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Preface

Health information processing and applications is an essential field in data-driven health
and clinical medicine and it has been highly active in recent decades. The China Health
Information Processing Conference (CHIP) is an annual conference held by theMedical
Health and Biological Information Processing Committee of the Chinese Information
Processing Society (CIPS) of China, with the theme of “large models and smart health-
care”. CHIP is one of the leading conferences in the field of health information processing
in China and turned into an international event in 2022. It is also an important platform
for researchers and practitioners from academia, business and government departments
around the world to share ideas and further promote research and applications in this
field. CHIP 2023 was organized by Zhejiang University and held with a hybrid for-
mat both online and offline, whereby people face-to-face or freely connected to live
broadcasts of keynote speeches and presentations.

CHIP 2023 received 66 submissions, of which 27 high-quality papers were selected
for publication in this volume after double-blind peer review, leading to an acceptance
rate of just 40%. These papers have been categorized into 3 main topics: Healthcare
Information Extraction, Healthcare Natural Language Processing, and Healthcare Data
Mining and Applications.

The authors of each paper in this volume reported their novel results in computing
methods or applications. The volume cannot cover all aspects of Medical Health and
Biological Information Processing but may still inspire insightful thoughts for the read-
ers. We hope that more secrets of Health Information Processing will be unveiled, and
that academics will drive more practical developments and solutions.
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Cross-Lingual Name Entity Recognition
from Clinical Text Using Mixed Language Query

Kunli Shi1, Gongchi Chen1, Jinghang Gu2, Longhua Qian1(B), and Guodong Zhou1

1 School of Computer Science and Technology, Soochow University, Suzhou, China
qianlonghua@suda.edu.cn

2 Chinese and Bilingual Studies, Hong Kong Polytechnic University, Hong Kong, China

Abstract. Cross-lingual Named Entity Recognition (Cross-Lingual NER)
addresses the challenge of NER with limited annotated data in low-resource lan-
guages by transferring knowledge from high-resource languages. Particularly, in
the clinical domain, the lack of annotated corpora for Cross-Lingual NER hin-
ders the development of cross-lingual clinical text named entity recognition. By
leveraging the English clinical text corpus I2B2 2010 and the Chinese clinical text
corpus CCKS2019, we construct a cross-lingual clinical text named entity recog-
nition corpus (CLC-NER) via label alignment. Further, we propose a machine
reading comprehension framework for Cross-Lingual NER using mixed language
queries to enhance model transfer capabilities. We conduct comprehensive exper-
iments on the CLC-NER corpus, and the results demonstrate the superiority of
our approach over other systems.

Keywords: Cross-Lingual NER · Clinical Text ·Mixed Language Query ·
Machine Reading Comprehension

1 Introduction

Named Entity Recognition (NER) is a task aimed at accurately locating entities within
a given text and categorizing them into predefined entity types. It plays a crucial role in
many downstream applications such as relation extraction and question answering. The
development of deep learning technology has led to significant breakthroughs in this
task. However, supervised learning methods often require a large amount of manually
annotated training data, which can be costly and time-consuming, especially for low-
resource languages. Therefore,many researchers have focused on zero-shot cross-lingual
NER scenarios, which involve using annotated data from a resource-rich source language
to perform NER in a target language without labeled data.

Zero-shot cross-lingual NER methods can typically be categorized into two types:
annotation projection and direct model transfer. Annotation projection utilize annotated
data from a source language to generate pseudo-labeled data in the target language [1–
3]. Subsequently, they train NER models on the target language, enabling NER in the
target language. One drawback of these methods is that the automatic translation used to
generate target language datamay introduce translation errors and label alignment errors.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Xu et al. (Eds.): CHIP 2023, CCIS 1993, pp. 3–21, 2024.
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On the other hand, direct model transfer learn language-agnostic features through feature
space alignment, thereby transferringmodels trained on the source language to the target
language [3–5]. The limitation of these methods is that they require a certain degree of
similarity between the source and target languages, making them less applicable to
languages with significant differences, such as Chinese and English.

Currently, most research efforts are concentrated on zero-shot cross-lingual NER
tasks in general domains, with relatively little exploration in domain-specific cross-
lingual NER. For instance, in the field of clinical medicine, the lack of relevant cross-
lingual annotated data has hindered the development of cross-lingual clinical name
entity recognition tasks. Furthermore, cross-lingual clinical name entity recognition
poses more challenges due to variations in data volume, quality, structure, format, as
well as differences in the naming conventions, abbreviations, and terminology usage of
biomedical entities among different languages.

To facilitate the development of cross-lingual clinical entity recognition, we con-
structed a corpus for cross-lingual clinical name entity recognition (CLC-NER) using
existing monolingual annotated corpora through label alignment. We employed cross-
lingual pre-trainedmodels (XLM-R) for knowledge transfer.Additionally,we introduced
a machine reading comprehension framework and, based on this, proposed a cross-
lingual named entity method using mixed language queries. By integrating prior knowl-
edge from labels in different languages and exploring potential relationships between
different annotated corpora in cross-lingual scenarios, we aimed to enhance task transfer
performance.

2 Related Work

2.1 Cross-Lingual NER Corpus

Currently, cross-lingual named entity recognition tasks primarily rely on the
CoNLL2002/2003 shared task data [6, 7] and the WikiAnn dataset [8]. The
CoNLL2002/2003 dataset includes four closely related languages: English, German,
Spanish, andDutch, and focuses on four types of named entities in the news domain: per-
son (PER), location (LOC), organization (ORG), and miscellaneou (MISC). WikiAnn,
on the other hand, is a dataset encompassing 282 languages and includes various entity
types such as person (PER), location (LOC), and organization (ORG). Previous research
mainly employedCoNLL2002/2003 for studying transfer tasks in languageswith similar
linguistic systems, while WikiAnn was utilized to evaluate NER transfer performance
when dealing with languages with more significant linguistic differences.

2.2 Cross-Lingual NER

Based on the shared content between the source language and the target language, cross-
lingual named entity recognition methods are typically categorized into two approaches:
annotation projection and direct model transfer.
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Annotation projection method involves projecting annotated data from the source
language to generate pseudo-labeled data in the target language. Previous methods often
relied on parallel corpora [9].Mayhew et al. [1] used a dictionary-based greedy decoding
algorithm to establish word-to-word mappings between the source and target languages,
reducing the dependency of annotation projection methods on parallel texts. However,
word-to-word projection methods cannot consider contextual meaning, which can affect
the quality of entity label projection. Jain et al. [10] employed machine translation to
translate sentences and entities separately. They used dictionaries to generate candidate
matches for translated entities and employed features such as orthography and phonetic
recognition to match the translated entities, resulting in high-quality entity annotation
projection.

Direct model transfer methods leverage shared representations between two lan-
guages, applying a model trained on the source language to the target language. Tsai
et al. [4] generated Wikipedia features for cross-lingual transfer by linking the target
language to Wikipedia entries. Ni et al. [9] built mapping functions between word vec-
tors in different languages using dictionaries, enabling the mapping of target language
vectors into source language vectors. However, direct model transfer cannot utilize lex-
icalized features when applied to the target language. Therefore, Xie et al. [2] improved
upon methods like Ni et al. by incorporating a nearest-neighbor word vector transla-
tion approach, effectively leveraging lexicalized features and enhancing model transfer
performance.

With the advancement of pre-trained models, models like BERT [11] have made
significant progress in natural language understanding tasks by leveraging large-scale
unlabeled text corpora for self-supervised learning to acquire latent knowledge in natural
language texts. Multilingual models such as mBERT and XLM [9] further propelled the
latest developments in cross-lingual understanding tasks. These cross-lingual models are
trained on extensive multilingual unlabeled data, obtaining multilingual word embed-
dings and shared model parameters, thus enabling effective cross-lingual transfer on
multilingual corpora. Keung et al. [5] built upon mBERT by using adversarial learning
to align word vectors across different languages to enhance task performance. Wu et al.
[12] proposed the Teacher-Student Learning (TSL) model for NER task transfer, which
involves training a teacher model using source language annotated data and distilling
knowledge from the teacher model to a student model using unannotated data in the
target language, improving both single-source and multi-source transfer capabilities.
Wu et al. [13] introduced the UniTrans framework, employing ensemble learning to
fully utilize pseudo-labeled and unlabeled data for knowledge transfer, enhancing data
reliability in transfer learning. Li et al. (2022) [14] extended the teacher-student model
by proposing a multi-teacher multi-task framework (MTMT). By introducing a simi-
larity task, they trained two teacher models to obtain pseudo-labeled data in the target
language, and conducted multi-task learning on the student model, ultimately achieving
strong performance on datasets like CoNLL2002/2003.
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2.3 Machine Reading Comprehension

Machine Reading Comprehension (MRC) is originally a natural language understanding
task used to test a machine’s ability to answer questions given context. Levy et al. [15]
were among the first to simplify relation extraction as a reading comprehension problem
and effectively extended it to Zero-Shot scenarios. With the rise of deep learning and
large-scale datasets, especially after the emergence of pre-trained models like BERT,
many MRC systems based on pre-trained models have performed well on question-
answering datasets such as SQuAD [16] andMSMARCO [17]. Some researchers began
to recognize the versatility of the machine reading comprehension framework. Li et al.
[18] proposed applying theMRC framework to named entity recognition, designing spe-
cific question templates for different entity categories, and providing a unified paradigm
for nested and non-nested entities. To enhance information interaction between entity
heads and tails, Cao et al. [19] introduced double affine transformations into MRC,
achieving an F1 score of 92.8 on the CCKS2017 dataset. Zheng et al. [20] integrated
the CRF-MT-Adapt model and MRC model using a voting strategy, achieving superior
performance on the CCKS2020 dataset.

3 Dataset Construction

Due to the lack of existing cross-lingual clinical text Named Entity Recognition (NER)
task datasets, we developed a dataset for investigating cross-lingual clinical text NER,
referred to as CLC-NER, by aligning the labels of the CCKS 2019 dataset, which is
designed for Chinese electronic medical records NER, and the 2010 I2B2/VA dataset,
intended for English concept extraction. This alignment process enabled us to unify the
labels of the two datasets, forming the basis for our research in cross-lingual clinical text
NER.

3.1 CCKS 2019

CCKS 2019 (referred to as CCKS) [21] is part of a series of evaluations conducted by
CCKS in the context of semantic understanding of Chinese electronic medical records.
Building upon the medical named entity recognition evaluation tasks of CCKS2017 and
2018, CCKS2019 extends and expands the scope. It consists of two sub-tasks: medical
named entity recognition and medical entity attribute extraction. Our work focuses on
the first sub-task, which involves extracting relevant entities from medical clinical texts
and identifying them into six predefined categories. These categories include diseases
and diagnosis (疾病和诊断), imaging examination (影像检查), laboratory test (实验室
检验), surgery (手术), medication (药物), and anatomical site (解剖部位).

3.2 I2B2 2010

The I2B2 2010 dataset [22] (referred to as I2B2)was jointly provided by I2B2 and
the VA. This evaluation task consists of three sub-tasks: concept extraction, assertion
classification, and relation classification. All three sub-tasks share the same dataset,
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comprising 349 training documents, 477 test documents, and 877 unlabeled documents.
However, only a portion of the data has been publicly released after the evaluation. The
publicly available I2B2 dataset includes 170 training documents and 256 test documents.
Our focus is on the concept extraction task, which defines three concept entity types:
medical problem, medical treatment, and medical test.

3.3 Correlation

The above subsection provide descriptions of the concepts or entity types in the two
datasets. We can observe that while their annotation schemes differ somewhat, there are
certain corresponding relationships between some types. One notable difference is that
CCKS includes the “anatomical site” class of entities, used to specify the anatomical site
in the human body where diseases or symptoms occur, whereas I2B2 does not annotate
such entities.

Fig. 1. Differences in entity annotation scope.

On the other hand, the concepts annotated in the I2B2 dataset are broader in scope
than the entities in the CCKS dataset. As shown in Fig. 1, the “Medical Treatment”
type in I2B2 encompasses not only explicit treatment methods, such as “Surgery” and
“Medication”, as seen in the first two examples, but also includes some general treatment
concepts, as in the third example where “the procedure” refers to a certain treatment
process. As illustrated in Fig. 2, although both “Medical problem” in I2B2 and “Disease
and Diagnosis” in CCKS annotate disease names, their scope and granularity differ.
“Medical Problem” covers a wider range, including some clinical symptoms, such as
infection, redness, and drainage. In contrast, “Disease and Diagnosis” entities strictly
adhere to the medical definition of diseases and include fine-grained annotations such as
“Hepatoblastoma, hypodermic type (fetal and embryonic) “ within the broader category.
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Fig. 2. Differences in annotation scopebetween “Disease andDiagnosis” and “Medical Problem”.

3.4 Label Alignment

Based on the similarities and differences between the two corpora, we used a label
alignment approach to unify similar concept entity types and discarded entity types that
couldn’t be aligned. Specifically, we mapped the six entity types in the CCKS dataset
to three entity types, aligning them with the annotation scheme of the I2B2dataset. This
alignment is shown in Table 1:

Table 1. Label alignment rules between CCKS and I2B2.

CCKS I2B2 CLC-NER

疾病和诊断 (diseases and diagnosis) Medical problem Medical problem

影像检查 (imaging examination) Medical test Medical test

实验室检验 (laboratory test)

手术 (surgery) Medical treatment Medical treatment

药物 (medication)

解剖部位 (anatomical site) – –

From the table, it can be seen that the “Imaging Examination” and “Laboratory
Test” entity types in CCKS are similar in meaning to the “Medical Test” concept type in
the 2010 I2B2 corpus. Therefore, we grouped “Imaging Examination” and “Laboratory
Test” into one category. Similarly, we mapped the “Surgery” and “Medication” entity
types in CCKS to the “Medical Treatment” concept type in I2B2. Since there is no
corresponding concept type for “Anatomical Site” in the 2010 I2B2 corpus, we removed
it.
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4 Framework

4.1 Machine Reading Comprehension

Figure 3 depicts a cross-lingual named entity recognition framework based on the MRC
architecture, consisting of three main components: the input layer, encoding layer, and
classification layer. Due to the pointer-labeling scheme used for output, multiple ques-
tions are posed to the context to extract entities of different types. First, we convert the
token sequence generated by concatenating the query and context into vectors through
embedding. Next, they are encoded into hidden representations using theXLM-Rmodel.
Finally, a classifier determines whether each token marks the beginning or end of entity.

Fig. 3. NER framework based on machine reading comprehension.

Input Layer
Its role is to segment the text composed of queries and context into token sequences
and then transform them into vector sequences through token embedding. Specifically,
given an input sequence X = {xi}Ni=1 with N tokens, it produces a sequence of vectors
V = {vi}Ni=1. vi is the vector corresponding to the i-th token.

Encoding Layer
The encoder maps the sequence of lexical element vectors from the input layer to a
sequence of hidden vectors H = {hi}Ni=1:

H = Encoder(V) (1)

The Encoder model can be any encoder model that uses cross-lingual, in this paper
we have chosen the XLM-roberta_base model. hi is the hidden vector corresponding to
the i-th token.

Classification Layer
After obtaining the hidden vectors for each token, they are fed into the two linear clas-
sification layers and the probability distributions for each token as the start and end of
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the entity are computed using the softmax function, respectively:

ps/e(xi) = softmax
(
Ws/ehi + bs/e

)
(2)

ŷs/e = argmax
(
ps/e(xi)

)
(3)

Here ps(xi) and pe(xi) denote the probability that the ith token starts and ends as an entity,
respectively, and ŷs/ei denotes the final classification result that the i-th token starts and
ends as an entity.

Loss Function
We use the cross-entropy loss function to compute the loss for the training task, which
consists of two components:

L = LSTART + LEND (4)

LSTART = 1

N

∑N

i=1
−[ysi log psi +

(
1− ysi

)
log

(
1− psi

)] (5)

LEND = 1

N

∑N

i=1
−[yei log pei +

(
1− yei

)
log

(
1− pei

)] (6)

where LSTART and LEND are computed as follows, and ys/ei denotes the i-th token’s as
the real label of the start and end of the entity.

Finally, we use a proximity matching strategy on the final classification result to
determine the boundary of an entity.

4.2 Construction of Mixed Language Query

In the context of named entity recognition (NER) based on the machine reading compre-
hension (MRC) framework, the choice of queries has a notable impact on recognition
performance. Similarly, constructing rational and effective queries is highly significant
for knowledge transfer in cross-lingual NER.

In monolingual NER, incorporating prior knowledge containing entity type infor-
mation can induce the model to enhance task performance. However, in the context
of cross-lingual NER, which involves multiple languages, using a single query clearly
cannot effectively guide the model to learn the prior knowledge across different lan-
guages, thus limiting the performance of model transfer. Therefore, this paper proposes
a mixed language query construction method, wherein by integrating prior knowledge
from multiple languages into the queries, the model can learn the corresponding rela-
tionships between different languages, thereby improving the transfer performance of
cross-lingual tasks.

Specifically, given a two-language query set Q = {Qzh,Qen}, where each language
query set contains a priori knowledge of m entity types, i.e.:

Qzh =
{
E1
zh,E

2
zh...E

m
zh

}
(7)
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Qen =
{
E1
en,E

2
en...E

m
en

}
(8)

where Ei denotes the label of the i-th entity type, and Ei
zh and Ei

en are translations of
each other.

We use the separator “/” to splice the type information of Chinese and English, so
as to merge the a priori knowledge of the two languages. As an example, we show the
concatenation method with English followed by Chinese, i.e.,:

Qmix =
{
E1
en/E

1
zh,E

2
en/E

2
zh...E

m
en/E

m
zh

}
(9)

4.3 Query Template Set

In order to investigate the impact of different query templates on model transfer perfor-
mance, we defined various query templates by combining language and task aspects.
This task comprises two language types, Zh (Chinese) and En (English), and two tasks,
Src (source task) and Tgt (target task). Taking CCKS as the source task and I2B2 as
the target task, we provide an example of the templates combined from the “Medical
treatment” entity type in the CLC-NER corpus, as shown in Table 2.

Table 2. Combination of query templates.

Query Type Query Templates

Src_Zh <s>药物,手术 </s>

Src_En <s> medication, surgery </s>

Src_ZhEn <s>药物/medication,手术/surgery </s>

Src_EnZh <s> medication/药物, surgery/手术 </s>

Tgt_Zh <s>医疗治疗 </s>

Tgt_En <s>Medical treatment </s>

Tgt_ZhEn <s>药物/medication,手术/surgery </s>

Tgt_EnZh <s> medication/药物, surgery/手术 </s>

For example, Src_Zh denotes the use of Chinese labels (i.e., “药物” and “手术”)
from the source language task to generate query templates as prior knowledge. Src_ZhEn
represents the generation ofmixed language query templates using labels from the source
language task, with Chinese first and English second. Similarly, Tgt_ZhEn uses labels
from the target language task to create mixed language query templates.

5 Experiments

5.1 Experiment Settings

Datasets
The experiments use the CLC-NER introduced in Sect. 3, and the dataset sizes are
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shown in Table 3. Both datasets are divided into two subsets for training and testing.
“Abstract/Note” and “Entity” denote the number of abstracts and entities in the subset,
respectively. It should be noted that the number of entities in the CCKS dataset is the
number after excluding the “anatomical site” entities. From the table, we can see that
the entity size of I2B2 is larger than that of CCKS, and the entity size of its test set is
larger than training set.

Table 3. CLC-NER dataset statistics.

Dataset Subset Abstract/Note Entity

I2B2 2010(En) Train 170 16,525

Test 256 31,161

CCKS 2019(Zh) Train 1,001 9,257

Test 379 2,908

The number of CLC-NER entities is shown in Table 4, from which it can be seen
that the number of entities for “medical problem” is the highest in both corpora. In the
I2B2 dataset, there is not much difference between the number of “Medical treatment”
entities and the number of “Medical test” entities. In the CCKS dataset, the training set
exhibits the lowest count of “Medical treatment” entities, while the test set displays the
lowest count of “Medical test” entities.

Table 4. Statistics on the number of entities in the CLC-NER dataset.

Entity Type I2B2 2010 (En) CCKS 2019 (Zh)

Training Test Training Test

Entity % Entity % Entity % Entity %

Medical problem 7,073 43 12,592 40 4,242 46 1,323 45

Medical treatment 4,844 29 9,344 30 2,164 23 938 32

Medical test 4,608 28 9,225 30 2,851 31 647 23

Sum 11,917 7200 21,936 100 9,257 100 2,908 100

Implementation Details
The XLM-R-base trained by Conneau et al. [23] is used as Encoding model. The hyper-
parameters used for training are listed in Table 5. Throughout this study, all experiments
are conducted on a 2080Ti. The standard P/R/F1 metrics are adopted to evaluate the
performance.
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Table 5. Hyper-Parameter Settings

Hyper Parameter Value

Batch size 64

Maximum sequence length 128

Learning rate 2e−5

Epoch 10

Dropout 0.1

Optimizer AdamW

5.2 Experimental Results

The Impact of Different Query Templates on Cross-Language Transfer Perfor-
mance
Tables 6 and 7 compare the effects of different query templates on the transfer perfor-
mance in two transfer directions, where the transfer direction in Table 6 is from CCKS
source task to I2B2 target task and vice versa in Table 7. Tables (a) and (b) indicate
the performance of using the source and target task labels as the query templates. For
example, the cell value in the “Src_Zh” row and “Src_En” column indicate the perfor-
mance when predicting with the Chinese label of the source task on the training set and
the English label of the source task on the test set of the target task. Since preliminary
experiments show poor performance when different task labels are used for training and
testing, this paper only considers the transfer performance between source task labels
(four templates) and target task labels (four templates). The experiments take the average
of five runs as the final performance value, and the values in the right bracket are the
standard variance of the five runs. The same query template was used for training, and
the highest performance values for the test templates are shown in bold.
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Table 6. The impact of different query templates on cross-language transfer performance (CCKS
to I2B2).

(a) the source task (CCKS) labels as query templates

Train\Test Src_Zh Src_En Src_ZhEn Src_EnZh
Src_Zh 36.5(±3.1) 26.7(±4.2) 35.6(±2.2) 37.0(±2.6)
Src_En 22.9(±4.7) 38.1(±1.5) 34.7(±2.2) 37.7(±1.6)

Src_ZhEn 30.0(±1.7) 31.9(±2.3) 38.7(±1.0) 37.2(±1.2)
Src_EnZh 31.1(±3.0) 33.8(±3.0) 38.1(±0.9) 38.7(±0.6)

(b) the target task (I2B2) labels as query templates

Train\Test Tgt_Zh Tgt_En Tgt_ZhEn Tgt_EnZh
Tgt_Zh 38.7(±1.6) 35.1(±5.2) 38.8(±1.4) 38.7(±1.5)
Tgt_En 30.6(±5.2) 39.7(±1.7) 37.9(±2.6) 39.7(±1.9)

Tgt_ZhEn 35.1(±2.3) 35.3(±2.9) 40.8(±1.6) 39.9(±1.6)
Tgt_EnZh 37.0(±1.8) 38.9(±1.1) 39.1(±1.8) 39.7(±1.3)

Table 7. The impact of different query templates on cross-language transfer performance (I2B2
to CCKS).

(a) the source task (I2B2) labels as query templates

Train\Test Src_Zh Src_En Src_ZhEn Src_EnZh
Src_Zh 25.5(±1.5) 22.6(±1.5) 24.4(±1.0) 22.6(±1.4)
Src_En 22.9(±2.4) 23.1(±1.6) 23.6(±2.3) 23.1(±1.6)
Src_ZhEn 26.5(±4.3) 25.3(±3.1) 23.8(±1.0) 24.2(±1.2)
Src_EnZh 25.8(±1.9) 24.4(±0.9) 24.3(±1.1) 23.8(±0.8)

(b) the target task (CCKS) labels as query templates

Train\Test Tgt_Zh Tgt_En Tgt_ZhEn Tgt_EnZh
Tgt_Zh 23.8(±1.1) 18.2(±7.6) 18.9(±1.5) 21.8(±4.3)
Tgt_En 21.7(±4.7) 24.9(±1.0) 22.0(±6.5) 21.3(±2.8)
Tgt_ZhEn 25.2(±4.6) 25.3(±3.9) 25.6(±1.2) 26.9(±1.2)
Tgt_EnZh 22.8(±2.1) 24.0(±1.2) 24.3(±2.7) 23.0(±1.1)

As can be seen in Table 6:

• The highest performance was achieved when using a mixture of English and Chinese
labels of the target task as the query template(F1 value of nearly 41). This indicates
that using labels that are semantically similar to the target task entities can better
induce cross-lingual prior knowledge in the model.

• Whether using source task labels or target task labels as query templates, when both
training and prediction utilize the same queries, the F1 performance metric generally
outperforms other scenarios. This suggests that employing identical query templates
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for both training and prediction is advantageous for the model’s induction of prior
knowledge.

• When training and prediction are conducted usingmixed-language queries, regardless
of the order of Chinese and English, the transfer performance generally surpasses
other scenarios. This indicates that the position of labels within the template has a
relatively minor impact on the induction of prior knowledge.

The differences between the scenarios presented in Table 7 and those in Table 6 are
shown as follows:

• In Table 7(a), during training, using source task labels that include Chinese as query
templates, and during testing, employing the “Src_Zh” query template containing
only Chinese, achieved relatively better performance. This might be attributed to the
fact that the target task’s text is in Chinese, and the labels from the source task (I2B2)
are relatively broad and general.

• As observed in Table 6, the absence of achieve the optimum values, when training
and prediction use the same query templates in Table 6. It may be attributed to the
fact that the entities annotated in the I2B2 dataset are more generic compared to the
CCKS dataset. Furthermore, mixed language queries induce more information in the
model, allowing models trained on the I2B2 corpus to recognize a broader range
of entities. This results in more generic false positives when predicting the CCKS
dataset, thereby having an impact on the model’s performance.

Comparison of Performance for Different Entity Types
To explore performance differences between different entity types in different transfer
directions, we selected the highest performance values in two transfer directions for anal-
ysis. Table 8 compares the performance of different entity types under mixed-language
query templates, with the highest values among the three entity types indicated in bold.

Table 8. Comparison of performance for different entity types.

Entity Type Tgt_ZhEn (CCKS to I2B2) Tgt_ZhEn (I2B2 to CCKS)

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Medical problem 75.7 21.2 33.1 15.6 44.0 23.1

Medical treatment 72.9 38.5 50.4 29.2 34.6 31.7

Medical test 59.5 30.3 40.1 34.8 45.0 39.3

Micro Avg 68.3 29.1 40.8 19.3 44.3 26.9

As shown in Table 8:

• Although the “Medical problem” type has the largest proportion in both datasets, it
has the lowest F1 score in both transfer directions, and it is lower than the overall F1
score. This is due to the semantic differences between the annotated entities in the
two corpora, and the more entities there are, the greater the impact of noise on the
transfer.
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• The “Medical treatment” entity achieved the highest performance in the transfer
direction from CCKS to I2B2, but it performed poorly in the reverse direction. This
is because the I2B2 training set contains too many broad concept entities, which have
a negative impact on the model’s transfer effectiveness.

• The performance of “Medical test” did not vary significantly in both transfer direc-
tions, mainly due to the relatively small semantic differences in the annotation of
“Medical test” entities between the two corpora. Additionally, “Medical test” enti-
ties appear in a relatively fixed format, and a considerable portion of entities in the
Chinese dataset are represented using English abbreviations, such as “CT”.

Performance Comparison with Baseline Systems
In Table 9, we compare our method with several commonly used methods in
Cross-lingual NER.BDS_BERT (Bio_Discharge_Summary_BERT) [19] and Chi-
nese_BERT_wwm [24] represent the best monolingual encoder models in Chinese and
English, respectively. We employ cross-lingual word alignment information to project
the source language into the target language and treat the task as monolingual NER. For
a fair comparison, we also introduce theMRC framework into their methods. The XLM-
R model refers to the direct model transfer using sequence labeling on a cross-lingual
pretrained model.

Our proposed method is divided into two categories: “Sgl”, where query templates
contain only one language, and “Mix”, where query templates contain both languages.
The performance in the table corresponds to the highest values for these two approaches.
Similarly, the highest Precision/Recall/F1 scores among these methods are represented
in bold.

Table 9. Performance comparison with baseline systems.

(a) CCKS to I2B2 

Model P(%) R(%) F1(%)
BDS_BERT+MRC 64.7 29.7 40.7(±0.8)
XLM-R 54.7 27.7 36.8(±2.2)
XLM-R+MRC(Sgl) 65.5 28.5 39.7(±1.7)
XLM-R+MRC(Mix) 68.3 29.1 40.8(±1.6)

(b) I2B2 to CCKS 

Model P(%) R(%) F1(%)
Chinese-BERT-wwm+MRC 15.2 58.8 24.1(±0.7)
XLM-R 13.2 56.8 21.4(±0.6)
XLM-R+MRC(Sgl) 17.7 45.4 25.5(±1.5)
XLM-R+MRC(Mix) 19.3 44.3 26.9(±1.2)



Cross-Lingual Name Entity Recognition 17

• After adopting theMRC framework, themodel’s transfer performance in both transfer
directions significantly outperformed the sequence labeling approach, demonstrating
the advantages of MRC in cross-lingual named entity recognition tasks.

• In both transfer directions, XLM-R +MRC with mixed language query templates
achieved the highest F1 values among all baseline systems. Compared to using single-
language templates, it obtained a positive improvement of 1.05 and 1.46, demon-
strating the effectiveness of the mixed-query approach in cross-lingual pretrained
models.

• Our proposed XLM-R+MRC(Mix) approach showed comparable performance
to BDS_BERT+MRC and a significant improvement over the Chinese-BERT-
wwm+MRCmethod. This is because BDS_BERT was pretrained on clinical domain
text, endowing the model with domain-specific knowledge. When combined with
MRC, it can better utilize prior knowledge to induce domain-specific knowledge into
the model, thereby enhancing task performance.

6 Discussion and Case Study

6.1 Mixed Language Query and Single Language Query

To investigate the reasons behind the improved model transfer performance of mixed
language query templates, we selected the settings with the highest values achieved
using mixed language queries and single-language queries in both transfer directions
for comparison. The highest values in the comparison results are indicated in bold, as
shown in Table 10.

Table 10. Comparison of single and mixed templates.

(a) CCKS to I2B2

Entity Type Tgt_En Tgt_ZhEn
P(%) R(%) F1(%) P(%) R(%) F1(%)

Medical problem 76.3 19.6 31.2 75.7 21.2 33.1
Medical treatment 70.5 36.8 48.3 72.9 38.5 50.4
Medical test 55.3 32.3 40.8 59.5 30.3 40.1
Micro Avg 65.5 28.5 39.7 68.3 29.1 40.8

(b) I2B2 to CCKS

Entity Type Tgt_En Tgt_ZhEn
P(%) R(%) F1(%) P(%) R(%) F1(%)

Medical problem 11.1 59.1 18.7 15.6 44.0 23.1
Medical treatment 30.6 42.2 35.5 29.2 34.6 31.7
Medical test 34.8 48.0 40.4 34.8 45.0 39.3
Micro Avg 16.4 51.7 24.9 19.3 44.3 26.9
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From Table 10, we can observe the following:

• The use of mixed language query templates results in a more noticeable improve-
ment in precision, particularly for the “Medical problem” and “Medical treatment”
entity types. This suggests that mixed language query templates, compared to single-
language templates, enable the model to acquire more prior knowledge to enhance
the accuracy of predicting entities.

• In the CCKS to I2B2 direction, the results generally exhibit a “high precision, low
recall” pattern, whereas in the I2B2 to CCKS direction, a “high recall, low precision”
scenario is observed. This is due to the semantic differences in entities and concepts
annotated in the two monolingual datasets. The broad concepts annotated in I2B2
lead to more false positives when transferred to CCKS, while the fine-grained entities
annotated in CCKS result in the recognition of some fine-grained entities within the
broad concepts when transferred to I2B2, leading to the opposite pattern.

6.2 Source Task Labels and Target Task Labels

To investigate the reasons behind the improved model transfer performance using source
task label templates, we selected the settings with the highest values achieved using
source task labels and target task labels in both transfer directions for comparison. The
highest values in the comparison results are indicated in bold, as shown in Table 11.

Table 11. Comparison of source and target task labels.

(a) CCKS to I2B2

Entity Type Src_ZhEn Tgt_ZhEn
P(%) R(%) F1(%) P(%) R(%) F1(%)

Medical problem 72.0 17.3 27.9 75.7 21.2 33.1
Medical treatment 71.6 36.3 48.2 72.9 38.5 50.4
Medical test 51.5 32.9 40.2 59.5 30.3 40.1
Micro Avg 63.0 27.6 38.7 68.3 29.1 40.8

(b) I2B2 to CCKS

Entity Type Src_ZhEn Tgt_ZhEn
P(%) R(%) F1(%) P(%) R(%) F1(%)

Medical problem 14.3 52.5 22.4 15.6 44.0 23.1
Medical treatment 23.8 37.2 29.1 29.2 34.6 31.7
Medical test 35.4 43.3 39.0 34.8 45.0 39.3
Micro Avg 20.1 39.0 26.5 19.3 44.3 26.9

In both transfer directions, using target task labels contributes to an improvement in
recall and enhances transfer performance. Employing labels that are similar to the target
corpus as queries aids the model in capturing the relationship between prior knowledge
and context entities. For example, in the I2B2 dataset sentence, “She also received Cis-
platin 35 per meter squared on 06/19 and Ifex and Mesna on 06/18”, using “Src_ZhEn”
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did not identify “Ifex” and “Mesna” entities, while “Tgt_ZhEn” recognized all of them.
The machine reading comprehension framework assists the model in capturing the rela-
tionship between the prior knowledge “Medical treatment” and the context word “re-
ceived”, thereby inducing the model to recognize more correct entities and enhancing
transfer performance.

7 Conclusion

In this paper, we constructed a corpus for cross-lingual clinical named entity recogni-
tion (CLC-NER) using label alignment on existing monolingual datasets, demonstrat-
ing the effectiveness of the mixed-language query approach. Given that the semantic
differences in annotated entities in the corpus limit the model’s transfer performance,
manual annotation of cross-lingual NER data in the clinical domain is necessary in future
research.

Funding. This research is supported by the National Natural Science Foundation of China
[61976147] and the research grant of The Hong Kong Polytechnic University Projects [#1-W182].
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Abstract. In this paper, we propose a simple and effective few-
shot named entity recognition (NER) method for biomedical domain,
called PEMRC (Positive Enhanced Machine Reading Comprehension).
PEMRC is based on the idea of using machine reading comprehension
reading comprehension (MRC) framework to perfome few-shot NER and
fully exploit the prior knowledge implied in the label information. On one
hand, we design three different query templates to better induce knowl-
edge from pre-trained language models (PLMs). On the other hand, we
design a positive enhanced loss function to improve the model’s accuracy
in identifying the start and end positions of entities under low-resources
scenarios. Extensive experimental results on eight benchmark datasets
in biomedical domain show that PEMRC significantly improves the per-
formance of few-shot NER.

Keywords: Few-shot Named Entity Recognition · Machine Reading
Comprehension · Biomedical Domain

1 Introduction

NER is a fundamental task in information extraction, which aims to identify text
segments according to predefined entity categories. Current methods use neu-
ral network approaches [3,14,25] to solve the NER task. However, neural-based
methods require a large amount of annotated data to achieve good performance,
and data annotation requires rich domain expertise. Due to the high complex-
ity in the biomedical expertise, which poses challenges for biomedical NER in
low-resource scenarios. Recently, few-shot NER [4,5,7,17,26] has received wide
attention.
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The current mainstream method for few-shot named entity recognition is
metric learning based on Similarity Learning. Similarity-based metric learning
methods [5,24,26] make the distance between entities of the same class smaller
and the distance between entities of different types larger by learning a metric
space. However, the entity and non-entity clustering information learned by this
similarity metric function in the source domain cannot be well transferred to
the task in the target domain. At the same time, the tokens of other entity
types in the source domain is uniformly encoded as non-entities, reducing the
expressiveness of the model.

Prompt Learning method can achieve the consistency of upstream and down-
stream tasks by designing prompt templates and label words. The method pro-
posed by [4] solves this problem by scoring. By incorporating distinct label words
in both the source and target domains, the prompt-based approach effectively
mitigates discrepancies arising from inconsistent training objectives during pre-
training and fine-tuning. Moreover, its well-crafted template design facilitates
information induction within the pre-trained language model. However, prompt
learning cannot design templates for token-level tasks, and the high complexity
caused by enumerating all spans is unacceptable.

In order to deal with the above problems, this paper introduces the method
of Machine Reading Comprehension (MRC) [16]. We adopt a span extraction
machine reading comprehension method, which can unify upstream and down-
stream tasks by designing task-specific queries on upstream and downstream
tasks. Compared with prompt learning, machine reading comprehension can
effectively reduce the complexity of training and inference. In order to further
utilize the knowledge in the pre-trained language model, we design three different
types of query templates and conduct extensive experiments. To our knowledge,
we are the first to introduce the machine reading comprehension method into
the few shot named entity recognition in the biomedical domain.

2 Related Work

2.1 Few-Shot NER

In this section, we review two types of methods for few-shot NER: similarity-
based metric learning and prompt learning.

Similarity-Based Metric Learning. Similarity based approach is a common
solution in few-shot named entity recognition. The tokens are classified by assess-
ing the similarity between the entity type representation in the support set and
tokens in the test set. The few shot named entity recognition primarily relies on
metric learning. Currently, there are two main approaches to metric learning:
the prototype network [7,10,23] and contrastive learning [5,11].

The method based on the prototype network learns a metric space that
encompasses a class of data around a single type prototype representation,
enabling classification into the nearest class by calculating the distance between
instance representation and class prototype during inference.
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[26] proposed a Nearest Neighbor (NN) classification method which divides
the test set token into categories based on comparing distances with support set
tokens. Contrastive learning employs distance metric function (such as Euclidean
distance) and relative entropy (Kullback-Leibler Divergence, KLD) to design
various contrastive methods aiming to narrow distances between tokens of the
same category while pushing away tokens from different categories for improved
token representation.

Prompt Learning. Prompt learning originates from GPT [1,19] (Generative
Pre-training Transformer) models and has been widely used in few-shot learning.
Prompt learning organizes the downstream task into a cloze task, and with
excellent template and label word design, prompt learning effectively bridges
the gap between pre-training and fine-tuning. [20,21] used prompt learning in
sentence-level tasks and achieved good results.

The performance of the model can be effectively enhanced by designing
prompt templates. [20,21] employ human-crafted templates for text classifica-
tion tasks. [22] utilize a gradient-based method to search for discrete templates.
[8,22,27] generate discrete prompt templates using pre-trained generative mod-
els. Meanwhile, [15] adopt continuous prompt templates for classification and
generation tasks, thereby avoiding the necessity for intricate template design.
Additionally, [9] propose P-Tuning, which involves incorporating learnable con-
tinuous prompt into discrete prompt templates.

[4] employed a template-based approach in few-shot Named Entity Recog-
nition. In this methodology, the original sentence is fed into the encoder, while
the prompt template and all text spans within the sentence are combined in
the decoder. The amalgamated templates are evaluated based on loss. However,
this exhaustive enumeration of all spans introduces significant complexity to the
method. To address these limitations, [17] proposed an innovative template-free
approach that eliminates intricate template design altogether. This alternative
method restructures the task as an entity-oriented language model task by pre-
dicting label words corresponding to tokens at respective positions.

2.2 Few-Shot NER in Biomedical Domain

The study conducted by [18] introduced task hardness information based on [13]
to enhance transfer learning in biomedical domain for few-shot named entity
recognition tasks. MetaNER [13], which adopts a multi-task learning framework,
employs an adversarial training strategy to obtain a more robust, generalizable,
and transferable representation method for named entity recognition. Addition-
ally, [13] utilizes a meta-learning training approach that enables it to perform
effectively in low resources scenarios.

3 Problem Definition

We adopt the task setup from [5] (as depicted in Fig. 1 below). Amongst the four
named entity recognition tasks (Disease, Chem/Drug, Gene/Protein, Species),
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we select three tasks (e.g., Disease, Chem/Drug, Gene/Protein) as source tasks
with rich resources. The remaining task served as a low-resource target task (e.g.,
Species). For this target task, we employ a model pre-trained on the standard
training set Xtr lines of the source tasks and fine-tune it using the support set
Xsupp of the target task. The support set is generated by sampling instances
from the training set in the target task. Finally, evaluation was conducted on
the standard test set Xtest of that particular target task.

Fig. 1. Task Description.

4 Methodology

The proposed method utilizes a span-extraction approach for machine reading
comprehension and incorporates a loss function that focuses on positive tokens.
The methodology outlined in this section comprises four components: model
architecture, query template design, loss function formulation, and training pro-
cess implementation. We will present our approach sequentially in the subsequent
sections.

4.1 Model Framework

Given the input X = {x1, x2, x3, ..., xn}, we concatenate it with the query Q =
{q1, q2, q3, ..., qm} to obtain the model input. Then we feed it into the pre-trained
model [12] to encode it and obtain the representation H, as shown in Eq. 1.

H(ecls, e1, e2, ..., em+n, esep) = PLM([CLS], q1, q2, ..., qm, x1, x2, ..., xn, [SEP ])
(1)

We apply a dropout layer to randomly drop the representation H twice,
obtaining the representation Hstart for predicting the start position and the
representation Hend for predicting the end position, as shown in Eq. 2.

Hstart = Dropout(H),Hend = Dropout(H) (2)
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Start Position Prediction. For the obtained representation Hstart, we feed
it into a classifier FFN to get a score matrix S ∈ R(m+n)×2, and then apply
softmax to get a probability matrix P ∈ R(m+n)×2. Finally, we select the index
with the highest probability as its prediction label Ŷstart. Regarding the obtained
labels, ’1’ signifies that the current token marks the start of an entity, and ’0’
indicates that the current token does not mark the start of an entity, as shown
in Eq. 3 and Eq. 4.

Pstart = Softmax(FFN(Hstart)) ∈ R(m+n)×2 (3)

Ŷstart = Argmax(Pstart) ∈ (0, 1) (4)

End Position Prediction. The prediction process for the end position is the
same as that for the start position, except that we use the representation Hend

to obtain the probability matrix Pend.

4.2 Construction of Queries

In prompt learning, designing prompt template can effectively induce prior
knowledge in pre-trained language models. Taking inspiration from prompt
learning’s template design [15,16,20,21], we construct discrete, continuous, and
hybrid query templates respectively.

The discrete query template is manually crafted while learnable vectors of
varying lengths are employed as continuous query templates without any prior
knowledge. In hybrid queries, entity type identifiers, such as disease, are substi-
tuted with continuous learnable vectors. The hybrid template incorporates some
prior knowledge (discrete query) but excludes entity label information. Examples
of these three types of query templates are provided in Table 1.

Table 1. An examples of three query templates.

Query Type Query Example

Discrete Query Find disease entities in the next sentence

Continuous Query v1 v2 v3 v4 v5 v6 v7

Hybrid Query Find v1 entities in the next sentence

The expression “v1-v7” denotes a learnable vector, akin to the continuous
prompt template employed in prompt learning. The “[unused]” symbols are uti-
lized as learnable vectors to seamlessly integrate into the input during the imple-
mentation.

4.3 Loss Function Formulation

In the context of machine reading comprehension models, it is a common prac-
tice to compute the sequence loss ζseq by applying cross-entropy between the
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probability matrix P representing start and end positions, and the label Y . The
formula is shown in Eq. 5 below.

ζseq = CrossEntropy(Pstart, Ystart) + CrossEntropy(Pend, Yend) (5)

To improve the accuracy of the model in identifying the start and end posi-
tions of entities, we augment the loss of gold labeled tokens, namely positive
enhanced loss. The objective is for the model to acquire more information about
entity head and tail tokens. The loss function can be defined as Eq. 6: where
Ystart p represents a positive token with its starting position, Pstart p corre-
sponds to the token probability matrix of that positive token; likewise for Pend p

and Yend p.

ζpos = CrossEntropy(Pstart p, Ystart p) + CrossEntropy(Pend p, Yend p) (6)

We combine these two functions into ultimate loss function as Eq. 7:

ζfinal = ζ + ζpos (7)

4.4 Training Process

The BioBERT model serves as the base model F and is trained on a rich resources
training set Xtr. At this stage, we do not incorporate a positive enhanced loss
Ltr. Subsequently, We then fine-tune model with positive enhanced loss Lsupp
on a few-shot support set Xsupp. Training on a support set may lead to severe
overfitting, we maintain a fixed number of training epochs on the support set
throughout the process. The algorithmic details regarding the model’s training
procedure are elucidated in Algorithm1.

Algorithm 1: Training and Fine Tuning

Require: Training Data Xtr, Support Data Xsupp,
Train loss function Ltr, Finetune loss function Lsupp, Model F
1 epoch = num epoches //initialize fixed nums epoch
2 // training in source domain
3 for sampled(w/o replacement) minibatch X in Xtr do
4 Ltr = F (X) // Ltr without ζpos
5 update F by backpropagation to reduce Ltr

6 end for
7 Fsource ← F
8 // finetuning to target domain
9 While epoch >0 do
10 for sampled(w/o replacement) minibatch x in Xsupp do
11 Lsupp = Fsource(x) // Lsupp with ζpos
12 update Fsource by backpropagation to reduce Lsupp

13 end for
14 epoch ← epoch-1
15 end while
16 Ftarget ← Fsource

17 return Ftarget
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5 Experiment

5.1 Datasets

The benchmark NER corpora preprocessed by BioBERT [12] are utilized in this
study. We have conducted an analysis of entity counts in both the training and
test sets within the corpus, with the statistical findings presented in Table 2
below.

Table 2. Corpus Statistic

Task Corpus Num of Entities

Train Test

Disease NCBI 5,145 960

BC5CDR 9,385 9,809

Drug/Chem BC5CDR 9,385 9,593

BC4CHEMD 29,478 25,346

Gene/Protein JNLPBA 32,178 6,241

BC2GM 15,197 6,325

Species LINNAEUS 2,119 1,433

S800 2,557 767

5.2 Sampling Strategy

The previous sampling has primarily employed two predominant methods,
namely the N-way K-shot [6] sampling method and the precision sampling
[2,4,17] method. Both of these methods are instance-oriented samplings that
select a specific number of entities randomly using different strategies. However,
in real-world scenarios, inputs do not exist solely as instances. To address this
limitation, HGDA [18] proposed a sentence-level oriented sampling method. In
the few-shot setting, K sentences containing entities are sampled as the support
set. In this paper, we also adopt HGDA’s [18] sampling strategy to obtain the
support set by performing sampling within the standard train set.

5.3 Experimental Settings

The BioBERT model is used as the base encoder, while the span extraction
network is employed for extracting entity spans. The loss calculation involves
the utilization of the positive enhanced loss function, and Adam serves as the
optimizer. Throughout this study, all experiments are conducted on a 3090Ti,
and after employing 5 different seeds for experimentation purposes, an average
F1 value is obtained. To provide a clearer details, Table 3 presents all training-
related hyperparameters.
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Table 3. Hyper-Parameter Settings

Hyper Parameter Value

Max input length 256

Source batch size 8

Target batch size 2

Source task encoder lr 1e−5

Target task encoder lr 1e−4

Source task classifier lr 1e−4

Target task classifier lr 1e−4

Dropout rate 0.1

Number of epoches 10

Number of learnable vectors in continuous query 7

Number of learnable vectors in hybrid query 3

5.4 Experimental Results

In this section, we present the results of performance differences among different
query templates, loss function and finally the comparison with SOTA systems.

