computing in
industrial Internet of Things. IEEE Trans. Ind. Inf. 19(1), 480-490 (2023)

Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., Pu, C.: Understanding performance
interference of I/O workload in virtualized cloud environments. In: Proc. IEEE 3rd
International Conference on Cloud Computing, pp. 51-58 (2010)

Koushik, A.M., Hu, F., Kumar, S.: Deep Q-learning-based node positioning
for throughput-optimal communications in dynamic UAV swarm network. IEEE
Trans. Cogn. Commun. Netw. 5(3), 554-566 (2019)

Ding, R., Gao, F., Shen, X.S.: 3D UAV trajectory design and frequency band allo-
cation for energy efficient and fair communication: a deep reinforcement learning
approach. IEEE Trans. Wireless Commun. 19(12), 7796-7809 (2020)

Liu, Y., Yan, J., Zhao, X.: Deep reinforcement learning based latency minimization
for mobile edge computing with virtualization in maritime UAV communication
network. IEEE Trans. Veh. Technol. 71(4), 4225-4236 (2022)

Orhean, A.L., Pop, F., Raicu, I.: New scheduling approach using reinforcement
learning for heterogeneous distributed systems. J Parallel Distrib Comput. 117,
292-302 (2018)

Mnih, V., Kavukcuoglu, K., Silver, D.: Human-level control through deep rein-
forcement learning. Nature 518(7540), 529-533 (2015)

Cheng, N, et al.: Space/Aerial-assisted computing offloading for IoT applications:
a learning-based approach. IEEE J. Sel. Areas Commun. 37(5), 1117-1129 (2019)

	UAV-D2D Assisted Latency Minimization and Load Balancing in Mobile Edge Computing with Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 System Model
	3.1 UAV Trajectory Model
	3.2 Communication Model
	3.3 Task Offloading Model
	3.4 Task Computing Model
	3.5 Problem Formulation

	4 Proposed Approach
	4.1 Algorithm DDPG
	4.2 MDP Model

	5 Simulation Results
	6 Conclusion
	References