Impact of Query Template. The impact of query templates on performance
is investigated in this section, aiming to explore how the form of label informa-
tion as prior knowledge in the machine reading comprehension framework affects
recognition performance. Table 4 compares the F1 values of different query tem-
plates on the NCBI corpus under various few-shot settings (K = 5, 10, 20, 50),
with the highest value for each quantity highlighted in bold.

Table 4. Performance of three different query templates on NCBI dataset.

Query Type 5 10 20 50

Continuous 50.83 58.30 65.58 69.86

Hybrid 49.81 54.11 66.94 69.39

Discrete 57.84 61.06 67.40 69.03

The table above clearly demonstrates that the discrete query template out-
performs the continuous and hybrid query templates, particularly when K = 5,
10, and 20. However, at K = 50, all three templates show comparable perfor-
mance. Notably, the discrete query template exhibits a larger performance gain
when the support set is small; however, as the size of the support set increases,
this advantage gradually diminishes. Further detailed analysis can be found in
Subsect. 5.5 of this paper. Consequently, in all subsequent experiments conducted
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in this study, discrete templates are exclusively employed as query templates for
MRC baseline and PEMRC.

The Influence of Positive Enhanced Loss. The effectiveness of the positive
enhanced loss function is examined by comparing the disparities between two
methods, MRC and PEMRC, with F1 value results presented in Table 5. Here,
MRC denotes the machine reading comprehension model employing solely the
cross-entropy loss function, and PEMRC incorporates the positive enhanced loss.
The maximum value for each setting is highlighted in bold.

Table 5. MRC and PEMRC performance comparison

K Method Disease Drug/Chem Gene/Protein Species

NCBI BC5 BC5 BC4 JNL BC2 LINN S800

5 MRC 57.84 64.85 74.78 52.52 46.73 47.20 52.27 52.56

PEMRC 55.77 64.87 79.07 53.71 46.87 48.75 52.89 53.26

10 MRC 61.06 65.50 76.93 53.26 52.63 52.00 60.64 55.89

PEMRC 62.37 66.27 79.57 55.56 52.79 52.67 62.55 55.74

20 MRC 67.40 67.96 78.93 59.46 57.33 54.02 63.10 57.00

PEMRC 69.87 67.96 82.64 60.58 56.61 55.33 67.82 57.88

50 MRC 69.03 71.61 81.16 59.78 59.39 56.10 68.28 59.79

PEMRC 72.48 69.36 84.08 61.29 60.53 57.42 71.79 59.82

Table 5 demonstrates that PEMRC outperforms the MRC baseline model
on most of the eight datasets. When averaging performance across all datasets,
PEMRC achieves a 2.1% improvement over the MRC baseline system, highlight-
ing the effectiveness of the positive enhanced loss function.

Comparison with Other SOTA Systems. In this section, we use PEMRC as
a baseline for the methodology. We conduct extensive experiments on 8 datasets
and compare them with similar systems. The SOTA systems used for comparison,
the experimental results, and the analysis of the results are described below.

SOTA systems

(i) MetaNER [13] is a multi-task learning method for domain adaptation, which
combines supervised meta-learning and adversarial training strategies. It
can obtain more robust, general and transferable representation methods in
named entity recognition tasks.

(ii) HGDA [18] introduces hardness information based on MetaNER and applies
it to biomedical domains.
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Table 6. Compared with the performance of SOTA systems, some dataset names are
replaced by abbreviations.

K Method Disease Drug/Chem Gene/Protein Species AVG

NCBI BC5 BC5 BC4 JNL BC2 LINN S800

5 MetaNER 27.29 21.71 57.84 22.12 21.75 24.43 12.14 15.16 23.87

HGDA 31.25 26.98 61.02 25.71 37.76 35.73 17.53 28.80 33.10

PEMRC 55.77 64.87 79.07 53.71 46.86 48.75 52.89 53.26 56.90

10 MetaNER 33.30 36.88 66.59 33.60 33.74 32.65 30.38 31.64 37.35

HGDA 43.86 42.44 70.97 42.47 47.90 44.89 32.01 37.03 45.14

PEMRC 62.37 66.27 79.57 55.56 52.79 52.67 62.55 55.74 60.94

20 MetaNER 46.12 47.22 73.01 43.83 41.67 39.26 49.52 29.77 46.30

HGDA 56.31 55.29 74.72 49.44 54.66 51.24 48.43 52.05 55.26

PEMRC 69.87 67.96 82.64 60.58 56.61 55.33 67.82 57.88 64.84

50 MetaNER 57.31 61.06 74.78 50.82 53.37 50.58 61.25 36.07 55.65

HGDA 62.08 61.90 80.23 62.73 61.46 60.16 63.73 58.55 63.90

PEMRC 72.48 69.36 84.08 61.29 60.53 57.42 71.79 59.82 67.10

As shown in Table 6, our performance is better than other systems in most
cases, and our method achieves significant performance in low-resource situa-
tions. This may be due to the fact that our designed query templates can use
the information in the pre-trained language model more directly, just like prompt
learning. The less annotated data, the more obvious the effect of using the infor-
mation in the PLM. In addition, the machine reading comprehension method
has only one classifier for all tasks, while HGDA and MetaNER have multiple
classifiers for multi-task learning. We believe that this unified classifier can learn
the knowledge transfer between different tasks, while the task-specific classifier
will lose some of the knowledge learned on the source tasks to some extent.

5.5 Discussion and Analysis

We offer insightful explanations to analyze the performance disparities resulting
from different query template types. There are two potential reasons for this
phenomenon:

Firstly, in the low-resource scenario (K = 5), natural language text can effec-
tively leverage the knowledge within the pretrained language model, whereas
continuous and hybrid query templates constructed from random vectors fail to
align with the model’s input during pretraining and thus cannot directly harness
the knowledge embedded in the pretrained language model.

Secondly, the structure of learnable vectors present in continuous and hybrid
templates remains fixed, necessitating more training data to discover an optimal
vector. Consequently, they achieve comparable performance to discrete query
templates only when greater resources are available (K = 50).
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To further demonstrate how prior knowledge and label information impact
experimental performance in low-resource scenarios, we analyzed error cases gen-
erated on the NCBI (disease) test set with K = 5.

Table 7. The following table shows two cases. Gold represents the sentence and the
entity that should be predicted, where the entity is marked in red font.

Case 1 The predicted entities

Gold The risk of cancer, especially lymphoid neoplasias, is substantially ele-
vated in A - T patients and has long been associated with chromosomal
instability.

Discrete cancer — lymphoid neoplasias — A-T

Continuous lymphoid neoplasias

Hybrid None

Case 2 The predicted entities

Gold These clustered in the region corresponding to the kinase domain, which
is highly conserved in ATM - related proteins in mouse, yeast and
Drosophila.

Discrete None

Continuous Drosophila

Hybrid proteins — mouse — yeast — Drosophila

From Table 7, it is evident that in Case 1, only the discrete query accurately
identifies all entities, while the continuous query successfully identifies one entity
and the hybrid query fails to identify any entity. In Case 2, sentences without
entities are correctly predicted solely by discrete queries, whereas both con-
tinuous and hybrid queries incorrectly detect false positives. Upon analysis, it
becomes apparent that the continuous query possesses limited prior knowledge,
resulting in its failure to correctly identify or recognize entities. The hybrid query
incorporates some prior knowledge but lacks explicit label information, leading
to identification of other types of entities in Case 2 such as proteins/genes (ATM-
related proteins) and species (mouse, yeast, Drosophila).

6 Conclusion and Future Work

In this paper, we present a simple yet effective approach to machine reading
comprehension. Our query template is designed to better leverage the knowledge
in pre-trained language model and facilitate knowledge transfer between source
and target tasks. Additionally, our positive enhanced loss function further boosts
model performance. This method yields significant improvements in low-resource
settings and even outperforms state-of-the-art methods in challenging biomedical
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domains. Moving forward, we plan to explore machine reading comprehension
techniques across various domains with limited resources while also refining our
query design.
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Abstract. In medical text entity recognition tasks, Chinese character radicals are
often closely related to the semantics of the characters. Based on this insight, we
proposed the CSR-ProtoLERT model to integrate Chinese character radical infor-
mation into few-shot entity recognition to enhance the contextual representation of
the text.We optimized the pre-training embeddings, extracted radicals correspond-
ing to Chinese characters from an online Chinese dictionary for the extensive col-
lection of medical texts we acquired, and stored these radicals as key-value pairs.
Concurrently, we employed CNN to optimize the radical embedding representa-
tion.We input the static embedding vectors of multiple Chinese characters sharing
the same radical into the CNN network, extracting common feature representa-
tions for Chinese characters, ultimately obtaining the embedding representation
of the Chinese character radicals. The Cross Star-Transformer model we proposed
employs two Star-Transformers to model the embeddings of the input medical text
character sequence and the corresponding radical sequence embedding. It fuses
the Chinese character radical features with the character features, enabling the
few-shot entity recognition model to learn more about medical Chinese character
entity features. In the CMF 5-way 1-shot and 5-way 5-shot scenarios of the Chi-
nese medical text few-shot entity recognition dataset we constructed, we achieved
F1 values of 54.07% and 57.01%, respectively.

Keywords: Medical Text · Entity Recognition · Few-shot Learning · Fusion of
Chinese Radicals

1 Introduction

Medical informatization involves a large number of medical terms and entities, which
are important for knowledge graph construction. Named Entity Recognition (NER) can
identify and extract entities with specific meanings from text and determine their cate-
gories or attributes. In applications in the medical field, NER can extract entities such as
diseases, symptoms, and parts in medical texts, and organize them into structured data
according to certain rules and formats, thereby building a medical knowledge graph [1]
and medical intelligent question answering [2], clinical decision support [3] and other
tasks to provide data support.
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In the medical field, annotated data is relatively scarce for two main reasons: On
the one hand, clinical data such as electronic medical records involve patients’ personal
privacy and sensitive information, such as name, age, gender, medical history, and these
data cannot be disclosed or shared at will, restricting the circulation and utilization of
data. On the other hand, texts in the medical field involve a large number of professional
terms and abbreviations. At the same time, the professional level of annotators is required
to be high, which also increases the difficulty of data annotation. For example, the
evaluation dataset of theCCKS2019 named entity recognition task forChinese electronic
medical records only has 1,379 annotated data, and the CHIP2020 traditional Chinese
medicine instructions entity recognition evaluation task contains a total of 1,997 drug
instructions after deduplication. In the medical field, the accuracy of entity recognition
tasks is required to be high, and the scarcity of annotated data is often insufficient to
establish an accurate deep learning model. In this case, few-shot entity recognition [4]
(Few-Shot NER) can reduce the model’s dependence on data annotation, using only
a small amount of annotated data for training, and improving the performance and
efficiency of the entity recognition model. In 2021, Tsinghua University and Alibaba
collaborated to complete the first small few-shot entity recognition dataset Few-NERD
[5]. Apart from this, there are few public benchmark datasets. Existing research on few-
shot entity recognition is mainly focused on general fields, and there is a lack of research
on few-shot entity recognition of medical texts.

In this paper, we proposed a few-shot entity recognition model (ProtoLERT based
on Cross-Star transformer with Chinese Radicals, CSR-ProtoLERT) that fuses Chi-
nese radical information. The model includes a text embedding module and a Chinese
radical fusion module. The text embedding module employs the pre-trained language
model LERT to map input character sequences of medical texts into vector space. Then,
the embedding representation of Chinese character radicals in Tencent Chinese pre-
trained word embedding [6] (Tencent AI Lab Embedding Corpus for ChineseWords and
Phrases) is analyzed and optimized to bring the radical and its corresponding Chinese
character embedding representation closer, making the semantic information contained
closer. The Chinese radical fusion module employs a transformer structure to deeply
encode text sequences. It utilizes the simplified Star-Transformer structure to reduce
the model’s reliance on extensive annotated data, thereby enhancing the model’s com-
putational efficiency. We proposed an improved Cross Star-Transformer model for the
integration of Chinese character radical information into the input text sequence through
shared central nodes. Finally, prototype learning is employed to conduct entity classi-
fication on the fused span representations. All span representations in the query set are
classified based on the prototypes derived from the category span representations learned
from the support set.

We took medical text as the research object, analyzed and sampled multiple medical
text entity recognition datasets, and constructed a Chinese medical text few-shot entity
recognition dataset (CMF). It can not only reduce the cost of annotating medical texts,
but also improve the model’s ability to automatically obtain medical entities, providing
a data basis for medical informatization. Finally, the main contributions of this article
include three aspects as follows:
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1) We proposed a few-shot entity recognition model, CSR-ProtoLERT, based on the
Cross-Star transformer with Chinese Radicals, which fuses Chinese character radical
information to learn the radical structure of Chinese characters within entities.

2) A strategy based on weighted random sampling was proposed to balance the entity
distribution of the data set in the process of constructing the data set, and a Chinese
medical text few-shot entity recognition (CMF) data setwas constructed. Experiments
were conducted using a few-shot named entity recognition model based on meta-
learning, and the F1 value was used to conduct experiments and analysis on the CMF
data set.

3) We Conducted comparative experiments on the CMF dataset, and proved the effec-
tiveness of the Chinese character radical fusion module through different model
experimental comparisons.

2 Related Work

Traditional machine learning methods design feature extraction and learning algorithms
based on target tasks, which usually require a large amount of labeled data for training.
Few-shot learning means that when faced with new tasks, there are only a few samples
available for learning. In this case, traditional machine learning algorithms may overfit
and fail to generalize well to new tasks. The few-shot learning algorithm aims to solve
this problem by learning reusable knowledge from other tasks to assist the learning of
new tasks. Different from few-shot learning, meta-learning pays more attention to how
to design a learning algorithm so that the algorithm can quickly adapt to new tasks.

2.1 Task Definition

Given a sentence sequence, the named entity recognition task is dedicated to identifying
the labels of pre-categorized numbers in the sentence. The purpose is to identify entities
with specific meanings or categories from the text, such as person names, place names,
organization names, time, numbers, and percentages, etc. Named entity recognition can
be used in information extraction, question answering systems, text summarization,
machine translation and other application scenarios.

2.2 Few-Shot Learning

Few-shot learning is a subcategory of machine learning that deals with a limited num-
ber of examples with supervised information. Specifically, few-shot classification learns
classifiers given only a few labeled examples of each class. Formally, few-shot classifica-
tion learns a classifier h which predicts label yi for each input xi. Typically, we consider
the N-way-K-shot classification [7, 8], in which Dtrain contains S = KN examples from
N classes each with K examples.

Pre-Trained Language Models (PLM) are trained on large-scale corpora using unsu-
pervised or weakly supervised learning methods, expecting the model to acquire a large
amount of language knowledge and then fine-tune it for use. Early explorations focused
on pre-training shallow networks to capture the semantics of words such as Word2Vec
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[9] and GloVe [10], which play an important role in various NLP tasks. Since each
word is represented by only one vector, but the same word may have different mean-
ings in different contexts, until the introduction of Transformer, it became possible to
train deep neural models for NLP tasks. In 2018, Transformer proposed deep PLMs
for NLP tasks, such as Generative Pre-Training Transformer (GPT) [11] and Bidirec-
tional Encoder Representation from Transformers (BERT) [12]. As the scale of PLMs
increases, large-scale PLMs with hundreds of millions of parameters can capture word
sense disambiguation, lexical and syntactic structure, and factual knowledge from text.

BERT [13] uses a bidirectional Transformer as themain structure and adoptsMasked
Language Model (MLM) for unsupervised training. Similar to cloze completion, it ran-
domly masks characters in the input sequence with a special token [MASK] and predicts
the hidden position words through context. The BERT model obtains a richer vector
representation, which can extract complex relationship features of characters, words,
sentences and text segments at multiple levels and more finely, greatly promoting the
research and development of NLP tasks.

3 Research on Few-Shot Entity Recognition Integrating Chinese
Character Radical Information

In few-shot entity recognition of Chinese medical texts, the Chinese radical structure of
the Chinese medical entity itself also implies the semantic information of the entity. In
this section, the CSR-ProtoLERT model is introduced, which leverages the Cross Star-
Transformer model to integrate Chinese character and radical structural information,
aiming to enhance the accuracy of named entity recognition in Chinese medical text
under the few-shot scenario.

3.1 CSR-ProtoLERT Model

There are a large number of entities in medical texts, and the same entity may have
different entity types in the context of different medical texts. Due to the inconsistent
classification of entity categories in different datasets, it is difficult for the model to learn
good entity feature representation. In the Chinese context, the radicals of Chinese char-
acters are often closely related to their meanings. Integrating Chinese character radical
information into few-shot entity recognition can enhance the context representation of
the text, classify entities with the help of radical features, and improve the accuracy of
few-shot entity recognition. The CSR-ProtoLERT model architecture proposed in this
article is shown in Fig. 1, and mainly includes the following two modules:

1) Text embedding module: First, the pre-trained language model LERT is used to map
the input character sequence of medical text to vector space. Then, the embedding
representation of Chinese character radicals in Tencent Chinese pre-trained word
embedding [6] (Tencent AI Lab Embedding Corpus for Chinese Words and Phrases)
is analyzed and optimized tomake the radical and its correspondingChinese character
embedding representation closer, that is the semantic information contained is closer.
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Fig. 1. CSR-ProtoLERT Model structure diagram

2) Chinese radical fusion module: Deep encoding of text sequences is achieved using
the Transformer architecture. To reduce the model’s dependency on a large amount
of labeled data and improve computational efficiency, a simplified Star-Transformer
structure is employed. An enhanced model, the Cross Star-Transformer, incorporates
Chinese character radical information into the input text sequences through a shared
central node. Finally, prototype learning is used to classify the fused span represen-
tations, based on prototypes learned from the support set, and to classify all span
representations in the query set, resulting in the final entity classification.

3.2 Text Embedding Module

For the input character sequence X = x1, x2, · · · , xn of medical text, use the LERT pre-
trained language model to encode it to obtain the character embedding representation of
the medical textC = c1, c2, · · · , cn. The Chinese characters radicals are often related to
their structural form. In most Chinese dictionaries, the radicals are typically components
or parts within the characters that convey the approximate meaning of the characters.
When people encounter unknownChinese characters in their daily lives, they often judge
the general semantics of the Chinese characters through structures such as radicals. As
shown in Table 1, in medical texts “艹” (grass) and “木” (tree) usually represent plants
and traditional Chinese medicine. “月” (moon) represents human body parts or organs,
and “疒” (radical of illness) represents disease. “艾, 芷, 芝, 莲, 蔻, 芪” (ai, zhi, zhi,
lotus, kou, qi) usually appear in Chinese characters for herbal plants. “肝,肺,胆,胃,
肘,脖” (liver, lungs, gallbladder, stomach, elbows, neck) are commonly found in body
parts. “疟,痢,疝,疮,癌,疽” (malaria, dysentery, hernia, sore, cancer, and subcutaneous
ulcer) are often associated with diseases.
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Table 1. Examples of Chinese Radicals in Medical Texts

Radical Meaning Example

艹 Herb 艾,芷,芝,莲,蔻,芪

月 Body parts 肝,肺,胆,胃,肘,脖

疒 Disease 疟,痢,疝,疮,癌,疽

The semantics of Chinese characters with the same radicals are relatively similar,
and there is little difference in different semantic scenarios. Therefore, for the radical
Y = y1, y2, · · · , yn corresponding to the Chinese character in the input medical text
sequence, the static embedding based on context training is used to represent the radical
embedding representation R = r1, r2, · · · , rn of the medical text entity.

The pre-trained embedding representation is generated by large-scale high quality
text training in multiple fields. In order to make it more suitable for named entity recog-
nition of medical text, certain fine-tuning is performed on the pre-trained embedding.
Principal Component Analysis (PCA) [14] can reduce high-dimensional data to low-
dimensional data without losing too much information in the process. The new data is
mapped to a new coordinate system, which is helpful for data analysis and visualization.
First, perform PCA processing on the pre-trained embedding representation, reduce the
200-dimensional pre-trained embedding vector to 3 dimensions, and use some Chinese
characters and radicals in the medical text to perform visual analysis on the reduced
dimension feature vector, as shown in Fig. 2.

Fig. 2. Visualization of pre-training embedding of Chinese character radicals
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The embedded representation of Chinese radicals in medical entities varies greatly.
The whole can be divided into two categories: radicals (i.e., “疒” (sickness), “氵”
(water), “忄” (heart)) and character radicals (i.e., “月” (moon), “又” (again), “目”
(eye)).Compared with radicals, the embedded representation distance of character radi-
cals and Chinese characters is closer, that is, the semantics in the text are closer, such as
“月” (moon) and “脑” (brain) and “艹” (grass) and “茶” (tea) in Fig. 2. The radicals are
relatively compact, far away from the representation space of Chinese characters, and the
semantic representation is inaccurate. Therefore, this section optimizes the pre-training
embedding. First, obtain a large number of medical texts related to the content of the
original dataset, and count and sort the frequency of Chinese characters in these medical
texts. Then, the obtained Chinese characters are deduplicated, the radicals corresponding
to the Chinese characters are crawled online from the online Chinese dictionary, and the
radicals and their corresponding Chinese characters are stored in the form of key-value
pairs. Load the pre-trained embedding and use CNN to optimize the radical embedding
representation. The specific process is shown in Fig. 3.

Fig. 3. Chinese character radical embedding optimization process

First, the static embedding vectors ci1, c
i
2, · · · , cim of multiple Chinese characters

with the same radical are input into the CNN network, and the maximum pooling layer
MaxPooling and the fully connected layer FC are used to extract the common feature
representation of Chinese characters, and finally the embedded representation ri of the
Chinese character radical is obtained, as shown in the formula (1) and (2) are shown.

ti = CNN
(
ci1, c

i
2, · · · , cim

)
(1)

ri = FC(MaxPooling(ti)) (2)

The optimized pre-training embedding is visually displayed, as shown in Fig. 4. It can
be seen that the optimized radical and character radical embedding representation ismore
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Fig. 4. Optimized visualization of Chinese character radical embedding

reasonable, and the distance betweenChinese characters and their corresponding radicals
is closer and the semantic representation is closer, such as “月” (moon) and “脑” (brain),
“艹” (grass) and “茶” (tea). Reasonable Chinese character radical embedding can help
the model better identify entities in medical texts, provide richer feature representation,
and help distinguish similarities between entities of different categories.

3.3 Chinese Radical Fusion Module

The parallel capability of the transformer-based method is far better than that of LSTM,
but it has many model parameters and requires a large amount of computing resources
and memory in training long texts. In the Transformer model, the self-attention mech-
anism is applied. Each position must establish a direct connection with other positions
and obtain contextual information from other positions. The overall structure has many
complex parameters and is prone to overfitting when there are few training samples. The
Star-Transformer [15] model enables each position to establish direct connections with
adjacent positions and indirect connections with other non-adjacent positions through
the central node. Star-Transformer has fewer parameters, less dependence on sample
size, and is more suitable for few-shot scenarios. As shown in Fig. 5, if the beginning
and end of the medical text sequence are connected into a ring, then the connection of
transformer is a fully connected graph. The simplified Star-Transformer obtains knowl-
edge for each medical text character hi from the adjacent characters hi−1, hi+1 and the
virtual central node S. The central node S obtains the context information of the medical
text sequence from all characters h.

We proposed aCross Star-Transformer to fuseChinese character radical information,
as shown in Fig. 6, where the inner ring is the sequence of Chinese character notes gi,
and the outer ring is the sequence of radical nodes hi, S is the context center node.
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Fig. 5. Star-Transformer structure diagram

Fig. 6. Cross Star-Transformer structure diagram

Two Star-Transformers are used to model the embedding C = c1, c2, . . . , cn of the
inputmedical text character sequence and the corresponding radical sequence embedding
R = r1, r2, . . . , rn respectively. The twomodels are updated using the same central node
S, thus making the medical interaction occurs between Chinese characters and radicals
in the text. The update process of Cross Star-Transformer is shown in Algorithm 1.
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The input is the sequence embedding representation of Chinese characters and rad-
icals C and R. Steps 1–3 initialization stage: first map it to Cross Star-Transformer and
initialize surrounding nodes gi and hi, and then use the mean value of all surround-
ing node vectors as the initialization representation S0 of the central node. Steps 5–9
external node update stage: Chinese character point gi and radical node hi are updated
in the same way. Taking the Chinese character node gti as an example, the current gti
needs to be updated by concatenating the initial embedding ci, the central node S of the
previous moment, the current and adjacent nodes gt−1

i , gt−1
i−1 , and gt−1

i+1 of the previous

moment with the previous gt−1
i , and then performing multi-head attention calculation

and normalization operation. Steps 10–11 central node update stage: The update method
is similar to that of surrounding nodes. The central node St at the current moment needs
to be updated through the central node St−1 at the previous moment and all Chinese
character points Gt and radical nodes Ht at the current moment.

First update the peripheral medical text character embedding ci and radical embed-
ding ri, and then update the central node S. The visual update process of Cross
Star-Transformer is shown in Fig. 7.

Fig. 7. Cross Star-Transformer update process
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4 Experimental Results and Analysis

4.1 Dataset Introduction

The datasets used in the experiment are sourced from various departments and include
the following: the public dataset Chinese Medical Named Entity Extraction dataset [16]
(CMeEE), the Critical Illness Knowledge Graph dataset (CIKG), the Chinese Pediatric
Epilepsy Knowledge Graph (CpeKG), the Cardiovascular Diseases Knowledge Graph
dataset (CvdKG) [17], and the Diabetes Electronic Medical Record Entity and Relation
Corpus (DEMRC). These datasets constitute the Chinese Medical Text Few-Shot Entity
Recognition (CMF) dataset. It encompasses a total of 20 categories and 132,426medical
entities.

Based on the consistency of entity descriptions for each type across different datasets,
they are categorized into three groups: identical entities, similar entities, and unique enti-
ties. Entities like “disease,” “symptom,” and “body part” have consistent descriptions
across all datasets. In the CMeEE dataset, “examination” is also subdivided into “ex-
amination items” and “examination indicators”. Some datasets constructed based on
medical textbooks, such as CIKG, CPeKG, and CvdkG, also include long entities like
“sociology” and “epidemiology”. Additionally, some datasets have their unique entity
types, such as the “EEG performance” entity in the childhood epilepsy dataset CPeKG
and entities like time and modifiers in the diabetes electronic medical record dataset
DEMRC.

4.2 Experimental Setup

The experimental settings include the CNN filters, convolution kernels, environment
settings used in the experiment and hyperparameter settings of the model used when
optimizing the radical embedding representation. The dropout is set to 0.2, a 6-layer
Cross Star-Transformer is used, and the internal attention layer is 6 attention heads, each
with 256 dimensions.

When constructing a data sample in the few-shot scenario, firstly, N types of medical
entities are randomly drawn from themedical entity label set. Then, sentences containing
these entities are extracted to form a collection in the N-way K-shot format, and the
support set and query set are constructed in turn.Weighted random sampling is a method
of random sampling based on sample weights. Each sample is assigned a weight, and
then random sampling is carried out with the weight as the probability, thus making the
probability of more important samples being selected larger.

Dataset Statistics. The CMF dataset constructed in this chapter is designed for small-
sample scenarios with 5-way 1-shot and 5-way 5-shot settings. Specifically, 700 samples
and 350 samples are sampled from each original dataset for training, validation, and test
data partitions, with a split ratio of 4:2:1. To ensure distinct training and testing tasks,
the training set is reorganized. The statistics of the number of 5-way 1-shot and 5-way
5-shot entities in the CMF data set are shown in Table 2.
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4.3 Experimental Results and Analysis

Wecompare theCSR-ProtoLERTmodelwith ProtoBERT [18], NNShot [19], StructShot
[18] few-shot entity recognition models on the self-built medical text few-shot entity
recognition dataset CMF dataset, in order to verify the effectiveness of the proposed
Chinese character radical fusion module. The experimental results are shown in Table 3
and Table 4.

Table 2. Statistics of CMF dataset

Source Num of sentences (5w1s/5w5s) Types Description

Train Dev Test

CMeEE 400/200 200/100 100/50 9 Clinical Pediatrics

CIKG 400/200 200/100 100/50 11 Lung, liver and breast cancer

CPeKG 400/200 200/100 100/50 19 Pediatric epilepsy

CVdKG 400/200 200/100 100/50 15 Cardiovascular diseases

DEMRC 400/200 200/100 100/50 9 Diabetes

Table 3. Results of CSR-ProtoLERT Model 5-way 1-shot on the CMF Dataset

Model CMeEE CIKG CPeKG CvdKG DEMRC Average

ProtoBERT 26.71 ± 1.11 31.69 ± 0.25 27.48 ± 1.02 29.47 ± 1.31 29.99 ± 0.48 29.07

NNShot 17.25 ± 14.83 26.29 ± 1.47 25.67 ± 1.19 25.21 ± 0.84 43.16 ± 1.55 27.52

StructShot 21.26 ± 18.42 30.07 ± 1.17 30.59 ± 0.74 30.91 ± 0.68 47.13 ± 1.96 31.99

CSR-ProtoBERT 57.82 ± 1.23 50.02 ± 0.93 50.19 ± 0.63 49.11 ± 1.34 51.21 ± 0.59 51.67

CSR-ProtoLERT 59.25 ± 1.60 51.34 ± 0.61 51.83 ± 1.08 51.85 ± 1.39 56.08 ± 0.30 54.07

Table 4. Results of CSR-ProtoLERT Model 5-way 5-shot on the CMF Dataset

Model CMeEE CIKG CPeKG CvdKG DEMRC Average

ProtoBERT 42.15 ± 1.60 39.92 ± 0.44 39.22 ± 0.28 42.25 ± 0.22 34.34 ± 1.76 39.58

NNShot 24.58 ± 21.27 31.97 ± 1.02 30.89 ± 1.38 22.32 ± 19.34 32.89 ± 28.36 28.53

StructShot 28.88 ± 25.02 38.84 ± 1.64 39.03 ± 0.45 28.22 ± 24.46 30.09 ± 28.63 33.61

CSR-ProtoBERT 61.36 ± 0.62 55.12 ± 0.57 52.12 ± 1.22 56.22 ± 0.61 54.82 ± 0.51 55.93

CSR-ProtoLERT 61.89 ± 0.98 56.16 ± 0.49 53.38 ± 0.20 57.31 ± 0.37 56.30 ± 1.04 57.01
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This section compares the experimental results of each entity category of CPeKG
in the CMF dataset, as shown in Fig. 8. Among them, the identification effect of epi-
demiological entities is poor, because epidemiology is the study of the distribution and
determinants of diseases and health conditions in specific populations, and the coverage
of entities is wide, and using Chinese character radical features for entity identification is
prone to noise. In addition, the improvement of parts in the samemedical entities in each
task in the CMF dataset is more obvious, and it may be analyzed that diseases and symp-
toms have entity overlap phenomena, and symptom descriptions may be disease entities
in some medical contexts. Among them, the recognition accuracy of surgical entities
compared with the experimental results of the MBE-ProtoLERT model has increased
by 2.83% on the basis of an F1 value of 37.29%, indicating that the method of fusing
Chinese character radicals is effective.
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Fig. 8. F1 value of CSR-ProtoLERT model in each category of CPeKG in CMF dataset

In order to analyze the model more intuitively, based on the results of entity recog-
nition, four samples of different tasks were selected to compare the model prediction
results, as shown in Table 5.

It can be seen from the four examples that the CSR-ProtoLERTmodel can accurately
identify medical entities in the text, such as “disease”, “drug”, “symptoms”, and “EEG
performance”, among others. This indicates that the incorporation of knowledge related
to Chinese radicals can enhance the accuracy of entity recognition in few-shot medical
texts.
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Table 5. CSR-ProtoLERT Model Entity Recognition Example Analysis

Example 1 No history of hypertension or heart disease

Real label “Decorate”: (0, 0)
“Disease”: (1, 3), (5, 8)

Predicted label “Decorate”: (0, 0)
√

“Disease”: (1, 3), (5, 8)
√

Example 2 Epileptic EEG shows alternating sharp and slow waves

Real label “Disease”: (0, 1)
“EEG performance”: (8, 17)

Predicted label “Disease”: (0, 1)
√

“EEG performance”: (8, 17)
√

Example 3 Fever and pain in the liver area are common

Real label “Symptom”: (2, 3), (5, 8)

Predicted label “Symptom”: (2, 3), (5, 8)
√

Example 4 Drugs used to treat lung cancer include paclitaxel, gefitinib, pemetrexed, etc.

Real label “Disease”: (2, 3)
“Drug”: (9, 11), (13, 16), (18, 21)

Predicted label “Disease”: (2, 3)
√

“Drug”: (9, 11), (13, 16), (18, 21)
√

5 Conclusion

This paper proposed theCSR-ProtoLERTmodel to conduct researchon few-shotmedical
text entity recognition, and uses a method of integrating Chinese character radical infor-
mation to improve the accuracy of Chinese medical entities. First, the pre-trained radical
embeddings are optimized using a CNN model in the representation learning stage. In
the feature fusion stage, considering that medical text sentences are usually long and
contain many long entities, and long-distance modeling is easy to lose information, a
Cross Star-Transformer structure based on the Transformer structure is proposed to fuse
Chinese radicals and character embedding representations. Experiments on the medical
text few-shot entity recognition dataset CMF show that some medical entities can be
categorized using Chinese character radicals, in these cases, the CSR-ProtoLERTmodel
achieves very high recognition accuracy.
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Abstract. Under the background of big data era, the literature in the
field of biomedicine has increased explosively. Named Entity Recogni-
tion (NER) is able to extract key information from large amounts of text
quickly and accurately. But the problem of unclear boundary recogni-
tion and underutilization of hierarchical information has always existed
in the task of entity recognition in the biomedical domain. Based on
this, the paper proposes a novel Biomedical Named Entity Recogni-
tion (BioNER) model based on multi-task learning that incorporates
syntactic dependency information. Syntactic dependency information is
extracted through Graph Convolutional Network (GCN) and incorpo-
rated into the input sentences. Using a co-attentive mechanism, the
input information and the label information encoded by BERT are fused
to obtain the interaction matrix. Then, entity recognition is performed
through the boundary detection and span classification tasks. The model
was experimented on two English datasets, JNLPBA and BC5CDR, as
well as a Chinese dataset, CCKS2017. The experimental results reflected
the effectiveness of the entity recognition model proposed in this paper.

Keywords: Biomedical Named Entity Recognition · Syntactic
Dependency Tree · Graph Convolutional Network · Co-attention
Mechanism · Multi-task Learning

1 Introduction

Named Entity Recognition (NER) [1] as an important cornerstone of Natural
Language Processing (NLP) tasks. It refers to the recognition of specific mean-
ingful entities in semi-structured or unstructured texts and classifying them into
predefined entity types, such as name of people, place, organization, etc. Whereas
in the biomedical domain, it is essential to recognize entity types such as chem-
ical, disease, gene, protein. Biomedical Named Entity Recognition (BioNER)
accurately recognizes biomedical entity information from texts, providing valu-
able data resources for researchers. Moreover, it offers vital support for scientific
research in fields such as medicine, drug development, and disease diagnosis.
BioNER is not only a component of information extraction but also an indis-
pensable part of biomedical research.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Xu et al. (Eds.): CHIP 2023, CCIS 1993, pp. 51–65, 2024.
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With the exponential increase in the volume of biomedical texts, accurate and
automatic extraction of entity information from large amounts of medical texts
has become a key focus of research. BioNER provides the basis for other down-
stream tasks, such as relation extraction [2], knowledge base construction [3],
information retrieval [4] and question answering systems [5].

Early BioNER relied primarily on expert rules and machine learning, requir-
ing domain experts to extract features directly in deep networks, leading to poor
generalization and wasteful use of manual effort. Later, deep learning methods
reduced labor and training costs, becoming the mainstream research methods.

Compared with NER in general domains, BioNER is more challenging and
involves greater difficulties. Biomedical entities are more complex in form, often
consisting of multiple words with many acronyms. These acronyms often exist
in different forms without clear definitions and descriptions for reference, which
makes the entity boundaries difficult to distinguish and increases the difficulty of
recognition. In entity recognition, there are also phenomena of nested and over-
lapping entities, which increase difficulty of recognition. In addition, the limited
utilization of syntactic information in the corpus in the medical entity recognition
method leads to poor results. Based on this, this paper proposes a BioNER model
based on multi-task learning, and the main contributions are as follows:

(1) The BioNER task is transformed from a sequence labeling task to a multi-
task, specifically as a joint task of boundary detection and span classifi-
cation, addressing issues related to ambiguous boundary recognition and
nested entity problems.

(2) The dataset undergoes syntactic dependency analysis, and the resulting
syntactic parsing graphs are encoded using Graph Convolutional Network
(GCN) and integrated into the multi-task. This integration allows the model
to comprehensively learn the syntactic elements within the text as well as the
relationships between these elements, thereby enhancing the performance of
NER.

(3) Multiple sets of comparative experiments were conducted on datasets, and
the results demonstrate the effectiveness of the model proposed in this paper.

2 Related Work

NER has been regarded as a crucial metric in evaluating the effectiveness of
information extraction [6]. Based on its historical development process, research
progress in NER can be divided into three stages: from rule-based and dictionary-
based methods to machine learning-based methods, and later to deep learning-
based methods. The following will introduce the development process of BioNER
from these three aspects.

2.1 Rule-Based and Dictionary-Based Methods

In the early stages, NER based on rules and dictionaries. Rule-based meth-
ods typically use fixed rule templates and rely on pattern matching and string
matching techniques to filter and process the text. Hanisc et al. [7] proposed a
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rule-based method for recognizing gene and protein entities. However, these rules
are often overfit to specific entity recognition tasks, and their design process is
complex, time-consuming and prone to errors.

Later, in the biomedical domain, dictionary-based methods were introduced.
Common terminology vocabularies, such as ICD-10, UMLS and RxNorm, were
widely utilized in early BioNER. This process primarily relies on matching the
text with dictionaries to recognize specific entities. In the biomedical domain,
three typical tools have emerged: MedLEE, MedKAT and cTAKES [8]. They
represent the applied aspects of this method. However, the effectiveness of this
method is largely contingent upon the quality of the dictionaries and algorith-
mic matching techniques. Xia [9] constructed a gene entity vocabulary based
on UMLS and utilized machine learning methods such as Conditional Ran-
dom Fields (CRF) to recognize gene named entities in GENIA 3.02 dataset.
Krauthammer et al. [10] proposed a dictionary-based method to recognize gene
and protein entities.

In summary, rule-based and dictionary-based methods have limitations
inBioNER. With the growth of data and the emergence of new specialized terms,
these methods often require constant maintenance and adjustments. Moreover,
they are challenging to generalize across different domains.

2.2 Machine Learning-Based Methods

Machine learning methods plays an important role in entity recognition, which
include the Hidden Markov Model (HMM) [11], the Maximum Entropy (ME) [12]
model and the CRF [13]. These methods usually have high requirements on
feature selection and need to consider features such as prefixes, suffixes, letter
cases, special characters, morphemes and roots to train the models. In particular,
CRF is widely used in NER tasks and has shown good performance.

Leaman et al. [14] researchers proposed the tmChem model, which integrates
two CRF models and combines a variety of manually designed features. Li et
al. [15] researchers introduced word frequency and co-occurrence information
into the CRF model to improve the performance of recognizing gene entities.

In summary, machine learning-based methods bring significant performance
improvements in entity recognition but still suffers from poor generalization and
insufficient interpretability capabilities.

2.3 Deep Learning-Based Methods

In recent years, deep learning methods have been widely used in many research
domains because they can automatically and efficiently discover hidden features,
not only avoiding the complicated process of manually constructing features, but
also discovering more nonlinear relationships and obtaining stronger representa-
tive information.

Zhu et al. [16] applied the CNN model to NER in the biomedical domain and
proposed a new model, GRAM-CNN. Korvigo et al. [17] proposed an end-to-end
BioNER model that combines CNN and LSTM to recognize chemical entities
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and does not require the manual creation of rules. Dang et al. [18] adapted the
BiLSTM-CRF model and then proposed the D3NER model. This model can be
fine-tuned to recognize a variety of named entities, such as diseases, genes, pro-
teins, etc. SC-LSTM-CRF [19] utilized the method of embedding two channels
and sentence levels into the LSTM-CRF. The two channels solve the problem
of hidden feature loss in the model, and the sentence-level embedding enables
the model to utilize contextual information and improve its performance. Zhao
et al. [20] proposed a novel disease NER method based on multi-labeled convo-
lutional neural networks that concatenate character-level embedding, word-level
embedding and lexical feature embedding. Then several convolutional layers are
stacked on top of the cascade embeddings, and local features are obtained by
combining different sizes of convolutional kernels. Yan et al. [21] proposed a
span-based NER model that uses a convolutional neural network to model the
interactions between segments, which helps the model find more nested entities.

In summary, deep learning-based methods can utilize textual contextual
information, including long-distance dependencies, improving the understand-
ing of entity context and recognition accuracy.

3 The Method

In this paper, we propose a BioNER model based on multi-task learning.
Firstly, the input sentences X = {x1, x2, · · · , xn} and the labels of entities
L = {l1, l2, · · · , ln} in the dataset are encoded by BERT pre-training. The sen-
tences undergo encoding using a syntactic dependency tree through a GCN.
Subsequently, the outcomes of the convolution and label encoding processes are
computed utilizing a similarity matrix through the co-attentive mechanism. The
rows and columns are computed separately by the element-by-element multipli-
cation method, then the boundary detection and span classification tasks are
carried out. The overall architecture of the model is shown in Fig. 1.

Fig. 1. The overall architecture of the model.
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3.1 Feature Extraction Layer

Syntactic Dependency Tree. Syntactic dependency information can extract
relationships between words in a text, provide abundant structural information,
and have a significant advantage in representing distant lexical relationships. In
this paper, we used Standford CoreNLP to obtain medical texts for segmentation
and their syntactic dependency trees. The visualization of the result is shown in
Fig. 2.

Fig. 2. Example of an English syntactic analysis.

GCN. GCN is a deep learning model for processing graphical data. In NLP,
textual data is modeled as a graph. Each word is represented as node information
in the graph, and the relationship between words (dependency or co-occurrence)
is represented as edges in the graph. GCN has distinct advantages in NER.
Firstly, it excels in modeling the context of each node by leveraging information
from neighboring nodes. This aspect is particularly valuable in NER, as the
context surrounding a named entity often holds pivotal information. Secondly,
GCN can capture word-to-word dependencies by examining connections between
nodes in the graph. This capability is crucial for NER, enabling the system to
handle syntactic dependency information effectively.

Fig. 3. The architecture of feature representation layer.

Representation of Features. The feature representation part is shown in
Fig. 3, where the model first encodes the input sequence and entity type labels
using BERT. Syntactic dependency analysis is a method of syntactic analysis
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that reveals the structure of a sentence and the relationships between its com-
ponents by analyzing the dependencies between words in the sentence. This
method of analysis focuses on the dependencies between words. This helps us
to understand the structure and grammatical relationships of the sentence and
thus better understand the meaning of the text. Dependency relations are rep-
resented by dependency links with the direction pointing from the dependent
word to the dominant word, and the markers on the dependency links represent
different dependency relations. The dependency syntax tree is represented as the
adjacency matrix A and the degree matrix D. GCN is a type of convolutional
network that can be used to encode data structures related to graphs.

The GCN makes the input information interact with its syntactic dependency
tree, so that the model fully learns the dependency relations present in the
sentence. h1 is the input information after BERT coding, A is the adjacency
matrix, D is the degree matrix, and w and b are the learnable parameters and
the specific formula for GCN to extract the syntactic features in the sentence is
shown as:

Gx = RELU(DAh1w + b) (1)

In addition to the syntactic information contained in sentences, we consider that
entity types also contain entity-specific information. In order to better represent
entity type labeling information, the BERT-encoded entity type labels are mean-
pooled to obtain a abundant entity type labeling representation.

3.2 Feature Fusion Layer

Co-attention Mechanism. The co-attention mechanism is an attentional
method for processing sequence data and establishing associations between
sequences. The co-attention mechanism allows the model to process sequen-
tial data without being limited by the length of the sequences. This is different
from traditional Recurrent Neural Network (RNN), which suffer from the prob-
lem of vanishing or exploding gradients when processing long sequences. The
co-attention mechanism makes information transfer in long sequences more effi-
cient by calculating the weighted attention of each element. It can be highly
parallelized, which is more advantageous in the biomedical domain where the
sentences in the dataset are relatively longer and more numerous. And it can
also allow the model to consider all the elements in the input sequences at the
same time during the encoding and decoding process and therefore capture the
global dependency relations, which allows the model to better understand long-
distance dependencies between sequences. By utilizing this mechanism in this
paper, the syntactic information in a sentence can be better learned for better
feature fusion.
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Fig. 4. The architecture of co-attention mechanism.

For better feature fusion, this paper used the co-attention mechanism to fuse
features. As shown in Fig. 4, after obtaining the output of the GCN and the
output of the label after mean pooling, the co-attentive interaction network is
used so that the input sentence and the syntactic information contained in the
sentence as well as the specific information contained in the entity label are
fully interacted with each other. So the model can better learn the potential
interaction information as well as the specific information so that the entity
span boundaries can be better represented. The boundary information formula
is shown as:

M = wT [hx, Gx, he] (2)

W is the trainable weights and M is the final attention weight matrix, the
interaction matrices Mr and Mc at the entity boundaries are obtained by row-by-
row and column-by-column operations respectively. Label-to-token and token-
to-label interactions formulas are obtained as:

Ht
l = Mr • he (3)

H l
t = Mr • MT

c • hx (4)

3.3 Label Classification Layer

Multi-task Method. NER based on multi-task is a method that integrates
multiple related tasks into a single model in order to learn together, and this
method has a number of advantages. The model allows data to be shared and
utilized across multiple tasks, which improves data utilization. With the multi-
task learning, the complexity of maintaining and debugging separate models
can be reduced, which helps to reduce computational resource requirements and
improve system efficiency. The multi-task learning is flexible enough to allow
tasks to be easily incorporated or deleted to accommodate different needs.
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Fig. 5. The architecture of multi-task learning.

Boundary Detection and Span Classification Method. The multi-task
method in this paper is shown in Fig. 5, where the head position and tail position
of an entity are first recognized, followed by the task of labeling and classifying
the entity type. The head entity and tail entity recognition tasks require the
model to perform finer-grained recognition near the boundaries of the entity,
which provides more contextual information and is more helpful in accurately
determining the entity boundaries. The span classification task recognizes the
entity type, which provides additional information about the content of the
entity, and this multi-task method allows the model to understand the entity
from different perspectives, which improves the accuracy of the entity recogni-
tion.

Specifically, the start or end position of the entity span is computed as a pre-
task of the multi-task method to compute the correct entity boundaries to lay
the foundation for the next entity type classification task. During the training
process, the cross-entropy loss is used to optimize the boundaries of entity spans.
The formulas are shown as:

B = [hx;Ht
l ;hx • Ht

l ;hx • H l
t ] (5)

p(θ)i =
exp(wT

1 Bi)∑
j exp(wT

1 Bj)
(6)

Lht(θ) = −
N∑

i=1

ŷilogP (θ)i (7)

The span classification task is based on matching the header and tail labels of
each boundary label to classify entity spans into the corresponding semantic
labels, or the "None" category if the candidate entity span is not an entity. The
entity span Vspan is defined as:

Vspan = [Bi + Bj ;Bi − Bj ] (8)

Finally, the entity span representation is sent to the Softmax layer to predict
the probability of entity labeling Pspan,which minimizes the entity labeling pre-
diction loss Lspan formulas as:

Pspan(θ) = softmax(MLP (wT Vspan + b)) (9)
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Lspan(θ) = −
c∑

i=1

(yΔi
span)log(P

i
span(θ)) (10)

The multi-task method is used to minimize the loss of entity type labels and
boundaries during the training phase as:

L(θ) = Lht(θ) + Lspan(θ) (11)

4 Experiments and Results

4.1 Datasets

In this paper, experiments were carried out on two English datasets, JNLPBA
and BC5CDR, as well as a Chinese dataset, CCKS2017. NER is considered
accurate if both entity boundaries and entity types are predicted accurately.
The dataset statistics are shown in Table 1:

Table 1. Dataset statistics

JNLPBA BC5CDR CCKS2017

Train 14,690 15,935 1,561
Dev 3,856 4,012 334
Test 3,856 4,012 334

4.2 Results and Analysis

In this paper, to validate the model’s effectiveness, three sets of baseline
experiments were conducted separately on BC5CDR, JNLPBA and CCKS2017
datasets. Additionally, comparative experiments were conducted with other
models. The results of the experiments are shown in Tables 2, 3 and 4.

Table 2. Results of comparison experiments on BC5CDR

Model P (%) R (%) F1 (%)

BERT+CRF 87.0 81.5 84.2
BERT+BiLSTM+CRF 87.7 82.0 84.8
BERT+CNN+CRF 88.7 82.6 85.5
Habibi et al. (2017) [22] 87.6 86.2 86.9
Sachan et al. (2018) [23] 88.1 90.4 89.2
Wang et al. (2019) [24] 89.1 88.4 88.7
BioBERT (2020) [25] 88.1 88.7 88.4
CASN (2021) [26] 89.5 90.9 90.2
BioLinkBERT (2022) [27] – – 90.3
BERTForTC (2022) [28] – – 90.8
Ours 90.2 92.4 91.3
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Table 3. Results of comparison experiments on JNLPBA

Model P (%) R (%) F1 (%)

BERT+CRF 71.8 77.3 74.5
BERT+BiLSTM+CRF 71.0 79.6 75.0
BERT+CNN+CRF 71.2 80.2 75.4
Habibi et al. (2017) [22] 71.3 75.7 73.4
Sachan et al. (2018) [23] 71.3 79.0 75.0
Wang et al. (2019) [24] 70.9 76.3 73.5
BioBERT (2020) [25] 72.2 83.5 77.4
CASN (2021) [26] 75.8 80.0 78.0
MINER (2022) [29] – – 77.0
BioDistilBERT (2023) [30] 73.5 85.5 79.1
Ours 78.0 81.7 79.8

Table 4. Results of comparison experiments on CCKS2017

Model P (%) R (%) F1 (%)

BiLSTM+CRF 84.5 87.5 85.9
BiLSTM+CNN+CRF 85.2 88.2 86.8
Bert+CRF 88.7 93.0 90.9
BERT+BiLSTM+CRF 90.9 91.6 91.2
BERT+CNN+CRF 91.3 92.2 91.7
Lattice-LSTM (2018) [31] 91.4 92.3 91.8
IDDNN (2019) [32] 92.0 93.7 92.8
SETL (2019) [33] 92.5 94.8 93.6
Yu et al. (2022) [34] – – 93.8
Ours 93.9 95.6 94.7

As shown in Tables 2, 3 and 4, the experimental results of the multi-task
learning-based entity recognition method proposed in this paper, with the addi-
tion of syntactic dependency parsing, are significantly better than the base-
line experiments. The experimental results on the BC5CDR and the JNLPBA
datasets show that the multi-task method is better compared to the sequence
labeling method. There is an increase of 5.8% and 4.4% in the BC5CDR dataset
and the JNLPBA dataset, compared with the baseline experiments with the best
results for sequence labeling, and an increase of 3.0% over the sequence labeling
method on the CCKS2017 dataset.

The boundary detection and span classification tasks can recognize all entities
and effectively solve the unregistered word problem relative to sequence labeling
method. After the comparison experiments with other models, the proposed
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model in this paper also outperforms other methods. Compared with the best
experimental results, the proposed model improved by 0.5% on the BC5CDR
dataset, 0.7% on the JNLPBA dataset and 0.9% on the CCKS2017 dataset,
achieving the optimal F1 score on all three datasets. This proves the effectiveness
of incorporating syntactic dependency trees and extracting features with GCN.
The model fully learns the syntactic dependency present in the sentences and
performs well on the multi-task afterward, which proves the effectiveness and
superiority of the model both on the Chinese and English datasets.

4.3 Ablation Experiments

In order to verify the contribution of syntactic dependency information to the
model and the validity of multi-task, we conducted the following ablation exper-
iments on BC5CDR, JBNLPBA, and CCKS2017 datasets:

Table 5. Ablation experiments

BC5CDR JNLPBA CCKS2017
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

ALL 90.2 92.4 91.3 78.0 81.7 79.8 93.9 95.6 94.7
W/O SYN 89.5 90.9 90.2 75.8 80.3 78.0 91.1 94.5 92.7
W/O MT 86.8 89.8 88.3 70.2 85.0 76.9 91.3 93.7 92.5
W/O SYN&MT 87.0 81.5 84.2 71.8 77.3 74.5 88.7 93.0 90.9

As shown in Tables 5, when the model removed the syntactic dependency
parsing and multi-task modules, the performance decreased in each case. Espe-
cially after removing the multi-task module, the performance dropped signifi-
cantly, highlighting the importance of using the boundary detection and span
classification tasks. The multi-task method can recognize all candidate entities,
proving that the method is effective for complex biomedical texts. When the syn-
tactic dependency parsing module was removed, the model’s performance also
decreased, proving the importance of syntactic dependency information in NER.

4.4 Error Analysis

On the BC5CDR and JNLPBA datasets, Habibi et al. [22] utilized a sequence
labeling method incorporating BiLSTM and CRF. And Sachan et al. [23] uti-
lized a special weight transfer method for improving parameter initialization.
BioBERT [25] is specifically designed for the biomedical domain, providing better
contextual understanding and generalization capabilities. CASN [26] is a multi-
task model for BioNER. BERTForTC [28] is a BERT-based model specially
designed for text classification tasks. The BioDistilBERT [30] is a DistilBERT-
based model that had achieved excellent results in fine-tuning biomedical text.
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On the CCKS2017 dataset, Lattice-LSTM [31] improved the Chinese NER by
increasing the external knowledge base. IDDNN [32] is a neural network model
used for incremental learning. SETL [33] is a model that utilized semi-supervised
and unsupervised learning techniques. Yu et al. [34] utilized multi-task method
for NER. The method overlook the implicit syntactic dependency information
within Chinese sentences. In this paper, we propose the boundary detection
and span classification tasks related to NER, and the experimental results have
demonstrated the superiority.

Compared with the BC5CDR and the JNLPBA datasets, the improvement
on the Chinese dataset CCKS2017 is more significant. However, syntactic depen-
dency information has a more significant impact on improvement in Chinese NER
compared with English datasets. After removing syntactic dependency infor-
mation, the experimental results on the BC5CDR, JNLPBA and CCKS2017
datasets decreased by 1.1%, 1.8% and 2.0% respectively. This is because there
are great differences between Chinese and English in terms of grammatical struc-
ture. In Chinese, the relationship between vocabulary words is usually expressed
by the position and the order of words, and Chinese does not have the variation
(singular, plural and tense and so on). Chinese relies more on the order between
words, modifier relations, word order, etc. The experiments strongly demonstrate
the effectiveness of incorporating syntactic dependency information.

4.5 Visualization

In order to show the effect of incorporating syntactic dependency information
to the model more intuitively, we have done the visualization of labels in the
baseline model on the CCKS2017 dataset to reflect it, as shown in Fig. 6(a) and
Fig. 6(b).

Fig. 6. Visualization of labels on CCKS2017 dataset (Color figure online)

The visualization of labels on the CCKS2017 dataset showed that the various
types of labels shown in Fig. 6(a) are almost disordered, and the chaotic distribu-
tion between each color. This is not conducive to recognizing entity boundaries
and types. But after incorporating syntactic dependency information and using



Biomedical Named Entity Recognition Based on Multi-task Learning 63

GCN to extract feature information for the model to learn, the effect of cluster-
ing the different colors together as shown in Fig. 6(b) is much more pronounced,
and there is almost a clear boundary between each type of color that allows the
model to recognize entities better. The two types of entities, non-physical (O)
and chemical (chec), are almost all clustered together and have clear boundaries
with other entity types. It can also be noticed that the green (symp) and dark
blue (dise) are well differentiated, and the symptom entities and disease entities
are very similar, as in the case of “骨: B-symp 折: I-symp” 以及 “左: B-dise 侧:
I-dise 粗: I-dise 隆: I-dise 间: I-dise 骨: I-dise 折: I-dise” , which are similar to
both types of entities, proving that the model has learned the features of the
two after incorporating syntactic information.

5 Conclusion

In this paper, we propose a BioNER model based on multi-task learning, which
utilizes GCN to extract syntactic dependency information features in sentences.
The model incorporates syntactic dependency information into the sentences and
integrates it with label encoding through the co-attention mechanism. Then, it
combines the boundary detection and span classification tasks for NER.
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Abstract. In the biomedical field, understanding biomedical texts requires
domain-specific knowledge, and the annotation of biomedical texts often requires
a lot of human involvement, which makes annotation costly and time-consuming.
Therefore, how to effectively use the existing public-available corpus resources is
meaningful for performance improvement in biomedical NLP. In this paper, we
present a multi-corpus transferring method for biomedical named entity recogni-
tion task. We clearly define the target criteria by adding two artificial tokens at the
beginning and end of each input sentence. A comprehensive evaluation was con-
ducted to prove the efficiency of our method. The results illustrate that the multi-
corpus transferring method could benefit the current methods and improve its per-
formance. Our method provides a potential solution for biomedical NER enhance-
ment from data perspective, and it could further improve biomedical information
extraction with the help of increasingly public available corpus.

Keywords: Multi-corpus transferring · biomedical named entity recognition ·
Information extraction

1 Introduction

In biomedical texts, there is a wealth of data and knowledge that can be reused. To fully
harness such unstructured medical data, it is essential to utilize appropriate biomedical
natural language processing techniques and methods, particularly information extrac-
tion methods tailored to biomedical texts [1]. Most existing biomedical information
extraction systems are still designed based on methods that rely on annotated corpora
provided by domain experts. However, such corpus-based approaches often depend on
a substantial amount of manually annotated data, and the annotation process consumes
significant human and financial resources.

In biomedical domain, understanding biomedical texts requires domain-specific
knowledge, and annotated corpora typically rely on the expertise of domain experts
for annotation [2]. Compared to corpora in general domains, obtaining relevant corpora
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in the biomedical field is more challenging and incurs higher annotation costs. This com-
plexity leads to the labor-intensive and intricate task of corpus annotation for efficient
information extraction for each scientific question.

In entity recognition tasks, superior results often rely on supervisedmethods because
they can provide high-quality labeled data to the model, resulting in high performance
and generalization [3]. However, for entity recognition tasks in the biomedical field,
there are challenges of expensive labeling costs and large human input, which makes
the application of supervised methods in this field more difficult.

In the face of these challenges, how to effectively use the limited corpus resources
has become a crucial issue. In the biomedical field, we need to find innovative ways
to overcome the problem of data scarcity. One such approach is to employ few-shot
learning methods, which focus on extracting maximum information value from limited
labeled data for efficient model training [4]. In addition, we can also consider using
corpus augmentation techniques to increase the amount of data available for training in
different ways, such as data synthesis, transfer learning or data enhancement.

In this study, we propose a multi-corpus transferring method to solve the problem in
the case of labor saving, to obtain better results. Specifically, we adopted a multi-corpus
transferring training method with artificial tokens. This involves adding two artificial
tokens at the beginning and end of input sentences to specify the target standards, along
with proposing a joint multi-standard learning scheme. We conducted various experi-
ments on eight standard corpora, including the comparison experiment of single corpus
training, the comparison experiment of increasing the number of aggregate corpora, and
the aggregate experiment without tokens and the aggregate experiment with tokens, and
obtained satisfactory results.

2 Related Work

2.1 Biomedical Entity Recognition

In recent years, the development of deep learning methods has made rapid progress in
the field of biomedical entity recognition. Thesemethods do not need tomanually design
features but use neural networks to automatically learn text representations. Here are
some representative deep learning approaches:

Recurrent Neural Networks were among the early deep learning models used for
biomedical entity recognition. They are capable of capturing sequence information in
text. However, RNNs suffer from the vanishing gradient problem when handling long-
distance dependencies, limiting their performance.

The introduction of transformer models has had a significant impact on biomedical
entity recognition. This architecture employs self-attention mechanisms to process text
sequences, offering parallelism and improved modeling capabilities. Devlin et al. intro-
duced the BERT (Bidirectional Encoder Representations from Transformers) model,
which achieved significant performance improvements in multiple NLP tasks [5].
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In addition, some other Transformer models have emerged in recent years. The
Text-to-text Transfer Transformer (T5) model proposed by Raffel et al., adopts the text-
to-text task approach and regards both input and output as text sequences. This versatility
makes it suitable for a variety of NLP tasks, including entity recognition [6]. The GPT-3
(Generative Pre-trained Transformer 3) proposed byBrown et al. is a huge autoregressive
language model with 175 billion parameters. GPT-3 emphasizes generative tasks, and its
pre-trained model can be used for fine-tuning various NLP tasks [7]. At present, GPT-4
[8] have been successively released, becoming one of the most concerned large models
at present.

2.2 Corpus Reuse in Biomedical NER

Biomedical corpus reuse for named entity recognition could bemainly divided into three
categories. Transfer learning, Domain adaptation, and Semi-Supervised learning.

Transfer Learning. Transfer learning uses existing knowledge in the source domain
to enhance the performance of the model in the target domain. In the context of the
biomedical NER, this approach involves adapting amodel originally trained on a general
corpus to domain-specific biomedical data.

The process of transfer learning begins with the selection of pre-trained models,
typically language models such as BERT or BioBERT [9], which are initially trained on
large amounts of text from different domains. The pre-trained model is then fine-tuned
using a domain-specific biomedical corpus, which typically includes annotated NER
datasets. During the fine-tuning process, the model learns to adjust its representation to
better capture biomedical entities such as diseases, genes, and proteins.

Domain Adaptation. Domain adaptation is a crucial subfield of transfer learning, par-
ticularly applicable for transferring models from one domain (source domain) to another
(target domain). Ganin et al. introduced Domain-Adversarial Neural Networks (DANN)
to reduce distributional differences between the source and target domains through adver-
sarial training [10]. This approach has shown significant performance improvements in
tasks like text classification. Additionally, Lee et al. conducted experiments by trans-
ferring LSTM-CRF-based NER models from a large labeled dataset to a smaller one
for identifying Protected Health Information (PHI) in Electronic Health Records (EHR)
[11]. The study demonstrated that transfer learning improved performance, particularly
beneficial for target datasets with limited labels.

Semi-supervised Learning. In semi-supervised learning, building a silver standard
corpus is a key approach to fill the gap between the scarcity of gold standard data in
biomedical named entity recognition (NER) tasks and the need for large-scale training
of models.
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John et al. took an innovative approach to melding the Gold Standard and Silver
Standard corpora to achieve synergistic advantages. Gold standard data provides high
accuracy but is limited in scale, while silver standard data, although larger in scale, is
accompanied by greater noise. By combining the two, transfer learning is realized, and
the error rate of NER model is significantly reduced, especially on small-scale labeled
data sets. This approach highlights the potential to integrate diverse data sources to
improve BNER and opens up the prospect of wider applications [12].

3 Materials and Methods

3.1 Overall Workflow

The main idea of our work is to aggregate more other annotated data to enhance named
entity recognition performance. Hence, the first priority is to collect a large amount
of textual data in relevant fields. These data contain different entities, different types.
The construction of this dataset is a key step in ensuring that the NER system can cover
diversity and breadth. Secondly, in order to ensure the quality and consistency of the data,
we carried out a series of pre-processing steps. This includes text cleaning, removal of
unnecessary punctuation, HTML tags and special characters, conversion of data formats
and other text standardization operations to ensure the consistency and availability of
input data. Then the corpus is fused with our multi-corpus transferring method, and
finally it is put into the BERT-BiLSTM-CRF model for training, and the results are
output. The whole process is shown as (Fig. 1).

Fig. 1. Overall workflow of our method.
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3.2 Data Collection

In order to implement the multi-corpus transferring method in named entity recognition
(NER), we design a systematic method to collect corpus for transferring. In this section,
we describe our collection process in detail, including search keywords, query criteria,
filtering strategies, and the resulting candidate corpus.

Keyword Search and Query Criteria. Our data collection process primarily relied
on scientific literature databases, including PubMed and ACL Anthology. In order to
acquire multi-corpus data relevant to Named Entity Recognition (NER), we conducted
searches using a set of carefully chosen keywords and query criteria.

Employing the selected keywords, we conducted searches across databases such as
PubMed, yielding a substantial body of literature that spanned diverse aspects of the
biomedical field. The databases and repositories retrieved encompassed BC4CHEMD
[13], BC5CDR [14], BioNLP13, Ex-PTM, NCBI Disease [15], AnatEM, BC2GM,
BioNLP11 [16], BioNLP09, CRAFT, JNLPBA, LINNAEUS, GENIA, ShARe/CLEFE,
DDL, MedSTS, BIOSSES, ChemProt, i2b2-2010, Hoc, CoNLL-2003, SciERC, among
others.

Data Selection Criteria. To ensure effective multi-corpus data transfer and enhance
dataset quality, we prioritize entity consistency and consider similar entity types while
balancing data quantity and quality.

Final Candidate Corpus. After executing the preceding procedures, we have curated
a comprehensive and diverse repository of prospective datasets. This compilation
comprises BC5CDR, BioNLP09, BioNLP11ID, BioNLP13CG, BioNLP13PC, NCBI-
diseases, CRAFT, and BC4CHEMD, procured from PubMed and ACL Anthology.

3.3 Text Preprocessing

We use the BIO annotation format to label entities in the text. For example, for the entity
“postural hypotension”, its BIO annotation would be [“B-postural”, “I-hypotension”].
In the text preprocessing phase, we convert the original text into the BIO annotation
format, facilitating subsequent model training and evaluation.

3.4 Data Aggregation

Our transferring approach is based on a simple and practicalmethod proposed by Johnson
et al. [17]. It requires adding a single artificial token at the beginning of the input
sentence to specify the desired target language, eliminating the need for complex private
encoder-decoder structures.

Inspired by their work, we added two artificial tokens at the beginning and end of
the input sentence to specify the desired target standard. For example, sentences from
the candidate corpus are designed in (Fig. 2).
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Fig. 2. Data processing for multi-corpus transferring.

These artificial tokens specify from which dataset a sentence originates. They are
treated as regular symbols, or more specifically, as ordinary characters.

With their assistance, instances from different datasets can be seamlessly combined
for joint training without additional effort. These two special markers are designed to
carry standard-related information across long dependencies, influence the contextual
representations of each character, and ultimately generate segment decisions that match
the target standard. During testing, these markers are used to specify the desired segmen-
tation standard. Similarly, they are not taken into account when computing performance
scores.

3.5 Neural Network-Based Recognition Methods

BERT (Bidirectional Encoder Representations from Transformers) is a deep bidirec-
tional pre-trained language model based on the Transformer architecture, introduced by
Devlin et al. in 2018.

BiLSTM-CRF [18] is a promising deep learning-basedmethods in sequence labeling
tasks, which have been proved achieving many SOTA results. Yuqi Si et al. integrate
advanced neural network representation into clinical concept extraction and compare it
to traditional word embedding. They tried several embedding methods on four concept
extraction datasets. The results show that context embeddings pre-trained with large-
scale clinical corpora achieve new best performance in all concept extraction tasks [19].
Namrata Nath et al. proposed a multi-label named entity recognition (NER) approach
aimed at identifying entities and their attributes in clinical text. By introducing three
architectures, BiLSTM n-CRF, BiLSTM-CRF-SMAX-TF, and BiLSTM nCRF-TF, the
study was evaluated on the 2010 i2b2/VA and i2b2 2012 shared task datasets. The results
showed that the different models achieved remarkable success in the NER task [20].
BiLSTM-CRF combines the advantages of Bidirectional Long Short-Term Memory
(BiLSTM) and Conditional Random Field (CRF). It can effectively solve sequence
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labeling problems such as named entity recognition and part-of-speech tagging in the
field of natural language processing.

The BERT-BiLSTM-CRF framework is adopted in this study, which combines the
advantages of BERT as a feature extractor and BiLSTM-CRF as a sequence tagger to
capture context information and label dependencies more accurately.

The BERT-BiLSTM-CRF model is shown in (Fig. 3).

Fig. 3. The architecture of BERT-BiLSTM-CRF employed in this manuscript.

4 Evaluation

4.1 Datasets

In order to evaluate the method proposed in this paper, we conducted experiments
with eight BioNER datasets, and detailed information about the datasets adapted in
our evaluation are shown in Table 1.

We covert all datasets to BIO format, and since these datasets use various BioNER
labels to annotate entities, we classify them into six classes: cells, chemicals, diseases,
genes, proteins, and species. We standardized labels with the same meaning while
retaining other labels.
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Table 1. Biomedical NER datasets used in the experiments

Dataset Size Entity types & counts

BioNLP09 11356 sentences Protein (14963)

BioNLP11ID 5178 sentences Chemical (973), Protein (6551), Species (3471)

BioNLP13CG 6739 sentences Chemical (2270), Disease (2582), Cell (3492), Species
(1715), Gene (7908)

BioNLP13PC 5051 sentences Cell (1013), Chemical (3989), Gene (10891)

NCBI-disease 7287 sentences Disease (6881)

BC5CDR 13938 sentences Chemical (15935), Disease (12852)

BC4CHEMD 107208 sentences Chemical (84310)

CRAFT 21,000 sentences Chemical (6053), Cell (5495), Species (6868), Gene
(16064)

4.2 Evaluation Metrics

In the experimental design, we compared the performance difference between of multi-
corpus transferring method and the single-corpus training method in NER tasks. Specif-
ically, we used BERT-BiLSTM-CRF models as baseline models and compared them
with the following methods:

Single-corpus training: training BERT-BiLSTM-CRF models using data from a
single corpus.

Multi-corpus aggregation: training BERT-BiLSTM-CRF models after aggregating
data from multi-corpus.

Multi-corpus transferring with artificial tokens: an aggregation method that puts
artificial tokens before and after each sentence.

On the test set, we conducted comprehensive evaluations of all methods, focusing
on precision, recall, and F1-score.

4.3 Parameter Setting

Our experimental parameters are shown in Table 2.
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Table 2. Parameter setting in our experiment

Parameter Type Parameter setting

Model BioBERT-v1.1-pubmed

Train epoch 30

Maximum sentence length 128

Batch size 128

Eval step 100

Learn rate 3e−5

Hidden size 10

4.4 Result

In this section, we present and analyze the experimental results and compare our multi-
corpus transferring method with aggregate methods.

Multi-corpus Transferring Experiment Result. We conducted a permutation and
combinatorial data transferring study, which included different combinations of 8 major
data sets. Specifically, we examined various combinations of BC5CDR and BioNLP09,
BC5CDR and BioNLP11ID, BC5CDR and BioNLP13C, and so on. However, not all
possible combinations have been exhaustively tested, and we have selected a few for our
study. For example, we first test the combination effect of corpus without same entities.
For example, there are 2 kind of entities, Chemical, Disease in BC5CDR while there are
Protein in BioNLP09. No overlap between them. Then gradually increase the proportion
of corpus with some same entities to explore the effect of corpus quantity on the results.

In this study, we first focus on the combination of corpus without same entities.
We selected the BioNLP09 dataset and conducted transferring experiments with the
BC5CDR, BioNLP13CG, BioNLP13PC, NCBI-disease and CRAFT dataset. The fol-
lowing Table 3 shows the transferring results of BioNLP09 with different data sets, both
without and with artificial tokens.

The results show that for corpora that are no overlap entities, the method of directly
aggregating without adding artificial tokens has a negative effect on all F1 scores.
However, when we introduced artificial tokens, the multi-corpus transferring method
improved the F1 score of the aggregated arrangement with the BioNLP09 corpus by
about one percentage point without introducing negative effects. Compared with other
methods, our multi-corpus transferring method achieves better results.
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Table 3. Experimental results of multi-corpus transferring without same entities. Bold indicates
better results than other methods. F1 (tokens) represents results with artificial tokens, F1 (No-
tokens) represents results without artificial tokens. The abbreviations Bio09, Bio13CG, Bio13PC,
BC5, and CR respectively stand for BioNLP09, BioNLP13CG, BioNLP13PC, BC5CDR, and
CRAFT. Test data: BioNLP09.

Dataset F1 (tokens) F1 (No-tokens)

WordCharacterBERT [21] 0.8300

MO-MTM [22] 0.8476

MimicBERT [23] 0.8819

Ours

Bio09 0.8819

Bio09 + BC5 0.8847 (+0.0028) 0.8237

Bio09 + CR 0.8887 (+0.0028) 0.8332

Bio09 + BC5 + Bio13CG 0.8894 (+0.0075) 0.7410

Bio09 + Bio13CG + Bio13PC 0.8906 (+0.0087) 0.7288

Bio09 + BC5 + Bio13CG + CR 0.8943 (+0.0124) 0.8411

Bio09 + BC5 + Bio13CG + Bio13PC 0.8950 (+0.0131) 0.8221

Bio09 + Bio13CG + Bio13PC + CR 0.8952 (+0.0133) 0.8209

Bio09 + Bio13CG + Bio13PC + CR + NC 0.8925 (+0.0106) 0.8189

Bio09 + BC5 + Bio13CG + Bio13PC + CR + NC 0.8960 (+0.0141) 0.8115

Next, we conducted the transferring experiment of corpus with some same enti-
ties, including six data sets BC4CHEMD, BC5CDR, BioNLP11ID, BioNLP13CG,
BioNLP13PC and CRAFT. Various permutations of these datasets were aggregated
and finally tested on four datasets: BC5CDR, BioNLP11ID, BioNLP13CG, and
BioNLP13PC. Due to space limitations, only the results for BC5CDR and BioNLP11ID
are presented here. Table 4 and Table 5 show the transferring test results for BC5CDR
and BioNLP11ID respectively.

The results show that aggregation methods that do not use artificial tokens have a
negative effect in most cases, resulting in a decrease in results. Using the multi-corpus
transferring method, we find that the method is widely applicable to the result improve-
ment of corpus with some same entities. In the summary results of the four data sets, by
introducing artificial token methods, we achieved some level of performance improve-
ment for most of the summary arrangements without introducing negative effects. In
most aggregation arrangements, our approach is superior to other approaches.

Ablation Experiment. We performed ablation experiments on the BC5CDR,
BioNLP09, BioNLP11ID, BioNLP13CG, BioNLP13PC, NCBI-disease, BC4CHEMD,
and CRAFT data sets. First, we ran an experiment on each individual data set, comparing
without and with artificial tokens, the results of which are shown in Table 6. In most
datasets, the difference between the results with and without artificial tokens was not
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Table 4. Experimental results of multi-corpus transferring with same entities. Bold indicates bet-
ter results than other methods. F1 (tokens) represents results with artificial tokens, F1 (No-tokens)
represents results without artificial tokens. The abbreviations Bio11ID, Bio13CG, Bio13PC,
BC5, BC4, and CR respectively stand for BioNLP11ID, BioNLP13CG, BioNLP13PC, BC5CDR,
BC4CHEMD and CRAFT. Test data: BC5CDR.

Dataset F1 (tokens) F1 (No-tokens)

AutoNER [24] 0.8000

BNPU [25] 0.5920

BERT-ES [26] 0.7370

Conf-NPU [27] 0.8010

SciBERT-Base Vocab [28] 0.8811

Ours

BC5 0.8779

BC5 + Bio11ID 0.8856 (+0.0045) 0.8513

BC5 + CR 0.8901 (+0.0090) 0.8688

BC5 + Bio11ID + Bio13PC 0.8863 (+0.0052) 0.8712

BC5 + Bio11ID + CR 0.8900 (+0.0089) 0.8712

BC5 + Bio11ID + BC4 0.8893 (+0.0082) 0.8476

BC5 + Bio11ID + Bio13CG + CR 0.8897 (+0.0086) 0.8555

BC5 + Bio11ID + Bio13CG + Bio13PC + CR 0.8885 (+0.0074) 0.8510

BC4 + BC5 + Bio11ID + Bio13CG + CR 0.8892 (+0.0081) 0.8270

BC4 + BC5 + Bio11ID + Bio13CG + Bio13P + CR 0.8908 (+0.0097) 0.8276

Table 5. Experimental results of multi-corpus transferring with same entities. Bold indicates bet-
ter results than other methods. F1 (tokens) represents results with artificial tokens, F1 (No-tokens)
represents results without artificial tokens. The abbreviations Bio11ID, Bio13CG, Bio13PC,
BC5, BC4, and CR respectively stand for BioNLP11ID, BioNLP13CG, BioNLP13PC, BC5CDR,
BC4CHEMD and CRAFT. Test data: BioNLP11ID.

Dataset F1 (Tokens) F1 (No tokens)

D-MTM [22] 0.8173

MTM-CW [29] 0.8326

BioBERT [23] 0.8557

Ours

Bio11ID 0.8481

Bio11ID + BC4 0.8609 (+0.0052) 0.7759

Bio11ID + CR 0.8620 (+0.0063) 0.8073

Bio11ID + BC5 + CR 0.8610 (+0.0053) 0.8192

Bio11ID + BC5 + Bio13CG + CR 0.8699 (+0.0142) 0.8127

Bio11ID + BC5 + Bio13PC + CR 0.8484 0.7999

Bio11ID + BC5 + Bio13CG + Bio13PC + CR 0.8666 (+0.0109) 0.7932
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significant, suggesting that the inclusion of artificial tokens had no material effect on the
results because we did not include these tokens in the score calculation. However, some
datasets, such as BioNLP09, showed a slight performance improvement with the addi-
tion of artificial tokens, while BioNLP13PC showed a two percentage point performance
decrease with the addition of artificial tokens.

These experimental results show that the effect of adding artificial tokens in ablation
experiments on datasets varies fromdataset to dataset. Formost datasets, the introduction
of artificial tokens did not seem to affect the results. However, in certain cases, such as
BioNLP09 and BioNLP13PC, the inclusion of artificial tokens may have some impact
on performance.

Table 6. Comparison of individual data sets with and without artificial tokens. F1 (tokens) rep-
resents results with artificial tokens, F1 (No-tokens) represents results without artificial tokens.
Differ stands for difference between them.

Dataset F1 (Tokens) F1 (No tokens) Differ

BCCDR 0.8821 0.8779 0.0042

BioNLP09 0.8830 0.8644 0.0186

BioNLP11ID 0.8488 0.8481 0.0007

BioNLP13CG 0.8679 0.8743 0.0064

BioNLP13PC 0.8797 0.9028 0.0231

NCBI-disease 0.8764 0.8833 0.0069

BC4CHEMD 0.9146 0.9133 0.0013

CRAFT 0.8575 0.8547 0.0028

In addition, we performed an ablation-comparison experiment that retained only the
Chemical entity types in the BC5CDR, BioNLP11ID, BioNLP13CG, BioNLP13PC,
BC4CHEMD, and CRAFT data sets, and excluded the others. Due to space limitations,
only the results for BioNLP11ID and CRAFT are presented here. Table 7 and Table 8
in the following table represent the aggregation results of BioNLP11ID and CRAFT
respectively.

The experimental results show that the performance of our method can be improved
to some extent in most aggregate permutations of most datasets.

These experimental results underscore the universality of our approach, which can
indeed play an important role in corpus transferring.
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Table 7. Experimental results of multi-corpus transferring with only chemical entity. F1 (tokens)
represents results with artificial tokens, F1 (No-tokens) represents results without artificial tokens.
Bold indicates an increase or decrease of more than one percentage point compared to a single
corpus. The abbreviations Bio11ID, Bio13CG, Bio13PC, BC5, and CR respectively stand for
BioNLP11ID, BioNLP13CG, BioNLP13PC, BC5CDR, BC4CHEMD and CRAFT. Test data:
BioNLP11ID.

Dataset (Only-Chemical) F1 (Tokens) F1 (No-tokens)

Bio11ID – 0.6765

Bio11ID + BC5 0.7087 (+0.0322) 0.7103 (+0.0338)

Bio11ID + Bio13CG 0.7081 (+0.0316) 0.6917 (+0.0152)

Bio11ID + Bio13PC 0.6154 (−0.0611) 0.6861 (+0.0096)

Bio11ID + BC5 + CR 0.7031 (+0.0266) 0.6065 (−0.0700)

Bio11ID + Bio13CG + CR 0.6936 (+0.0171) 0.6200 (−0.0565)

Bio11ID + BC5 + Bio13CG + CR 0.7203 (+0.0438) 0.6316 (−0.0449)

Bio11ID + BC5 + Bio13PC + CR 0.7330 (+0.0565) 0.6367 (−0.0398)

Bio11ID + Bio13CG + Bio13PC + CR 0.7309 (+0.0544) 0.6070 (−0.0695)

Bio11ID + BC5 + Bio13CG + Bio13PC + CR 0.7220 (+0.0455) 0.6473 (−0.0292)

Table 8. Experimental results of multi-corpus transferring with only chemical entity. F1 (tokens)
represents results with artificial tokens, F1 (No-tokens) represents results without artificial tokens.
Bold indicates an increase or decrease of more than one percentage point compared to a single
corpus. The abbreviations Bio11ID, Bio13CG, Bio13PC, BC5, and CR respectively stand for
BioNLP11ID, BioNLP13CG, BioNLP13PC, BC5CDR, BC4CHEMD and CRAFT. Test data:
CRAFT.

Dataset (Only-Chemical) F1 (Tokens) F1 (No-tokens)

CR 0.8020

CR + BC5 0.8268 (+0.0248) 0.8176 (+0.0156)

CR + Bio11ID 0.8333 (+0.0313) 0.8148 (+0.0128)

CR + Bio13CG 0.8383 (+0.0363) 0.7981 (−0.0039)

CR + BC5 + Bio13PC 0.8365 (+0.0345) 0.7723 (−0.0297)

CR + Bio11ID + Bio13PC 0.8224 (+0.0204) 0.7414 (−0.0606)

CR + Bio13CG + Bio13PC 0.8353 (+0.0333) 0.7675 (−0.0345)

CR + BC5 + Bio11ID + Bio13CG 0.8242 (+0.0222) 0.7371 (−0.0649)

CR + Bio11ID + Bio13CG + Bio13PC 0.8258 (+0.0238) 0.7288 (−0.0732)

CR + BC5 + Bio11ID + Bio13CG + Bio13PC 0.8444 (+0.0424) 0.7068 (−0.0952)
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4.5 Discussion

In this paper, we present a simple but useful of multi-corpus transferring method for
biomedical named entity recognition. It is focusing on the reusability of existing human
annotated corpus.With the robust evaluation of ourmethod,wefind the following distinct
features:

Artificial token, e.g., ‘<corpus></corpus>’, could benefit the corpus transferring
comparing the direct combination of origin corpus. According to our ablation exper-
iments, our multi-corpus transferring method showed significant improvements in the
majority of combination results in two sets of experiments while direct transferring cor-
pus for new entity recognition task resulted in an average decrease to the baseline in two
sets of results.

No strict restriction for the corpus selection in our transferring. In real-world practice,
it is very hard to find an exactly matching entities from external source and we could
only identify a partial similar corpus in most cases. For example, in corpus BioNLP11ID
and BC5CDR. Even in some corpus there is no absolute similar entities but the text
with similar expressions would be also helpful for the performance enhancement. For
instance. BioNLP09 and BC5CDR do not share similar entities, yet performing multi-
corpus transferring on both of them still leads to performance improvement.

However, one drawback is in the case of low correlation between corpora, the multi-
corpus transferring effect may not be obvious, and other strategies may need to be
considered.

5 Conclusion

We conduct a study to solve the shortage of human annotated corpus in biomedical
domain from data perspective. A practical method was proposed in this manuscript to
reuse the existing public-available corpus to enhance the performance of biomedical
named entity recognition. The evaluation results illustrate the multi-corpus transferring
method presented in this paperwould enhance the originalBERT-BiLSTM-CRFmethod.
The ablation results prove our method could outperform traditional data combination
method.
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Abstract. With the advancement of training techniques, models such
as BERT and GPT have been pre-trained on massive unlabeled texts,
enabling effective learning of semantic representations of sentences and
incorporating a wealth of prior knowledge. Therefore, we utilized a pre-
trained model based on BART, called Joint entity Relation Extrac-
tion with BART (JREwBART), for entity relation extraction in medical
texts. Building upon the JREwBART model, we proposed the Pipeline
entity Relation Extraction based on the BART and Biaffine Transforma-
tion (PRE-BARTaBT) model. We evaluated the performance of these
two models on three Chinese medical datasets: SEMRC, CVDEMRC
(Cardiovascular/Stroke Disease Electronic Medical Record entity and
relation Corpus), and CMeIE. The experimental results demonstrate
the effectiveness of both models. Compared to the state-of-the-art base-
line model, Cas-CLN, JREwBART achieved an improvement of 0.71%,
1.64%, and 0.37% in terms of F1 score on the three datasets, respectively.
PRE-BARTaBT showed F1 score improvements of 0.81%, 2%, and 0.26%
on the same datasets, respectively.

Keywords: Entity relation extraction · Cardiovascular and stroke
information extraction · Pre-trained models

1 Introduction

Entity-relationship extraction is one of the classic tasks in the direction of
information extraction in Natural Language Processing (NLP), which refers to
identifying and extracting entities and relationships between entities from semi-
structured or unstructured text and presenting them in the form of structured
triples. In Chinese medical entity-relationship extraction data, there are many
problems of ternary entity overlapping and single corpus containing multiple
ternary groups, which bring great challenges to Chinese medical information
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extraction. Ternary entity overlap refers to the phenomenon of entity sharing
between ternaries, which is divided into three types: non-overlapping type (Nor-
mal), single entity overlap (SEO) and entity pair overlap (EPO). The Normal
type means that all the entities in the triples contained in the corpus participate
in entity pair matching only once in this corpus, and the entity pairs in the triples
have only one relationship in the whole corpus; the Single entity overlap type
means that at least one entity participates in two or more entity pair matches
in a corpus; and the Entity pair overlap type means that there are cases where
a certain entity pair has more than one semantic relationship in a single corpus
or multiple corpora.

To address the issue of entity overlap, we use the Joint Relation Extrac-
tion with BART-based Generation (JREwBART) model [3], which utilizes the
BART model [11] for generating entity relations. It takes unstructured medical
case text as the source input and constructs the target sequence using the indices
of the triplet elements implied in the text. We fine-tune BART by incorporating
strategies such as constrained decoding, encoding representation reuse, feature
fusion, and beam search to enhance the performance of the model. The autore-
gressive decoding process that utilises the model’s ability to generate the same
character as many times as needed is used to solve the entity overlap problem
and the multiple ternary problem described above. Although the JREwBART
model significantly reduces the candidate words of the model classifier through
constrained decoding, the randomly initialized weights responsible for relation
classification in the classifier contribute to an average proportion of over 34% in
the cardiovascular and cerebrovascular dataset used. These weight parameters
are trained relatively independently and cannot effectively capture the informa-
tion from the encoder-side input text through strategies such as encoding rep-
resentation reuse and multi-layer encoding feature fusion. To address this issue,
we propose the PRE-BARTaBT model, which optimizes and adjusts specific
subtasks separately, following a pipeline approach. We utilize the JREwBART
model as the framework for the entity recognition subtask, allowing the model
to focus more on conveying the information required for entity recognition and
reducing the impact of inconsistent task objectives on the model. By using the
generated entity indices and entity type sequences, we extract the feature vec-
tors of the entities from the encoded representation of the input sentence. These
feature vectors are concatenated with the soft labels of the relations and then
fed into a multi-head selection model and a biaffine transformation calculation
to determine the relations between arbitrary entity pairs.

In order to effectively address the above issues, we have made the following
contributions:

– For small-scale or datasets with a large number of relation types, we developed
the PRE-BARTaBT model based on the JREwBART model. By utilizing a
weight sharing strategy at the encoding layer, we enhanced the connection
between the named entity and relationship classification subtasks, leading to
further improvements in the model’s performance.
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– Experimental results demonstrate that our two models achieved excellent per-
formance on three Chinese medical text datasets: SEMRC [8], CVDEMRC [5]
and CMeIE [19,31]. In particular, the results on the CMeIE dataset indicate
a significant improvement in our approach compared to other methods.

2 Related Work

In the field of entity-relationship extraction, [25,29] investigated the application
of pre-trained models in the task of entity-relationship extraction and achieved
promising results. [23] utilized the seq2seq model and achieved competitive or
superior results compared to state-of-the-art methods on multiple named entity
recognition datasets. The rapid development of the entity-relationship extraction
task has also driven the research related to this task in the medical domain.
The research on entity-relationship extraction in the medical domain has gone
through a process similar to that of the research in the general domain, i.e.,
a gradual transition from machine learning-based approaches to deep neural
network-based approaches, and approaches based on fine-tuning of pre-trained
models.

2.1 Traditional Machine Learning Methods

Machine learning-based methods have demonstrated good performance in entity
recognition, thus Savova et al. [17] proposed a knowledge extraction method for
clinical texts by combining machine learning algorithms and rule-based methods
in the form of pipeline [2,14,27,30] to extract information from clinical records
and electronic medical records. Chang et al. [6] used a combination of rule-based
and Maximum Entropy (ME) based methods to sort out the sequential relation-
ships between events to assist doctors in clinical decision-making. Nikfarjam et
al. [15] proposed a combination of machine learning and graph-based reasoning
for different temporal relationships to assist doctors in clinical decision-making.
Yang et al. [24] combined Conditional Random Field (CRF) and specific rules
to extract relationships between events from the text of medical records. Seol
et al. [18] combined CRF and Support Vector Machine (SVM) models to detect
patient-related clinical events and their relationships, respectively.

2.2 Pre-trained Models Based Methods

With the development of pre-training technology, models represented by BERT
[9], GPT [16], RoBERTa [13], etc. are pre-trained on super-large scale unla-
belled text to learn the semantic representation of sentences, which contains a
large amount of a priori knowledge; these pre-training models are stacked with
the Transformer [20] model as a unit, and the model structure itself contains
a multi-head self-attention mechanism, which can obtain the contextual repre-
sentation information of the text and get rid of the dependence on manually
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constructed corpus features; in addition, the pre-training process is not spe-
cific to certain tasks, and only requires fine-tuning of the model in downstream
tasks, thus it has strong generality in many NLP tasks. In view of the excellent
performance of CasREL [22], TPLinker [21] and other models, some research
works have introduced and improved them for the characteristics of more fre-
quent overlapping of medical text entities and higher average number of ternary
groups in a single sentence corpus, e.g., Chang et al. [4] have made the following
improvements on the basis of CasREL: increase the number of candidate pri-
mary entities sampled, use the Conditional Layer Normalisation deep fusion of
main entity feature information and sentence information and the use of encoder
multilayer sentence feature representation weight fusion, etc., which improve the
model’s performance ability in Chinese medical text for the above two prob-
lems. The pre-trained models in the medical field include Bio-BERT [10], which
is pre-trained on the text data of English papers in the medical field, Clinical-
BERT [1], which extracts medical records from the MIMIC-III database to be
the pre-training corpus for the model, BEHRT [12], which is embedded based on
medical entities rather than words, and Chinese data based on Chinese medical
Q&A, EHRs, and medical encyclopaedias. MC-BERT [28], which is trained by
masking at the whole word and entity level, and so on.

3 PRE-BARTaBT Model Based on BART and Biaffine

There are a large number of single subject-to-multiple object cases in the text
of electronic medical records of cardiovascular and cerebrovascular diseases, and
the types of relationships between entities are more complex compared to the
commonly used datasets in the general domain, resulting in problems such as a
large number of triples in a single corpus and a more common overlap of entities
in triples in the corpus.

We propose the PRE-BARTaBT model based on the JREwBART model,
and its structure is illustrated in Fig. 1. Following a pipeline approach, the
PRE-BARTaBT model decomposes the entity relation extraction task into two
subtasks, namely entity recognition and relation classification. These subtasks
are controlled by the entity recognition and relation classification modules,
respectively.

3.1 Entity Recognition Module

Aiming at the characteristics of the electronic medical record data of cardio-
vascular and cerebrovascular diseases, such as the average number of ternary
groups and the serious problem of entity overlapping of ternary groups, JREw-
BART uses the seq2seq framework to complete the ternary group joint extraction
through the generative method. Benefiting from the generative decoding method
of BART, the model is able to decode a certain identical candidate word in the
candidate word list multiple times, which makes the model unnecessary to design
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Fig. 1. PRE-BARTaBT model structure diagram.

complex sequence annotation strategies when dealing with the ternary entity
overlapping problem.

The structure of the JREwBART model is shown in Fig. 2, the input sentence
is fed into the encoder to get the sentence encoding information, and then soft
fusion strategy is used to get the encoded representations of the sentence with
different depths; a specific start token <sos> is used as the input to the decoder,
and then the decoder uses the encoded representation of the source statement
and the embedded representation of the relation as the weights of entity and rela-
tion classifiers, respectively. The probability distribution of candidate words is
obtained using the softmax function. The most probable candidate word “brain”
is selected from them and added to the sequence headed by <sos> as the input
sequence of the decoder reasoning about the next word. This process is iterated
until the decoder reasons out the end marker <eos>.

The overall logic of the model is to use the unstructured medical record text
as the source input and the indexes of each element of the triad embedded in
the text to form the target sequence, fine-tuning the BART while improving
the model performance through strategies such as constrained decoding, coded
representation reuse, feature fusion, and beam search. The problem of entity
overlapping and multiple triples is addressed using an autoregressive decoding
process in which the model is able to generate the same character as many times
as needed.

In the PRE-BARTaBT model, the JREwBART model is employed for the
entity recognition module. The model utilizes an encoder to obtain the feature
vector HE of the input sentence. The decoder takes <sos> and HE as inputs and
performs inference until it generates the <eos> marker. To adapt the model for
entity recognition tasks, we replace the model’s target sequence, which consists
of elements of triples, with an indexed sequence formed by the entity and its
relation type labels in the order of their occurrence in the encoder input text.
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Fig. 2. JREwBART model structure diagram.

3.2 Relationship Classification Module

After obtaining the entities and entity types contained in the sentence through
the generative model based on the pre-trained BART, we use the multiple head
selection mechanism and biaffine attention to compute the semantic relationships
that exist between the generated entities with each other. The feature coding
layer of the relationship classification module is loaded with the model weights
for entity recognition and then continues to be trained according to the task.
Compared to re-training the BART coding layer, loading the trained model
weights allows the model to make use of the entity information learnt in the
entity recognition phase during the relationship classification computation and
strengthens the connection between the two tasks.

Multi-head Selection Mechanism. The multi-head selection mechanism
determines whether the “head” of each entity, referred to as the subject entity si,
has a semantic relationship represented by relation rj with the “head” of other
entities, referred to as the object entity oj . The results of this determination are
recorded as (oj , rj). The multi-head selection mechanism is employed to address
the issue of entity overlap.

Given an input sequence X, a set of relationships R, and a set of generated
entity indices E, the model aims to identify the semantic relationship rij ⊆ R
between the entity feature vector ei, i ∈ {0, 1, ..., n} and the feature vector ej , j ∈
{0, 1, ..., n} of other entities under the condition that the i-th entity is recognized
as the subject entity in the triple. The probability of the model discerning the
semantic relationship rij between two entity feature vectors is calculated using
the Eq. 1 to 5.

gi =
∑

softmax (ti) · T

N
(1)
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ei =
[
hei
0 + hei

−1

2
; gi

]

, i ∈ {0, 1..., n} (2)

Equation 1 represents the learning process of the entity label soft vector gi,
where ti represents the embedding vector of the i-th entity label. T is the vector
matrix of entity labels, and N represents the number of entity category labels in
the dataset. Equation 2 represents the computation process of the entity feature
representation vector, where hi represents the encoded representation of the i-th
character in the input sequence. hei

0 and hei
−1 respectively represent the encoded

representations of the boundaries of the i-th entity in the input sequence. [;]
denotes the concatenation of the two vectors, and n represents the number of
entities present in the current input sentence.

s (ej , ei, rij) = V · relu
(
Uej + Wei + b

)
(3)

Equation 3 represents the calculation process of the relationship score, where U,
V, and W represent the trainable parameter matrices, and b represents the bias
of the linear function. The calculation of ei follows Eq. 2.

p (head = ej , label = rij |ei) = σ (s (ej , ei, rij)) (4)

Lrel =
n∑

i=0

m∑

j=0

−logP (head = ej , label = rij |ei) (5)

Equation 4 represents the probability calculation process of the semantic
relationship rij between the main entity ei and other entities ej , given a specific
ei. It utilizes the sigmoid function. In addition, we define the cross-entropy loss
function of the relationship classification module under the multi-head selection
mechanism as Eq. 5. Whereas n represents the number of entities generated by
the entity recognition stage model, m denotes the number of triples where the
entity feature vector ei is considered as the subject entity.

Biaffine Attention. Dozat et al. [7] found that the Biaffine classifier can
more accurately parse out the syntactic relationship between core and depen-
dent words by using the Biaffine attention mechanism instead of the traditional
MLP-based multilayer perceptual attention in the dependent syntactic analysis
task; Yu et al. [26] introduced the Biaffine bisimulation attention mechanism
into the named entity recognition task by using a Biaffine classifier instead of a
bilinear classifier for the purpose of enhancing the interaction of the information
between the entity’s head and tail characters in the task of dealing with the
named entity recognition.

In Eqs. 6 and 7, FFNN_subject (·) and FFNN_object (·) represent two
separate feed-forward neural networks that operate on the main entity and the
guest entity respectively. ei and ej are entity vector representations obtained
through Eq. 2.

e
′
i = FFNN_subject (ei) (6)



A BART-Based Study of Entity-Relationship Extraction 89

e
′
j = FFNN_object (ej) (7)

sbia

(
e

′
i, e

′
j

)
= e

′
iUbiae

′
j + Wbias

(
e

′
i ⊕ e

′
j

)
+ bbia (8)

Equation 8 calculates the scores of the two entities on each semantic relation-
ship, where Ubias ∈ R

d×|R|×d and Wbias ∈ R
2d×|R|, d represents the dimension

of the feed-forward neural network layers and R represents the number of pre-
defined relationships in the dataset. The softmax function is then applied to
obtain the probability distribution of the two entities on the relation types. The
cross-entropy loss function is used, as shown in Eq. 10, which is the same as
Eq. 5.

P
′
(head = ej |ei) = softmax

(
sbia

(
e

′
i, e

′
j

))
(9)

L
′
rel =

n∑

i=0

m∑

j=0

−logP
′
(head = ej , label = rij |ei) (10)

4 Experiments

To validate the effectiveness of JREwBART and PRE-BARTaBT models, this
paper conducts four sets of entity-relationship extraction experiments for cardio-
vascular and cerebrovascular diseases on two datasets, SEMRC and CVDEMRC;
in order to validate the model’s extraction performance on ternary groups, the
experiments are completed and analysed in the complete dataset; in order to
validate the model’s performance against overlapping ternary groups of enti-
ties, and a single corpus containing multiple ternary groups, The dataset is cut
accordingly and experiments and analyses are completed; in order to verify the
model’s generalisation ability in medical data, the publicly available multi-source
medical text dataset CMeIE is selected for experiments and analyses.

4.1 Dataset

In this paper, the three datasets used were re-sized. The results of the dataset
size statistics are shown in Table 1.

4.2 Baseline

For the experimental analysis of the proposed entity-relationship extraction
model in the electronic medical record text of cardiovascular diseases, the fol-
lowing three models are selected as the control experimental group in this paper.

– An entity-relationship extraction model Lattice LSTM-Trans; using Lattice
LSTM model as an encoder fusing state transfer networks.
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Table 1. Database statistics.

Databases Categories Train set Valid set Test set

SEMRC Corpus 7,304 913 917
Triads 30,699 3,914 3,699
Sub-relation 40 40 40

CVDEMRC Corpus 4,856 614 607
Triads 20,311 2,659 2,465
Sub-relation 40 40 40

CMeIE Corpus 17,924 4,482 5,602
Triads 54,286 13,484 17,512
Sub-relation 44 44 44

– CasREL [22] model based on pre-trained BERT model combined with stacked
pointer network, converting multi-label classification task into binary classi-
fication task by stacking multi-layer pointer networks, and completing joint
decoding of guest entities and relationships.

– A Cas-CLN [4] model based on a pre-trained RoBERTa [13] model com-
bined with a cascaded pointer network and a conditional layer normalisa-
tion strategy, replacing BERT as an encoder to extract input text features
using a RoBERTa model with stronger modelling capabilities and containing
more prior knowledge, and using a conditional layer normalisation strategy to
deeply fuse sentence feature representations and main entity feature vectors.

4.3 Pre-training Nodes

The pre-training models used in the controlled experimental group in this section
are BERT and BART, and the pre-training nodes selected are BERT-base-
Chinese, BERT-large-Chinese, BART-base-Chinese, and BART-large-Chinese.
Because the accessible resources for pre-training the BERT model are relatively
abundant, in order to verify the impact of different pre-training strategies on
the cardiovascular entity relationship extraction task, pre-training nodes such
as ERNIE, MC-BERT and RoBERTa were added to the experimental group of
Cas-CLN models.

4.4 Main Results

The results of the JREwBART, PRE-BARTaBT and baseline models on the
SEMRC and CVDEMRC datasets are shown in Table 2, where the results can
be seen that the F1 values of the PRE-BARTaBT model on both datasets are
somewhat improved compared to the other methods.

Analysis of the experimental results reveals that the results of the pre-trained
model-based approach are significantly higher than those of the Lattice LSTM-
Trans model on all datasets, which suggests that the a priori knowledge learnt
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Table 2. Overall results of the model in the dataset.

Group Configure SEMRC CVDEMRC
Pre (%) Rec (%) F1 (%) Pre (%) Rec (%) F1 (%)

(a) Lattice LSTM-Trans 60.25 23.37 33.68 61.37 24.16 34.67
(b) CasRELBERT−base 59.02 62.52 60.72 62.89 57.60 60.13

CasRELBERT−large 61.72 65.14 63.38 64.27 59.71 61.91
(c) Cas-CLNBERT−base 59.49 62.23 60.83 59.49 62.23 60.83

Cas-CLNERNIE 58.75 63.34 60.96 63.40 59.88 61.59
Cas-CLNBERT−large 61.33 65.99 63.57 65.31 60.24 62.67
Cas-CLNRoBERTa 61.98 66.01 63.93 66.09 62.12 64.04
Cas-CLNMC−BERT 62.51 65.77 64.10 65.18 63.31 64.23

(d) JREwBARTBART−base 61.92 65.80 63.80 65.13 62.01 63.53
JREwBARTBART−large 62.33 66.37 64.28 66.01 62.69 64.31

(e) PRE-BARTaBTBART−base 58.78 67.83 62.98 60.08 69.22 64.33
PRE-BARTaBTBART−large 62.78 66.07 64.38 61.85 67.78 64.67

by pre-training from a large amount of unlabelled text enhances the model’s
semantic understanding of the input text when fine-tuned for the downstream
task.

Compared to the Cas-CLNBERT−large model, JREwBARTBART−large

improves the results on the two datasets by 0.71% and 1.64%, respectively,
potentially because the JREwBART uses autoregressive decoding to cope with
the problem of ternary entity overlap without any restriction on the number of
times, reducing the number of classifiers from the number of predefined relations
to 1, and using the restricted decoding approach to significantly reduce the range
of the classifiers’ candidates to solve the problem of signal sparsity and at the
same time improve the correctness of the model prediction. By comparing the
improvement of the JREwBARTBART−large model’s results on the dataset with
the size of the dataset (CVDEMRC dataset training corpus of 4, 856 entries,
with a 1.64% improvement in the results; SEMRC dataset training corpus of
7, 304 entries, with a 0.71% improvement in the results), it can be seen that as
the dataset size decreases, the more obvious the improvement is for the signal
sparsity problem caused by cascading pointer annotation networks.

The PRE-BARTaBTBART−large model achieves improved F1 values com-
pared to the JREwBART model on both datasets. It proves that PRE-
BARTaBT’s strategy of dividing the entity-relationship extraction task into two
word tasks and by sharing the coding layer weights is effective. The reason for this
improvement is that in the JREwBART model, although a constrained decod-
ing strategy is used to reduce the candidate word range significantly, the indices
corresponding to semantic relations still occupy over 34.35% of the probability
distribution space of the candidate words. The weights of the classifier responsi-
ble for calculating the relation indices are learned through random initialization,
which cannot capture the source sentence’s feature representation learned by the
encoder, resulting in a decrease in classifier performance. This negative impact
affects the entire sequence generation process of the model. To mitigate the
performance degradation caused by random initialization, the PRE-BARTaBT
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model divides the entity relation extraction task into two modules: named entity
recognition and relation classification. During the constrained decoding process,
only entity labels with fewer entities are generated, and the model strengthens
the connection between the two subtasks by sharing the weights of the encod-
ing layer. In this way, the model can focus more on the entity recognition task
and utilize the shared encoding layer weights to enhance the performance of the
relation classification task. Through this approach, the PRE-BARTaBT model
effectively reduces the negative impact of random initialization on classifier per-
formance and achieves overall improvement.

Table 3. Statistics of specific types and quantities of datasets.

Category SEMRRC CVDEMRC
Train set Dev set Test set Train set Dev set Test set
Num Pro Num Pro Num Pro Num Pro Num Pro Num Pro

1 2,681 36.71 344 37.68 343 37.40 1,687 34.74 221 35.99 213 35.09
2 1,288 17.63 173 18.95 174 18.97 862 17.75 110 17.92 106 17.46
3 752 10.30 81 8.87 76 8.29 487 10.03 60 9.77 69 11.37
4 647 8.86 82 8.98 81 8.83 506 10.42 61 9.93 65 10.71
≥5 1,936 26.51 233 25.52 243 26.50 1,314 27.06 162 26.38 154 25.37

NOR 2,788 38.17 392 42.94 385 41.98 1,754 36.12 279 45.44 272 44.81
SEO 4,000 54.76 499 54.65 496 54.09 2,665 54.88 326 53.09 327 53.87
EPO 2,205 30.19 101 11.06 101 11.01 1,747 35.98 58 9.45 56 9.23

Total 7,304 79.96 913 10.00 917 10.04 4,856 79.91 614 10.10 607 9.99
Triplet 30,699 80.13 3,914 10.22 3,699 9.66 20,311 79.85 2,659 10.45 2,465 9.69

4.5 Overlapping Triples of Different Types of Entities

The extraction results of the model for different types of entity overlap triples on
the SEMRC dataset are shown in Fig. 3, where it can be seen that the extraction
results of the Lattice LSTM-Trans model for the Non-Entity Overlap Type (Nor-
mal), Entity Pair Overlap (EPO), and Single-Entity Overlap Type (SEO) test
corpora show a gradually decreasing trend, which indicates that the extraction
difficulty of the model for these different types of overlapping triples are pro-
gressively more difficult to extract. As shown in Table 3, in the SEMRC dataset
testing data, the proportion of Normal type triple corpus is 41.98%, the Entity
Pair Overlap type (EPO) triple corpus is 11.01%, and the Single Entity Overlap
type (SEO) triple corpus is 54.09%. Compared to the Cas-CLN model, the PRE-
BARTaBT model only exhibits a decrease of 1.37% in extraction performance
in Normal type triples, but demonstrates enhancements of 3.02% and 2.46% in
SEO and EPO types, respectively. In comparison to the JREwBART model,
although the PRE-BARTaBT model shows a downward trend of 4.92% in EPO
type, the lower proportion of EPO type corpus and the increase of 4.37% and
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2.49% in Normal type and SEO type respectively compensate for this. Thus,
the overall performance of the PRE-BARTaBT model on the SEMRC dataset
is superior to the other two models. The results show that the PRE-BARTaBT
model can effectively alleviate the triple entity overlap problem in small-scale
cardiovascular and cerebrovascular disease datasets, and can also obtain good
results for non-entity overlap type triplets.

Fig. 3. Model Extraction Results for Different Entity Overlap Types on the SEMRC
Dataset.

4.6 Different Number of Triads

In order to verify the extraction effect of the model on the corpus containing
different numbers of triples, the corpus in the SEMRC dataset was divided into
five subsets according to the number of triples contained, such as containing 1,
2, 3, 4 triples, and containing five or more triples. Figure 4 shows the model’s
extraction results on each subset. The PRE-BARTaBT model achieves the best
results in all the corpus subsets except for the number of triples 4, especially
when the number of triples is five or more, it still shows high extraction results.
The proportion of the corpus with five or more ternary groups in the CVDEMRC
and SEMRC constructed based on EHR data is more than 25%, which is the
focus and difficulty in the research of CVD entity relationship extraction and it
indicates the necessity of our work.
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Fig. 4. Model extraction results for corpus containing different number of triples.

4.7 Generalization Results of the Model on CMeIE

In order to test the generalisation ability of the JREwBART and PRE-
BARTaBT models for medical data, the Chinese medical dataset CMeIE, which
was used for Task 2 of the CHIP-2020 evaluation, was selected for entity-
relationship extraction experiments. The main results are shown in Table 4
below.

Table 4. Model results on the CMeIE dataset.

Data Group Models Precision (%) Recall (%) F1 (%)
CMeIE (a) Lattice LSTM-Trans 87.54 15.86 26.86

(b) CasRELBERT-large 60.61 55.09 57.72
(c) Cas-CLNBERT-large 60.94 57.28 59.05
(d) JREwBARTBART-large 58.16 60.74 59.42
(e) PRE-BARTaBTBART-large 55.93 63.12 59.31

It can be seen from the experimental results that the JREwBART and PRE-
BARTaBT models achieved a certain improvement in the results of extracting
F1 values in the CMeIE dataset compared to the baseline Cas-CLN model,
indicating that the two models have a certain degree of generalisation ability in
medical data.

5 Conclusion

In this paper, we first propose applying JREwBART to the study of cardiovascu-
lar disease entity relationship extraction in electronic medical records (EMRs).
Additionally, we introduce the PRE-BARTaBT model as an optimization of the
JREwBART model. Extensive experiments are conducted to demonstrate the
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effectiveness of these models in addressing the issue of entity overlap. In JREw-
BART, the model addresses the challenges of entity overlap and multiple triplets
by utilizing the autoregressive decoding process, which allows for multiple gen-
erations of the same character. In PRE-BARTaBT, we employ JREwBART for
entity recognition and enhance the extraction of semantic relations between two
entities through the use of multi-head selection mechanisms and biaffine atten-
tion in the classification task. The pipeline approach has shown excellent per-
formance in addressing overfitting issues in small-scale datasets. However, the
independent nature of subtasks in the pipeline also introduces the problem of
error propagation, which to some extent limits the extraction performance of the
model. In future, we aim to design extraction algorithms that are more tailored
to the data characteristics based on specific needs. Overall, our approach outper-
forms the baseline model CASCLN on the SEMRC, CVDEMRC, and CMeIE
datasets. The results across different sentence types indicate that our model
performs exceptionally well in complex and challenging scenarios.
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Abstract. Automatic extraction of biomedical relation from text becomes crit-
ical because manual relation extraction requires significant time and resources.
The extracted medical relations can be used in clinical diagnosis, medical knowl-
edge discovery, and so on. The benefits for pharmaceutical companies, health
care providers, and public health are enormous. Previous studies have shown that
both semantic information and dependent information in the corpus are helpful to
relation extraction. In this paper, we propose a novel neural network, named RD-
MAGCN, for biomedical relation extraction. We use Multi-head Attention model
to extract semantic features, syntactic dependency tree, and Graph Convolution
Network to extract structural features from the text, and finally R-Drop regular-
ization method to enhance network performance. Extensive results on a medical
corpus extracted from PubMed show that our model achieves better performance
than existing methods.

Keywords: Regularized Dropout · Multi-head Attention · GCN · Biomedical
Relation Extraction

1 Introduction

Biomedical relation extraction is an important natural language processing task, which
aims to quickly and accurately detect the relations between multiple entities related
to medicine from the mass medical information on the Internet, it plays an important
role in clinical diagnosis [1], medical intelligence question and answer [2], and med-
ical knowledge mapping [3]. This research can provide technical support for medical
institutions and drug companies, and has great benefits for public health. At present,
there are some knowledge bases of entities and relations, but more biomedical relations
exist in cross-sentence documents, which brings challenges to the research of relation
extraction.

With the rise of the neural network, the deep learning model has been widely used
in medical relationship extraction tasks. The existing methods are mainly divided into
two categories: semantic-based model and dependency-based model. Semantic-based
models, such as Convolutional Neural Network (CNN), and Recurrent Neural Network
(RNN), can obtain context information effectively by encoding text sequences. Ekbal
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et al. [4] used the CNN model to classify relations by using the features extracted from
the convolution kernel andmax-pooling layer. As a feature extractionmethod, CNNhas a
good performance, but it is more suitable to capture local information features. To better
capture long-distance information and reflect the importance of different information,
the attention mechanism [5] attracts researchers’ attention. Zhou et al. [6] proposed an
attention-based Bi-directional Long Short-Term Memory (BI-LSTM) framework that
automatically focuses on words that have a decisive effect on classification and captures
important semantic information in sentences. At present, the attention-based Bi-LSTM
model has become an important method for natural language processing tasks.

In order to fully mine the deep information in sentences, syntactic dependency struc-
ture is applied to the relation extraction task. Guo et al. [7] fused the attentionmechanism
based on the shortest dependency path with CNN and RNN to obtain keywords and sen-
tence features; Zhang et al. [8] used Graph Convolutional Network to extract relations
based on the Lowest Common Ancestor (LCA) rule of entities. Miwa and Bansal [9]
encoded the Shortest Dependency Path (SDP) between two entities by using Tree LSTM.
Peng et al. [10] divided the input graph into two directed acyclic graphs (Dags), and Song
et al. [11] proposed the Graph Recurrent Network model (GRN) to obtain the semantic
structure. In addition to using parsers to construct dependency graphs, researchers also
begin to pay attention to and propose methods to construct dependency graphs auto-
matically. Jin et al. [12] proposed a complete dependency forest model, to construct
a weight map that adapts to terminal tasks, Guo et al. [13] proposed a “Soft pruning”
strategy, the neural network of Attention-Guided graph is used to represent the graph
better. Besides, Jin et al. [14] proposed a method to generate dependency forests con-
sisting of the semantic-embedded 1-best dependency tree. Qian et al. [15] proposed
an auto-learning convolution-based graph convolutional network to perform the convo-
lution operation over dependency forests and Tang et al. [16] devised a cross-domain
pruning method to equalize local and nonlocal syntactic interactions. In the general
domain, Chen et al. [17] proposed to exploit the sequential form of POS tags and nat-
urally fill the gap between the original sentence and imperfect parse tree. Zhang et al.
[18] proposed a dual attention graph convolutional network with a parallel structure to
establish bidirectional information flow.

Based on the above ideas, we propose a novel end-to-end model called Multi-head
Attention and Graph Convolutional Networks with R-Drop (RD-MAGCN) for N-ary
document-level relation extraction, which combines semantic information and syntactic
dependency information. First, we interact the input representation and the relation
representation with Multi-head Attention Layer to obtain the weighted context semantic
representation of the text. Tomake full use of syntactic dependency information in cross-
sentence extraction, we construct document-level syntactic dependency trees and encode
them with GCN to solve the long-distance dependence problem. Then, Concatenate the
two representations and feed them into the decoder. Finally, the network is enhanced by
using the R-Drop mechanism and the biomedical relation is extracted.

The major contributions of this paper are summarized as follows.

• We propose a novel end-to-end model (RD-MAGCN) that effectively combines
context semantic information and syntactic information.
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• We introduce a regularization method for the randomness of dropout, which can
enhance the performance of the network.

• We evaluate the performance of our model, the experimental results show that the
performance of this model exceeds that of previous models.

2 Method

In this section,we introduce our proposedmethod. The input of ourmodel is the long doc-
uments containing the relations between medical entities, and the output is a certain type
of relation. There are four steps in our method: (1) preprocessing the corpus, including
instance construction and other information extraction; (2) constructing document-level
syntactic dependency tree; (3) building Attention and Graph convolution Networks for
relation extraction; (4) utilizing R-Drop mechanism to enhance the network.

2.1 Data Preprocessing

For the texts in the corpus, we carry out a series of preprocessing processes. We first
use the Stanford CoreNLP toolkit to parse each document in the corpus to obtain the
syntactic parsing results and POS tags for each word. Then we construct instances for
each pair of entities marked in the dataset, each instance contains the tokens of the text,
the directed dependency edges of each word, the POS tags of each word, the absolute
position of each entity, and the relation type used as the label.

POS tags and entity positions are used in the Input Representation Layer to enrich the
text information, and the syntactic dependency information is used to build dependency
trees and encodes them with GCN to capture long-range dependency information in the
text.

2.2 Dependency Tree Construction

Syntactic analysis [19] is one of the important techniques in natural language processing,
which is used to determine the dependencies between words in sentences. The depen-
dency tree is a kind of syntactic analysismethod,whichmainly expresses the dependence
relation between the words. In order to get the syntactic dependency feature of docu-
ments, we introduce a document-level dependency tree, in which the nodes represent
words and the edges represent the intra-sentence and inter-sentence lexical dependency
relations. As shown in Fig. 1, in this paper, we use the following three types of edges
between nodes to construct the dependency trees:

1. Syntactic dependency edges: the results of parsing text by Stanford CoreNLP toolkit.
They denote the dependencies between the words in a sentence.

2. Adjacent sentence edges: we connect the dependency roots of two adjacent sentences
using the adjacent sentence edges. The dependency between two sentences is indi-
cated by “next”. By using adjacent sentence edges, the entire document can form a
connected graph.

3. Self-node edges: each node in the dependency tree has a self-node edge, which allows
the model to learn about the node itself during training.
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Fig. 1. An example of a constructed dependency tree consisting.

2.3 Model Structure

In this paper, we propose a novel model, Attention and Graph Convolutional Networks
with R-Drop (RD-MAGCN), for N-ary document-level relation extraction. As shown in
Fig. 2, the overall framework of our model consists of five parts: Input representation
layer, Bi-LSTM layer, Multi-head Attention layer, GCN layer, and output layer. In addi-
tion, we utilize the R-Drop mechanism to enhance the networks and further improve the
performance. The next few sections will describe the details of our model.

InputRepresentationLayer. For the specific domain of biomedical research, we intro-
duce theBio-BERTpre-trained languagemodel [20] as the text representation encoder of
Multi-headAttentionLayer.However, sinceBERTand the improved pre-trainingmodels
based on BERT use Word-Piece as the word segmentation method, and our dependency
tree uses the entire words as nodes, we choose the ELMo pre-training model [21] to
represent the input of GCN Layer. Furthermore, we enrich the representation of text
with additional information, enabling the model to mine deeper semantics. POS tagging
can strengthen the features of text, and position embedding can allow the model to locate
the entities and better learn the information of the context near the entities. Therefore,
our Input Representation Layer is divided into two parts, the embedding of Multi-head
Attention layer is concatenated by Bio-BERT embedding, POS embedding, and position
embedding:

w1 = [
wBio−BERT ;wPOS;wposition

]
(1)

The embedding of GCN Layer is concatenated by ELMo embedding, POS
embedding, and position embedding:

w2 = [
wELMO;wPOS;wposition

]
(2)
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Fig. 2. Overview of our model.

Bi-LSTMLayer. RNN is very commonly used inNLP, it can capture the information of
the previous text in the sentence, and LSTM utilizes the gating mechanism [22] to solve
the problems of vanishing gradient, exploding gradient, and long-distance dependence
that exist in RNN. Therefore, LSTM is suitable for handling document-level tasks. In
this paper, we use two LSTMs, forward and backward, to encode two different input
representations to obtain representations that contain both the preceding and the follow-
ing information. We specify that the hidden state of the forward LSTM is hft and the
backward LSTM is hbt , the final hidden state is concatenated as:

ht =
[
hft ; hbt

]
(3)

Multi-head Attention Layer. The attention mechanism has gradually become more
and more important in NLP. The attention mechanism is the focus on the input weight
distribution, which can enable themodel to learnmore valuable information and improve
the performance of relation extraction. Following Li et al. [23], we build Multi-head
Attention Layer that interacts with relation representations. Based on the idea of TransE
[24],we regard relation representation as to the difference between entity representations:

wrelation = wtail − whead (4)

When there are only two entities, the relation representation is denoted by the tail
entity minus the head entity.When there are three entities such as drug, gene, and variety,
we use the third entity representation (variety) minus the first entity representation (drug)
as the relation representation.

We then use normalized Scaled Dot-Product Attention to compute a weighted score
for the interaction of text with relation representations:

Attention(Q,K,V ) = softmax

(
QKT

√
d

)
V (5)

where Q indicates query, from the output of Bi-LSTM Layer, represented as sequences
of text. K and V indicate key and value, from relation representation. d is the dimension
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of the vector and
√
d is the scaling factor. The introduction of relation representation

allows the model to give higher weight to text representations that are closer to the
relation representation, which is helpful for relation extraction.

Eventually, concatenate the results of n heads:

h = [h1; h2; . . . ; hn] (6)

where n is set to 5 in our experiments. Multiple heads allow the model to learn relevant
information from different representation subspaces. Finally, we perform max pooling
to get the output hatt of Multi-head Attention Layer.

GCNLayer. GCN(Graph convolutionNetwork) [25] is a natural extensionofConvNets
on the graph structure, which canwell extract the spatial structure features of images. The
application of GCN to the syntactic dependency tree can extract the syntactic structure
features of the text and solve the problem of long-distance separation of entities in
document-level relation extraction.

In this paper,Weconvert the constructed document dependency tree into an adjacency
matrix A, where Ai,j = 1 indicates that there is a dependency edge between word i and
word j. Following Zhang et al. [8], we set the adjacencymatrix as a symmetricmatrix, i.e.
Ai,j = Aj.i, and then we add self-node edges for each node, i.e. Ai,i = 1, for information
about the node itself. Furthermore, we normalize the numerical values in the graph
convolution to account for the large variation in node degrees in the dependency tree
before adopting the activation function. At last, the graph convolution operation for node
i at the l-th layer with the adjacency matrix of the dependency graph transformation can
be defined as follows:

h(l)
i = ρ(

∑n
j=1 AijW (l)h(l−1)

j

di
+ b(l)) (7)

where h(l−1)
i and h(l)

i denotes the input and the output of node i at the l-th layer. And

the inputs of GCN Layer are the outputs of the Bi-LSTM Layer h(0)
1 , . . . , h(0)

n , then the

outputs h(L)
1 , . . . , h(L)

n are obtained through the graph convolution operation. Wl is the

weightmatrix, b(l) is the bias vector, di =
n∑

j=1
Aij is the degree of node i in the dependency

tree for normalization, and ρ is the activation function.
Following Lee et al. [26], we also extract representations of entity nodes and con-

catenate them with representations of documents to highlight the role of entity nouns
in the text structure and improve the performance of relation extraction. Similarly, we
perform max pooling to get the output hGCN of GCN Layer.

OutputLayer. In this paper, ourOutputLayer is a two-layer perceptron.Weconcatenate
the outputs of the two main modules to get hfinal and then calculate as follow:

hfinal = [hGCN ; hatt] (8)

h1 = ReLU
(
Wh1hfinal + bh1

)
(9)
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h2 = ReLU
(
Wh2h1 + bh2

)
(10)

In the end, we utilize the Softmax function to h2 to determine the relation category:

o = Softmax(Woh2 + bo) (11)

2.4 R-Drop Mechanism

The dropout technique [27] accomplishes implicit ensemble by randomly hiding some
neurons during neural network training. Liang et al. [28] introduce a simple regular-
ization technique upon dropout, named as R-Drop. R-Drop works on the output of
sub-models sampled by dropout. In each mini-batch training, each data sample under-
goes two forward passes to obtain two sub-models. R-Drop forces two distributions of
the same data samples outputted by two sub-models to be consistent with each other
by minimizing the bidirectional Kullback-Leibler (KL) divergence between the two dis-
tributions. Finally, the two sub-models are used to jointly predict to achieve the effect
of model enhancement. Results on multiple datasets show that R-Drop achieves good
performance.

In this paper,we use theR-Dropmechanism to enhance ourmodel. For the samebatch
of data, pass the model forward twice to get two distributions, denoted as P1(yi|xi) and
P2(yi|xi). For each sub-model, we use cross-entropy as the loss function. Bidirectional
KL divergence is then used to regularize the predictions of the two sub-models. Finally,
the two are merged as the final loss function at the training steps:

LCE = −logP1(yi|xi) − logP2(yi|xi) (12)

LKL = 1

2
(DKL(P1||P2) + DKL(P2||P1)) (13)

L = LCE + αLKL (14)

where α is the weight coefficient, which we set to 0.5 in the experiments. In this way,
R-Drop further regularizes the model space and improves the generalization ability of
the model. This regularization method can be universally applied to different model
structures, as long as there is randomness that can produce different outputs.

3 Experiments

3.1 Dataset

In this paper, we validate our method using the dataset introduced in Peng et al. [10],
which contains 6987 drug-gene-mutation ternary relation instances and 6087 drug-
mutation binary relation instances extracted from PubMed. The data we used were
extracted by cross-sentence N-ary relation extraction, which extracts the triples in the
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biomedical literature. Table 1 shows the statistics of the data. Most instances are doc-
uments that contain multiple sentences. There are a total of 5 relation types for labels:
“resistance or nonresponse”, “sensitivity”, “response”, “resistance” and “None”. Fol-
lowing Peng et al., we perform relation extraction for all instances according to binary
classification and multi-classification, respectively, and obtain the results using a five-
fold cross-validation method. In the case of binary classification, we classify all relation
types as positive examples and "None" labels as negative examples.

Table 1. The statistics of the instances in the training set.

Data Ternary Binary

Single 2301 2728

Cross 4956 3359

Cross-percentage 70.1% 55.2%

3.2 Parameter Settings

This section describes the details of our model experiment setup. We tune the hyperpa-
rameters based on the results on the validation set, and the final hyperparameter settings
are set as follows: the dimension of Bio-BERT pre-trained language model is 768, the
dimension of ELMo pre-trained language model is 1024, the dimension of POS embed-
ding obtained by StanfordNLP and position embedding are both 100. The dimension
of the Bi-LSTM hidden layer and GCN layer are both 500, the number of heads of
Multi-head Attention layer is 5, and the dimension is 1000. All dropouts in the model
are set to 0.5. We train the model with a batch size of 16 and the Adam optimizer [29]
with a learning rate: lr = 1e − 4.

We evaluate our method using the same evaluation metric as the previous research,
that is the average accuracy of five cross-validations.

3.3 Baselines

In order to verify the effectiveness of the model in this paper, the model in this paper is
compared with the following baseline models:

1. Feature-Based (Quirk and Poon, 2017) [3]: a model based on the shortest
dependency path between all entity pairs;

2. DAG LSTM (Peng et al., 2017) [10]: contains linear chains and the graph structure
of the Tree LSTM;

3. GRN (Song et al., 2018) [11]: a model for encoding graphs using Recurrent Neural
Networks;

4. GCN (Zhang et al., 2018) [8]: a model for encoding pruned trees using Graph
Convolutional Networks;
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5. AGGCN (Guo et al., 2019) [13]: a model that uses an attention mechanism to build
dependency forests and encodes it with GCN;

6. LF-GCN (Guo et al., 2020) [30]: a model for automatic induction of dependency
structures using a variant of the matrix tree theorem;

7. AC-GCN (Qian et al., 2021) [15]: a model that learns weighted graphs using a 2D
convolutional network;

8. SE-GCN (Tang et al., 2022) [16]: a model that uses a cross-domain pruning method
to equalize local and nonlocal syntactic interactions;

9. CP-GCN (Jin et al., 2022) [14]: a model that uses dependency forests consisting
of the semantic-embedded 1-best dependency tree and adopts task-specific causal
explainer to prune the dependency forests;

10. DAGCN (Zhang et al., 2023) [18]: a model that uses a dual attention graph con-
volutional network with a parallel structure to establish bidirectional information
flow.

3.4 Main Results

In the experiments, we count the test accuracies of ternary relation instances and binary
relation instances in binary and multi-class, respectively. In the binary-class experiment,
the intra-sentence and inter-sentence situations are counted separately. The results are
shown in Table 2.

As can be seen from Table 2, the performance of neural network-based methods is
significantly better than that of feature-based methods. Thanks to the powerful encod-
ing ability of GCN for graphs, GCN-based methods generally outperform RNN-based
methods. Except the ternary sentence-level in Binary-class, our model RD-MAGCN
achieves state-of-the-art performance.

We first focus on the multi-class relation extraction task. On the ternary relation
task, RD-MAGCN achieves an average accuracy of 90.2%, surpassing the previous
state-of-the-art method CP-GCN by 5.3%. On the binary relation task, RD-MAGCN
achieves an average accuracy of 90.3%, surpassing AC-GCN by 9.3%. This is a huge
improvement, mainly due to the greater gain effect of the R-Drop mechanism on the
model in multi-classification tasks.

For the binary-class relation extraction task, although our model RD-MAGCN does
not have such a large increase as the multi-classification task, it almost still exceeds
CP-GCN under different tasks. The above results show that our method of combining
contextual semantic features and text structure features and enhancing the model with
regularization methods is effective. Next, we will introduce the ablation study we have
done for each module of the method.
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Table 2. Compare with related work.

Model Binary-class Multi-class

Ternary Binary Ternary Binary

Intra Inter Intra Inter Inter Inter

Feature-Based 74.7 77.7 73.9 75.2 − –

DAG LSTM 77.9 80.7 74.3 76.5 – –

GRN 80.3 83.2 83.5 83.6 71.7 71.7

GCN 85.8 85.8 83.8 83.7 78.1 73.6

AGGCN 87.1 87.0 85.2 85.6 79.7 77.4

LF-GCN 88.0 88.4 86.7 87.1 81.5 79.3

AC-GCN 88.8 88.8 86.8 86.5 84.6 81.0

SE-GCN 88.7 88.4 86.8 87.7 81.9 80.4

CP-GCN 89.5 89.1 87.3 86.5 84.9 80.1

DAGCN 88.4 88.4 85.9 86.2 84.3 78.3

RD-MAGCN 88.7 89.5 87.8 88.6 90.2 90.3

3.5 Ablation Study

In this section, we have proved the effectiveness of each module in our method. First, we
investigate the role of the three main modules of R-Drop, Multi-head Attention Layer
and GCN Layer. We define the following variants of RD-MAGCN:

w/o R-Drop: this variant denotes using the traditional single-model cross-entropy loss
function instead of two sub-models ensembles at training steps.
w/o Attention: this variant denotes removing Multi-head Attention Layer and the
corresponding inputs from the model.
w/o GCN: this variant denotes removing GCN Layer and the corresponding inputs from
the model.
w/o wrelation: this variant denotes that Self-Attention is applied instead of introducing
relation representation in Multi-head Attention Layer, that is, Q, K, and V all from text
representation.

Table 3 shows the results of the comparison of RD-MAGCN with four variants.
It can be seen from Table 3: (1) The effect of the R-Drop regularization method

to enhance the model is obvious, especially in the multi-class relation extraction task.
Removing the R-Drop module has a performance loss of 4.9% and 6.5% in multi-class
ternary and binary tasks, respectively. We speculate the reason is that in the binary
classification task, due to its low difficulty, the constraint of KL divergence makes the
distribution of the output of the two sub-models roughly the same, so the ensemble effect
is not obvious. In multi-classification tasks, the ensemble effect will be better. (2) The
performance of removingMulti-head Attention Layer model drops in each task, indicat-
ing the usefulness of interactive contextual semantic information. (3) The performance
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of removing GCN Layer model drops across tasks indicating the usefulness of syntactic
structure information. Moreover, the performance of inter-sentence relation extraction
drops more than that of intra-sentence relation extraction, indicating that GCN can cap-
ture long-distance structure features. (4) No introduction of relation representations in
Multi-head Attention Layer degrades the results, indicating that the interaction of rela-
tion representations allows the model to pay more attention to the texts that are closer
to the relation.

Table 3. The effect of the main modules of RD-MAGCN.

Model Binary-class Multi-class

Ternary Binary Ternary Binary

Intra Inter Intra Inter Inter Inter

RD-MAGCN 88.7 89.5 87.8 88.6 90.2 90.3

w/o R-Drop 88.3 88.5 86.9 88.2 85.3 83.8

w/o Attention 86.3 86.2 84.7 84.6 86.9 86.0

w/o GCN 88.2 88.3 86.8 86.6 88.2 89.1

w/o wrelation 88.3 89.2 87.3 88.3 89.2 89.7

Next, we discuss the effects of the different input representations. We utilize the
same model for the following types of inputs:

Table 4 shows the comparative performance of different input representations.

Original: The inputs to our proposedmodel. The input ofMulti-head Attentionmodule
is the concatenation of Bio-BERT, POS and position embedding, and the input of the
GCN module is the concatenation of ELMo, POS and position embedding.

Variant 1: The input of Multi-head Attention module is the concatenation of BERT,
POS embedding, position embedding, and the input of the GCN module is the
concatenation of ELMo, POS embedding, position embedding.

Variant 2: The input ofMulti-headAttentionmodule is the concatenation ofBio-BERT,
POS embedding, and the input of the GCN module is the concatenation of ELMo, POS
embedding.

Variant 3: The input ofMulti-headAttentionmodule is the concatenation ofBio-BERT,
position embedding, and the input of the GCN module is the concatenation of ELMo,
position embedding.

Variant 4: The input of Multi-head Attention module is Bio-BERT, and the input of
the GCN module is ELMo.

FromTable 4, we can see that: Bio-BERT, a domain-specific language representation
model pre-trained on the large biomedical corpus, outperforms traditional BERT in
the task of biomedical relation extraction. Bio-BERT enables a better understanding
of complex biomedical literature. Besides, POS embedding and position embedding
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Table 4. The effect of the input representation on performance.

Model Binary-class Multi-class

Ternary Binary Ternary Binary

Intra Inter Intra Inter Inter Inter

RD-MAGCN 88.7 89.5 87.8 88.6 90.2 90.3

Variant 1 88.5 89.3 87.0 88.1 89.5 89.6

Variant 2 88.6 89.2 87.3 88.3 89.9 90.0

Variant 3 88.1 89.1 87.5 88.2 88.8 89.2

Variant 4 88.3 88.7 87.1 87.7 88.8 88.7

provide additional information for the model, which can help the model to better learn
the semantics and structure of the text and locate the entities that appear in the text.

4 Conclusions

In this paper, we propose a novel end-to-end neural network named RD-MAGCN for
N-ary document-level relation extraction.We extract weighted contextual features of the
corpus via Multi-head Attention Layer that interacts with relation representations. We
extract the syntactic structure features of the corpus through the syntactic dependency
tree and GCN Layer. The combination of the two types of features can make the model
more comprehensive. In addition, we ensemble the two trained sub-models through the
R-Drop regularization method, and let the two sub-models jointly predict the relation
type, which effectively enhances the performance of the model. Finally, we evaluate
the model on multiple tasks of the medical dataset extracted from PubMed, where our
RD-MAGCN achieves better results.

Our research improves the accuracy of biomedical relation extraction, which is help-
ful for other tasks in the medical field and the development of intelligent medicine. In
future research, we will focus on applying more comprehensive techniques such as
introducing medical knowledge graphs to study biomedical relation extraction more
deeply.
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Abstract. Biomedical causal relation extraction is an important task. It aims to
analyze biomedical texts and extract structured information such as named enti-
ties, semantic relations and function type. In recent years, some related works
have largely improved the performance of biomedical causal relation extraction.
However, they only focus on contextual information and ignore external knowl-
edge. In view of this, we introduce entity information from external knowledge
base as a prompt to enrich the input text, and propose a causal relation extrac-
tion framework JNT_KB incorporating entity information to support the under-
lying understanding for causal relation extraction. Experimental results show that
JNT_KB consistently outperforms state-of-the-art extractionmodels, and the final
extraction performance F1 score in Stage 2 is as high as 61.0%.

Keywords: Causal Relation Extraction · BEL Statement · Entity Information ·
External Knowledge

1 Introduction

In recent years, the biomedical text mining technology has made remarkable progress,
especially in named entity recognition, relation extraction and event extraction [1–3].
Among them, causal relation extraction is one of the most complex tasks in biomedical
text informationmining [4]. It is critical to the analysis andunderstandingof complexbio-
logical phenomena in the biomedical field, which helps to reveal key information about
biological processes, disease development, and drug action [5]. The task of biomedical
causal relation extraction was proposed by BioCreative1 community in 2015, aiming
to extract causality statements from biomedical literature and generate corresponding
Biological Expression Language (BEL) statements.

BEL [6] is a language that represents scientific discoveries in the field of biomedicine
by capturing causal relationships between biomedical entities. Figure 1 illustrates the
extraction of the BEL statements from biomedical texts and the simplified SBEL state-
ments introduced in Sect. 3.2. BEL statements mainly includes three parts: BEL Term,

1 https://biocreative.bioinformatics.udel.edu/.
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Function type and Relation type [7]. We leave the three parts’ details for BEL statement
in the appendix.

However, in order to improve the expression efficiency in the biomedical literature,
abbreviations or aliases are often used instead of complete full names [8],which increases
the difficulty in understanding the meaning of entities. It is found that the function of
entity is not only determined by context, but also closely related to the entity itself [9,
10].

Moreover, it is known that the integration of external knowledge in biomedical
information extraction can make the encoder produce richer semantic representation in
embedded space [11–13]. There are two main ways to integrate knowledge:

(1) Direct injection of external knowledge as word embedding. Li et al., 2020 [14]
propose a BiLSTM network with the integration of KB information represented by
the word embedding. Chen et al., 2018 [15] propose a approach for evaluating the
semantic relations in word embeddings using external knowledge bases.

(2) Text concatenation of external knowledge. BioKGLM [16] propose to enrich a con-
textualized language model by integrating a large scale of biomedical knowledge
graphs. Yuan et al., 2020 [17] propose a approach for knowledge graph construction
based on unstructured biomedical domain-specific contexts.

Due to the absence of a large amount of entity information in experimental corpus,
it is difficult to understand the function and meaning of entity [18, 19]. In this paper,
we propose JNT_KB, which combines the original sentence and corresponding entity
information in external biomedical knowledge base as the input of encoding model,
and uses the joint model for causal relation extraction. The experimental results on
BEL corpus show that JNT_KB effectively improves the overall performance of causal
relation extraction.

SEN-ID:10004206
ADAM 23 / MDC3 , a human disintegrin that promotes cell 

adhesion via interaction with the alphavbeta3 integrin through an RGD-

independent mechanism.

T1  GOBP:cell adhesion T2  HGNC:ADAM23 T3  HGNC:ITGB3

SBEL1 <T3 T1 increases  complex None>

SBEL2 <T2 T1 increases complex None>

BEL
complex(p(HGNC:ADAM23),p(HGNC:ITGB3))

increases bp(GOBP:cell adhesion)

increases

BEL Statement

Function: complex

Term

Relation Namespace

complex( p(HGNC:ADAM23) , p(HGNC:ITGB3) ) bp(GOBP:cell adhesion)

Fig. 1. A BEL statement example. The top part describes the process of converting a sentence
into a BEL statement and SBEL statements with the corresponding subjects and object identified
in the same color. The bottom part describes the components of the BEL statement.
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2 Related Work

In this section, we reviews briefly related work to biomedical causal relation extraction,
which can be broadly divided into two types: event-centric and entity-centric.

The event-centric approach aims to map events extracted from the biomedical liter-
ature onto entity functions and relations, which are then translated into BEL statements.
Choi et al. [22] develop a system targeting generation of BEL statements by incorpo-
rating several text mining systems. However, the system is limited to identifying events
involving specifically proteins and genes only. BELMiner [20] proposes a rule-based
[21] causal relation extraction system to extract biological events and formalize them as
BEL statements. But, the system suffers from rapid scaling of biomedical text. Lai et al.,
2016 [23] use a SRL-based [24] approach to extract the events structure for BEL state-
ments. But in the BioProp corpus [25], there are sentences without subject-verb-object
structure, which decreases the performance of the approach.

The entity-centric approach directly extracts the entity functions and causality
between entities, and then assembles them into BEL statements. Liu et al., 2019 [26]
propose a deep learning-based approach to extract BEL statements with biomedical enti-
ties. But they do not tackle complex functions and nested relations. Following Liu et al.,
2019 [26], Shao et al., 2021 [27] apply SBEL statements to enhances the expressivity of
relations between entities, including the complex functions. In light of previous work, Li
et al., 2023 [28] propose a joint learningmodel, which combines entity relation extraction
and entity function detection to improve the performance of biomedical causal relation
extraction. However, the recall rate of function detection subtask decreases significantly,
due to the lack of entity information in the corpus.

Above all, they focus on text information between entities but ignore the semantic
role of entity itself in biomedical causal relation extraction.

TrkA stimulation up-regulates the 

expression of the anti-apoptotic 

Bcl-2 family members, Bcl-2,

Bcl-XL, and Bfl-1.

1. Corpus

HGNC:NTRK1 

NTRK1 - Neurotrophic 
receptor tyrosine kinase 1

BCL2- BCL2 apoptosis 
regulator

2. Instance
[CLS] [F1] [F2] #TrkA# stimulation up-

regulates the expression of the anti-apoptotic 

Bcl-2 family members, @Bcl-2@, Bcl-XL,

and Bfl-1. [SEP] #Neurotrophic receptor 
tyrosine kinase 1# and @BCL2 apoptosis 
regulator@ [SEP]

act(p(HGNC:NTRK1))

increases r(HGNC:BCL2)

KBs

HGNC:BCL2

4. BEL

Pre-trained Langage Model

FC FC

RE-

SoftMax

Func1-

SoftMax

Func2-

SoftMax

increases act None

3. RE and FD

Fig. 2. An example for integration of external knowledge. We show the process of linking
entity information from external knowledge bases, and use JNT_KB to obtain the predicted BEL
statement finally.
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3 Methodology

In this section, we introduce the details of JNT_KB. We first describe the system frame-
work and the notations, including how to represent entities, relations and functions in
BEL statements. Then we detail the two tasks: Relation Extraction (RE) task and Func-
tion Detection (FD) task, followed by the overall training objective. Last, we introduce
the method for evaluating causal relation extraction tasks.

3.1 System Framework

As shown in Fig. 2, we construct the causal relation extraction framework with entity
information, which consists of the following steps:

(1) Acquisition of external knowledge: Following Liu et al., 2019 [26] and Lai et al.,
2019 [29], we identify entity mention from the sentence in the corpus and link it to
entities in the namespace.

(2) Construction of instance: We get the full entity name from the external knowledge
base (KBs) and concatenate it with the original sentence to construct a new input
instance.

(3) Joint extraction of causality: Follwing JNT [28], we carry out RE and FD subtasks
in the input instances based on BioBERT [5].

(4) BEL statement set: According to the relation type and function type, we assemble
BEL statements predicted by JNT_KB.

3.2 Notations

JNT_KB is trained on a labeled BEL corpus leveraging the external knowledge base

K. Formally, let S = {si}|S|
i=1 be a batch of sentences and Ei = {

eij
}|Ei|
j=1 be all named

entities in si, where eij is the j-th entity in si. For each sentence, we convert it to BEL
statement, and then decompose to SBEL statement(s). We enumerate all quintuples
(SBEL statements) <eij, eik , rijk , funcij, funcik> and link entity pairs (eij, eik) to their
corresponding full name. Where eij and eik refer to entities corresponding to subject
and object, and funcij and funcik represent the functions of the subject and object, and
rijk indicates the relation type between eij and eik . Then we obtain a tuple set Ti =
{
tijk = (si, eij, eik , rijk , funcij, funcik)|j �= k

}
for each sentence and the overall tuple set

T = T1 ∪ T2 · · · ∪ T|S| for this batch.

3.3 RE and FD Task

RE task aims at finding a single interaction or regulatory relation between two ormultiple
biomedical entities. FD task aims at expressing the status information of the entitys
in BEL statements. Figure 3 describes an example of RE and FD task, and gives the
process of biomedical causal relation extraction. We input the instance to BERT’s word
segmentation tool [30] to generate the input sequence represented byword segmentation.
We use BioBERT to encode each sentence si and obtain a hidden states sequence H =
{c, f 1, f 2, h1, h2, · · · , hN }, where N denotes the number of tokens in the sentence [25].
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The goal of RE and FD tasks are equivalent to maximizing the output y =
softmax(f (·)), where f (·) indicates a classifier [31, 32].

As shown in Fig. 3, in practice, three softmax classifiers are used to classify relation
type, subject function type and object function type respectively, in respect to relation

label set Lr = {
l1, l2, · · · , lmr

}
and function label set Lf =

{
l1, l2, · · · , lmf

}
. . The

classifiers’ outputs [yr , yf1, yf2] can be formulated as:

yr = softmax(Wrc + br)

yf 1 = softmax(Wf f 1 + bf )

yf 2 = softmax(Wf f 2 + bf ) (1)

whereWr ∈ R
dz×mr ,Wf ∈ R

dz×mf , dz is the dimension of the BioBERT embeddings,mr

= 3 (relation types: increases, decreases, no_relation),mf = 7 (function types: complex,
pmod, deg, tloc, sec, act, None), br , bf are the bias. The gold label corresponding to the
predicted output

[
yr, yf 1, yf 2

]
is

[
ŷr, ŷf 1, ŷf 2

]
.

SEN-ID:10005980
[CLS] [F1] [F2] #gene# stimulation up-regulates the expression of the 

anti-apoptotic gene family members, @gene@, gene, and gene. [SEP]

#Neurotrophic receptor tyrosine kinase 1# and @BCL2 apoptosis 
regulator@ [SEP]

Pre-trained Langage Model

Fully Connected Layer Fully Connected Layer

RE-

SoftMax

Func1-

SoftMax

Func2-

SoftMax

increases act None

Fig. 3. An example of JNT_KB. For the subject and object in each input instance, we add special
symbols “#” and “@”at the beginning and endof the entities, and the full nameof the corresponding
entity is also identified with the same special symbol.

Overall Training Objective. We train the relation and function representations of the
entity pairs based on entity information.

In practice, we use the cross-entropy loss [5, 33] of RE and FD tasks as follows:

L = −
|S|∑

i=1

N∑

n=1

(

mr∑

m=1

ŷm,r log ym,r +
mf∑

m=1

wmŷm,f 1 log ym,f 1 +
mf∑

m=1

wmŷm,f 2 log ym,f 2)

(2)

where N is the length of the input token sequence, wm ∈ R
mf is the weight of the m-th

function type. Empirically, we assign different weights to different function types in the
loss of entity functions [7, 26]. The overall training objective of JNT_KB adopts the
Adam algorithm [31] to optimize the loss and the loss function is used to update model
parameters.
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4 Experiment

In this section, experimental corpus, hyperparameter setting and experimental results
will be introduced.

4.1 Experimental Corpus

Databases such asNCBI2, PubMed, andUMLSprovide researcherswith rich and reliable
biomedical resources, and API interfaces make these resources easier for developers to
use and integrate into their own applications.

BEL corpus is labeled with four entity types: GENE, DISEASE, CHEMICAL and
BPRO, and obtains biomedical entity nicknames from some external knowledge base.
In order to disambiguate biomedical entities, six namespaces are defined in the BEL
corpus, corresponding to six different external knowledge bases, including HGNC3,
MGI4, EGID5, GOBP6, ChEBI7 andMeSH8.We leave the details of external knowledge
bases in the appendix.

By linking the namespace to the external knowledge base, we obtain entity infor-
mation more efficiently and accurately, and reduce the possibility of introducing error
information. Moreover, we leave the BEL corpus statistics in the appendix.

4.2 Experimental Setting

OurMethod.We take the JNTmodel proposed by Li et al., 2023 [28] as the benchmark
model, which has achieved good performance in BEL extraction task.

We term a variant of JNT_KB in order to explorewhether entity names in the external
knowledge base contain richer information than entity mentions in the corpus:

(1) JNT_KB using the joint model with the entity full name.
(2) JNT_ENT using the joint model with the entity mention in the original sentence.

Model Hyperparameter Settings. In practice, our model is consistent with the JNT
modelwhen setting the super parameters. It can highlight the impact of entity information
on the model and is used to ensure the fairness of comparison.

Specifically, the maximum sequence length does not exceed 128 for the model con-
taining 107M parameters, and we set the batch size to 16. For the BEL corpus, we train
JNT_KB for 3 epochs with a linear warmup and linear decay learning rate schedule and
a peak learning rate of 1e−5. And the development set ratio is 0.1. Empirically, we set
the class weight of function type to [1, 3]9.

2 https://www.ncbi.nlm.nih.gov/.
3 https://www.genenames.org/.
4 https://www.informatics.jax.org/.
5 https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html.
6 http://geneontology.org/.
7 https://www.ebi.ac.uk/chebi/init.do.
8 https://www.nlm.nih.gov/mesh/meshhome.html.
9 The weight is a hyper-parameter manually tuned on the development set.

https://www.ncbi.nlm.nih.gov/
https://www.genenames.org/
https://www.informatics.jax.org/
https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html
http://geneontology.org/
https://www.ebi.ac.uk/chebi/init.do
https://www.nlm.nih.gov/mesh/meshhome.html
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Evaluation Levels and Stage. The official evaluation defines six evaluation levels:
Term, Function, Relation, BEL, Function Secondary and Relation Secondary level for
BEL statements. We show the details of the BEL evaluation levels in the appendix. The
performance is measured in terms of standard P/R/F1 [26].

We evaluate the BEL statement extraction task on the test set in two stages [28]: Stage
1 and Stage 2, as shown in Table 1. Neither entity type nor entity position is provided in
Stage 1, only entity type but no entity position is provided in Stage 2.

Table 1. The evaluation stage.

Evaluation stage Entity type Entity position Operation

Stage1 × × We construct entity recognition and alignment
as, i.e. Gnormplus [34], tmChem [35] and
Dnorm [36]

Stage2
√ × We find the unaligned entities through

dictionary search [37]

4.3 Experimental Result

Stage 2 Performance Comparison. Stage 2 performance comparison aims to demon-
strate that integrating entity full name into the model can indeed improve the extraction
performance.

We compare the performance among JNT_KB, JNT_ENT and JNT in Stage 2 pre-
dicted on the test set. Table 2 lists the performance comparison under the seven evaluation
levels.

According to Table 2, we can know that:

(1) In the FD subtasks, according to FS and Func evaluation level, the JNT_KB model
improves its performance significantly. Although the precision is reduced, the final
harmonic average F1 score is still better than the other two models. It indicates
that integrating entity information can effectively improve the recall rate of FD sub-
tasks, and entity information in external knowledge base contain more information
affecting FD subtasks than entity mentions.

(2) In relation to RE subtasks, according to RS, Rel and BEL(Rel) evaluation level, the
performance improvement of JNT_KBmodel is smaller than that of FD subtask, but
it also improves the recall rate of relation extraction tasks.

(3) JNT_KB model has better performance than the other two models on BEL evalu-
ation level. By analyzing the increase of F1 score from BEL(Rel) to BEL of the
three models respectively, JNT increases by 3.6%, JNT_ENT increases by 4.4% and
JNT_KB increases by 6.4%. It shows that the integration of entity information can
significantly improve the performance of FD subtasks, thus improving the overall
performance of BEL statement extraction.
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Stage 1 Performance Comparison. Stage 1 performance comparison aims to explore
the effect of noisy data on the model without gold entities.

As shown in Table 3, we compare the performance difference between the JNT_KB
and JNT models in Stage 1.

Table 2. Performance comparison among JNT, JNT_ENT and JNT_KB in Stage 2, and the
standard deviation of F1 score of the five training sessions is shown in parentheses.

Evaluation
level

JNT JNT_ENT JNT_KB

P R F1 P R F1 P R F1

Term 98.5 85.7 91.7(±1.03) 98.4 86.2 91.9(±1.97) 98.5 87.0 92.4(±1.34)

FS 96.2 27.7 42.9(±3.72) 85.5 45.8 59.5(±5.02) 76.5 57.3 65.4(±3.09)

Func 84.2 29.2 43.2(±5.60) 72.6 47.2 57.1(±4.19) 65.1 50.5 56.9(±3.12)

RS 100.0 89.1 94.2(±0.72) 99.8 89.6 94.4(±1.30) 100.0 89.5 94.4(±1.15)

Rel 82.5 66.9 73.8(±1.01) 84.0 68.3 75.3(±1.87) 83.2 71.9 77.1(±1.96)

BEL(Rel) 59.1 47.9 52.9(±0.95) 60.7 49.0 54.2(±0.98) 59.1 50.8 54.6(±1.53)

BEL 62.9 51.3 56.5(±1.09) 65.4 53.1 58.6(±1.93) 65.7 57.0 61.0(±1.53)

Table 3. Performance comparison between JNT and JNT_KB in Stage 1.

Evaluation level JNT JNT_KB

P R F1 P R F1

Func 66.1 18.4 28.7(±1.8) 49.6 42.3 45.6(±3.8)

Rel 50.9 44.9 47.6(±1.2) 43.4 49.6 46.3(±0.2)

BEL(Rel) 34.8 30.7 32.6(±1.4) 29.9 34.2 31.8(±0.6)

BEL 39.6 35.2 37.2(±1.2) 34.4 39.5 36.8(±1.0)

(1) At the Func evaluation level, the recall rate of JNT_KBmodel is significantly higher
than that of JNT model, reaching 42.3%, while the precision is low. However, the
F1 score of JNT_KB model is 16.9% points higher than that of JNT model. This
indicates that the JNT_KB model has certain advantages in the FD subtask.

(2) At the Rel and BEL(Rel) evaluation level, the recall rate performance of JNT_KB
model is higher than that of JNT model. However, due to the low precision of
JNT_KB model, the final F1 score is 1.3% points lower than JNT model in Rel
evaluation level.

(3) In terms ofBELevaluation level, the F1 score of JNT_KBmodel is 0.4%points lower
than that of JNT model. This indicates that the JNT_KB model is more dependent
on the entity recognition results and more sensitive to the generated noise, which to
some extent affects its performance on the BEL evaluation standard.
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Performance Comparison with Other Systems. We compare the performance of the
system proposed in this paper with that of other systems.

In order to ensure the consistency of standards, only six official evaluation levels at
the BEL level are compared. We compare F1 scores of each evaluation level in Stage 1
and Stage 2 respectively.

From the results shown in Table 4:

(1) In Stage 1, the performance of JNT_KB was slightly lower than that of JNT model.
The F1 scores of the two evaluation levels (FS and Func) of JNT_KB at the function
level are the highest, and the F1 scores of the two evaluation level (RS and Rel) at
the relation level are second or third only to the optimal performance. This indicates
that the integration of entity information can still improve the performance of FD in
Stage 1, but the final BEL statement extraction performance is slightly lower than
that of JNT because it has little impact on relation extraction.

(2) In Stage 2, JNT_KB achieves the current optimal performance at the BEL evalua-
tion level. Although the performance in Term and RS evaluation levels is slightly
lower than the current optimal performance, the performance in FS, Func and Rel
evaluation levels is far higher than the second-best system performance.

(3) Based on the performance differences between the two subtasks, it is found that
JNT_KB system can significantly improve the performance of FD subtask stably,
and has relatively little impact on the performance of RE subtask. It shows that
more information related to entity function is implied in the external knowledge
introduced.

4.4 Discussion and Analysis

In this section, we first conduct studies to explore how entity information in external
knowledge base contribute to the performance of FD subtasks. Then we give a analysis
on how entity information impact the performance with some examples.

The performance evaluation results of various function types of JNT and JNT_KB
in Stage 2 are listed in Table 5.

As shown in Table 5:

(1) The recall rates of all function types in JNT_KB are significantly improved, espe-
cially the recall rate of act and complex types, which account for a large number, far
exceeds JNT.

(2) In terms of precision, the precision scores of act, sec and tloc in JNT_KB are lower
than JNT, but not to a low value. In addition, the improvement effect of recall rate
is obvious, and the overall performance of the final function detection is better than
JNT.

An Example Shows Why Recall Rates in FD Subtasks Increase. Take the sentence
(SEN-ID: 10005980) “TrkA stimulation up-regulates the expression of the anti-apoptotic
Bcl-2 family members, Bcl-2, Bcl-XL, and Bfl-1.” for example. In JNT_KB model,
we link the entity “TrkA” to the external knowledge base and obtain its full name
“neurotrophic receptor tyrosine kinase 1”. Almost all kinases in BEL corpus have act
function, so that JNT_KB can correctly identify the function of the entity.
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Table 4. Performance comparison with other systems.

System Term FS Func RS Rel BEL

(a)Stage 1

BELMiner [20] 62.9 55.4 42.6 73.3 49.2 39.2

Event-based [22] 34.0 10.0 8.6 41.4 25.1 20.2

BelSmile [23] 45.5 – 13.3 – 28.7 27.8

Att-BiLSTM [26] 58.6 34.3 17.7 62.3 31.6 21.3

SBEL-BERT [27] 59.8 59.6 28.5 72.2 40.4 30.1

JNT [28] 68.4 41.5 28.7 82.6 47.6 37.2

JNT_KB 70.3 64.1 45.6 82.4 46.3 36.8

(b)Stage 2

BELMiner [20] 82.4 56.5 30.0 82.4 65.1 25.6

Event-based [22] 54.3 26.1 20.8 61.5 43.7 35.2

BelSmile [23] 52.7 – 23.7 – 38.6 37.6

Att-BiLSTM [26] 97.2 34.8 26.6 96.5 65.8 46.9

SBEL-BERT [27] 94.2 63.2 47.9 95.8 74.3 54.8

JNT [28] 91.7 42.9 43.2 94.2 73.8 56.6

JNT_KB 92.4 65.4 56.9 94.4 77.1 61.0

Table 5. We compare the performance of the Func evaluation level of JNT and JNT_KB in Stage
2.

Evaluation level Percentage JNT JNT_KB

P R F1 P R F1

act 36.8 73.5 21.5 33.2 51.9 55.6 53.6

complex 41.4 80.0 6.2 11.4 100.0 33.8 50.5

deg 6.9 100.0 60.0 75.0 100.0 76.0 86.1

pmod 5.7 69.3 33.3 45.0 88.4 66.7 75.9

sec 4.6 100.0 80.0 88.9 82.4 80.0 81.0

tloc 4.6 98.2 40.0 56.8 73.1 40.0 51.6

Func 100.0 84.2 29.2 43.2 65.1 50.5 56.9

The Introduction of Entity Information from External Knowledge Base Reduces
the Precision of FD Subtasks. Take this sentence (SEN-ID: 10004324) “CTLA4-Ig
fusion protein effectively blocked allergen-induced production of IL-5 and IL-13 in
bronchial explants from atopic asthmatics.“ for example. IL5 and IL13 have no function
in this sentence. But in the JNT_KB model, they are recognized as having sec function.
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In BEL corpus, most interleukins have sec function, so the full names of IL5 and IL13
in this sentence will mislead JNT_KB.

According to the analysis, adding the external knowledge information provides
JNT_KB with rich knowledge information, but it also brings noise to FD subtasks.
The experimental results show that JNT_KB benefits more from external knowledge
information, thus cancelling out some noise interference.

5 Conclusion

In this paper, we present JNT_KB, a framework for causal relation extraction task to
improve the performance of BEL statement extraction via using entity information from
external knowledge base. We demonstrate the effectiveness of our method on BEL
corpus, including RE and FD subtasks. The experiment results show that JNT_KB out-
performs all baselines at the BEL evaluation level in Stage 2, especially in FD subtasks,
which means that JNT_KB better expresses the status information of entitys in BEL
statements. But, we still discuss here the limitations of the proposed JNT_KB:

Firstly, we don’t consider the self-relations in the causal relation extraction, but there
is a special relationship between an entity and itself, i.e. ‘p(HGNC:CTNNB1, pmod(P,
S, 37)) increases deg(p(HGNC:CTNNB1))’.

Secondly, we need to consider FD subtasks in the few-shot setting, including deg,
pmod, sec and tloc function types.

Findly, although JNT_KB performs well on the BEL corpus, for the massive
biomedical literature, we need more knowledge information to enhance the BEL corpus.

Funding. This research is supported by the National Natural Science Foundation of China
[61976147; 2017YFB1002101] and the research grant of The Hong Kong Polytechnic University
Projects [#1-W182].

Appendix

A Description for BEL Statement
According to the components of BEL statement, whichmainly includes three parts: BEL
Term, Function type and Relation type. Next, the three parts are described in detail.

Term. Biomedical entities in BEL statements are represented by BEL terms, which
mainly includes two categories. a() represents enrichment degree of proteins, and p()
represents cell cycle or disease process.

Function. Table 6 describes the BEL function types involved in this paper.
The complex function type may modify one or more BEL terms, where the order

of BEL terms does not affect the expression of function information. The act function
type integrates cat, kin, act and tscript to express the functions of entity catalysis and
activation.
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Table 6. BEL function types

Function type Abbreviation Definition Function example

complexAbundance complex Represents the
enrichment
degree of
molecular
complex of
entities or
molecular
complex of
multiple
entities mixed

complex(p(MGI:Itga8),p(MGI:Itgb1))

proteinModification pmod Represents
covalent
modification of
a protein

p(MGI:Cav1,pmod(P))

degradation deg Represents the
frequency or
enrichment of
physical
degradation

deg(a(CHEBI: ‘hyaluronic acid’))

translocation tloc Represents a
change of
position for an
entity

tloc(p(MGI:Stk16))

cellSecretion sec The specific
direction of
entity position
movement is
from
intracellular to
extracellular,
i.e. the
secretion
process

sec(p(MGI:Il6))

molecularActivity act Represents the
frequency of
events caused
by the activity
of the protein

act(p(MGI:Prkd1))

Relation. The relationship in the BEL statement represents the causal relationship that
exists between the subject and the object.We use two causal relationship types: increases
and decreases.
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“A increases B” indicates that an increase in A will cause an increase in B, or a
decrease in A will cause a decrease in B. “A decreases B” indicates that an increase in
A causes a decrease in B, or a decrease in A causes an increase in B.

B BEL Corpus. As shown in Table 7, there are fewer relation types decreases than
increases. It also shows that act function type occupies the largest proportion in BEL,
far more than complex function type which occupies the second place.

C External Knowledge Base. As shown in Table 8, different namespaces correspond
to different biomedical knowledge bases.

(1) The HGNC (HUGOGene Nomenclature Committee) database, which is a basic and
authoritative database, provides official and authoritative naming of human genes,
so that the physical information is reliable and standard.

(2) MGI (MGI Mouse Genome Informatics) integrates almost all the mouse gene infor-
mation and provides a relatively perfect description to each gene. For example, the
full name of the entity MGI: Hras in the laboratory mouse gene database is “Harvey
rat sarcoma virus oncogene,” which stands for Harvey rat sarcoma virus oncogene.

(3) EntrezGene IDs is a search engine used by NCBI to syndicate searches of numer-
ous biomedical databases. NCBI numbers different genes, Rnas, and proteins with
unique numbers that are EntrezGene numbers.

(4) Gene Ontology Resource is the largest source of gene function information in the
world. It is stored in human-readable and machine-readable forms and records the
detailed information of each entity, such as entity name, definition, association, etc.

(5) ChEBI collects a large number of chemical entities related to biomedicine, recording
in detail the basic information of each chemical entity and the specific chemical
structure formula and other rich data.

(6) The MeSH database not only contains the introduction of disease type entities, but
also constructs the entity tree structure of the system according to the relevant subject
terms.

Table 7. Corpus statistics

Statistics BEL

Training Set Test Set

Sentence 6353 105

BEL statement 11,066 202

SBEL statement 10,097 223

Relation Type 10,097 203

(continued)
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Table 7. (continued)

Statistics BEL

Training Set Test Set

increases 7,382 150

decreases 2,715 53

Function Type 7,759 87

act 5,497 32

complex 971 36

tloc 71 4

pmod 832 5

deg 137 6

sec 251 4

Table 8. The correspondence between the external knowledge base and the namespaces, and the
number of entities covered in the training set and test set of the BEL corpus.

Knowledge Base Entity Type Name-space Training Set Test Set

HUGO Gene Nomenclature Committee GENE HGNC 12,594 161

MGI Mouse Genome Informatics GENE MGI 5,704 146

Entrez Gene IDs GENE EGID 139 0

Gene Ontology resource BPRO GOBP 1,578 23

Chemicals of Biological Interest CHEMICAL CHEBI 779 27

Medical Subject Heading DISEASE MESHD 242 11

Total 21,036 368

D Evaluation Levels
The BEL evaluation level is the most important because it is designed to evaluate the per-
formance of complete BEL statement extraction. Table 9 introduces different evaluation
levels of BEL statement.
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Table 9. BEL statement evaluation levels

Evaluation Levels Abbreviation Description

Term – Evaluate whether entity names, types, and
namespaces are correct in terms of predictions

Function Func Evaluate the type of functionality and the correct
terminology for it

Function-Secondary FS Evaluate whether the type of functionality
predicted is correct, regardless of terminology

Relation Rel Evaluate whether the master and guest entities in
the relation triplet and the relationship type are
correct, regardless of the corresponding entity
function

Relation-Secondary RS Evaluate whether any two elements of the
relation triplet are correctly predicted, again
regardless of the entity function

BEL Statement BEL Evaluate whether the full BEL statement of the
prediction is correct

BEL Statement w/o function BEL(Rel) Evaluates the correctness of BEL statements
generated only from the predicted relation triples
(regardless of the function type of the entity)
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Abstract. Extracting biomedical relations from biomedical literature
automatically is essential for discovering new biomedical knowledge.
However, in the biomedical domain, some texts with different types have
semantic similarities, which makes the differences between these types
not obvious. Furthermore, lengthy and complex sentences in biomedical
literature can impact the model’s ability to comprehend the long-range
grammatical structure of the text. We propose a contrastive network
for extracting biomedical relations that are syntax-enhanced. The model
successfully highlights the distinctions between types that are semanti-
cally similar by drawing point clusters of the same kind together in the
embedding space and pushing clusters of different types farther apart.
Meanwhile, this model can enhance the correlation between biomedical
entities while increasing the number of positive pairs and making the
classification effect between different types more obvious through syn-
tactic enhancement. Compared with other methods, the experimental
findings obtained on two publicly accessible biomedical datasets demon-
strate that the approach we proposed performs the state-of-the-art.

Keywords: Biomedical Relation Extraction · Contrastive Learning ·
Biomedical Literature

1 Introduction

With the quick increase of biomedical literature, it has become the main carrier
for biomedical relation extraction research. Although there is a lot of biomedical
relation in a large number of scientific literature, manual extraction has become
a very time-consuming and labor-intensive work. How to automatically, swiftly,
and reliably gather and extract relation facts from biological documents is thus
a fundamental challenge for researchers in this discipline.
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Fig. 1. There are five instances of sentences with labels for the biomedical entities and
keywords.

The task of extracting relations in the biomedical domain draws on the
advancements made in a range of research fields, including bioinformatics and
natural language processing. Understanding the relation between entities in
biomedical texts and identifying them is the primary objective of the task. This
includes analyzing various types of interactions, such as drug-drug interactions
and chemical-protein interactions [24]. In order to build a biochemical knowledge
base and uncover novel biomedical information, it is imperative to quickly and
effectively extract these interactions.

In biomedical datasets, there exist semantic commonalities among categories.
Specifically, in biomedical datasets, the types are different, but the semantics of
the text is similar. Meanwhile, the number of labeled instances of some types
with semantic similarity is very limited, which leads to a lack of sufficient data
for model training. The first two example statements between two biomedical
entities have an “enhanced” relation, shown in Fig. 1. This will affect the per-
formance of the model in these two classes. Meanwhile, many biomedical texts
are characterized by lengthy and complex sentences that can pose a challenge
for models to capture all of the relevant information they contain. For example,
the fifth example sentence in Fig. 1 is a long and difficult sentence. The biomed-
ical entities are distributed in two different clauses. This leads to insufficient
relevance between the two biomedical entities.

We propose a biomedical relation extraction model based on a syntax-
enhanced contrastive network(SECN). The model pulls the point clusters of the
same types together in the embedding space. In addition, make the clusters of
different types farther away. This makes the similarity between the same types
and the difference between different types more obvious.

The positive sample during the training period consists of the original sample
and the expanded sample after syntactic enhancement. The model should then
be trained to differentiate between both positive and negative specimens. To use
label information effectively, we employ comprehensive oversight.

The main contribution of the paper is as outlined below:

– We propose a syntax-enhanced contrastive network for biomedical relation
extraction, which effectively narrows the distance between similar relation
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types and expands the distance between dissimilar types in the embedding
space. By enhancing the capacity of the model to discriminate between dif-
ferent types, the proposed approach effectively alleviates the influence of text
with similar semantics on the model’s predictions.

– The model incorporates deep syntactic dependency information to enhance
the relevance between biomedical entities, and further improve the model’s
ability to comprehend the long-range grammatical structure of the text.
Meanwhile, this model can increase the positive logarithm, making the clas-
sification effect between different types more obvious.

– We performed experiments on two widely used biomedical datasets. Experi-
mental findings show that when compared to other suggested methods, our
method can produce outcomes that are state-of-the-art.

2 Related Work

2.1 Biomedical Relation Extraction

Recent developments in relation extraction tasks have shown promising results
from various neural network-based approaches, which are now widely used in
biomedical research.

For the purpose of extracting biomedical relations, Liu et al. [12] utilized a
convolutional neural network (CNN) model, showcasing its efficiency in deliv-
ering excellent performance. In this model, the words in the sentences of the
biomedical dataset serve as inputs to the CNN, which can effectively capture
local features. Liu et al. [11] introduced a model for biomedical relation extrac-
tion tasks, which is the dependency convolutional neural network (DCNN)
model. By utilizing the dependency parse tree, the DCNN model can effec-
tively capture the interdependency between words. Masaki et al. [1] applied an
attention-based CNN model to biomedical relation extraction tasks. Each word
in a biomedical sentence has a varying impact on the final classification outcome
in relation extraction.

Recurrent neural networks (RNNs) are used at the word and character levels
in the approach put forth by Kavuluru et al. [6] to extract drug interactions. Lim
et al. [10] proposed a method using recurrent neural networks to automatically
extract drug interactions in the literature. This method decomposes the text into
a syntax tree and uses RNN to recursively process the tree structure to extract
biomedical interaction relations.

Wang et al. [20] used dependency parsing to model the relation between drugs
in text and used the LSTM network to capture contextual information in text
sequences. Zhang et al. [25] utilized the shortest dependency path to determine
the grammatical relations within a sentence, and extracted keywords located
between two entities.

Sun et al. [16] improved biomedical relation extraction by integrating atten-
tion and ELMo representations with bidirectional LSTM networks. Zhang et al.
[23] proposed a model for extracting CPI that utilized depth context represen-
tation and a multi-head attention mechanism.



132 W. Du et al.

BERT (Bidirectional Encoder Representation of Transformer) is a pre-
training language model. The BERT model was utilized by Peng et al. [15]
to study biomedical relation extraction. The development of information extrac-
tion research in this area was greatly aided by this paradigm, which made it
possible to extract entities and relationships from huge quantities of biological
texts. Lee et al. [9] extracted biomedical relations using the BioBERT model. A
BERT Att classifier model to extract CPI was suggested by Sun et al. [18]. This
approach employs attention mechanisms to direct the extraction of interactions
and capsule networks to record the semantic characteristics of those interac-
tions. A classic keyword-based strategy and a grammar-enhanced model were
both identified by Liu et al. [13]. The model uses graph-based grammar to build
a syntactic tree and type keywords to guide the model to extract specific types
of relations.

2.2 Contrastive Learning

An increased emphasis has been placed on the research aspect of natural lan-
guage processing over the years due to contrastive learning. Chen et al. [2] pro-
posed a method named SIMCLR that incorporates data augmentation tech-
niques to improve contrastive learning. The Momentum Contrast (MoCo) was
proposed by He et al. [4]. To improve image representations, Chen et al. [3] used
self-supervised contrastive learning. Trinh et al. [19] proposed the Selfie model,
which fills in missing parts of masked images using contrast predictive encoding
loss by leveraging the masked language model.

The learning process can be enhanced by supervised contrastive learning,
which uses the labeled data’s existing knowledge and information. Khosla et
al. [7] proposed the SupCon method, which extends batch self-supervised con-
trastive learning to supervised tasks.

3 Methods

3.1 Model Framework

The SECN architecture is depicted in Fig. 2. Three components make up the
model: the BioBERT representations module, syntax enhancement module, and
contrastive learning module. The sentences in the biomedical dataset are input
into the model. We first utilize BioBERT to produce superior context repre-
sentations for these sequences. Then syntactic dependency graphs and graph
convolution neural networks are introduced to enhance the association between
biomedical entities. Finally, the expanded representation of the syntactic depen-
dency graph is compared with the original representation to obtain the con-
trastive loss.
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Fig. 2. The architecture of SECN.

3.2 BioBERT Representations Module

Pre-trained models have demonstrated their effectiveness in various NLP tasks,
leading to their widespread use in the field. BioBERT has shown excellent perfor-
mance in biomedical relation extraction compared with BERT model. Therefore,
we utilize BioBERT to obtain the distribution of the input data.

We represent the text in the biomedical dataset as S = {s1, s2, e1, ..., e2, sn}.
n represents the length of the sequence. e1 and e2 are the two entities.

To represent a sentence in the biomedical corpus, the sentence is first tok-
enized into individual words. An embedding, indicated by the token “[CLS]”,
is included at the start of a sentence in the biomedical corpus to capture the
general significance of the phrase. To signify the presence of entities within a
sentence, the paper introduces specific tokens, namely “$” and “#”, which are
inserted on either side of each entity.

In the context of the biomedical corpus, a sentence S containing two entities
e1 and e2 can be processed using the BioBERT model. The sentence’s output
vector representation is denoted as Hc. The entity is represented as a final vector
H

′
c by an activation function (AF) and a fully connected (FC) layer.

H
′
c = W0 (tan h (Hc)) + b0 (1)

where w0 denotes weight matrices. b0 denotes bias vectors.
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To generate the vector representations of e1 and e2, we calculate the aver-
ages from Hu to Hv and from Hy to Hz, respectively. The final entity vector
representations, denoted as He1 and He2, are obtained by further processing the
averaged vectors through an AF and an FC layer. The mathematical expressions
for the computation of the He1 and He2 are as follows:

He1 = W1

[
tan h

(
1

v − u + 1

v∑
t=u

Ht

)]
+ b1 (2)

He2 = W2

[
tan h

(
1

z − y + 1

z∑
t=y

Ht

)]
+ b2 (3)

where W1 and W2 denote weight matrices. b1 and b2 denote bias vectors.
The final output of the sentence is represented as:

fs = W3

[
concat

(
H

′
c,He1,He2

)]
+ b3 (4)

3.3 Syntax Enhancement Module

In the model, we introduce a syntactic dependency graph and graph convolu-
tion neural network. The utilization of a syntactic dependency graph enables
the effective acquisition of syntactic information present within a sentence, and
further improves the model’s ability to comprehend the long-range grammatical
structure of the text.

Graph convolution neural networks can effectively extract topological infor-
mation from the syntactic dependency graphs and use it to enhance the relevance
between the entities. To acquire the syntax dependence metadata of the biomedi-
cal text, we first parse the text in the dataset using the StanfordCoreNLP syntax
parser. This is followed by a two-dimensional matrix representation of the syn-
tax dependency graph. The horizontal and vertical coordinates correspond to
each label in the sentence, and the position corresponding to the two labels with
dependent paths is set to the number 1. This means that the two words in the
sentence are directly interdependent. Finally, the syntax dependency graph is
input into the GCN to obtain the topology information of the syntax depen-
dency graph.

Learn more in-depth topology information through GCN to enhance the rele-
vance between biomedical entities. Meanwhile, the sentence representation after
the introduction of the syntactic dependency graph is compared with its semantic
representation. After all data augmentation is performed, we obtain 2N samples.

To obtain the adjacency matrix A for a given sentence in a biomedical dataset,
we first convert each node dependency Ai of the dependency tree to a numerical
index. In addition, we add self-connections to the adjacency matrix by setting
Ai,i = 1 for all nodes i. The adjacency matrix A can be used to capture the
structural information of the dependency tree. Analyzing Sentence Structure and
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Extracting Useful Information from Biomedical Datasets via graph convolutional
network model. After constructing the adjacency matrix, we feed it along with
the sentence feature representation into the GCN. The GCN model can learn
important features and relations between dependent nodes. The completed result
of the final hidden layer is calculated using the following formula:

H l+1 = σ
(
D̃− 1

2 ÃD̃− 1
2 H lW l

)
(5)

where the degree matrix D̃ is present. σ is an activation function.
To extract the syntactic characteristics fg of a given sentence S from a

biomedical dataset, this model employs a double-layer GCN. Its calculation algo-
rithms are as follows:

Â = D̃− 1
2 ÃD̃− 1

2 (6)

fg = Âσ
(
ÂH0W4

)
W5 (7)

where W4 and W5 denote weight matrices.

3.4 Contrastive Learning Module

The discipline of natural language processing has recently begun to pay increas-
ing attention to contrastive learning. This approach has shown outstanding per-
formance in training deep neural network models without the need for human-
labeled data. Contrastive learning methods have emerged as a popular approach
for learning effective representations by comparing different samples. The goal is
to identify the similarities and differences between similar inputs and dissimilar
inputs, which are referred to as positive and negative pairs, respectively.

In this study, we use supervised contrastive learning, which is able to exploit
labeled information to obtain more positive examples. By incorporating labeled
information, our proposed supervised contrastive learning approach can learn
better representations for downstream tasks in natural language processing. We
adopt a contrastive loss to optimize the similarity between representations of
examples that belong to the same classes while minimizing the similarity between
representations of examples from distinct categories. In the embedding space,
clusters from different samples are separated by supervised contrastive learning,
while samples from the same type are closer together. This makes the similarity
between the same types stronger, and the difference between different types is
more obvious.

In addition to the input data, supervised contrastive learning also takes into
account the class labels associated with the data. This enables the model to
learn representations that better capture the similarities and differences between
inputs. The contrastive loss function seeks to learn representations of dissimilar
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samples that are far from each other and those of comparable samples that are
close to each other. The following are the calculating formulas:

Lsup =
2N∑
i=1

Lsup
i (8)

Lsup
i =

−1
2Nyi

− 1

2N∑
j=1

li�=j lyi=yj
Logsup

i,j (9)

Logsup
i,j = log

exp
( si,j

τ

)
exp

( si,j

τ

)
+

∑2N
k=1 li�=k exp

( si,k

τ

) (10)

where N represents the batch size of the training examples. Between the charac-
teristic representation of the i-th example and the j-th example, si,j stands for
cosine similarity.

In multi-label n-classification tasks, the cross-entropy loss function is calcu-
lated for a batch of data by adding the logarithmic loss over all the labels and
samples in the batch. The method of calculation is as follows:

LC =
1
N

N∑
j=1

n∑
c=1

−yj,c log ŷj,c (11)

where ŷj,c stands for the model’s predictions for the class c possibility.
We suggest a combined loss function that encompasses both cross-entropy

and contrastive loss to integrate these two loss functions. While maintaining
the effectiveness of the cross-entropy loss, the joint loss function’s mission is to
increase the discriminative capacity of learned representations.

LCL = λLC + (1 − λ) Lsup
i (12)

where λ denotes the trainable parameter.

4 Experiments

4.1 Datasets

For the purpose of assessing the suggested model, our team utilized the DDI
extraction 2013 dataset [5] and ChemProt dataset [8]. These datasets are open-
source datasets, which are more authoritative and representative.
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DDI Extraction 2013 Dataset. Sentences from the biomedical databases
MedLine(ML) and DrugBank(DB) are part of the collection known as the DDI
corpus. It contains summaries from the MedLine dataset and manually curated
text from the DrugBank dataset, providing a wide variety of biomedical text
styles for analysis. Information on the quantity of annotated sentences and drug-
drug interactions is provided by the corpus statistics, which are displayed in
Table 1. The high-quality annotations in this corpus make it a valuable resource
for training and evaluating models for DDI extraction.

ChemProt Dataset. The task of CPI extraction involves identifying whether
a sentence or document contains a chemical-protein pairing that specifies a CPR
(chemical-protein relation) type, and if so, categorizing it into one of six different
interaction types. The abstracts of scientific papers often describe interactions
between chemical and protein pairings, and correctly identifying these inter-
actions can be critical for drug discovery and development. Table 2 shows the
relation types and numbers in the CPI dataset.

4.2 Parameter Settings

The model in this study is implemented using the PyTorch development frame-
work, and the code is implemented using the Python development language.
Table 3 shows the specific hyper-parameter settings.

To evaluate the effectiveness of the model we have developed, examine the
precision, recall, and micro-F1 results. By combining the contributions from all
classes, micro-averaged metrics can be utilized to determine the average metric.
When working with datasets that are unbalanced and have a wide range of
sample sizes between classes, this method is advantageous.

Table 1. Statistics for the DDI dataset.

Relation Training set Test set

DB ML DB ML

Advice 818 8 214 7

Mechanism 1257 62 278 24

Effect 1535 152 298 62

Int 178 10 94 2

Negative 22217 1555 4381 401

Total 26005 1787 5265 496

4.3 Experimental Results

DDI2013 and ChemProt test sets were used to assess SECN’s performance.
Table 4 displays the comparison outcomes between the suggested model and

various baseline methods in the DDI dataset. The comparative findings clearly
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Table 2. Statistics for the CPI dataset.

Relation Training set Development set Test set

CPR:3 768 550 665

CPR:4 2251 1094 1661

CPR:5 173 116 195

CPR:6 235 199 293

CPR:9 727 457 644

False 15306 9404 13485

Total 19460 11820 16943

Table 3. The setting of hyperparameters.

Parameter Name Value

Sentence feature dimension 768

Max sentence length 512

Number of hidden layers of BioBERT 12

Batch size 8

Dropout rate 0.1

Epoch 10

Learning rate 2e−5

Number of hidden layers of GCN 16

Weight decay 5e−4

indicate that our model outperforms each of the competing models. The values
of the three evaluation indicators of the proposed model are 83.4%, 81.7%, and
82.5%, respectively. Compared to other models, the performance of the proposed
model in Int type and Effect type suggests that our approach effectively alleviates
the issue of semantic similarity in DDI texts.

Table 5 shows that the performance on the CPI dataset, and the values of the
three evaluation indicators of the proposed model are 78.0%, 79.1%, and 78.6%,
respectively, demonstrating that our model performs more effectively compared
to the baseline methods. Meanwhile, it is evident that our model significantly
improves the classification accuracy of various CPI relation extraction missions.

4.4 Ablation Study

On biomedical datasets, we performed ablation experiments. Table 6 presents
the findings from these trials, which sought to ascertain the effect of eliminating
each module on model performance.

SECN w/o SE: The model’s F1-score decreased by 0.7% and 0.6% in the DDI
dataset and CPI dataset, respectively, after the syntactic augmentation had been
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Table 4. Performance comparison on the DDI dataset.

Model F1-score on each type P R F1

Advice Mechanism Effect Int

CNN 77.7 70.2 69.3 46.4 75.7 64.7 69.8

DCNN 78.2 70.6 69.9 46.4 77.2 64.4 70.2

ACNN – – – – 76.3 63.3 69.1

RNN – – – – 78.6 63.8 72.1

ASDP-LSTM 80.3 74.0 71.8 54.3 74.1 71.8 72.9

ATT-BLSTM 85.1 77.5 76.6 57.7 78.4 76.2 77.3

AGCN 86.2 78.7 74.2 52.6 78.2 75.6 76.9

BERT – – – – – – 78.8

BioBERT – – – – 79.9 78.1 79.0

Yang et al. [22] – – – – 78.5 79.7 79.2

R-BioBERT [21] 88.2 84.1 80.9 53.2 81.8 80.7 81.3

EMSI-BERT 86.8 86.6 80.7 56.0 – – 82.0

Liu et al. [13] – – – – 83.0 81.1 82.0

Our model 88.7 85.6 81.2 59.4 83.4 81.7 82.5

Table 5. Performance comparison on the CPI dataset.

Model F1-score on each type P R F1

CPR:3 CPR:4 CPR:5 CPR:6 CPR:9

LSTM – – – – – 59.1 67.8 63.1

Lu et al. [14] – – – – – 65.4 64.8 65.1

Zhang et al. [23] 59.4 71.8 65.7 72.5 50.1 70.6 61.8 65.9

Bi-LSTM 64.7 75.3 68.1 79.3 55.7 67.0 72.0 69.4

Yang et al. [22] – – – – – 69.7 69.8 69.7

BERT – – – – – 74.5 70.6 72.5

BioBERT – – – – – 77.0 75.9 76.5

R-BioBERT 72.5 82.2 78.2 82.3 66.8 77.9 76.9 77.4

Sun et al. [17] 71.5 81.3 70.9 79.9 69.9 77.1 76.1 76.6

BERT-Att-Capsule 72.9 78.6 72.7 77.9 64.4 77.8 71.7 74.7

Our model 72.5 83.2 78.8 86.2 69.3 78.0 79.1 78.6

removed. These results indicate that syntactic enhancement is effective for the
performance of SECN.

SECN w/o CL: When we remove supervised contrastive learning from SECN,
the F1-score on the DDI dataset and CPI dataset decreases by 0.9% and 0.7%,
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respectively. These results indicate the crucial role of supervised contrastive
learning in enhancing the performance of biomedical relation extraction.

SECN w/o SE w/o CL: When we remove both the syntactic dependency
graph and supervised contrastive learning from our model, the F1-score in DDI
dataset and CPI dataset drops to 81.3% and 77.4%, respectively.

According to the experimental findings, the syntactic dependency graph and
supervised contrastive learning are essential modules of our suggested approach
and have a large impact on how effectively biomedical relation extraction per-
forms.

Table 6. Ablation study of the model.

Model DDI 2013 ChemProt

P R F1 P R F1

Our Model(SECN) 83.4 81.7 82.5 78.0 79.1 78.6

SECN w/o SE 83.3 80.5 81.8 78.9 77.1 78.0

SECN w/o CL 82.9 80.3 81.6 78.3 77.6 77.9

SECN w/o SE w/o CL 81.8 80.7 81.3 77.9 76.9 77.4

BioBERT 79.9 78.1 79.0 77.0 75.9 76.5

Fig. 3. Four cases predicted by BioBERT and our model.
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4.5 Case Study

Comparison research is performed between the prediction outcomes produced by
the model we designed and the widely used BioBERT model in order to assess
the effectiveness of our approach. We selected four examples, as shown in Fig. 3.

For sentence 1, the BioBERT model made an incorrect prediction because the
effect and Int types are semantically similar. In contrast, the distance between
instances of the identical category within the embedding space is shortened by
the contrastive learning module in our model, while the distance between exam-
ples of different categories is increased. Our model makes correct predictions
because it can enhance the similarity between classes and the difference between
classes.

Sentence 2 is a difficult sample in the DDI dataset. The long text leads to
insufficient context connection and relevance between entities. The BioBERT
model made the wrong prediction. The model proposed by us can effectively
enhance the relevance between entities by adding a syntactic dependency graph
and graph neural network, thereby our model makes correct predictions.

For sentence 3, contrastive learning can effectively enhance the difference
between the class with few samples and other classes in the embedding space.
Our model makes correct predictions.

Sentence 4 is a long and difficult sentence in the CPI dataset. Our model
can effectively enhance the correlation between context and entities so it makes
correct predictions.

4.6 Visualization

To provide a more intricate analysis of our proposed model, we have generated
visualizations of the classification results. These visualizations depict the distri-
bution of different classes and the distances between them.

Fig. 4. Visualization of labels of DDI dataset. (a) is the classification visualization of
the BioBERT model, and (b) is the classification visualization after adding supervised
contrastive learning.

As shown in Fig. 4, in the DDI label classification, we observed that the
distance between each type is significantly large, indicating that our model is
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Fig. 5. Visualization of labels of CPI dataset. (a) is the classification visualization of
the BioBERT model, and (b) is the classification visualization after adding supervised
contrastive learning.

able to effectively differentiate between different types. Additionally, we noticed
that the distance between the same types is relatively small, indicating that our
model can accurately cluster similar instances together. Meanwhile, the model
can effectively distinguish between Effect type and Int type, indicating that the
model in this study can effectively alleviate the problems caused by semantic
similarity.

As shown in Fig. 5, in CPI label classification, our model alleviates the situa-
tion in which the same type is far away. The aforementioned improvement has a
favorable effect on the model’s ultimate classification performance. The classifi-
cation outcomes show that SECN effectively shortens the gap between examples
of the precise same type while lengthening it between instances of distinct kinds
inside the embedding space.

5 Conclusion

In this study, we introduce a syntax-enhanced contrastive network for the
extraction of biomedical interactions. The model we proposed increase the dis-
tance between instances of various types and concurrently decrease the dis-
tance between instances of identical types by contrastive learning. This approach
effectively enhances the discriminative capability of the model. Meanwhile, our
model employs syntactic dependencies to enhance the relevance between biomed-
ical entities and improve their precision in the prediction of long and complex
biomedical texts. Experiments are conducted on a biomedical dataset, and the
results demonstrate that the incorporation of contrastive learning and syntactic
information enhancement significantly enhances the performance of the model.

We intend to the continue investigating contrastive learning’s potential and
experimenting with different data augmentation methods in our subsequent
research.
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Abstract. In recent years, the field of biomedical information has experi-
enced remarkable growth. Consequently, the extraction of semantic relationships
between biological entities from unstructured biomedical documents has gained
increasing significance. Recent research has often employed sequential or graph
models to predict relationships among biological entities in scientific articles.
However, these models may not fully harness contextual information, resulting in
the absence of entity reference details that can influence relationship judgments.
In this paper, we introduce the EFCImodel: Entity Fusion Contrastive Inference
Network. Comprising an Entity Information Exchange Fusion module and a Con-
trast Enhanced Inferencemodule. Thismodel facilitates the interaction of essential
information from the contextual context of both the head and tail entities through
the information exchange fusion module. It consolidates this information into a
featurematrix and subsequently employs the contrast enhancement inferencemod-
ule to capture implicit dependency relationships between entity pairs. This expan-
sion extends the coverage of relational triples compared to prior studies. Addition-
ally, the model enhances its inference capabilities and effectively addresses the
issue of imbalanced label distribution in biomedical literature. Our comprehen-
sive experiments demonstrate significant performance improvements of ourmodel
compared to the baseline model, showcasing its competitive advantage across two
biomedical datasets: BIORED and CDR.

Keywords: Biomedical literature · Document level relationship extraction ·
Information exchange fusion · Contrast Enhanced Inference

1 Introduction

The relationships between biomedical entities hold significant importance in advancing
the field of biomedical science. In recent years, the maturation of artificial intelligence
technology has spurred an increasing number of scholars to concentrate on extracting
these relationships. While earlier research primarily centered on extracting entity rela-
tionships from individual sentences, the exponential growth of biomedical literature has
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given rise to a multitude of relationships spanning across multiple sentences. Simple
sentence-level relation extraction is no longer adequate to meet the evolving research
requirements. Consequently, several studies have broadened their scope to the document
level. This approach allows for the extraction of highly valuable biomedical information
that can better serve the research community within the biomedical field.

In contrast to sentence-level relationship extraction, extracting biomedical entity
relationships at the document level presents several significant challenges. Firstly, enti-
ties are distributed extensively throughout the document, spanning various positions.
This necessitates capturing complex interactions between entities and the document that
extend across sentences. Furthermore, the same entity may appear multiple times within
the document in varying contexts, demanding the need for contextual referencing. Lastly,
the dataset may display an extremely unbalanced distribution of positive and negative
cases. The direct utilization of long-tail data for training may lead to overfitting of head
data and underfitting of tail categories.

Fig. 1. An example illustration of a BioRED dataset.

In a document, an entity may have multiple references, and the head entity in one
entity pair may be the tail entity in another entity, resulting in a relatively large span
that poses significant challenges to relation extraction. As exemplified by the mention of
“Dopaminergic” in Fig. 1, context references are essential to identify entity relationships.
The head entity “Dopaminergic” has several references in the article, and the expressions
are not identical, such as “dopamine” across different sentences. They all refer to the
same chemical entity Number D004298, which has a positive correlation with the tail
entity “Neurotoxicity” (Disease or Phenotypic Feature) as inferred from the context.
However, previous studies have not focused on the differential weighting of reference
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pairs in the target entity pairs, which can lead to different relationships being extracted
depending on the importance of reference pairs.

Document-level relationship extraction in the biomedical field remains a formidable
challenge, particularly in terms of efficiently acquiring context representation for ref-
erences to diverse entity pairs while keeping computational costs in check. Given the
abundance of specialized terminology within a biomedical article, accurately discern-
ing relationships among these entities demands substantial computational resources,
resulting in heightened time complexity. Furthermore, the precise identification and
prioritization of relevant contexts for specific entity pairs within an article present a
unique challenge compared to sentence-level extraction. The sheer volume of entity pairs
for classification, coupled with the intricacies of their associated relation types, com-
pounds the complexity of the task. Existing document-level extraction methods within
the biomedical domain often fall short in fully harnessing both local and global informa-
tion to bolster connections between entities and facilitate the extraction of relationships
among biological entities.

To alleviate the existing bottleneck in document-level relationship extraction, we
present the EFCI model as a solution. Our approach involves several key components.
Firstly, the Entity Information Exchange module is employed to gather essential infor-
mation from both entity heads and tails. It facilitates comprehensive interactions and
generates context representations. Subsequently, the Entity Information Fusion mod-
ule assigns specific weights to each mentioned entity pair, consolidating the resulting
reference pairs into a feature matrix. Thirdly, the feature matrix is fed into our Infer-
ence module, which enhances the model’s capacity to uncover potential dependencies
between entities. This extension goes beyond the existing relational triples, effectively
capturing dependencies between entity mentions. Nevertheless, one of the root causes
of the long-tail problem lies in the underutilization of label correlations. To address the
issue of label imbalance in biomedical documents, we introduce a combination of Focus
Loss and Cross-Entropy Loss within our contrastive learning framework. The Focus
Loss adapts the weights of various sample categories, thereby enhancing the model’s
recognition ability for minority categories. Concurrently, the Cross-Entropy Loss aggre-
gates positive examples within the batch, while negative examples extend beyond the
batch. This encourages negative examples to make a more significant contribution to the
overall loss across the entire training dataset, thereby promoting the learning of long-tail
labels.

In this paper, we introduce the EFCI model aimed at bolstering contextual reference
information and addressing the issue of missing critical information. To enhance the
model’s reasoning capabilities, the principal contributions of this paper can be succinctly
summarized as follows:

• We propose the Entity Information Exchange Fusion module to obtain the reference
representation of the head and tail entities in the document, effectively obtain the
reference representation of the context and generate the featurematrix, thus enhancing
interpretability.

• We employ the Contrast Enhanced Inference module to efficiently capture the depen-
dency between entity pairs, enhance the relational inference ability, and cover more
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relational triples. At the same time, comparative learning is introduced to solve the
problem of label imbalance in biomedical data sets.

• Our model outperforms current state-of-the-art relational extraction methods on two
open source biological datasets.

2 Related Work

The task of relation extraction (RE) can be divided into sentence-level and document-
level based on the granularity. Early approaches of RE focused on single sentences and
only attempted to extract entity relationships within each sentence, mainly by identifying
relationships between entities through interaction in the input sequence (Zeng et al.,
2014;Wang et al., 2016; Ji et al., 2017; Zhang et al., 2017;Guo et al., 2020). Experimental
results have shown that this method can effectively address the task of sentence-level
RE. However, in real-world scenarios, many relational facts are contained in entity pairs
across different sentences in the document, and there are often complex relationships
among multiple entities. Wu et al. (2022) introduced contrastive learning into sentence
perception in open-domain paragraph retrieval to address the problem of contrastive
conflicts.

2.1 Document-Level Relation Extraction (DLRE)

In recent years, research in relation extraction has been extended to the document level.
There are two types of models currently being used to address this issue: graph-based
and sequence-based models. Graph neural networks are more effective in establishing
relationships between entities for document-level relational reasoning compared to tra-
ditional CNN and RNNmodels. The construction of a graph is a key component of these
models, and the graph can be categorized into a heterogeneous or homogeneous graph
based on whether the types of edges in the graph need to be distinguished. To better
capture the characteristics in documents, scholars such as Quirk and Poon (2017) have
constructed document-level graphs by using entities as nodes and dependencies as edges.
EoG (2019) established various types of edges between different types of nodes to deter-
mine the amount of information flowing into the nodes, better fitting the heterogeneous
interaction relationship between documents.

Building upon this,Nan et al. (2020) proposed theLatent StructureRefinement (LSR)
model, which improves upon the use of hard rules to encode connections between nodes.
Instead, LSR automatically learns knowledge through the hidden state of neighboring
nodes and captures more non-neighbor information through fully connected states. In
January 2021, Tang et al. proposed the Multi-Granularity Heterogeneous Graph (MHG)
model to capture complex interactions between entities and enhance the reasoning power
of the model. The MHG model defines four node types (mention, entity, sentence, and
document) with different granularity and eight types of edges based on heuristic rules.
R-GCN with a gating mechanism is used to propagate relational information and reason
on the graph, and entity awareness attention is introduced to further aggregate inference
information in supporting sentences.

Additionally, building upon the sequence model, Shaw, Uszkoreit, and Vaswani
et al. (2018) added an attention bias check at the relative position in the input token.
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Wang et al. (2019) adjusted the relative position around the entity, and Xu et al. (2021)
further incorporated the dependence relationship between entity pairs in the self-attention
mechanism to better guide themodel in extracting relevant text. Recognizing the internal
semantic dependencies and the complex logical structures of documents, Yang et al.
(2021) proposed a document-level entity relation extraction model BSRU-ATTCapsNet,
which combines a bidirectional simple recurrent network and capsule network to achieve
better results.

The bidirectional simple recurrent network can fuse representations of the relation-
ships between multiple sentences, model the shortest dependent path, assign differ-
ent weights to relationship features learned from each path through attention mecha-
nisms, optimize the entity relationship representation of the complex logical structure
within the document, and improve parallelization efficiency. The capsule network, on the
other hand, optimizes learning of entity relationships in terms of spatial and directional
relationship representations.

2.2 Contrastive Learning

Although contrastive learning has been widely used in computer vision, its applica-
tion in biomedical natural language processing, particularly in relation extraction tasks,
poses challenges in designing an efficient data augmentation method to construct pos-
itive examples. In 2021, Su et al. proposed using contrastive learning as a pre-training
step, leveraging linguistic knowledge in selecting text data and an external knowledge
base to construct large-scale data for facilitating contrastive learning. To address con-
trastive conflicts in sentence perception for open-domain paragraph retrieval, Wu et al.
(2022) introduced contrastive learning. Similarly, Li et al. (2022) applied unsupervised
contrastive learning to phrase representation and topic mining and improved phrase
representation on topics by selecting negative samples from cluster-assisted contrast
learning, reducing noise in the process.

For the multi-label problem, Zhou et al. (2020) proposed the adaptive threshold
loss, which replaces the global threshold with a learnable threshold class. The threshold
classes are learned through the adaptive threshold loss, which is a rank-based loss that
pushes the logical value of a positive class above the threshold and pushes the logical
graph of a negative class below the threshold during model training. This technique
eliminates the need for threshold adjustment and also allows the threshold to be adjusted
for different entity pairs. By learning adaptive thresholds that depend on entity pairs, the
decision errors caused by using global thresholds can be reduced.

Based on ATL (Adaptive Threshold Loss), Tan et al. (2022) proposed the adaptive
focus loss (AFL) as an enhancement for long-tail classes. AFL consists of two parts: the
positive loss and the negative loss. Unlike the original ATL, where all positive logic is
sorted with the SoftMax function, AFL aims to focus more on low-confidence classes,
which allows for better optimization of long-tail categories.
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Fig. 2. The overall framework of our model.

3 Methodology

In this section, we will introduce the task definition for document-level relationship
extraction in the biomedical field. We will introduce our model from the following four
aspects: Encoder Layer; Entity Information Exchange Fusion Layer; Contrast Enhanced
InferenceLayer;OutputLayer. InFig. 2 a presentationof ourmodel overview is provided.
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3.1 Problem Formulation

In this section, we will introduce the relevant formulas of document-level relationship
extraction in the biomedical field. Give a document D that contains a set of entities
{ei}ni=1, the task aims to extract the relation between entity pairs (eh, et). Where the eh,
et is to represent subject and object. An entity may appear multiple times in a document,

so there may be multiple pairs of mentions for each entity pair {mi
j}Nei
j=1

. If there is a

relationship between entity pairs (eh, et), it is represented by a reference pair between
them.

3.2 Model Architecture

Encoder Layer
For a given document D of length l, we have D = [xt]lt=1, where xt is the word at

location t. Continuing our previous work on classifying relationships, we use special
tags * to mark the mentioned start and end positions. Then the contextual embedding of
the document is obtained through the pre-trained language model (PrLM):

H = PrLM ([x1, ..., xl]) = [h1, ..., hl] (1)

where H ∈ Rl×d and d is the hidden dimension of the PrLM.

Entity Information Exchange Fusion Layer
To obtain the reference representation of the context, we use the Entity Information
Exchange module to select header and tail mention in the encoder. The reference pairs
are then weighted by an integration, which demonstrates that the reference between
different pairs of entities has varying effects on them. Both participants are implemented
by a single-layer Bert encoder.

Attention Module
According to previous studies (Xu et al. ), context information is critical for relational
classification tasks, we refer to the context pool method proposed by Zhou et al. (2021)
For each mention pairs, we first aggregate the attention output for its mentions by mean
pooling:

Ah =
∑Nei

j=1
(amh) (2)

where amh ∈ RH×L is the self-attention weight at the position of mention mh, H is the
number of attention heads, and L is the document length.

Then the context query can be calculated as:

Q(h,t) =
∑H

i=1
(Ai

h · Ai
t) (3)

C(h,t) = HTq(h,t) (4)

Gh = tanh(Wsheh + Wcc
(h,t)) (5)
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where Ai
h ∈ RH×L is the aggregated attention output for head entity h, likewise for t.

Q(h,t) ∈ RL is the mean-pooled attention weight for entity pair (eh, et) and H ∈ Rl×d

is the contextual embedding of the whole document. Then the context vector C(h,t) ∈
Rd is fused with the entity representations. And where Gh∈ Rd is the context-enhanced
representation of head entity h for entity pair (eh, et).We obtain the object representation
Gt in the same manner.

Entity Information Exchange Module
According to the work of Zhou et al. (2021), we use grouped bilinear functions for
feature fusion. The mention embedding Gs will be split into k equal-sized groups, such
like Gh = [

G1
h,G

2
h,G

3
h, ...G

k
h

]
, we get the following formula:

Gt =
[
G1
t ,G

2
t ,G

3
t , ...G

k
t

]
(6)

Gh = [
G1
h,G

2
h,G

3
h, ...G

k
h

]
is referred to as the representation of the selected header,

where |k| is the number of the head entity’s mentions. By analogy Gt is the reference
representation of the selected tail entity.

Inspired by the attention flow layer of BIDAF model, we use bidirectional attention
to model the interaction between query and context, and introduce a mutual attender to
obtain the context representation of header and tail references respectively:

Head = MultiHeadAttentionLayer[Gh,Gt,Gt] (7)

Tail = MultiHeadAttentionLayer[Gt,Gh,Gh] (8)

The interaction instrument makes the head and tail references sufficiently mutually
attentive to produce contextual representations. In fact, the head or tail references are
selected from the same distribution, and the head entity in a pair of entities may be the
tail entity of another entity, so the above two multi-headed concerns are actually the
same, so we use a shared multi-headed concern layer to implement this part. In addition,
this setup introduces fewer parameters and thus reduces computational costs.

Entity Information Fusion Module
The merge instrument plays a crucial role in weighing the representations of mention
pairs and fusing them together. Specifically, we first construct representations of ref-
erence pairs using the representations of the head and tail mentions, along with other
relevant features. Let h = Head denote the i-th mention of the head entity; In the same
way, t = Tail denote the j-th mention of the tail entity. We define the formula of mention
pairs (eh, et) to the representation as:

Pij =
[
Gk
h;Gk

t ;Gk
h ∗ Gk

t ; dij
]

(9)

where ∗ denotes the element-wise multiplication, dij stands for relative distance embed-
ding referring to pairs. To obtain the relative distance embedding, we first calculate the
relative distance between references, and then divide the distance into the interval {1,
2,…} where each interval is assigned a trainable embedding. Overlap feature(hi*hj) and
relative distance (dij)
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Let p = (p11, p12,….) be the representation of mentioned pairs. We use merge
instrument when referring to representations of pairs:

P = MultiHeadAttentionLayer(P, P,P) (10)

By utilizing the Merge instrument, each reference pair is assigned a weight based
on the self-attention of all reference pairs. This process enables us to identify and high-
light the references with the highest weight distribution, allowing for more interpretable
predicted results.

Contrast Enhanced Inference Layer
Enhanced Inference
We concatenate the representation of entity pairs into an eigenvector M (0), M (0) =[
Ph,t

]
N∗N where each row M (0)

h,∗ represents a head entity eh and each column M (0)
∗,t

represents a tail entity et .
Our inference module explores implicit relationships between entities by learn-

ing more expressive entity pair representations. The inference module consists of L
inference layers and classifiers, each of which contains four components: an inference
multi-head self-attention module, an FFN module and two normalizing sublayers. The
Inference polycephalic self-attention module is a variant of the traditional polycephalic
self-attention module, which is equipped with four attention heads that model each of
the four common reasoning patterns and can cover more relational triples. Since all
inferential head self-attention modules are calculated in the same way, let’s take the first
entity pair as an example:

F (l,1)
i = Wd

[
M (l)

h,i ;M (l)
i,t

]
+ bd , i = 1, 2, . . . ,N (11)

whereWd and bd are the training parameters, [;] Represents the join operation, and then
we get the output matrix M (l,1)

h,t for the first entity pair (eh, et):

M (l,1)
h,t = Attention(Q,K,V ),where Q = M (l)

h,t ,K = V =
[
M (l)

h,t ;F (l,1)
1 ; . . . ;F (l,1)

N

]

(12)

It should be noted that the upper corner ofM (l,1)
h,t andF (l,1)

i represents the index value
of the inference layer, and the lower corner represents the entity index. We then add all
the outputs of the bull self-attention module to get the output of the bull self-attention
module:

˜
M (l)

h,t = LN (M (l) + WO[M (l,1)
h,t ; ...;M (l,4)

h,t ] + bO) (13)

where WO and bO are model parameters, LN(·) are layer normalized functions.
Finally, the output of the inference layer l + 1 is calculated:

M (l+1) = LN (

∼
M (l) +FNN

(( ∼
M (l)

))
,where

∼
M (l)= [

∼
M (l)]N∗N (14)
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After repeating the above process for L times, we can get a more expressive
eigenmatrix M (L).

Contrastive Predicting Output Layer
Given that each target entity pair may have multiple mention pairs in a document, we
apply a classification scheme based on multiple instances learning to aggregate the
predictions of all target mention pairs. To do so, we utilize a multilayer perceptron
(MLP) to project the reference pair representation onto the fraction of each relation.
Finally, we employ the LogSumExp function to consolidate the relational scores from
the corresponding mention pairs:

m
(
head i, tailj

) = W (2)
f ReLU

(
W (1)

f M (l)
h,t

)
+ b (15)

We use contrastive learning to address the issue of label distribution imbalance.
Firstly, our loss consists of two parts, the first part is for positive classes, and the second
part is for negative classes. During the training process, the label space is divided into
two subsets: the positive class subset PT and the negative class subset NT . The positive
class subset PT contains the relations that exist in the entity pair (ehead , etail), and if
there is no relation between (ehead , etail),PT is empty (PT=�). On the other hand, the
negative class subset NT contains the relation classes that do not belong to the positive
classes,NT =R\PT . Moreover, we incorporate cross-entropy loss for each positive class,
which is computed as follows:

P( ri|ehead , etail) = exp(l(head ,tail)
ri ) + exp(g(head , tail))

exp(l(head ,tail)
ri ) + exp(l(head ,tail)

TH ) + exp(g(head , tail)
(16)

P
(
rTH |ehead , etail

)
= exp(l(head ,tail)

rTH )
∑

rj∈NT ∪{TH }exp(l
(head ,tail)
rj )

(17)

where the logit of ri is ranked with the logit of threshold class TH individually.

scores
(
ehead , etail

)
=

∑
(1 − P(ri))

γ log(P(ri))log
∑

1≤i,j≤k
exp

(
g
(
head i, tailj

))

+ log(P(rTH )) (18)

4 Experiment

4.1 Datasets

We conducted an evaluation of our model using document-level relational extraction
datasets for two benchmark biomedical domains. Additional details can be found in
Table 1.
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• BioRED: (Luo et al. 2022) In a set of 600 PubMed abstracts, the authors pioneered
a biomedical Relationship Extraction dataset (BioRED) that includes six concep-
tual types: genes; Chemical; Disease; A variant; Species; CellLine. It covers eight
document-level relationship pairs that are often discussed in the research. Further-
more, each relationship is categorized based on whether it describes new discoveries
or previously established background knowledge,which allows automated algorithms
to differentiate between novel and existing information. Notably, our work represents
the first application of this dataset to the task of document and relationship extraction
in the biomedical domain since its publication.

Table 1. The details of the datasets.

Datasets Docs Relations entities mentions Relations’ sentences

BIORED Train 400 9 3.8 304 10.8 11.9

Dev 100

Test 100

CDR Train 500 2 7.6 – 11.9 9.7

Dev 500

Test 500

• CDR: (Li et al. 2016) Is a human-annotated chemical disease relationship extraction
dataset in the biomedical field. Consists of 1500 PubMed abstracts and divides it
into three equally sized collections for training, development, and testing. The task
of this dataset is to predict the binary interaction between Chemicals and the concept
of Diseases.

4.2 Data Pre-processing

We implemented our model with the PyTorch version of the Huggingface Transformers
(Wolf et al., 2019). In the experiment on BIORED and CDR, we use the SciBERT
(Beltagy, Lo, and Cohan 2019) model as the document encoder. AdamW (Loshchilov
andHutTer, 2019) as an optimizer. Ourmodelwas trained on anNVIDIA3080GPUwith
16 GB ofmemory. Following the ATLOPmodel work, we use F1measures as evaluation
metrics for the document-level relation extraction performance. For BIORED and CDR
datasets, the training takes 15.4 min and 17.2 min respectively. Table 2 lists some basic
hyperparameters.
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Table 2. Hyperparameters Setting.

Pretraining model/Dataset SciBERT/BIORED SciBERT/CDR

Hyperparameters Value Value

Batch Size 4 4

Learning Rate 2e-5 2e−5

Epoch 40 40

Seed 66 66

Document Encoder BERT BERT

Max_grad_norm 1.0 1.0

Num_class 9 2

4.3 Main Results

The Results of BIORED Dataset
Table 3 details the main results of the comprehensive experiment of the EFCI model on
the BIORED dataset, which was first used in the experiment.

Both the LSR model and the GAIN model are graphical structures based on struc-
tural reasoning. The LSR model enhances relational reasoning between sentences by
automatically inducing latent document level diagrams; The GAIN model aggregates
potential references to the same entity by capturing complex interactions between differ-
ent references. However, considering only the two-hop relationship, it should be easier
to reason, but the experimental results show that the role of the reasoning module is not
obvious.

Table 3. The main results in BIORED dataset.

Dataset BIORED

Method P R F1

EncAttAgg (Jiang et al., 2020) 70.3 69.4 68.8

LSR (Nan et al., 2020) – – 66.3

GAIN (Zeng et al., 2020) – – 70.2

SSAN (Xu et al., 2021) – – 69.6

ATLOP (Zhou et al., 2020) 71.7 72.3 71.8

DHGCN (Sun et al., 2022) – – 77.1

DGI (Wang et al., 2023) – – 76.9

Ours 77.5 75.8 78.2

Sequential models such as ATLOP and SSAN encode more global dependency
information, especially location-related information, into the model. However, such
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approaches ignore the complex interactions between different references. Potential ref-
erences of the same entity contain many entities information, which has important
implications for our relational extraction task.

Our model solves these problems well, and the experimental results are better than
other methods. Our model is 5.6 above the F1 score of the best baseline (ATLOP) in the
BIORED dataset. And the accuracy rate and recall rate are significantly improved. Since
we are placing greater emphasis on improving the recall rate of smaller categories, it is
possible that the algorithm may become overly focused on predicting those categories,
which could result in sacrificing the predictive performance of larger categories, thereby
affecting the overall recall rate. Consequently, the improvement in the recall rate may
not be substantial.

The results of CDR Dataset
Table 4 details the main results of the integrated experiments of the EFCI model and
other models on the CDR dataset, which is superior to other models in previous work.

Our model achieved an F1 score 4.2 points higher than the baseline model (ATLOP)
also outperformed other representative models by a significant margin. It’s evident that,
in comparison to the sequential model, the graph model exhibits improved utilization of
context information in biomedical documents. However, it falls short in capturing the
intricate relationships between contexts. Our model, on the other hand, places a strong
emphasis on interactions between references, enabling more effective learning of CID
relationship extraction.

Table 4. The main results in CDR dataset.

Dataset CDR

Method P R F1

EncAttAgg (Jiang et al., 2020) 59.9 70.9 64.9

GCNN (Sahu et al., 2019) 52.8 66.0 58.6

EoG (Christopoulou et al., 2019) 62.1 65.2 63.6

SSAN (Xu et al., 2021) – – 65.8

MGSN (Liu et al., 2021) 69.0 66.7 67.8

GLRE (Wang et al., 2020) 65.1 72.2 68.5

ATLOP (Zhou et al., 2020) – – 69.4

HANN (Zhao et al., 2022) 68.0 69.5 68.8

DHGCN(Sun et al., 2022) – – 73.1

SAIS(Xiao et al., 2022) – – 74.5

DGI(Wang et al., 2023) – – 72.9

REGREx (Dao et al., 2023) 68.8 65.2 66.8

RDDCP(Dong et al., 2023) – – 71.6

Ours 72.8 72.5 73.7
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4.4 Ablation Study

In this section, to further analyze the EFCI model, we also conducted ablation studies
in the datasets BIORED and CDR to illustrate the effectiveness of different modules
and mechanisms in EFCI. We show the results of the ablation study in Table 5. First,
we explore the impact of the Entity Information Exchange Fusion module on the EFCI
model, when this module was removed from the EFCI model, F1 scores dropped by 2.5.

Then Subsequently, we systematically dissected the various components within the
Entity Information Exchange Fusion module, meticulously evaluating their impact on
the experiment. As we proceeded, we assessed the influence of the Entity Information
Exchange module by removing it from the model, resulting in a discernible decrease of
1.7 in the F1 score. Following this, we eliminated the Entity Information Fusion module,
leading to a reduction of 1.1 in the F1 score. Further exploration saw the removal of the
Contrast Enhanced Inference module, resulting in a substantial drop of 2.1 in the F1
score. Lastly, the removal of the Contrastive Learning module led to a reduction of 0.9
in the F1 score.

Table 5. Ablation Study of the EFCI model in BIORED dataset.

Model F1

Full Model 78.2

o-Entity Information Exchange Fusion module 75.7

o-Entity Information Exchange 76.5

o-Entity Information Fusion 77.1

o-Contrast Enhanced Inference module 76.1

o-Enhanced Inference 76.4

o-Contrastive learning(AFLoss+BCELoss) 77.3

Nevertheless, during our investigation into the impact of the Enhanced Inference
on the model, we observed a noteworthy decline in the model’s relationship extrac-
tion capability, specifically by 1.8, upon the removal of the module. Interestingly, our
inference module exhibits a remarkable proficiency in identifying implicit relationships.
However, its performance may not be as strikingly apparent due to the inherent clarity
of relationships within the medical dataset. It is conceivable that the module would yield
even more impressive results when applied to more versatile, general-purpose datasets.

As we systematically removed specific components from the model, we observed
varying degrees of decline in F1 scores. The comprehensive data from our ablation
experiments on the CDR dataset are meticulously presented in Table 6. Notably, we
discern that the Entity Information Exchange Fusion module’s impact surpasses that
of the Contrast Enhanced Inference module. This observation may be attributed to the
relatively straightforward relationships within the CDR dataset. Our reasoning model
encounters challenges in deducing the underlying relationships, thus resulting in less
substantial gains. In essence, these experiments underscore the robustness of our model,
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Table 6. Ablation Study of the EFCI model in CDR dataset.

Model F1

Full Model 73.7

-Entity Information Exchange Fusion module 70.9

-Entity Information Exchange 72.1

-Entity Information Fusion 71.4

-Contrast Enhanced Inference module 72.8

-Enhanced Inference 73.0

-Contrastive learning(AFLoss + BCELoss) 72.4

revealing that it excels particularly when dealing with complex semantic relationships.
This further solidifies its position as a formidable contender in the realm of extracting
biomedical entity relationships.

4.5 Case Study

As shown in the Fig. 3, we select an article from the BIORED dataset for case analysis,
there are eight entities (including three categories) distributed in different sentences in
the article. Therefore, the task requires the machine to read the entire document to infer
the relationship.

Fig. 3. Case study on BIORED test set.

To judge the relationship between entities, it is necessary to combine the context
and mention relevant information to enhance the entities. “dopaminergic” is a chemical
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entity, “dopamine” is its reference, and “dopaminergic terminal damage” is a charac-
teristic of the disease. The baseline model did not correctly predict the relationship
between entity “lipopolysaccharide” and “dopaminergic”, misjudged the relationship
between “lipopolysaccharide” and “dopaminergic terminal damage”, in fact, there is no
relationship. However, our model successfully predicted that the relationship between
them is “Association”. Mention is extremely important for predicting significant rela-
tionships. It can be seen that our model better combines the context, fuses the head and
tail entity information at the same time, and correctly assigns high weights to reference
pairs.

We conducted a visual analysis of both the baseline model ATLOP and our pro-
posed model to assess the relationship between entity pairs based on attention weights.
As shown in the Fig. 4, the attention weight of our model to methamphetamine, 3,4-
dihydroxyphenylacetic acid, inflammatory et al. is significantly higher than that of the
baseline model. In addition, for the prediction of the relationship between A and B,
our model does not assign too much weight, while the baseline model assigns a high
weight, believing that this entity pair is strongly correlated, which is different from the
real result. This further illustrates the accuracy of our model.

Fig. 4. Compare our model to the baseline model for visual analysis.

5 Conclusion and Future Work

In this research, we introduce a document-level relationship extraction method tai-
lored for biomedical applications. Our approach centers around the development of the
EFCI model, which serves to amplify contextual information between entity mentions.
The core components of our method involve the utilization of the Entity Information
Exchange Fusion module. This module facilitates comprehensive information exchange
between the contextual head and tail entities and reference pairs. Subsequently, the fusion
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module amalgamates this information and refines it to extract the pertinent reference
pairs, ultimately constructing the feature matrix. This feature matrix is then channeled
into the inference layer, where we employ multi-head attention to unearth latent rela-
tionships among biological entities. Finally, we employ contrastive learning to address
label imbalance concerns, thereby enhancing the model’s performance in long-tail clas-
sification. This approach not only bolsters the model’s inference capabilities but also
enhances its interpretability.

There remains ample room for improvement in our future work. We can extend the
application of this method to more specialized and expansive datasets to validate its
effectiveness conclusively. Moreover, we must confront the challenge of striking the
right balance between recall and precision when handling long-tailed labels. Lastly, we
can explore the incorporation of multi-hop reasoning to augment contextual semantic
information, which will be the primary focus of our forthcoming research endeavors.

Acknowledgment. This work is supported by grant from the Natural Science Foundation of
China (No. 62072070).
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Abstract. Temporal relation extraction of medical events for Chinese
clinical medical texts is an important natural language processing task,
which is the basis of many intelligent researches in the medical field.
Most of the existing studies on temporal relation extraction remains
at sentence-level tasks, however, the rich medical information and large
number of specialized vocabularies in Chinese clinical medical texts lead
to the fact that short clinical medical texts often contain a much larger
number of medical events than conventional texts, and these events show
complex inter-sentence relations. The global consistency of sentence-level
temporal relation extraction results is difficult to guarantee and cannot
meet the information extraction needs for clinical medical texts. There-
fore, it is necessary to advance the temporal relation extraction task for
medical texts from the sentence level to the chapter level. In this regard,
we propose a simple and effective stepwise temporal relation extraction
method. Based on the event information and the unique rules of temporal
relations in medical text, the model design splits the chapter-level tempo-
ral relation extraction task into three steps, which not only can avoid the
possible contradictory errors in the process of temporal relation extrac-
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1 Introduction

Chinese clinical medical texts are key information resources for the written
record of a patient’s clinical case, which are not only crucial for documenting
the patient’s condition, but also play an important role in medical research and
education [1]. However, these texts are usually written in natural language and
need to be organized into structured information in order to extract the clinical
medical events and relations within them [2–4]. This not only helps healthcare
workers to retrieve relevant case reports more easily, but also helps to build a
complete body of medical knowledge to support the handling of issues such as
large global health crises.An example of a chapter-level temporal relation extrac-
tion task for a Chinese clinical medical text is shown in Fig. 1.

Fig. 1. Given a Chinese clinical medical text (Which means “The patient was treated
with acid-suppressing medication two years ago for gastric hemorrhage, and his symp-
toms subsided... This morning, he came to our hospital because of blood in his stools
and a drop in blood pressure, and was admitted with gastric hemorrhage after hav-
ing an electronic gastroscope ...”). The text consists of multiple sentences containing a
series of patient-related medical events in different temporal contexts.The dotted boxes
of different colors in the figure are medical events of different event types in the text,
such as “problem” events in the red box, “treatment” events in the green box, “exam-
ination” events in the blue box, and “time expression” events in the yellow box(The
“time expression” type of event is a special type of event that can be subdivided into
nine time expression types, as described in Sect. 4.1). “These medical events will be
distributed on the timeline in a first-to-last order of occurrence based on their temporal
relation to each other. In the figure below the medical timeline, the events and time
expressions belonging to the same box have an “equal” temporal relation, which means
that the related medical events occurred within the same time frame.Our goal is to
construct a timeline of medical events without temporal conflicts for each medical text
through a greedy check-and-add process. (Color figure online)

In terms of chapter-level temporal relation extraction task, by studying a
large number of Chinese clinical medical texts, we found that there are important
differences between the temporal relation extraction task between medical events
and the common relation extraction task. In Chinese clinical medical texts, the



166 W. Xiang et al.

same event expressions in different sentences do not necessarily refer to the
same event. For example, in Fig. 1, there are two “problem” events expressed as
“gastric hemorrhage”, but these two “gastric hemorrhages” are distributed in
different locations on the medical timeline, which means that they occurred at
different times and and are different events with the same mention. To address
this finding, we stipulated that each event in the medical text be treated as
unique and independent, and extracted the temporal relations between them to
construct a timeline of the patient’s medical care.

2 Related Work

The task of temporal relation extraction has existed for a long time, and early
research used traditional machine learning methods [5–10], as well as neural
network-based approaches [11–14] to solve this problem. There are also some
approaches that attempt to formulate this task as a structured prediction prob-
lem to model the temporal dependencies of events [15–17]. However, these
approaches either require complex feature engineering or ignore the dependencies
between temporal relations in documents, and most of them focus on extracting
intra-sentence relations [18–22], which cannot effectively deal with inter-sentence
relations in texts with long paragraphs.

In recent years, with the wide application of Chinese electronic medical
records, temporal relation extraction for Chinese medical events has gradually
become one of the popular tasks in the fields of medical information processing
and natural language processing in China. A Chinese clinical medical text usually
contains multiple medical events, which exhibit complex inter-sentence relations.
Therefore, temporal relation extraction for medical texts focuses on chapter-level
tasks. Unlike the intra-sentence relation extraction task, the chapter-level task
needs to focus on the information of the whole text, which is a very challenging
and difficult task.

For chapter-level relational extraction tasks, related research has focused on
the overlap problem of relation triples and the interference of co-referential men-
tions of entities on the task. As a result, many previous researchers have centered
on solving these two problems to improve chapter-level relationship classifica-
tion For example, some researchers have used edge-oriented graph neural models
that combine different types of nodes and edges to create chapter-level graphs,
modeling the co-referential mention information of entities and dealing with
the overlapping triples problem [23]. While some other researchers constructed
two graphs in the model, one at the mention level and the other at the entity
level, which are capable of aggregating text-aware contextual information and
inferring logical relationships between texts for better extraction of chapter-
level relations [24]. Other researchers have incorporated unique dependencies
between co-referential mentions into the standard self-attention mechanism and
throughout the encoding phase, utilizing entity structure to enhance inference of
chapter-level relations [25]. As for the chapter-level temporal relation extraction
task, we have learned through the example in Fig. 1 that we cannot simply rely
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on identical mentions of events to enhance event information. Doing so not only
adds nothing to this task, but also causes loss of information and confusion,
bringing noise to the model.

Dealing with temporal information in clinical medical texts has always been
a challenging field. Past studies have attempted to construct medical timelines,
and have even proposed the bright idea of integrating medical knowledge into
temporal reasoning systems [26]. Clinical medical texts are linguistically con-
cise and, despite their short length, contain a huge number of medical events
and a correspondingly inflated number of relation triples. Therefore, the tradi-
tional temporal relation extraction method is computationally expensive. At the
same time, according to the properties of temporal relations such as transmissi-
bility and self-reversibility, a considerable portion of temporal relations can be
inferred from the temporal relations related to them, so the extraction process of
traditional methods produces a large amount of redundant information, which
interferes with the training of the model. To solve this problem, this paper pro-
poses an innovative step-by-step temporal relation extraction model, which can
process the events in the text in batches through time intervals divided by time
expressions, which not only effectively reduces the number of pairs of temporal
relation events that need to be categorized, and at the same time excludes the
redundant triples that do not help the construction of the timeline, but also
distinguishes between different events of the same mention by the natural bar-
riers of the time intervals and effectively reduces the likelihood of confusions or
contradictions.

In conclusion, this paper proposes a stepwise temporal relation extraction
method based on the characteristics of Chinese medical texts to address the main
difficulties of the chapter-level temporal relation extraction task. This approach
is an important inspiration in solving the temporal relation extraction problem
in chapter-level Chinese clinical medical texts.

3 Method

This chapter describes the task description and the definition of our model in
turn. Figure 2 illustrates our model and we will describe the different components
of the model in detail in the following sections.

3.1 Task Description

Given a medical text D, consisting of n characters, (D = {ci}ni=1. The text
contains p medical events(the set of events is denoted as: E = {ei}pi=1), and q
time expressions(the set of time expressions is denoted as: T = {ti}qi=1). The
task of this paper aims to extract the temporal relations between the events and
time expressions contained in medical text D in order to construct a patient-
related medical timeline. The model needs to obtain a set of relations denoted
as A(A = {R(e−e) ∪ R(e−t) ∪ R(t−t)}), which includes the temporal relations
between events in the text R(e−e), the temporal relations between events and
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time expressions R(e−t), and the temporal relations between time expressions
R(t−t). In the definition,R denotes the predefined set of temporal relation types
(R = {“After”, “Before”, “Equal”, “Vague”}).

Fig. 2. A Chinese clinical medical text is fed into the model. First, the text is pro-
cessed by BERT coding layer and linear layer to get the embedding vector of each
token. Then, the text is processed through linear and conditional random field layers
to get the named entity recognition labels of the text. Then, the model splices the
token embedding vectors with the label embedding vectors to get the final representa-
tion of the event. The event representation is fed into the stepwise temporal relation
classification module together with the temporal relation rule features for temporal
relation classification. Eventually, the full text temporal relations obtained from the
model are used to construct a chapter-level medical timeline. The triangular patterns
in the figure represent the time expressions in the text, while the circular patterns of
different colors represent the different types of medical events in the text.

3.2 Temporal Relation Feature Construction

Encoder. We first encode the whole text by feeding it into a pre-trained lan-
guage model, BERT [27]. The emergence of BERT has greatly advanced the
development of sentence-level, inter-sentence-level, and token-level tasks. Instead
of relying on recurrent neural networks, it uses a transformer architecture to bet-
ter capture long-distance dependencies, and is able to make predictions that go
beyond natural sentence boundaries, as it is typically trained on continuous text
fragments spanning multiple sentences. We chose BERT over other transformer-
based models because it takes bi-directionality into account during training,
a feature that we hypothesize is important for effectively capturing temporal
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relation interactions of events. Using BERT without the additional task of cap-
turing information about the order of events in the text would significantly
reduce model complexity. In addition, the length of our chapter-level medical
text corpus is much smaller than the length of real document-level medical text,
satisfying the input length limit of BERT, which is a prerequisite for us to be
able to use BERT for coding in order to obtain decent performance.

In Fig. 2, our model feeds the entire medical text D = {c1, c2, ..., cn} into
the BERT encoder to obtain an encoded representation of each token: H =
BERT (c1, c2, ..., cn) = {hcls, h1, h2, ..., hn, hsep}, H ∈ Rl×d, where l denotes the
layer width, i.e., the sentence length (including the two special start and end
tokens of [CLS] and [SEP]), and d denotes the hidden layer dimension of BERT.
Next, with one linear layer, we obtain the label prediction vector matrix W for
each token:

W = λ(wnerH + bner) (1)

where, W ∈ Rl×m, wner ∈ Rd×m, bner ∈ Rm, m is the number of BIO labels, m
= 27, wner and bner are the learnable weight matrix and bias of the linear layer,
and λ is the activation function.

After the BERT and Linear layers, we employ Conditional Random Fields
(CRF) [28] to obtain the most likely BIO labels in the token sequence. We define
the entity recognition task as a sequence labeling problem, referring to previous
research on named entity recognition [29,30], and adopt the BIO (Beginning,
Inside, Outside) encoding scheme. Since each event or time expression consists
of multiple consecutive tokens in a sentence, we need to assign a tag to each
token in the sentence. In this way, we can identify the start and end positions
of events and time expressions, as well as their types (e.g., B problem). With
the CRF layer, we end up with a sequence of labels for the entire text token. To
learn the BIO labels for each token, we compute the cross-entropy loss function
Lner:

Lner = −
n∑

i=1

logP (H ′|H, θ) (2)

In order to improve the accuracy of the named entity recognition part of
the model, we combined the relevant information in the medical field and the
annotation results of medical events in our dataset, and compiled a dictionary of
medical terms, which is used to correct the model for any errors or incomplete
recognition that may occur when recognizing the medical events, in order to
improve the accuracy of the model.

In addition, we believe that the type information of the events will be helpful
for the task of extracting the temporal relations among the events. Therefore,
we splice the context embedding vectors obtained through BERT encoding with
the embedding vectors of the corresponding BIO label sequences to obtain the
final representation of each token: H ′ = {hcls

′, h1
′, h2

′, ..., hn
′, hsep

′}, H ′ ∈ Rl×d.
Event and time expressions in text usually consist of multiple consecutive

characters. We use the method of averaging character sequence vectors to obtain
the final representation of them. Assume that event ei consists of the ath token
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to the bth token and time expression tj consists of the cth token to the dth
token. Then, event ei and time expression tj are represented as:

hei =
1

b − a + 1

b∑

i=a

hi
′ (3)

htj =
1

d − c + 1

d∑

i=c

hi
′ (4)

Temporal Relation Rules of Medical Event. By reading a large number
of Chinese clinical medical texts and combining the annotation experience of
Chinese medical event temporal relation datasets, we summarize four temporal
relation rule features of medical event in Chinese medical texts, as shown below:

(1) Event type rule: Event type refers to the type of event. Statistically, we
found that in our experimental corpus, when two events have the same type
of event type, the probability that the temporal relation between them is
“Equal” is around 50%, and the proportion of “Equal” relation between
“examination” events even reaches 69%, far exceeding the proportion of the
other three temporal relations. Therefore, if the first and last events of the
temporal relation to be extracted have the same event type, it is specified
that the feature value will be taken as 1, otherwise the feature value will be
taken as 0.

(2) Event distance rule: Event distance refers to the relative distance between
two events in the text, i.e., how many characters are separated between
them. We believe that the relative distance between two events can help
us better determine the temporal relation between them. Statistically, in
our experimental corpus, the proportion of two events with the number of
characters between them in the interval of [0,10] whose temporal relation
is “Equal” reaches 50%. Therefore, if the number of characters separating
the events of the temporal relation to be extracted is within this interval, it
is specified that the feature value will be taken as 1, otherwise the feature
value will be taken as 0.

(3) Medical event combination rule: There is a unique pattern of temporal
relationships between different types of medical events in medical text.
For example, we observed that patient-related events in the category of
“problem” mostly preceded events in the category of “treatment”. In our
experimental corpus, two-by-two combinations involving 13 types of events
yielded a total of 169 different event combinations. We counted the per-
centage of these event combinations with the temporal relation “Before”,
and the results are shown in Fig. 3. In the figure, the darker color indicates
that the temporal relation of these event combinations tends to be “Before”.
We select the event combinations with the proportion of “Before” relation
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greater than or equal to 55%, and if the head and tail events of the tempo-
ral relation to be extracted meet any of these combinations, We define this
feature value to be 1; otherwise the feature value is taken to be 0. It is worth
noting that the temporal relation is self-reversing, i.e., if R(A, B) = Before,
then R(B, A) = After; therefore, we take the feature value of this item to be
1 if the event categories of the head and tail events of the temporal relation
to be extracted correspond to one of these opposing combinations; otherwise
the value of the feature is taken to be 0. Above, the rule of medical event
combination needs to be captured using two feature values.

(4) Writing order rule: The writing order of events refers to the order in which
the events appear in the text. Chinese medical texts usually follow the human
writing habit of recording events in the objective order of their development.
Therefore, in most cases, events written earlier in a medical text tend to
occur earlier. Statistically, in our experimental corpus, the proportion of
event pairs in which the head event appears earlier than the tail event in the
text and whose temporal relation is “Before” reaches 60%. Therefore, if the
head event of the event pairs to be extracted has appeared earlier than the
tail event in the text, it is stipulated that the feature value will be taken as
1, otherwise the feature value will be taken as 0.

Fig. 3. Temporal relation statistics for various combinations of events

For any pair of events (ei, ej), extract their temporal relation rule feature
vector (a five-dimensional vector) and get the temporal relation rule feature
embedding of this pair of events, denoted as symbol r∗. The extraction of this
feature will help to determine more accurately the temporal relation between
events.
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Characteristic Representation of Event Pairs. Given the vector represen-
tations corresponding to event e1 and event e1 in the text: he1, he2. Splice them
with the embedding vectors of the temporal relation rules features of this pair
of events to obtain the event pair characteristic representation of the temporal
relation to be extracted as follows:

f ee = he1 ⊕ he2 ⊕ r∗ (5)

fee ∈ R3d, The same reasoning leads to a characteristic representation of the pair
of event and time expressions of the temporal relation to be extracted fet ∈ R3d,
and the characteristic representation of a pair of time expressions f tt ∈ R3d.

3.3 Stepwise Temporal Relation Extraction

The chapter-level event temporal relation extraction task, in essence, is to judge
the order of occurrence of events in the text, therefore, the time information in
the text is crucial, they connect the development of all the events in the text,
which is essential for the recognition of event temporal relations. In addition,
according to the real experience, the temporal relations between time expressions
are easier to judge compared to the temporal relations between events. As a
result, this paper designs a three-layer stepwise temporal relation extraction
module.

The First Classification Layer (T-T). The task of the first classification
layer is to determine the temporal relation, i.e., the T-T temporal relation,
among all time expressions in the text. Based on the temporal order between
time expressions, this layer treats these time expressions as time anchors hitting
the relative timeline in order to split the complete timeline into multiple time
intervals.

Specifically, the first temporal relation classification layer receives the feature
vector, f tt, of the pair of temporal expressions for which temporal relations are
to be extracted (these feature vectors capture the connection and information
between the two time expressions). The f tt are fed into the fully connected layer,
and finally the temporal relation between them is computed by the softmax
function:

P (rttij , f
tt) = softmax[f(wtt

1 · f tt + btt1 ) · wtt
2 + btt2 ] (6)

where wtt
1 ∈ Rh×(3d) is the learnable parameter matrix for the first fully con-

nected layer, btt1 ∈ Rh is the bias vector, and h is the hidden dimension of the
fully connected layer; wtt

2 ∈ Rc×h is the learnable parameter matrix for the sec-
ond fully connected layer, btt2 ∈ Rc is the bias vector, and c is the number of
temporal relation types, c = 4. f(·) is the Relu activation function.

The cross-entropy loss function for computing this layer is defined as:

Ltt
cls = −

∑

ti,tj∈T,i �=j

log P (rttij |ti, tj), rttij ∈ R (7)
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The Second Classification Layer (E-T). The task of the second classifica-
tion layer is to determine the temporal relation between the events and the time
expressions in the text, i.e., the E-T temporal relation. Through this layer, we
can categorize the events in the text into corresponding time intervals according
to their temporal relations with the time expressions.

The second temporal relation classification layer feeds the feature vector fet

of the pair of event and time expressions of the temporal relation to be extracted
into the fully connected layer, and finally the temporal relation between them is
computed by the softmax function:

P (retij , f
et) = softmax[f(wet

1 · fet + bet1 ) · wet
2 + bet2 ] (8)

where wet
1 ∈ Rh×3d is the learnable parameter matrix for the first fully connected

layer, bet1 ∈ Rh is the bias vector; and h is the hidden dimension of the fully
connected layer; wet

2 ∈ Rc×h is the learnable parameter matrix for the second
fully connected layer, bet2 ∈ Rc is the bias vector. f(·) is the Relu activation
function.

The cross-entropy loss function for computing this layer is defined as:

Let
cls = −

∑

ei∈E,tj∈T

log P (retij |ei, tj), retij ∈ R (9)

The Third Classification Layer (E-E). The task of the third classification
layer is to extract the temporal relations of the events in the time intervals
obtained from the second classification layer, in order to arrange these events on
the medical timeline according to their temporal relations.

The third temporal relation classification layer sends the feature vector fee

of event pairs with temporal relations to be extracted in each time interval to
the fully connected layer, and finally the temporal relation between them is
computed by the softmax function:

P (reeij , fee) = softmax[f(wee
1 · fee + bee1 ) · wee

2 + bee2 ] (10)

where wee
1 ∈ Rh×3d is the learnable parameter matrix for the first fully connected

layer, bee1 ∈ Rh is the bias vector; and h is the hidden dimension of the fully
connected layer; wee

2 ∈ Rc×h is the learnable parameter matrix for the second
fully connected layer, bee2 ∈ Rc is the bias vector. f(·) is the Relu activation
function.

The cross-entropy loss function for computing this layer is defined as:

Lee
cls = −

∑

ei,ej∈E,i�=j

log P (reeij |ei, ej), reeij ∈ R (11)

In summary, the loss function of the stepwise temporal relation classification
module is defined as:

Lcls = Ltt
cls + Let

cls + Lee
cls (12)
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Once an event has been clustered into a time interval, its temporal rela-
tions with events in other time intervals have already been determined, so our
approach minimizes the redundant relations generated by the model and the
temporal contradiction errors that may arise during the prediction process. The
efficiency of the model is also improved since the model only needs to focus
on the temporal relations necessary to construct the timeline. This module pro-
vides a simple yet effective solution to the task of chapter-level temporal relation
extraction.

3.4 Joint Learning

In order to synchronize the learning of the event extraction module and the tem-
poral relation classification module so that they improve each other, we combine
the loss functions of both modules to form the entire loss objective of our model:

L = Lner + Lcls (13)

3.5 Construction of the Medical Timeline

Once our stepwise temporal relation extraction module accomplishes its task,
our next critical step is to construct a complete timeline of patient care using
the resulting temporal relations. This process aims to deal with any possible con-
flicts between the predicted outcomes of the temporal relations, which requires
global reasoning. Our ultimate goal is to construct a conflict-free medical timeline
through an iterative, greedy process that ensures the consistency of the tempo-
ral relations contained throughout the text. Briefly, we first sort the temporal
relations in descending order according to their predicted probabilities. Then,
one by one, we checked whether each predicted temporal relation, if added to the
current timeline, would trigger a conflict within the timeline; if so, we removed
it; if it did not trigger a conflict, we added it to the timeline. Ultimately, this
process allows us to construct a complete patient medical timeline that reflects
the temporal relations of the entire Chinese medical text. This approach helps
ensure that our model maintains the global consistency of the extracted temporal
relations over chapter-level texts.

4 Experiment

4.1 Introduction to the Dataset

Due to the scarcity of chapter-level Chinese medical event temporal relation
datasets, we constructed a medical event temporal relation dataset based on
Chinese electronic medical records by ourselves. We collected real patient medi-
cal data from local tertiary hospitals, covering Chinese electronic medical records
of internal medicine, pediatrics, obstetrics and gynecology, oncology, and many
other departments. After a simple data cleaning to remove task-irrelevant and
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patient privacy-related information, we finally obtained 1000 valid clinical med-
ical texts. During the construction of the dataset, we mainly relied on manual
annotation, while incorporating some automatic annotation methods to obtain
reliable annotation results of the temporal relations of medical events.

In order to ensure the standardization of the dataset’s annotation, we have
taken into account the features related to the patient’s medical timeline in the
Chinese electronic medical record text, and referred to the annotation experi-
ence of Chinese CED [31], English i2b2-2012 [32], and TimeML [33], etc., to spec-
ify a set of annotation specifications applicable to our dataset.We annotate four
types of events in our dataset that best reflect the patient’s condition and medical
treatment, including “problem”, “treatment”, “examination”, and “other specific
events”. as well as nine types of time expressions, such as“date”, “time”, “modi-
fied time point ”, “relative point in time”, and so on. The definition of temporal
relations includes four types: “Before”, “After”, “Equal” and “Vague”.

The dataset contains 1,000 medical texts, a total of 12,373 events and time
expressions, and 153,022 temporal relation triples. For model training and eval-
uation, we divided the training set, validation set, and test set in the ratio of
7.0:1.5:1.5. The statistics of various events and time expressions and temporal
relation triples in the three datasets are shown in Fig. 4.

Fig. 4. Number counts of medical events (a), time expressions (b), temporal relation
triples (b)

We divide all temporal relation triples into three main types, i.e., (time
expression - time expression) type temporal relations (T-T), (event - time expres-
sion) type temporal relations (E-T), and (event - event) type temporal relations
(E-E). Table 1 demonstrates the number of data samples in the dataset where

Table 1. Statistics on data samples

Dataset Num of
samples

T-T num
(ave)/num of
samples

E-T num
(ave)/num of
samples

E-E num
(ave)/num of
samples

Text length
(max/min/ave)

Train 700 3.8/440 40.6/667 104.3/700 260/44/127.9

Val 150 3.0/89 39.1/139 117.4/150 253/41/132.5

Test 150 4.1/88 44.0/142 118.5/150 244/59/135.3
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these three types of temporal relations exist, as well as the average number of
such temporal relations contained in each data sample, and the sentence length
(longest/shortest/average length) of the medical texts.

The statistics show that the number of T-T type temporal relations is the
lowest, the number of E-T type temporal relations is slightly higher, and the
number of E-E type temporal relations is the highest. It is worth noting that
not every piece of data contains either T-T type or E-T type temporal relations.

4.2 Evaluation Indicators

In this paper, we use a strict evaluation criterion to report model performance,
i.e., temporal relation extraction results are considered correct only if head and
tail event representations (with complete overlap with annotations) as well as
temporal relations and event types are correctly extracted. When the validation
set achieves optimal results, we report the corresponding results for the test set.
Since there are few similar works on Chinese related corpus available for our
task, in order to be consistent with previous relation extraction methods for fair
comparison, we use three different evaluation metrics including precision, recall,
and F1 score to evaluate our model, which are computed using the following
formulas.

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

F1 =
2 × P × R

P + R
(16)

where TP indicates the number of positive cases predicted correctly; FP indicates
the number of negative cases predicted incorrectly; TN indicates the number of
negative cases predicted correctly; and FN indicates the number of positive cases
predicted incorrectly.

4.3 Baseline Models

Our approach is a BERT-based pipeline method, and in order to evaluate the
performance more convincingly, we performed multiple comparisons. First, we
compare it with two neural network-based joint extraction methods, namely
the BERT-based BERT-CRF-joint model and the BERT-BILSTM-CRF-joint
model. In addition, we also selected two current mainstream relation extrac-
tion models: CasRel [34]and the TPLinker [35]. The advantage of the CasRel
model is to solve the overlapping problem of the relation triples, which embeds
the relation categorization into a network of multiple pointers, and predicts the
object entities and the relation categories simultaneously through multiple cat-
egorizations, in order to better deal with the complex relation situations. The
TPLinker model adopts a unified joint extraction annotation framework to unify
the extraction problem into a character pair linking problem, i.e., the Token Pair
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Linking problem, in order to achieve a single-stage joint extraction and to solve
the problem of burst bias and overlapping relation extraction in relation extrac-
tion. By comparing with these several different relational extraction models,
we can more comprehensively evaluate the performance of our approach on the
chapter-level temporal relation extraction task.

4.4 Experimental Results

Comparing the performance of our model with other models is shown in Table 2.
From the experimental results, we find that the model that performs well in
the relation extraction task does not perform well in the chapter-level tempo-
ral relation extraction task for Chinese medical events. This may be due to
the fact that Chinese clinical medical record texts contain a large number of
events and temporal relations far beyond ordinary texts, which increases the
difficulty of temporal relation extraction. Therefore, the performance of CasRel
and TPLinker models in the chapter-level temporal relation extraction task is
much lower than that of the sentence-level relation extraction task.

Table 2. Comparison with other models

Model NER Relation Prediction

Precision Recall F1-score Precision Recall F1-score

BERT-CRF-joint 0.75 0.74 0.74 0.18 0.46 0.25

BERT-BILSTM-CRF-joint 0.73 0.76 0.74 0.18 0.51 0.26

CasRel 0.83 0.80 0.81 0.39 0.32 0.35

TPLinker 0.84 0.78 0.80 0.35 0.31 0.33

Our Model 0.83 0.77 0.79 0.42 0.39 0.40

In addition, the issue of temporal granularity of time expressions is an impor-
tant factor. Except for definite time expressions such as “date” and “time”, most
time expressions are usually fuzzy or modified time points or time periods, which
naturally have different temporal granularities. However, in our Chinese tempo-
ral relation dataset, the temporal granularity features with time expressions are
only roughly labeled, defining the whole time expression only based on its start
time, and for the temporal relations between time expressions, comparing the
sequence of their occurrences only based on their start times, without considering
the time span they last. This leads to the first layer in our model, i.e., the T-T
type of temporal relation extraction is not as effective as expected, and since our
stepwise temporal relation extraction module is a pipelined design, the errors in
the T-T layer will lead to inaccurate segmentation of the most important time
intervals of the model, which in turn will lead to errors in predicting the time
intervals in which the medical events are located, and the errors will keep on
accumulating, which will affect the temporal relation prediction results of the
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whole text of the accuracy decreases, pulling down the overall performance of
the model.

The comparison of the number of predicted relations to the total number
of Gold relations for each model compared to our model is shown in Table 3.
Traditional relation extraction models generate a large number of redundant
temporal relations. In contrast, our model groups events by time intervals, and
most of the relations generated can be used for timeline construction, effectively
reducing redundant temporal relation generation and improving the efficiency of
the task.

Table 3. Statistics on the number of temporal relations predicted by each model

Model DEV TEST Number of GOLD relations

BERT-CRF-joint 18330 14128 36256

BERT-BILSTM-CRF-joint 19210 14898 36256

CasRel 14585 12978 36256

TPLinker 14912 12896 36256

Our Model 12461 9873 36256

4.5 Ablation Study

We conducted ablation experiments to analyze the validity of each part of our
model. The results of performing ablation experiments are shown in Table 4.

Table 4. Result of ablation study

Model P R F1 Lift (↓)

-Fine tuning 0.19 0.20 0.19 0.21

-Dictionary of medical terms 0.35 0.40 0.37 0.03

-BIO labels embedding 0.32 0.37 0.35 0.05

-Temporal relation rules of medical events 0.40 0.39 0.39 0.01

-Stepwise temporal relation extraction 0.24 0.34 0.28 0.12

Our Model 0.42 0.39 0.40

Based on the experimental results, we find that fine-tuning the pre-trained
encoder has a significant impact on the performance. An un-fine-tuned pre-
trained language model leads to a performance degradation of about 21%.
Removing the information enhancement of the dictionary of medical terms
decreases the entity recognition performance, which in turn affects the BIO
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labels embedding, resulting in a decrease in model performance of about 3%.
Removing the embedding of BIO labels features and using only the contextual
embedding generated by BERT as the final representation of the event and time
expressions showed a decrease in model performance of about 5%, suggesting
that the BIO tags provide valuable information for temporal relation classifica-
tion as we expected. The temporal relation rules of medical events had a very
limited improvement on the model; removing this component only decreased the
model performance by about 1%, and the application of this rule may need to
be explored further. Finally, we employed a simple fully-connected classification
layer in place of the stepwise temporal relation extraction module, no longer
distinguishing which of T-T, E-T, or E-E the combination of events of the tem-
poral relations to be extracted belonged to, an approach that resulted in a 12%
decrease in model performance. It is verified that our stepwise temporal relation
extraction design improves the performance of this task significantly.

5 Conclusion

In this paper, we perform chapter-level event temporal relation extraction in
a Chinese corpus of clinical medical texts to construct a patient-related medi-
cal timeline. We propose a simple pipeline method that combines the features
and patterns of medical texts, and design a stepwise temporal relation extrac-
tion operation that simply and effectively removes a large number of redundant
relations that may be predicted by ordinary relation extraction methods, and
effectively avoids contradictory conflicts in the corpus features. On our annotated
dataset, we compared our model to several pipeline-based and joint extraction
models, achieving performance that outperforms these approaches. Since the
effect of our model is very dependent on the extraction results of T-T class
temporal relations, we will continue to explore how to improve the effect of
temporal relation extraction between time expressions. In addition, due to the
input limitation of BERT, we can only perform chapter-level text temporal rela-
tion extraction within a limited length now, and in future work, we would like to
extend our approach to medical texts of longer length, or even to document-level
medical texts in the true sense of the word.
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Abstract. The extraction of clinical events and their temporal relation
from electronic medical records (EMRs) is crucial and plays a significant
role in the development of various intelligent clinical applications. Nev-
ertheless, achieving precise extraction of such information from Chinese
electronic medical records (CEMRs) presents a formidable challenge due
to the limited availability of Chinese language resources in this field.
To address this challenge, we create a dataset comprising clinical events
and their temporal relations extracted from CEMRs. Previous methods
for extracting clinical events and temporal relations typically relied on
sequential pipeline models, which involve initially identifying events and
then training classifiers to recognize temporal relations between them.
However, this step-by-step approach can result in the accumulation of
errors at each stage. Therefore, we propose a joint extraction model uti-
lizing a biaffine architecture to simultaneously extract clinical events and
temporal relations. To enhance the model’s performance, we incorporate
constraints related to relatedness and irreversibility, resulting in an effi-
cient approach for extracting temporal relations from CEMRs. Our joint
extraction model performs admirably on the Chinese dataset we con-
structed.

Keywords: Chinese Electronic Medical Records · Clinical Temporal
Relation Extraction · Biaffine Model · Constraint Inference

1 Introduction

In recent years, the development and popularization of medical information
technology has seen Chinese electronic medical records (CEMRs) gradually
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replace traditional paper medical records as the primary form of medical records.
CEMRs provide enhanced clinical decision-making support and medical quality
management for medical personnel due to their efficient and reliable character-
istics. However, the vast amount of vital clinical event and temporal relation
information [1–3] contained in CEMRs, such as disease diagnosis, treatment
processes, and medication history, holds significant value for medical research
and clinical practice. Owing to the limitations of available data resources, fully
leveraging this value is currently challenging.

We have developed a dataset based on CEMRs to identify clinical events and
temporal relations. Specifically, we obtained CEMR text from a first-class hospi-
tal in China and processed it manually. Furthermore, we processed the raw data
into an independent medical text and removed any patient privacy information,
including names and addresses. Next, we utilized the TimeML [4] and I2B2 [5]
annotation guidelines and established a unified annotation standard based on
CEMR’s characteristics. We manually annotated clinical events (CEvent) and
time expressions (Timex3) and temporal links (TLink) [6–8] on each event pair,
including CEvent-CEvent, CEvent-Timex3, Timex3-Timex3, where the tempo-
ral relation includes Before, After, Equal, and Vague.

In recent years, temporal relation extraction have been mainly implemented
using pipeline models [2,9] and joint extraction models [10]. While the pipeline
model involves detecting clinical events before extracting temporal relations,
errors in event extraction can lead to lower accuracy in temporal relation iden-
tification. Therefore, we used a joint extraction model to concurrently extract
clinical event and temporal relation. Specifically, we employed a biaffine model
[10–13] to construct a unified table structure for extracting clinical events and
temporal relations. In the table, events are represented as squares distributed
diagonally, while temporal relations are represented as rectangles distributed
non-diagonally.

Figure 1 illustrates a clinical narrative that states “The patient had been suf-
fering from uremia for over a year and had completed the relevant examina-
tions...”, where the clinical event “E1: uremia” is a disease labeled as problem-
label (PRO), the time expression “E2: over a year” is labeled as modified
duration-label (MDUR), and the clinical event “E3: relevant examinations”
belongs to laboratory examination and is labeled as examination-label (EXA).
The temporal relation between events satisfies irreversibility, meaning that the
order of events cannot be changed. The relation between “E1: uremia” and “E2:
over a year” is Equal. If “E1: uremia” is the head event and “E3: relevant
examinations” is the tail event, their temporal relation is Before. On the con-
trary, if “E3: relevant examinations” is the head event and “E1: uremia” is the
tail event, their temporal relation is After. Similarly, when “E2: over a year” is
the head event and “E3: relevant examinations” is the tail event, the temporal
relation is Before, while when “E2: over a year” is the head event and “E3:
relevant examinations” is the tail event, the temporal relation is After.
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Fig. 1. Example of a table for joint extraction model.

Previous research [6,9] have treated temporal relation extraction as a multi-
classification problem, thereby making it challenging to maintain logical con-
straints between temporal relations. To tackle this issue, [6–9,14] introduced
a constraint inference method that enforces logical coherence by incorporating
supplementary losses. Inspired by this, this study incorporated constraints relate
to relatedness and irreversibility, resulting in an efficient approach for extracting
temporal relations from CEMRs. To ensure relatedness, we aimed to maximize
the probability of events in the table while minimizing the probability of tem-
poral relations in the same row and column. An example is illustrated in Fig. 1,
the probability of “E1: uremia” and “E2: over a year” should exceed the prob-
ability of (E1, Equal, E2) in the table. The irreversibility constraint conditions,
including (E1, Equal, E2) and (E2, Equal, E1), must be satisfied by the rectangle
representing temporal relation with diagonal symmetry.

We have developed a dataset of events and temporal relations from CEMRs,
which aims to facilitate the development of Chinese medical information extrac-
tion. We proposed a novel joint extraction model that employs a biaffine archi-
tecture to concurrently extract clinical events and temporal relations. By incor-
porating constraints related to relatedness and irreversibility, we developed an
efficient approach for extracting temporal relations from CEMRs. Our contribu-
tions to this work are listed as follows:

– We have constructed a dataset consisting of clinical events and temporal
relations extracted from Chinese electronic medical records, which has the
potential to advance the field of medical information extraction in the Chinese
language.
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– We proposed a joint extraction model utilizing a biaffine architecture to con-
currently extract clinical events and temporal relations.

– The use of biaffine architecture and constraint inference techniques to extract
clinical events and their temporal relations shows a practical and innovative
approach.

2 Related Work

2.1 Relation Extraction

In recent years, research on relation extraction has primarily focused on entity
relation extraction (ERE) [15–17]. ERE is a process of extracting entity and
their related relation from text, ultimately producing a set of triples in the for-
mat (head entity, relation, tail entity). Experiments in ERE tasks often involve
overlapping modes, including single entity overlap (SEO) [15–17], entity pair
overlap (EPO) [15–17], and subject object overlap (SOO) [17]. SEO refers to
the scenario where an entity has relations with two or more other entities, while
EPO indicates the possibility of a pair of entities having multiple relation types.
Furthermore, SOO describes a triplet where the head and tail entities share
common elements.

Researchers have proposed various research strategies for different tasks. For
instance, [15] proposed a cascade binary tagging framework that is a joint ERE
method that leverages parameter sharing. In [16], the authors proposed a one-
stage joint extraction model that addresses three overlap issues. After continuous
attempts, [17] designed a component that predicts potential relation and con-
strains the subset of relation extracted by entities. They then constructed cor-
responding global components to align relation triplets. Moreover, [10,12] used
one-pass to classify relation among all entity mention while locating relation
from all entity mention. These methods involve filling out tables.

2.2 Temporal Relation Extraction

Temporal relation extraction is a specialized field within event relation extrac-
tion. Unlike entity relation extraction, temporal relation extraction focuses on
identifying the temporal order of events in natural language texts. This involves
utilizing common sense [18] and constraint inference [2,6,9]. For instance, in
the clinical domain, it is common knowledge that a patient is diagnosed with a
disease before being admitted for treatment.

Previous research aimed to extract temporal relations between events in a
large corpus [19,20] for the first time, with the goal of applying this knowl-
edge to the news domain [8]. In [6], constraints of symmetry and transitiv-
ity were utilized to optimize event temporal relations model. [21] represented
events using hyper-rectangles and identified their order of based on whether the
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rectangles overlapped or contained each other. Meanwhile, [22] proposed an end-
to-end hyperbolic neural structure to model events and their temporal relations
in hyperbolic space. To better model the constraints between temporal relations,
[2,3] proposed a global constraint inference pipeline model, which has made sig-
nificant contributions.

3 Method

This section presents our joint extraction model, which is depicted in Fig. 2.
Specifically, we fine-tuned a pre-trained language model (PLM) [23–26] to
learn contextual vector representations. Two multi-layer perceptrons (MLPs)
are employed to predict the vector representations of the head and tail events,
enabling the prediction of the table structure (Sect. 3.2). The model is further
optimized through constraint inference (Sect. 3.3).

Fig. 2. Overall framework of our model.

3.1 Task Definition

We set the input sequence x = {x1, x2, . . . , xn} to have a length of n. The
objective is to detect events e and temporal relations r. Each event e is assigned
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a distinct label ε ∈ γε, such as PRO or DUR. Each event pair is linked by a
temporal relation r ∈ γR represented as a triplet of (e1, r, e2), where e1 and e2 are
events and r represents a temporal relation. For any given text, we constructed
a table T of size |n| × |n|, where each cell (i, j) is assigned a label s(i, j) ∈ γ.
Each cell (i, j) represent a head xi and tail xj , and should be filled ε or r. Note
that cells (i, j) in any square on the diagonal of the table can only be labeled
with s(i, j) ∈ γε ∪ �, whereas cells (i, j) in non-diagonal rectangles can only be
labeled with s(i, j) ∈ γR ∪ �. The symbol � represents no filling.

3.2 Biaffine Model

We formulated the joint extraction model as a table structure prediction via a
biaffine model. We fed the input sequence x into a PLM as an encoder context
representation hi ∈ R

d. The output of the PLM is:

hi = PLM(xi) (1)

Next, we used a biaffine model to represent each token in the table T , which is
effective for dependency parsing tasks [10–13]. Specifically, we used two MLPs,
head event hhead and tail event htail to learn the projection representations,
which are calculated using the learned representations as follows:

hhead
i = Whead

2 (ReLU (Whead
1 henc

i )), htail
j = W tail

2 (ReLU (W tail
1 henc

j )) (2)

where hhead
i ∈ R

d and htail
j ∈ R

d, and d is the hidden state. Finally, we
realized the biaffine model to attain si,j , which is a scoring tensor. We calculated
the scoring vector by:

si,j = Biaffine(hi, hj) (3)
= (hhead

i )T U1h
tail
j + U2(hhead

i ⊕ htail
j ) + b (4)

where U1 ∈ R
n×n×Z and U2 ∈ R

2n×Z are learnable weight parameters, b is the
bias, ⊕ denotes vector concatenation.

The obtained scoring vector si,j is fed into a softmax function to predict the
probability distribution, where si,j ∈ γε ∪ γR ∪ �. We trained our model using
the following objective function to calculate the loss:

p(yi,j |x) = Softmax (si,j) (5)

Lobj = − 1
|n|2

|n|∑

i=1

|n|∑

j=1

log p(yi,j |x) (6)

3.3 Constraints Inference

To improve the performance of our model, we incorporated additional con-
straints. Specifically, we merged the structural characteristics of the biaffine
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model with constraints that ensure relatedness and irreversibility. The relat-
edness constraint, which is based on the biaffine model, states that cells on the
diagonal of the table should have a higher probability of being identified as events
than as relations in the same row or column. Additionally, temporal relations
must be irreversible, which means that they must be symmetrical about the
diagonal in the table T . We designated the predicted probability Si,j,k for each
cell (i, j) in the table T , where S ∈ R

|n|×|n|×|γ|.

Relatedness. Due to the fact that event existence is a prerequisite for relation
existence, the probability of relation existence should be lower than that of event
existence. To ensure this constraint, we set the maximum probability of event
type Si,i,k for each cell (i, i) on the diagonal should not be lower than that of
other cells in the same row Si,:,k or column S:,i,k of relation type.

Lrel =
1
|n|

|n|∑

i=1

[
max
k∈γR

{S:,i,k,Si,:,k} − max
k∈γε

{Si,i,k}
]

∗
(7)

where [u]∗ = max(u, 0) is a hinge function.

Irreversibility. Temporal relations between events are irreversible, meaning
that the temporal order of events cannot be changed. The square corresponding
to an event must be symmetrical about the diagonal. When a pair of events
is treated as a head and tail event, the corresponding temporal relation in the
table is distributed on both sides of the diagonal. For example, the relations
(e1,Before, e2) and (e2,After, e1) are equivalent.

Lirr =
1

|n|2
|n|∑

i=1

|n|∑

j=1

|Si,j,k − Sj,i,k| (8)

Finally, we optimized all three loss functions jointly during training using the
combined loss function Lobj + Lrel + Lirr.

4 Experiments

In this section, we presented an overview of the dataset and experimental results
from multiple perspectives.

4.1 Dataset

We obtained raw data from a first-class hospital in China, which required manual
processing and developed annotation guidelines before annotation. This involve
first course records, ward rounds, and examination records. During the manual
processing stage, the raw data was transformed into a single medical text and
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was removed any privacy information including names and addresses. The anno-
tation guidelines were developed based on the unique characteristics of CEMRs.
As shown in Fig. 3, the annotation process mainly involves five steps to ensure
the quality of the data: event annotation, event checking, relation annotation,
relation checking, and relation generation. The dataset consists of 6 CEvent,
12 Timex3, and 4 TempRel, as presented in Table 1, 2, and 3. According to
Table 3, we calculated the distribution of the four temporal relations and found
that the number of Before and After is equal, which satisfies the irreversibility
constraint. However, the Vague nature of certain events in clinical narratives
makes it challenging to identify them with complete accuracy at the time of
occurrence. We divided the dataset into training, validation, and test sets in a
6:3:1 ratio (Table 4).

Table 1. Clinical Event Statistics.

CEVENT label Acronyms Count Ratio (%)

Problem PRO 4,397 27.84

Examination EXA 3,502 22.18

Treatment TRE 2,863 18.13

Clinical Department CD 309 1.96

Evidence EVI 1,124 7.12

Occurrence OCC 799 5.06

Table 2. Time Expressive Statistics.

TIMEX3 label Acronyms Count Ratio (%) TIMEX3 label Acronyms Count Ratio (%)

Season – 11 0.07 Duration DUR 271 1.72

Age – 105 0.66 Modified Duration MDUR 166 1.05

Date – 183 1.16 Unspecified Duration UDUR 62 0.39

Time – 133 0.84 Past, Now, Future PNF 215 1.36

Relative Time RTime 937 5.93 Part of Day POD 358 2.27

Modified Time MTime 91 0.58 Set – 266 1.68

Table 3. Temporal Relation Statistics.

TempRel Type Count Ratio (%)

Before 76,714 38.6

After 76,714 38.6

Equal 38,802 19.5

Vague 6,478 3.3
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Fig. 3. Process of the dataset annotation.

Table 4. Number of Dataset Allocation.

Text Event Relation

Train 1,200 10,163 92,194

validation 600 4,260 30,422

test 200 1,369 9,362

all 2,000 15,792 131,978
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Fig. 4. Example of model input data.

4.2 Implementation Details and Hyperparameter Settings

We realized the joint extraction model through designed a table structure. As
illustrated in Fig. 4, the input data for this model consists of annotated events
and temporal relations. Since each event can have multiple tokens, accurately
identifying event boundaries is crucial. Therefore, all event labels and relation
types are serialized, and a ground-truth table is generated. During training, we
aimed for the learned content close to the rows and columns corresponding to
any event in the table.

The batch size of each data input into the model during training is 16, and the
maximum length of the text is 256. We used four Chinese pre-trained language
models, such as BERT [23], RoBERTa [24], AlBERT [25], and MacBERT [26].
Furthermore, we set the hidden state size of 768, the learning rate is 5e-5, and
the dropout rate is 0.3. Based on this, we trained 200 epochs to train our model.

4.3 Performance Comparison

Table 5 summarizes our experimental results and a comparative baseline analysis.
We evaluated the performance of our model using [27] and Precision (P), Recall
(R), and F1 score (F1) throughout the experiment. Our comparison baseline
includes three methods:

1. BERT+softmax: A pipeline approach that aims to detect clinical events
and classify temporal relations using BERT and softmax.
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2. BERT+LSTM+MAP: We adopted BERT and LSTM to detect events and
extract temporal relations and used the maximum posterior (MAP) optimiza-
tion method to train our model, following the approach proposed by [2].

3. Joint Constraints Learning (JCL): [14] introduced the JCL, which incor-
porates logic constraints and commonsense knowledge.

Table 5. Overall Results Display.

Model Events TempRel

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

BERT + softmax 82.4 81.1 81.7 42.2 41.6 41.8

BERT + LSTM + MAP 83.5 82.9 83.2 48.6 47.9 48.2

Joint Constrained Learning 83.6 85.8 84.7 54.6 52.6 53.8

Ours 85.7 86.1 85.9 54.9 53.7 54.3

In comparison to these experiments, our model performs better. Given the
reliance of NLP on PLMs, we conducted experiments to verify the pre-trained
ability of our model. Specifically, we fine-tuned four PLMs to encode medical
record text (Table 6).

Table 6. The comparison (F1 score) of different PLM.

Encoder Events (%) TempRel (%)

BERT-base [23] 84.5 53.6

RoBERTa-large [24] 85.1 53.8

ALBERT-xxlarge [25] 85.5 54.1

MacBERT-base [26] 85.9 54.3

4.4 Ablation Study

The results presented in Table 7 demonstrate the effectiveness of our model,
including a biaffine model and constraint inference. The ‘-relatedness inference’
and ‘-irreversibility inference’ techniques remove part of constraints, while ‘-
constraint inference’ removes both relatedness and irreversibility constraints and
is only applicable to experiments using the biaffine model. However, identified
temporal relations results were significantly lower when using ‘-constraint infer-
ence’ due to its impact on temporal information. We removed the PLM and
now use only embeddings to learn token-level context representations, and the
comparison results showed that our model based on the PLM is effective in
identifying events and temporal relations.
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Table 7. The comparison (F1 score) with different setting.

Events (%) TempRel (%)

Ours 85.2 53.9

- relatedness inference 83.4 49.2

- irreversibility inference 83.7 47.6

- constraint inference 83.1 44.5

- MLP→embedding 80.1 36.8

5 Conclusions

We have developed a Chinese clinical events and temporal relations dataset
composed of authentic medical records from various hospitals, encompassing
various diseases and clinical scenarios. To conduct experiments, we employed
natural language processing techniques and deep learning models. Specifically,
we used a joint extraction model through a biaffine model, optimizing it using
relatedness and irreversibility constraints. The experimental results demonstrate
that our model, incorporating the biaffine model and constraint inference, is
effective in handling temporal relation extraction tasks.
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Abstract. Biomedical event detection is one of the most important tasks in
biomedical event extraction, providing an important basis for disease preven-
tion and drug development. The existing methods treat event detection tasks as
multi-classification or sequence annotation tasks, only considering the sequence
representation of sentences and striving to obtain more contextual information in
sequence models. However, they overlook the shortcomings of sequence model-
ing methods in capturing long-distance dependency problems and the impact of
syntactic structure dependencies on event detection performance. Therefore, the
paper proposes a biomedical event detection model based on dependency anal-
ysis and graph convolutional neural networks. Firstly, we constructed a feature
extraction framework based on BioBERT word embedding combined with entity
type embedding and dependency parsing, effectively extracting sentence level
features from natural language texts. In addition, dependency analysis is used to
perform syntactic analysis on sentences, identify the grammatical dependencies
between words in the sentence, and construct a dependency syntactic structure
graph. Finally, a graph convolutional neural network is used to perform convolu-
tion operations on the dependency syntax graph, and the dependency relationships
between various nodes in the dependency structure graph are dynamically updated
during the training process, more fully capturing long-distance dependency rela-
tionships in sentences, effectively identifying and classifying the event trigger
words in the sentences. The experimental results show that the proposed method
achieves better performance on the MLEE dataset.

Keywords: BioBERT · BiLSTM · Dependency analysis · Graph convolutional
network · Event detection

1 Introduction

In recent years, the biomedical field has grown continuously, and the number of biomedi-
cal literature has grown exponentially. Biomedical information plays an important role in
biomedical research, and how to efficiently extract the biomedical information needed by
researchers in massive data becomes a major challenge. For biomedical researchers, it is
one of themain tasks of biomedical information extraction to extract the structured infor-
mation from the unstructured data, which can greatly improve the research efficiency
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and quickly detect the effective biomedical events from the biomedical information. A
biomedical event consists of a trigger word and multiple elements. The trigger word is
a word or phrase that triggers the whole event. The type of the trigger word determines
the type of the event; the element is the participant of the event, which can be an entity
or another event. As shown in Fig. 1, it is an example of a biomedical event in a sen-
tence containing two events “Development” and “Negative Regulation” in the sentence
“Thalidomide inhibited the formation of capillary tubes.”, and the event structure is as
follows:

E1 (Type: Development, Trigger: formation, Theme: capillary tubes);
E2 (Type: Negative Regulation, Trigger: inhibited, Theme: E1 Cause: Thalidomide);

Fig. 1. Examples of the biomedical events

A complete biomedical event detection task includes biomedical named entity iden-
tification, biomedical trigger word recognition, and trigger word classification. For most
event detection tasks, the standard entity is given in the relevant text corpus, so as a
subtask of biomedical event extraction, biomedical event detection only needs to iden-
tify the biomedical event trigger word from the text and detect its type. Therefore, the
event detection task can be regarded as a trigger word recognition task, and the identified
trigger words can be classified into pre-defined event types. How to correctly identify
the event trigger word and determine the event type is pretty important for the event
extraction.

Most of the previous methods used for biomedical event detection are rule-based
or traditional machine learning based. The rule-based method relies on manual rule
making, which takes a lot of time; While the methods based on traditional machine
learning, such as SVM (Support VectorMachine) and CRF (Conditional Random Field),
have better performance in event detection compared with the methods based on rules,
but they rely on a large number of manually designed complex features, have poor
generalization ability. At present, the deep learning method based on neural network
has gradually become the mainstream method. Using word vectors to represent words
can not only improve the data sparse problem caused by high-dimensional vector space,
but also contain more semantic feature information [1]. Using neural network model
can automatically learn text features and achieve good results in many natural language
processing tasks. At present, in biomedical event detection tasks, many researchers treat
biomedical event detection tasks as multi-classification tasks or sequence annotation
tasks, and are committed to obtaining more context information in the sequence model.
However, sentence level sequence modeling methods are still insufficient in capturing
long-distance dependency, which ignore the impact of syntactic structure dependencies
in sentences on the performance of event detection tasks. And because syntactic structure
dependency can determine the relationship between different words and phrases in a
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sentence, the semantic differences in different syntactic dependency structures and the
types of dependency labels in dependency structures are often ignored, and text features
cannot be well extracted. To solve the above problems, this paper presents a model for
biomedical event detection, combining BioBERT (Biomedical Bidirectional Encoder
Representation fromTransformers) [2]word embedding and entity typeword embedding
to encode sentences, obtaining the vector representation of the entire input sentence,
and then combines the bidirectional long short term memory neural network BiLSTM
(Bidirectional LongTermMemory) to obtain sufficient context information, the syntactic
dependency graph is obtained by dependency parsing to represent syntactic dependency,
which effectively shortens the distance from one trigger word to another in a sentence.
The GCN (Graph Convolutional Neural) [3] is used to process the dependency syntactic
structure data, and dynamically update the dependency relationships between the nodes
in the dependency structure graph during the training process, so as to more fully capture
the long-distance dependency in sentences and the semantic differences in different
syntactic structures. In addition, this paper introduces multi head attention perception
MUH (Multi Head Attention) [4] after GCN to enhance biomedical event information.
The performance of the model and its advantages in the experiment were evaluated on
MLEE (Multi Level Event Extraction) [5], a general data set in the biomedical field. The
experimental results show the effectiveness of the model in the event detection task. To
sum up, the main contributions of this paper are as follows:

– A feature extraction framework based on BioBERT word embedding combined with
entity type embedding and dependency analysis is proposed to effectively extract
sentence-level features in natural language texts.

– Design a biomedical event detection model based on dependency analysis and graph
convolutional network, through the sentence syntactic analysis, identify the grammar
dependence between the words in the sentence, build dependent syntactic structure,
using graph convolution neural network dependent graph convolution operation, and
the dependency relationships between nodes in the dependency syntax graph are
dynamically updated, effectively identify and classify the event trigger words in the
sentence.

– Experiments are conducted on MLEE, a general dataset in the biomedical field, and
the experimental results show that the proposed event detectionmodel performs better
than other models.

2 Related Work

The biomedical event detection examined in this paper is mainly about identifying the
trigger word from the text and detecting its type. The existing biomedical event detec-
tion methods still have some difficulties, which require researchers to continuously
explore and innovate. At present, the biomedical trigger word recognition methods
mainly include: rule-based methods, traditional machine learning-based methods and
deep learning-based methods. Rule-based methods mainly rely on manually formu-
lated rules, which do not need the dataset to be labeled with labels, but their rules are
generally defined for specific data sets, and have poor generalization ability. Methods
based on traditional machine learning mainly rely on artificial design features to train
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traditional machine learning algorithms. Pyysalo et al. [5] input manually designed
context-dependent features into the support vector machine SVM to complete biomed-
ical event extraction. Zhou et al. [6] used the learned expertise in the external corpus as
a feature embedding to train a multi-core classifier. He et al. [7] used SVM to combine
complex features to enable two-stage biomedical event trigger word detection. Tradi-
tional machine learning methods require a lot of labor, are more complex, and have poor
generalization ability. With the continuous development of deep learning technology,
in order to solve the problems of complex artificial design rules and features and the
lack of semantic information and features, deep learning methods based on word vec-
tor and neural network in traditional machine learning methods, and gradually become
the mainstream method. Nie et al. [8] proposed based on the PubMed corpus training
word vector-assisted neural network prediction model for biomedical event detection.
Liu et al. [9] embedded the pre-trained words based on the NYT corpus into the aux-
iliary neural network prediction model for event detection. The above method is based
on the specific field corpus training word embedding, and different from many fields
general corpus, biomedical corpus has a large number of professional terms nouns (such
as resistance, transcription), and these professional terms are easy to be understood by
professional biomedical researchers, but not universal, so in the biomedical text min-
ing task has no good training effect. Massive biomedical information contains a large
amount of biomedical information of great scientific research value, and the performance
of biomedical event detection model is very important in the task of biomedical event
detection. Lee et al. [10] proposed that based on the study of biomedical events, they
found that BERT (Bidirectional Encoder Representation from Transformers) pre-trained
language model can be further optimized in biomedical events, and proposed that using
BERT model for word vector training has achieved good results. The BioBERT model
trained by the biomedical corpus PubMed (PubMed Abstracts) and PMC (PMC full-text
articles) has a better effect on biomedical events than the BERT model. In this paper,
we use the pre-trained word vector of BioBERT model based on training. Rahul et al.
[11] proposed to extract complex features in sentences based on the recurrent neural
network model, used for biomedical event detection. Li et al. [12] proposed a paral-
lel multi-pooling convolutional neural network model for biomedical event extraction.
Wang et al. [13] proposed a word embedding and deep learning model based on depen-
dency analysis to improve the performance of the event detection task. Li et al. [14]
proposed to use CNN (Convolutional Neural Networks) training character-level vector
and word vector combination with large-scale background corpus training as input, and
build BLSTM-CRF deep neural network model for biomedical event detection. Chen
et al. [15] proposed the DMCNNmodel to using the improved convolutional neural net-
work and improved the pooling layer to achieve two-stage event detection. Fei et al. [16]
proposed a RecurNN-CRF model, which combined the dependency-tree based RNN
with CRF layer using a recurrent neural network to globally represent the entire depen-
dency tree to better integrate dependency-based syntax letters. Wei et al. [17] introduced
a language model to dynamically calculate the word representation of the context, and
proposed a multi-layer residual bidirectional long and short-time memory structure to
detect biomedical events for the problem of labeled ambiguity in the biomedical cor-
pus. All of the above research methods have important references, but the influence of
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dependence and long-distance dependence on event detection performance is not con-
sidered. This paper proposes to rely on dependency analytical and graph convolutional
neural network modeling, it effectively solves the problem that recurrent neural network
and convolutional network cannot obtain distant word information, further improves the
detection performance in the biomedical event detection tasks.

3 Methods

This paper presents a biomedical event detection model based on dependent analytic and
graph convolutional networks, integrate dependency syntactic information into a graph
convolutional network, dynamic update dependency edge in graph convolution network,
using the multi head attention perception enhance event information, strengthen the
connection between events to complete biomedical event detection. As shown in Fig. 2,
the event detection model proposed in this paper, the whole model is divided into five
layers: sentence coding layer, BiLSTM layer, graph convolutional network layer based
on dependency analysis, multi head attention layer and event classification layer.

3.1 Sentence Coding Layer

The sentence coding layer converts each word in a sentence into a real valued vector,
which contains sentence semantic information and entity information. The sentence
coding layer in this paper consists of pre-trained word embedding and entity type word
embedding. First, each sentence is truncated to a fixed length L, and the blank part of
the shorter sentence is filled by specific special characters. Then, the pre-trained word
embedding corresponding to each word in the sentence is spliced with the entity type
word embedding to obtain the representation of each word xi. Therefore, a sentence will
be represented as {x1 , x2 , . . . , xL}. In the sentence coding layer, in order to improve the
expression ability of initial features, each word in the sentence is converted into a real
value vector by splicing word embedding and entity type word embedding:

Word Embedding
At present, the most typical pre-trained language model is BERT [10], which uses
bidirectional transformer for coding, and comprehensively considers context features
when predicting words. BERT has achieved good optimization results on some general
domain corpora, but cannot achieve higher performance for specific specialized words
in the biomedical field. This paper uses the pre-trained language model BioBERT for the
biomedical field, which assigns trigger word labels to each word in the sentence using
the BIO label method. In the sentence encoding layer, the BioBERT pre-trained model
is used to convert the input sentence into a fixed length embedding representation ei.

Entity Type Embedding
Event trigger words are verbs or gerund connecting entities in text. In biomedical text,
a word is a trigger word in a specific sentence, and may be part of an entity in another
sentence. The presence of entities and their corresponding entity types in sentences may
affect the detection of trigger words. Therefore, this paper introduces entity type embed-
ding in the sentence encoding layer, annotates the entities mentioned in the sentence
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Fig. 2. The framework of our proposed method

using BIO label method, and maps the type information of each word (such as PER (per-
son name), LOC (location), ORG (organization)) to a low dimensional vector matrix to
obtain an oriented quantization representation. As the model is trained and updated, we
define it as the entity vector representation of the word vi.

3.2 BiLSTM Layer

Long short-termmemory is a special structured recurrent neural network. By controlling
the long-term information in the recording sequence through input gates, forgetting
gates, and output gates, the problem of long-term dependence in RNN is solved. In
order to capture the long distance context information of a sentence, this paper uses
bidirectional long short term memory neural network to extract sentence level features.
Specifically, it involves encoding and analyzing the word features xt obtained from
the sentence encoding layer at time t, concatenating the forward LSTM hidden layer

vector representation
−→
ht with the reverse LSTM hidden layer vector representation
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←−
ht to obtain the final output ht , and then obtaining the hidden state representation of
sequences incorporating context information, as shown in (1–3):

−→
ht = −−−→

LSTM (xt) (1)

←−
ht = ←−−−

LSTM (xt) (2)

ht = [−→ht ,←−ht ] (3)

3.3 Graph Convolutional Network Layer Based on Dependency Analysis

Construction of the Dependency Analysis Graph
Dependency syntactic parsing, also known as dependency analysis, can identify and
determine the interdependence between various components in a sentence, analyze the
grammatical structure of the sentence. Different dependency structures may have signifi-
cant semantic differences. Therefore, dependency syntax can better understand sentences
and improve the precision of tasks such as event detection. The dependency syntactic
structure graph represents the syntactic dependency relation of a sentence as a directed
graph, where the directed arc represents the grammatical dependency relation between
words. The graph convolution operation of the word can focus on the word most related
to the current word, avoiding the modeling of unrelated sequences.

This paper uses the Stanford-CoreNLP dependency parser to obtain the dependency
syntactic structure of each sentence, and then takes the word representation obtained
from the upper layer as the node, and represents the dependency as the connection
between each node. For example, the dependency syntactic structure of sentence w can
be obtained as shown in Fig. 3. Where, the word “mediated” is the root word (root) the
root word does not depend on other words, other words are directly dependent on one
word or more words in the sentence. The sentence W contains “Positive_regulation”
events triggered by “induction”, “Gene_expression” events triggered by “expression”,
and “Regulation” events triggered by “mediated”.

W: Hypoxic induction of HIF-1alpha and VEGF expression in head and neck
squamous cell carcinoma lines is mediated by stress activated protein kinases.

Let graph G = {V ,E} be the syntactic dependency structure of sentence w, where
V is the node set V = {w1 ,w2 , . . . ,wn} of graph G, wi represents the ith node in set V,
E represents the edge set of graph G, and each directed edge (wi,wj) in set E represents
a directed edge from the head node (head)wi to the dependent node dep(wj), and the
attribute of the edge is L(wi,wj), and the attribute of the edge is the dependency label. For
example, in the syntactic dependency structure diagram of sentenceW, there is a directed
edge from the initial node wi = “induction” to the dependent node wj = “Hypoxic”,
the directed edge attribute L(wi,wj) = L(“induction”, “Hypoxic”) = amod, and amod
represents adjective modifier. The trigger word “induction” and trigger word “mediated”
are associated through syntactic dependency structure to form a event “Regulation”,
and the dependency type of trigger word “induction” and trigger word “mediated” is



204 X. He et al.

Fig. 3. Dependency syntactic structure graph example

L(“induction”, “mediated”) = nsubjpass. Therefore, dependency syntactic structures
and dependency types can provide important information for event detection.

Graph Convolutional Neural Network Updated by Syntactic Edges
Graph convolution network [3] is a method that can directly perform convolution oper-
ation on graph data. Graph convolutional neural network updated by syntactic edges
first convolutes node feature vectors according to the attribute feature information of
neighbor nodes, and aggregates the information from the neighbor nodes together. In
each layer, each node transmits information to its neighbor nodes along the edges in the
graph. Dependency parsing can explain the relation between different words and phrases
in a sentence. The different dependency structures may have large semantic differences.
The dependency label information of this type is merged into the feature aggregation
process to obtain a better representation. Then, according to the context representation
of each node in the sentence, this paper dynamically updates the dependency representa-
tion between nodes in the syntactic dependency structure graph, combines the semantic
information of the context and the syntactic structure relation, so as to obtain the dynamic
syntactic dependency edge. For each node u in the graph, the calculation equation at the
k + 1(k ≥ 0) level is:

(Hk+1,Ek+1) = DUDEPR_GCN(Hk ,Ek) (4)

Ek+1
i,j = DUDEPR(Ek

i,j,H
k
i ,Hk

j ) = Wu(E
k
i,j ⊕ Hk

i ⊕ Hk
j ), i, j ∈ [1, n] (5)

Hk+1
u = ReLU(

∑
ν∈N (u)

Wk
L(u,v)H

k
ν + bkL(u,v)) (6)

where ReLU is a non-linear activation function; Ek ∈ Rn×d is the node representation
output for the layer k. DUDEPR is a dynamic update node dependency module, Hk

i
represents the node representation of the node i in layer k, Hk

j represents the node
representation of the node j in layer k, Wu is a learnable transfer matrix, L(u, v) is the
dependency type passing between DUDEPR module node u and node v, dependency
type updates with the dependent edge,Wk

L(u,v) and b
k
L(u,v) are the weight matrix and the

deviation, respectively.
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3.4 Multi Head Attention Perception Layer

In order to fully mine the context information in sentences, this paper uses multi head
attention perception. The input of multi head attention is three same vector matrices:
Q(Query), K(Key) and V(Value). First, perform linear transformation on Q, K, and V
respectively, and then calculate the scaled dot product attention. The calculation equation
is as follows:

Attention(Q,K,V ) = softmax(
QKT

√
dw

)V (7)

where, dw represents the dimension of the key, which is the sequence of word vectors
of the input sentence. Scaling the point product attention combined with the linear
transformation needs to be calculated h times, one head at a time, and is calculated
in parallel, so that the model can learn relevant information in different subspaces.
Multi-head attention is calculated as shown in (8) and (9):

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (8)

MUH(Q,K,V ) = (head1 ⊕ head2 ⊕ · · · ⊕ headh)W
o (9)

where WQ
i ∈ Rdw/h×dw , WK

i ∈ Rdw/h×dw , and WV
i ∈ Rdw/h×dw are respectively the

weight parameter matrix of different parameters to be trained, Wo ∈ Rdw×dw is the
linear transformation matrix. The h head corresponds to the h dimensions, and each
dimension is an embedding.

3.5 Event Classification Layer

The output of the multi head attention perception layer is input to a full connection layer,
and then the softmax network is used to complete the classification prediction of the last
event, and the credibility of each event type is output. The BIO lable method is used to
label each trigger word in the sentence. “B-” indicates the starting position of the trigger
word, “I-” indicates the middle or rear position of the trigger word of this type, and “O”
indicates that it is not a trigger word.

yti = softmax(WtMi + bt) (10)

where, yti is the final prediction output of the ith token, softmax function often used for
multiple classification tasks, represent the probability that a certain element is taken,
Mi ∈ Rd represents the probability of an element being taken, represents the output
representation of the ith token in the multi head attention layer, d represents the node
dimension, and the loss function of the model is the cross entropy loss function.
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4 Experiment

4.1 Dataset

In this paper, we use Pyysalo [5] to organize the labeled dataset MLEE to study the
whole trigger word recognition task. The MLEE dataset contains medical noun events
from the molecular level to all levels of biological individuals, and its annotation method
is also based on the BioNLP Shared Task. The overview of MLEE corpus data is shown
in Table 1.

Table 1. Data overview of the MLEE corpus

Type Train+Dev Test Toal

Document 175 87 262

Sentences 1749 878 2627

Event 4471 2206 6677

4.2 Experimental Parameter Setting and Evaluation Indicators

In the experiment, the deep learning framework was used as pytorch [18], and the
Stanford-CoreNLP toolkit was used to preprocess the experimental data for dependency
resolution and entity type annotation. The hidden dimension of BioBERT pre-trained
word embedding was 768 dimensions, and the dimension of entity type word vector was
25 dimensions. One layer of BiLSTM, hidden dimensionwas 100 dimensions, two layers
of GCN, output dimension was 150 dimensions. The model optimizer was Adam [19]
optimization algorithm, we set the dropout of BiLSTM and GCN to 0.5 and the learn-
ing rate is set to 1e−3 from {0.1, 0.01, 1e−3, 1e−4, 1e−5}. The specific experimental
parameter settings are shown in Table 2.

In this paper, P(Precision), R(Recall), and F1 score are used as model performance
evaluation indicators, calculated as (11).

P = TP

TP + FP
× 100% R = TP

TP + FN
× 100% F1 = 2 × P × R

P + R
× 100%

(11)

4.3 Experimental Results and Analysis

Biomedical Events Detection Results
The performance of the biomedical event detection method based on dependency anal-
ysis and graph convolution neural network proposed in this paper is compared with
other advanced event detection methods. The performance of each method on the event
detection task is shown in Table 3.
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Table 2. Experimental parameter setting

Parameter Value

BioBERT word embedding 768 dim

Entity type embedding 25 dim

BiLSTM (2×)100 dim

GCN (2×)150 dim

Dropout 0.5

Learning Rate 1e−3

Batch size 16

Optimizer Adam

Label Schema BIO

– Pyysalo et al. [5] proposed an SVM model connecting context and dependency
features.

– Zhou et al. [6] proposed an SVM classifier model with word embedding and hand-
made features.

– Rahul et al. [11] proposed an embedded biomedical event detection model that
excludes dependent information and considers only words and entity types.

– Wei et al. [17] introduced a languagemodel for dynamically calculating the expression
of upper and lower cultural words, and proposed a multi-layer residual bidirectional
long-term and short-term memory architecture.

– Li et al. [20] proposed that the gating polarity attention mechanism explicitly
applies dependent representation learning and triple context representation learning
to biomedical event detection tasks.

– Wang et al. [21] introduced an attention mechanism into Child-Sum Tree-LSTMs for
the detection of biomedical event triggers.

Table 3. Performance comparison of event detection methods

Method P (%) R (%) F1 (%)

Pyysalo et al. [5] 70.79 81.69 75.84

Zhou et al. [6] 75.35 81.60 78.32

Nie et al. [8] 71.04 84.60 77.23

Rahul et al. [11] 79.78 78.45 79.11

Wei et al. [17] 79.89 81.61 80.74

Li et al. [20] 81.95 81.31 81.63

Wang et al. [21] 83.24 80.90 82.05

Proposed 81.67 85.09 83.35
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As shown in Table 3, it can be seen that the model in this paper achieved a compet-
itive performance of 83.35% of F1 score under the architecture based on dependency
analysis and graph convolutional network. Compared with Pyysalo et al. [5] and Zhou
et al. [6] manual feature extraction methods, our model avoids any manual participa-
tion in Feature Engineering, which saves the time and labor costs associated with data
processing and feature selection. Compared with Nie et al. [8] who used skip gram
to generate word embedding to optimize the performance of neural network, we used
BioBERT pre-trained word embedding to effectively extract biomedical event features
and obtain more sufficient context information. In this paper, the Stanford-CoreNLP
toolkit is used to build dependencies. Compared with Rahul et al. [11], considering
word embedding in the event detection task, F1 score is improved by 5.14%. Compared
with literature [20],which also adopts dependency relation, this paper uses a combination
of bidirectional long short term memory network to obtain context information, graph
convolution network to model the syntactic dependency relation of sentences, capture
the long-distance dependency relation in sentences, and achieve better performance. F1
scores are increased 1.72%, dependency analysis has a good impact on the precision of
the detection of event triggered words in sentences. Compared with the residual bidi-
rectional long short term memory sequence modeling method proposed by Wei et al.
[17] and the an attention mechanism into Child-Sum Tree-LSTMs method proposed by
Wang et al. [21], the graph convolution network model has achieved better performance
in capturing long-distance dependence, and the F1 score has increased by 2.61% and
1.30% respectively. The experimental results show that the performance of the model
can be better improved by using the graph convolutional network and dependency syn-
tax structure based on BioBERTword embedding combined with entity type embedding
and BiLSTM combined with dynamic updating dependency.

4.4 Ablation Experiments

In this paper, ablation experiments were carried out on MLEE dataset to verify the
effectiveness of each method. In this paper, Embedding+BiLSTM+GCN was used as
the baseline model, and dependency label (DEPL) module, dynamic update dependency
relation(DUDEPR) module and multi head attention perception (MUH) module were
added on the basis of the baseline model. The experimental results are shown in Table 4.
Compared with the baseline model, adding dependency label increased F1 score by
0.83%; Dependency syntactic information expresses the hierarchical syntactic relation
between words in a sentence. Dependency labels can provide sufficient information
for event detection. Graph convolutional neural network can effectively model sen-
tences. The dependency label module and the dynamic update dependency module were
introduced, and the F1 score increased by 1.77%, indicating that the dynamic update
dependency representation can dynamically integrate contextual semantic information
and syntactic information effectively. Adding the dependency label (DEPL) module,
the dynamic update dependency relation (DUDEPR) module and the multi head atten-
tion perception (MUH) module, the F1 score increased by 2.33%, indicating that the
multi head attention perception can more fully capture the connection between trigger
words in sentences, enhance the event information, and obtain a more focused event
representation after the graph convolutional network modeling.
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Table 4. Performance comparison for each method

Method F1 (%)

Embedding+BiLSTM+GCN 81.02

Embedding+BiLSTM+DEPL+GCN 81.85

Embedding+BiLSTM+DEPL+GCN+DUDEPR 82.79

Embedding+BiLSTM+DEPL+GCN+DUDEPR+MUH 83.35

5 Conclusion

In this paper, a biomedical event detection model based on dependency analysis and
graph convolution network is proposed. Firstly, we splice BioBERT word embedding
and entity type embeddings to encode the text sentence. The BiLSTM is used to obtain
a more sufficient context representation, and then the syntactic dependency structure
graph is obtained through dependency analysis, the GCN is modeled on this basis by
incorporating the dependency label information into the feature aggregation process.
During the training process, the syntactic dependency edges are dynamically updated
to effectively enrich the extracted feature information and overcome the long-distance
dependency problem in the trigger word detection process. After that, multi head atten-
tion perception is used to strengthen the connection between events for each word in
the sentence. Finally, the event detection is carried out through the fully connected clas-
sification network. The proposed method has achieved excellent performance on the
generic biomedical event detection corpus MLEE.

Although our proposed model has achieved good results in biomedical event tasks,
research has found that the performance of the model depends on the understanding of
context semantics. In future research, we will focus on the direct use of dependencies,
rely on syntactic relationships to directly train dependency word embedding, and the
sparsity of dependency labels also affects the performance of the model.
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Abstract. Medical institutions commonly utilize electronic medical records
(EMRs) to document patients’ medical conditions, which contain invaluable med-
ical information. However, EMRs often consist of semi-structured or unstruc-
tured data, posing significant challenges in processing and analysis. In this paper,
addressing the requirements for subsequent tasks such as clinical decision-making,
we present the process of structuring EMRs, focusing on lung cancer EMRs. This
process encompasses EMR structure analysis, data preprocessing, information
extraction, and data integration. Notably, entity and entity relationship extraction
are pivotal steps in this workflow. To accomplish this, we employ a joint extrac-
tion model using BART for information extraction tasks in lung cancer EMRs.
When compared to existing models, our model achieves an F1 score of 64.86%.
Furthermore, we validate the model’s generalization capability by conducting
experiments on a pediatric epilepsy dataset, ultimately achieving the structuring
of EMRs tailored to the requirements of subsequent tasks.

Keywords: Electronic Medical Records · Lung Cancer · Structured · Entity
Relationship Extraction

1 Introduction

Lung cancer is one of the most prevalent and deadliest malignancies worldwide, with
an overall five-year survival rate relatively lower than many other major cancers. Early
diagnosis and prognosis of lung cancer are crucial for improving patient survival rates.
Although artificial intelligence has found wide applications in clinical assistance for
lung cancer, the complete process, from medical record documentation to diagnostic
support, still presents numerous challenges. Efficiently organizing and utilizing existing
information related to lung cancer, rapidly and accurately extracting valuable information
from these vast datasets, and uncovering new knowledge will greatly advance medical
research and lead to significant breakthroughs.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Xu et al. (Eds.): CHIP 2023, CCIS 1993, pp. 212–226, 2024.
https://doi.org/10.1007/978-981-99-9864-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9864-7_14&domain=pdf
https://doi.org/10.1007/978-981-99-9864-7_14


Research on the Structuring of Electronic Medical Records 213

EMRs document detailed patient medical histories and professional diagnoses by
healthcare providers, making them a vital and primary source of reference in clinical
diagnostics. This has positionedEMRs as a crucial resource for the analysis of large-scale
health data. Within these records, the quantity of semi-structured and unstructured data
significantly outweighs structured data, yet they contain a wealth of valuable medical
knowledge. The challenge lies in processing and making use of this semi-structured
or unstructured data, as it presents a more complex task but holds great potential for
improving diagnostic accuracy. Therefore, the importance of the task of structuring
EMRs is becoming increasingly urgent.

In this study, we use lung cancer EMRs as a case study to illustrate the process of
structuring EMRs. The primary steps encompass data collection, data preprocessing,
data annotation, joint extraction of entities and entity relationships, and data integra-
tion. In the entity and entity relationship extraction segment, we validate the method’s
generalizability using a pediatric epilepsy EMRs dataset.

2 Related Work

2.1 BART

BERT [1] has demonstrated exceptional performance in natural language understanding
tasks by providing bidirectional context representation. However, it is not directly appli-
cable to generative tasks. On the other hand, GPT [2] has showcased the effectiveness of
attention mechanisms within an autoregressive structure for sequence generation tasks.
Nevertheless, due to differences between its pre-training objective and discriminative
task objectives, along with its autoregressive nature, GPT exhibits limited performance
in discriminative tasks.

BART (Bidirectional and Auto-Regressive Transformers) is a generative pre-trained
model based on the Transformer architecture, introduced by Facebook AI in 2019 [3].
BART amalgamates the characteristics of autoregressive and bidirectional encoding,
endowing it with robust text generation and comprehension capabilities. Unlike tra-
ditional autoregressive models, BART employs a Masked Language Model for pre-
training. During the pre-training phase, it masks and perturbs input text, enabling the
model to acquire more generalized representations, while simultaneously facilitating
bidirectional text generation (Fig. 1).

Fig. 1. BART model structure diagram
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2.2 Electronic Medical Record Structuring

EMR structuring currently has two mainstream solutions: pre-structuring and post-
structuring. The pre-structuring method, initially employed in the medical field, rigor-
ously constrains data format during the data collection process. However, its drawback
lies in the requirement for healthcare professionals to input data in prescribed formats,
which may not align with their habitual clinical note-taking practices. As a result, post-
structuring methods have gradually become the focus of contemporary research. These
methods predominantly entail the post-collection structuring of data in the background,
employing machine learning and deep learning techniques.

Zeng et al. [4] introduced a named entity recognition approach that integrates an
attention mechanism with BiLSTM-CRF, which achieved promising results on the
CCKS2018 dataset.With thewidespread adoption of pre-trainedmodels, Zhang et al. [5]
successfully applied BERT-BiLSTM-CRF to Chinese EMRs for named entity recogni-
tion, outperforming baselinemodels on the CCKS2017 dataset.Huang et al. [6] proposed
a representationmethod formedical text based onXLNet, effectively harnessing sequen-
tial information within EMR texts, thereby accomplishing modeling within the medical
text domain.Chang et al. [7] conducted comprehensive research and improvements based
on the existing CasREL framework. They specifically addressed two prominent issues
in Chinese medical texts, namely, entity overlap and the relatively higher average triplet
count in single-sentence corpora. This endeavor resulted in significant performance
enhancements.

3 Analysis and Construction of a Lung Cancer Electronic Medical
Record Dataset

The acquisition of EMRs for lung cancer typically encompasses a wide range of data
types, with semi-structured data comprising the majority, and also includes some struc-
tured information. These structured data effectively enhance the accuracy of informa-
tion extraction. In addition to structured data, EMRs contain a substantial amount of
unstructured data, such as free text. However, this unstructured data inevitably contains
errors and redundant information. Therefore, for existing EMR documents, conducting
structured analysis and data organization becomes of paramount importance. This pro-
cess aims to clearly define data elements, thereby improving data usability and quality,
providing a more reliable foundation for subsequent research and clinical practice.

3.1 Structured Process

The primary task in structuring involves preprocessing existing lung cancer EMRs.
Subsequently, it necessitates the extraction of medical entities and entity relationships
from these records and the ultimate integration of these extracted entities based on their
relationships, in order to complete the structuring of lung cancer electronic health record
data. To achieve this, an analysis of the structure of lung cancer EMRs is conducted,
and specific labeling standards are devised. Both automatic pre-labeling and manual
labeling are employed, involving the participation of specialized medical professionals
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and graduate students. These individuals carried out three rounds of labeling and quality
reviews for 200 lung cancer cases. Following the labeling, the data is subjected to joint
extraction experiments and then applied to unlabeled data before being integrated. The
specific workflow of this entire process is illustrated in the diagram below (Fig. 2).

Data cleaning

Privacy processing

L1 type data processing

Develop labeling

specifications

Annotate

Automatic extraction and 

pre-annotation 

Fig. 2. Lung cancer electronic medical record structured flow chart

3.2 Structural Analysis of Lung Cancer Electronic Medical Records

Presently, the documentationofEMRs inChinaprimarily adheres to the “BasicStandards
for Electronic Health Records (Trial)” [8], which were issued in 2010, serving as the
fundamental guiding principles. The documentation centers around the patient and is
typically presented in the form of free text. In this section, we aim to analyze and
describe the basic structure and characteristics of real lung cancer EMRs, which have
been collected for the purpose of this research. Specifically, wewill delve into thewriting
features and data organization methods of lung cancer EMRs using the key elements
outlined in Table 1.

Given the research objective for downstream clinical tasks, and following surveys
and consultations with expert physicians, four semi-structured and structured sections
of lung cancer EMRs have been selected. These primarily include admission records,
initial course records, and discharge records. In this section, the data from these EMRs
will undergo structural analysis, attribute delineation, and data preprocessing.

The purpose of attribute delineation is to clarify the data hierarchy and employ differ-
ent medical record text structuring strategies based on these hierarchies. Data hierarchies
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are categorized into two levels: L1 and L2. L1 refers to original information that is struc-
tured and can be accurately extracted through mapping or filtering of specific fields.
L2 denotes original information embedded in extensive text and cannot be accurately
extracted using rule-based methods; instead, deep learning methods are needed for field
extraction.

Through an in-depth analysis of the existing EMR data, we have summarized the
primary structure and attribute delineation of lung cancer EMRs. These filtered datasets
will facilitate more precise subsequent research in clinical decision support.

Table 1. Analysis and description of lung cancer EMR structure

Main structure of medical records Main content description Attribute division

admission record Allergy history Describe the patient’s
history of drug, food, or
environmental allergies

L1

Chief complaint Describe the patient’s
self-reported reason for
admission and description
of symptoms

L2

History of present
illness

A detailed narrative
describing the patient’s
current condition and
progression of symptoms

L2

Past history Describe the patient’s past
illness, examination, and
treatment history

L1, L2

Personal history Describe the patient’s
personal information such
as lifestyle, diet, and
hobbies

L1

Marriage and
childbearing history

Records describing
marital status and
parenthood

L1

Family history Describe the genetic and
disease history associated
with family members

L1

Physical examination Describe a doctor’s
detailed examination of a
patient’s physical
condition

L1

(continued)
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Table 1. (continued)

Main structure of medical records Main content description Attribute division

Specialist
examination

Describes a professional
examination and
evaluation by a physician
in a specific field

L1

Auxiliary inspection Describe laboratory,
imaging and other
auxiliary diagnostic
results

L2

Initial diagnosis Describe the doctor’s
tentative diagnosis based
on the patient’s
information

L1

first course of illness Admission status Describe the description
of the patient’s symptoms
and signs on admission

L2

Discussion of
proposed diagnosis

The medical team initially
discusses the patient’s
possible diagnosis

L2

Diagnosis and
treatment plan

Treatment plans and plans
developed by your doctor

L1

Discharge records Admission status Describe the description
of the patient’s symptoms
and signs on admission

L2

Admission diagnosis Describe the doctor’s
tentative diagnosis based
on the patient’s
information

L1

Diagnosis and
treatment process

A detailed description of
the treatment and care the
patient received in the
hospital

L2

Discharge diagnosis The patient’s final
diagnosis or physician’s
assessment at discharge

L1

Discharge status The patient’s general
health status and
recommendations at
discharge

L1

(continued)
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Table 1. (continued)

Main structure of medical records Main content description Attribute division

Discharge
Instructions

Treatment and life advice
provided by doctors to
patients after discharge

L1

The above table provides a brief overview of the primary structure and content of the
studied lung cancer EMRs. Through our analysis, it has become evident that the crucial
aspects in need of structuring within lung cancer EMRs include disease and symptoms,
examination events, treatment events, and diagnostic events:

Disease and Symptoms. “Disease” refers to disruptions in the patient’s physiological
regulation, resulting in abnormal states or disturbances in essential life processes. “Symp-
toms” encompass the discomfort or abnormal reactions observed within the patient’s
body, as well as unusual conditions detected through examinations. Notably, ICD-11
lacks a specific classification for symptoms, thus necessitating the utilization of the
Chinese symptom knowledge base [9] and “Diagnostics” to ascertain symptom enti-
ties during the annotation process. These symptom entities primarily encompass state-
ments made by the patient, family members, or other proxies regarding abnormal con-
ditions. Additionally, they encompass abnormal physiological conditions identified by
medical practitioners through observations, inquiries, palpations, and medical imaging
procedures. Specific examples are provided below:

– Chest and back pain for more than 1 year, and lung cancer diagnosed for more than
1 year.

– Twomonths ago, the patient suddenly developed cough and sputumwithout obvious
inducement.

Check Event. Examinations encompass specific procedural investigations or the uti-
lization of pertinent instruments to identify or confirm diseases and symptoms, aiding
physicians in diagnosing the patient’s condition. Within the realm of EMRs concerning
lung cancer, commonly encountered examination entities comprise radiological exami-
nations, pathological examinations, immunohistochemical examinations, tumor marker
examinations, and routine blood examinations. In the process of record structuring,
examinations manifest frequently within both the present medical history and past med-
ical history, carrying significant implications for the physician’s diagnostic process. Con-
sequently, the accurate extraction of examination events stands as a pressing concern in
medical record structuring. Specific examples are elaborated below:

– A cervical and chest CT performed on *** on July 10, 2020 showed: 1. Multiple
enlarged lymph nodes on the left side of the neck 2.Massive soft tissue shadows
in the basal segment of the lower lobe of the right lung. Enhanced scanning is
recommended for further examination 3. Multiple nodules in both lungs section,
short-term follow-up is recommended 4. Multiple enlarged lymph nodes in the



Research on the Structuring of Electronic Medical Records 219

mediastinum 5. Calcification of the aortic wall and coronary artery, mitral valve
calcification 6. Multiple enlarged lymph nodes in the left armpit 7. Cystic low-
density lesions in the left lobe of the liver, please combine Ultrasonography.

Treatment Event. Treatment encompasses therapeutic procedures, medication admin-
istration, and intervention measures aimed at improving physiological regulation,
addressing underlying causes, or alleviating symptoms. It is typically classified into
pharmacological treatment, surgical treatment, and other modalities based on the mode
of therapy. In the course of treating lung cancer patients, the primary modalities revolve
around medication and chemotherapy, involving treatment cycles and precise timing
for initiation and cessation of treatment. Consequently, within the ambit of structuring
tasks, the accurate extraction of treatment entities and delineation of treatment cycles
hold paramount significance.

– One cycle of chemotherapy with the “pemetrexed + carboplatin” regimen was
given on July 25, 2020.

– The “nab-paclitaxel + carboplatin + tislelizumab” regimen was used for 4 cycles
of chemotherapy.

Diagnostic Event. Diagnosis encompasses a comprehensive process involving the col-
lection and analysis of diverse patient information, such as clinical manifestations, medi-
cal history, laboratory tests, and imaging examinations, among others. This process aims
to determine the disease type, disease status, etiology, prognosis, and subsequently for-
mulate appropriate treatment plans. Within tumor diagnosis, the TNM staging of cancer
stands as a critical diagnostic outcome significantly emphasized by physicians. In accor-
dance with the TNM staging method advocated by the Union for International Cancer
Control (UICC), the T parameter delineates the size and extent of the primary tumor, the
N parameter evaluates whether the tumor has spread to lymph nodes, providing insights
into the extent of lymph node involvement, while the M parameter ascertains whether
the cancer has metastasized to other parts of the body, indicating distant metastasis. The
TNM staging within the diagnostic section holds pivotal clinical significance in lung
cancer diagnosis, assisting physicians in crafting treatment strategies, predicting patient
prognosis, and establishing a foundational framework for clinical research.

- Preliminary diagnosis: 1. Primary right lung squamous cell carcinoma cT4N2M0
stage IIIB PD-L1 (22C3 positive 1%) (SP263 positive 1%) EGFR gene (-), ALK (-).

3.3 Lung Cancer Electronic Medical Record Data Preprocessing

In general, data retrieved from hospital EMRs databases display characteristics such as
diversity, incompleteness, and redundancy. These attributes notably influence the final
application performance and represent a vital aspect of EMRs structuring. Hence, pre-
processing of EMR data is imperative to guarantee accuracy, completeness, consistency,
and the preservation of patient privacy. The data preprocessing process involves proce-
dures such as data cleansing, privacy protection, and handling of L1-type data to elevate
data quality and enhance usability.
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Data Cleaning. Due to the templated and repetitive nature of EMR documentation, the
data concerning physical examinations, specialized examinations, auxiliary examina-
tions, etc., recorded in the patient’s admission record, are also presented in the discharge
record when the patient is discharged. This redundancy in data is not beneficial for
named entity recognition and subsequent structuring tasks in EMR; instead, it adds to
the annotation workload. Therefore, it is essential to eliminate redundant information
before efficient structuring to avoid unnecessary extraction efforts. In this paper, ini-
tially, using the cosine similarity measurement algorithm, the text similarity between
the initial course text and the specialized examination section of the admission record
was calculated to be 93.06%, as seen in Formula (1).

cosα =
∑k

i=1 fAi · fBi√
∑k

i=1

(
fAi

)2 ·
√

∑k
i=1

(
fBi

)2
(1)

where F(A) = [
fA1 , fA2 , · · · , fAk

]
and F(B) = [

fB1 , fB2 , · · · , fBk
]
employ word fre-

quencies extracted from the text as feature values. These values are then vectorized to

derive vectors
−→
A = (

fA1, fA2 , · · · , fAk
)
and

−→
B = (

fB1 , fB2 , · · · , fBk
)
. These vectors are

utilized to compute the cosine similarity between the texts. In consideration of the log-
ical consistency and comprehensiveness of the text, we choose to retain the “auxiliary
examinations” and “physical examinations” sections from the admission record.

By employing regular expressions and tokenization methods, we identify keywords
such as “specialized examination”, “physical examination”, and “auxiliary examina-
tion”. This enables the removal of a substantial amount of redundant content pertaining
to specialized and auxiliary examinations. The remaining text is then concatenated,
and annotations are included to denote the deduplication process. Ultimately, the orig-
inal medical record text, following deduplication processing, aligns with the standards
necessary for subsequent data processing tasks.

Privacy Processing. In both patient and parental datasets, a significant volume of sen-
sitive information is present. Ensuring proper de-identification of this private data is
an essential step in processing EMRs data. EMRs data is primarily characterized by
non-continuous text, often organized within a record-based framework. To address this,
the TS-GRU model [10] has been introduced to effectively integrate contextual infor-
mation extracted from EMRs. This integration streamlines the de-identification process
for sensitive data elements such as age, name, address, and more.

L1 Type Data Processing. L1-type data refers to the templated and structured data
within EMRs, allowing for precise field extraction using rule-based methods. Taking the
physical examination section in the EMRs as an example, upon observing the original
EMR text, it becomes evident that the data in the physical examination section is largely
structured, allowing for direct data extraction. Utilizing rule-based regular expressions
for data extraction, patient vital signs such as body temperature bymatching the character
‘T’ and heart rate information by matching the character ‘P’ can be accurately extracted.
This process primarily extracts patient information related to body temperature, heart
rate, blood pressure, weight, height, and general condition.
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4 Joint Extraction of Entity Relationships Based on BART

In the process of structuring EMRs pertinent to lung cancer, a pipeline approach is
commonly adopted following data preprocessing. This approach aims to identify medi-
cally significant entities and entity relationships relevant to the diagnosis. These entities
encompass diseases, symptoms, pertinent examinations, and other relevant information
documented in the patient’s medical history. Moreover, lung cancer EMR texts often
involve single entity overlap (SEO) and entity pair overlap (EPO). In comparison to
general domain datasets, the relationships between entities in lung cancer EMRs are
notably more intricate. This complexity gives rise to challenges such as a higher number
of triplets within a single corpus and a prevalent overlap of entities among triplets. The
presence of multiple triplets and overlapping entities within a single piece of text poses
a significant challenge in the task of entity relationship extraction.

Considering these practical challenges, this study employed the generative model
BART for a joint extraction approach. Experimental analysis was conducted on lung
cancer EMRs to successfully accomplish the task of structuring medical records.

4.1 Model Architecture

The BART model, utilizing a standard Transformer structure, was introduced to address
the prevalence of triplet data and the substantial issue of entity overlap within triplets
in lung cancer EMRs [11]. This selection was based on its remarkable adaptability to
pretraining objectives and downstream tasks, resulting in enhanced generation outcomes.
BART operates as a denoising autoencoder for pretraining seq2seq models. Leveraging
BART’s generative decoding approach enables themodel to repeatedly decode candidate
words from the candidate word list, proving advantageous in addressing the challenge
of overlapping entities in triplets, thus eliminating the necessity for intricate sequence
labeling strategies.

In the training phase of the model, the encoder initially learns the encoded rep-
resentation of the source sentence denoted as S. Subsequently, the encoded sentence
representation is fed into the decoder of the model. The decoder is provided with the
input of the target triplet sequence T, marked with a<sos> token. Throughout the train-
ing process, the decoder is trained to predict the next word based on the subsequence
from <sos> to the current word in the target sequence, inferring the shifted sequence
of the target sequence. The optimization of the model is achieved by minimizing the
negative log-likelihood estimation loss using an optimizer. The specific definition of the
loss function is presented in Formula (2).

loss = −logPgold
tn (S,Ti<n; θ) (2)

where Pgold
tn represents the probability that the model infers correctly at the nth position;

θ represents the model parameters.
The BART encoder encodes the source sentence S into a feature vectorHE of dimen-

sions s×h. The decoder utilizes the previously generated sequence Ti<n andHE to gen-
erate the representationHD

tn for the next target word tn within the decoder. Subsequently,
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an internal classifier in the decoder transforms HD
tn into a probability distribution over

the various vocabulary words in the word table.

HE = Encoder(S; θE) (3)

HD
t0 = Embedding(< sos >) (4)

HD
tn = Decoder

(
HE,Ti<n; θD

)
(5)

Ptn = Softmax
(
WHD

tn + b
)

(6)

In this context, θE and θD represent the encoder and decoder weights, respectively,
while W signifies the trainable weights of the internal decoder classifier. The BART
model appends the generated target word tn to the sequence Ti<n in an autoregressive
manner, which becomes the input for the next decoding round. This process iterates
continuously until it generates the designated end character <eos>, completing the
iterative generation of the source sentence. The specific iterative formula is outlined in
Formula (7).

P(T | S) =
m∏

i=1
P(ti | S,T<i; θ) (7)

where m is the length of the sequence generated by the decoder. The model architecture
is shown in Fig. 3.
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Fig. 3. The model architecture
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Encoder. The encoder section encodes the input text S, and the encoding process is
depicted in Formulas (8) and (9). The encoded representation of the extracted sentences,
in the form of a hidden layer vectorHE

l , is passed on to the decoder section of the model.
In this model, the encoder is constructed using the BART encoder, which comprises
multiple layers of Transformermodules [12]. The BART-basemodel consists of 6 layers,
while the BART-large model consists of 12 layers.

HE
0 = Embedding(S) + Embedding(Spos) (8)

HE
l = Trans(HE

l−1), l ∈ [1,L] (9)

where, HE
0 represents the embedding layer weights of the BART encoder, Embedding()

denotes the word embedding applied to the current sentence, and Spos represents the
positional sequence of words in the input sentence. Trans() signifies the Transformer
module within the encoder, and l indicates the number of hidden layers.

Decoder. The BART model integrates the decoder portion of the GPT model, utilizing
a decoder architecture based on the self-attention mechanism of Transformers. The
encoder learns the overall contextual information of the input text through the self-
attention mechanism, while the decoder’s task is to predict the next word based on the
current input and the model’s previous state [13]. Subsequently, the predicted word is
appended to the input sequence for the next step, iterating continuously until a complete
sequence is generated. Unlike the GPT model, which is a left-to-right unidirectional
autoregressive model, the BARTmodel introduces an encoder. This addition enables the
BART model to utilize contextual information from the source sentence on the encoder
side during inference. This strengthens the relationship between the source sentence and
the generated sequence, enhancing decoding effectiveness [14].

4.2 Dataset

The experiment involved annotating EMRs related to lung cancer collected from a ter-
tiary hospital. After data analysis, the EMR texts from patient admission records, ward
rounds, and discharge records were retained. Additionally, it was observed during the
analysis that complete files for every patient were not available (some patients were not
discharged). In the end, 1,497 EMRs were curated, and a subset of 200 records was
chosen for annotation. With guidance from specialized physicians and training provided
to 22 annotators, the process included the formulation of annotation guidelines, trial
annotations, guideline refinement, and three rounds of annotation.

The document-level lung cancer EMR annotation corpus underwent sentence seg-
mentation, resulting in 6,189 annotated sentences. This corpus comprises 26,594 triplets.
After eliminating duplicates in the dataset, there were a total of 6,641 unique entities and
modifiers, constituting 12,956 triplets. The specific statistical information is detailed in
the table below (Table 2).

The lung cancer EMRs dataset was divided based on an 8:1:1 ratio for training,
validation, and testing sets. This division resulted in 4,951, 618, and 620 sentences
in the respective sets. Analysis of the corpus revealed that in over 70% of sentences,



224 Y. Song et al.

Table 2. Statistics on the number of entities and entity relationships in the dataset

Entities and
modifications

Quantity Entities and
modifications

Quantity

Remove
duplicates

Total Remove
duplicates

Total

Disease 495 7,596 Examine - result 1,671 5,612

Symptom 2,009 18,587 Examine -
Symptoms

1,845 8,213

Examine 386 5,981 Time -
Symptoms

1,368 4,356

Treatment 478 3,560 Body - Disease 245 968

Modify 265 9,145 Time - Disease 698 1,735

Time 469 845 Disease -
Symptoms

1,567 3,576

Body 680 5,479 Modify - Disease 274 2,259

Examine result 1859 3,017 Examine -
Disease

544 1,092

– – – Treatment -
Symptom

156 945

Sum 6,641 54,210 Sum 8,368 28,756

there were 2 or more triplets present. Additionally, approximately 30% of the sentences
contained 5 or more triplets. There were instances where a single sentence contained
both SEO and EPO scenarios. Notably, in most examination-related sentences, the SEO
situation was prevalent due to the necessity of establishing relationships between the
examination name and symptoms or diseases from the examination results.

4.3 Experimental Results and Analysis

In the entity and entity relationship extraction steps of EMR structuring, experiments
were conducted using carefully partitioned lung cancer records to validate the effec-
tiveness of the BART joint extraction model in structuring lung cancer EMRs. In this
experiment, we employed the BART-Large model with both encoder and decoder set
to 12 layers to maintain consistency in the number of layers with BERT-Large and
RoBERTa-Large models. Accuracy (Pre), recall (Rec), and F1 score were utilized as
evaluation metrics to assess the model’s performance. The specific results are shown in
Table 3.
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Table 3. Main experimental results

Dataset Model P (%) R (%) F1 (%)

Lung cancer EMR ERNIE 58.74 61.35 59.63

BERT-Large 60.56 64.83 63.49

RoBERTa-Large 60.95 65.41 63.86

BART-Large 63.41 66.37 64.86

5 Conclusion

In this paper, we present the core process and key techniques for structuring EMRs
based on lung cancer EMRs, with a focus on addressing subsequent tasks such as clin-
ical decision-making. The data preprocessing stage employs data cleaning to handle
characters and redundant data, optimizing the annotation process. The TS-GRU model
is utilized to de-identify patient information and extract structured data (L1 data). In
the information extraction phase, we employ a BART-based joint extraction approach to
accomplish the crucial steps in structuring lung cancer EMRs. This model takes input
sentences, encodes them using an encoder to obtain sentence encoding information,
and then employs a soft fusion strategy to obtain encoding representations at different
depths of the sentences. Using a specific starting token <sos> as input for the decoder,
the decoder utilizes the encoding representation of the source sentence and embedded
representation of relationships as weights for entity and relationship classification. The
softmax function is applied to obtain the probability distribution of candidatewords, from
which thewordwith the highest probability is selected and added to the sequence starting
with<sos>, serving as input for the decoder to infer the next word in the sequence. This
process is iterated until the decoder infers the end token <eos>. Finally, the identified
medical entities are integrated to achieve the structured EMRs for subsequent tasks such
as auxiliary diagnosis.
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Abstract. Large-scale pre-trained dialogue models have shown out-
standing performance across various dialogue-related natural language
processing tasks. However, in privacy-sensitive domains like healthcare,
concerns related to legal regulations and data security continue to pose
challenges, resulting in data silos as a major barrier to building secure
medical dialogue generation models. Federated learning is a distributed
model training approach that allows models to be trained using data
without the data leaving its local environment, making it an effective
solution to address data silos in medial dialogue generation. In this paper,
we focus on the task of medical dialogue generation, which utilizes medi-
cal dialogue data collected from three different Chinese short video plat-
forms to train federated medical dialogue generation model. We employ
the FedAvg algorithm to merge parameters of models trained on data
from different sources. Experimental results demonstrate that in collab-
orative scenarios involving large organizations, federated learning effec-
tively enhances the performance of medical dialogue models, improving
the accuracy of output predictions. The effectiveness of federated learn-
ing varies among participants with different data volumes. Compared
to the ideal scenario of centralized training, federated training yields an
acceptable range of performance loss in the medical dialogue generation
models.

Keywords: Federated Learning · Medical Dialogue Generation ·
Natural Language Generation

1 Introduction

Intelligent remote healthcare is gaining increasing attention due to its higher
resource utilization, safety, and convenience for medical consultations [8]. Med-
ical dialogue models thus become a cutting-edge research topic in the field of
Natural Language Processing (NLP) for monitoring remote medical consulta-
tions. To build powerful medical dialogue models, the quality and quantity of
dialogue data play a crucial role in model effectiveness. In recent years, Chinese
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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short video platforms, such as Kuaishou and Douyin, accumulated rich doctor-
patient dialogue data released by doctor accounts, which not only facilitates the
patients to pre-diagnose their health conditions, but also provides a rich source
of data for medical dialogue model training [14]. However, in medical domain,
data privacy is a major concern. Strict privacy regulations limit the availability
of high-quality and abundant labeled medical data. Moreover. Small datasets
are prone to encountering overfitting issues during model training [11]. To over-
come this problem, this work mainly seeks to build privacy-preserving medical
dialogue models by employing federated learning approaches. The emergence of
federated learning provides hope for collaborative data efforts among different
institutions without compromising privacy, overcoming the limitations posed by
data scarcity on model performance [17].

Federated learning is a decentralized solution with the main idea being to
ensure that data doesn’t leave the jurisdiction of the organization it belongs
to. While maintaining data security, different institutions collaborate to per-
form efficient machine learning among multiple participants or computing nodes.
This involves jointly training a global model with more refined features using
data from various owners without the need for data exchange between institu-
tions. The key distinction from distributed learning is that federated learning
doesn’t require centralized data. Rather than focusing primarily on efficiency, it
emphasizes privacy and security. Therefore, we adopt federated learning to build
privacy-preserving medical dialogue generation model.

This paper focuses on preserving user privacy in medical dialogue generation.
We attempt to incorporate federated learning into the general process of train-
ing generative models, specifically in the pre-training and fine-tuning phases.
The goal is to address the challenge faced by general medical dialogue mod-
els in privacy-sensitive domains where centralized collection of user data is not
feasible. The design concept of federated generative models involves using local
data for local training, transmitting model parameters instead of private data to
ensure data security. Central servers manage model parameter updates, incor-
porating different participants’ learned feature information to optimize model
performance. The paper conducts three different experiments and arrives at the
following conclusions:

(1) Federated generative models for medical dialogue generation outperform
original pre-trained dialogue models, effectively extracting data features from
three parties and promoting secure data collaboration among different insti-
tutions.

(2) Federated generative models perform better than models trained individually
by participating parties, particularly benefiting participants with lower data
proportions, offering significant improvements for all participants involved
in federated training of medical dialogue models.

(3) The performance of federated generative models improve privacy-preserving
performance despite some acceptable loss due to communication and non-
independent distributed data. Under the experimental conditions of this
paper, the decrease of performance is less than 10% compared to traditional
centralized training.
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2 Related Work

2.1 Medical Dialogue Generation

In the field of medical dialogue generation, researchers and practitioners have
been focusing on developing natural language processing (NLP) models and tech-
niques to facilitate communications between healthcare professionals, patients,
and chatbots. Recent advances in medical dialogue systems have benefited med-
ical applications such as psychological consultation [1], elderly care [3], and dis-
ease pre-diagnosis [10]. To build effective medical dialogue systems, related stud-
ies are focusing on optimizing medical dialogue from various aspects. Wei et al.
[13] proposed a method that utilizes patient self-reports and automatically iden-
tifies symptoms from the patient’s dialogue history. They generate responses
using reinforcement learning and templates. Building upon this work, Lin et al.
[5] extracted symptom graphs from a dataset to model the relationships between
symptoms, thereby improving symptom extraction performance. Xu et al. [15]
developed a dialogue system that incorporates an external knowledge graph.
They combined this knowledge graph with annotated patient dialogue infor-
mation to calculate the probability of symptoms and diseases. This probability
is then used in decision-making through reinforcement learning, and the final
responses are generated using templates. Zhang et al. [19] introduced a Medical
Information Extractor (MIE) tailored for medical dialogues. MIE is designed to
extract information related to symptoms, surgeries, and other medical aspects.
The authors employed a sliding window approach to annotate online medical
consultation dialogues, which is considered a more straightforward method com-
pared to sequential annotation. Du et al. [2] presented a model capable of extract-
ing symptoms and their states mentioned in clinical dialogues. The authors also
created their own corpus, which includes approximately 3,000 dialogues anno-
tated by professional medical transcriptionists. This corpus serves as a valuable
resource for training and evaluating the model’s performance in symptom extrac-
tion from clinical conversations. Xu et al. [14] collected and annotated a wide
range of meta-data with respect to medical dialogue including doctor profiles,
hospital departments, diseases and symptoms for fine-grained analysis on lan-
guage usage pattern and clinical diagnosis. And evaluated the performance of
medical response generation on the data set. However, the above methods did
not take into account the issue of user privacy protection, which remains an open
research question for future studies.

2.2 Federated Learning for Nautral Lauguage Processing

In recent years, Federated Learning (FL) has yielded numerous creative achieve-
ments in the field of NLP [4,7,16,20]. For instance, Google LLC, in 2019, was
among the first to apply FL to the Google keyboard and published a series of
technical papers primarily addressing word-level language modeling problems in
the mobile industry. Apple Inc. is using FL for wake word detection in Siri within
the realm of speech recognition tasks. In sequence tagging, Liu and Miller [6]
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employs federated learning to fine-tune the BERT model for named entity recog-
nition tasks. Furthermore, as natural language processing models have evolved
towards larger pre-trained models, the demand for data has become more sig-
nificant. Stremmel and Singh [12] used GPT-2 as a language model but due to
the very large number of parameters in GPT-2, they proposed dimensionality
reduction techniques to reduce the word embedding layer dimensions of GPT-2
to smaller values. Currently, the application of federated learning in the field of
medical dialogue generation still requires exploration.

3 Our Federated Medical Dialogue Generation Model

The idea of the federated medical dialogue generation model is as follows: it uti-
lizes local data from participants for local training, transmitting model parame-
ters instead of privacy data to ensure data security. The central server manages
model parameter updates, assimilates different participant-learned feature infor-
mation, and optimizes model performance. As shown in Fig. 1, the specific pro-
cess includes: (1) The server-side initiates model pre-training, providing a com-
mon basic generative model GPT-2 architecture and word embedding matrix to
participants in a broadcast manner, reducing local computational overhead, and
improving model convergence speed. (2) Federated training participants perform
model training using local data and transmit the parameters of their local train-
ing models to the central server. (3) The central model conducts model fusion
using federated learning algorithm FedAvg and broadcasts the updated model
back to all participants until the model’s performance stabilizes. We introduce
the key elements in the following.

3.1 The Generative Model

Using pretrained language models and fine-tuning on medical datasets is a com-
mon approach in the development of medical dialogue systems. The main steps
involve pretraining on large public datasets and fine-tuning on task-specific
datasets. In this paper, a Chinese pretrained model based on GPT-2 was cho-
sen for the initial training phase, with adaptions made to accommodate Chinese
data input and output. The overall structure of GPT-2 is depicted as shown in
Fig. 2, the model comprises an input layer, self-attention learning layers, and an
output prediction layer.

Input Layer. The input layer is designed to preprocess data into a standardized
format that the model can work with efficiently, facilitating feature extraction
and memory in this specific format. The input layer consists of two steps: word
embedding and positional embedding.

Word embedding is a technique that transforms input words from variables
that are unrelated to each other into low-dimensional variables that capture their
relationships. This transformation is achieved using a word embedding matrix
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Fig. 1. Framework of Federated Medical Dialogue Generation.

Wn×d = Un×mWem×d, where We is the initialize embedding matrix and U is
the sequence of the input text.

Positional embedding involves adding positional information to the input for
different positions of words. This helps the model to recognize and understand
the different meanings of the same words in different positions within the input.
To input position information into the model, it first need to construct a position
vector PE.

After constructing the positional embedding vector, it is added to the word
embedding matrix calculated in the previous step to obtain the model’s input.

inputn×d = Un×mWem×d + Wpn×d (1)

where Wp is the position matrix.

Self-attention Learning Layers. The model’s self-attention layer consists of
10 stacked transformer decoders, and the computations between these layers can
be represented using the following formula:

h0 = UWp+We;hl = transformerblock(hl−1);P (u) = softmax(hnWeT ) (2)

where n is the number of layers, U is the vectors of the first k inputs, We is the
word embedding matrix, Wp is the position matrix. The transformer block is
shown in Fig. 2. Except for the first layer, where the input is the word embeddings
and position embeddings, the input for each subsequent layer is the output of
the previous layer.
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Fig. 2. Framework of GPT-2.

In the transformer block, layer normalization helps accelerate the convergence
speed of the network by summarizing and calculating the mean and variance of
the input data from the same layer and normalizing the input data from the
previous layer. The masked multi-head attention calculates attention scores to
obtain the attention matrix, where each row represents the attention of the
current word position to other words. Standardization is then applied to avoid
overfitting, and finally, softmax is used for normalization. The entire process can
be described by the following formula:

Attention(Q,K, V ) = softmax(
QTK√

d
)V (3)

where Q,K, V are vectors obtained by transforming the word embedding matrix,
and d represents the variance calculated during the standardization process.

Output Layer. The output layer maps the unsupervised outputs learned by the
model to the vocabulary and selects output words based on a certain strategy.
The performance of the output layer significantly influences aspects of the model,
such as its expressive richness.

3.2 The Uploaded Parameters

The model parameters correspond to the model structure and are mainly divided
into: the token embedding matrix Wte (weight of token embedding), the posi-
tional embedding matrix Wpe (weight of positional embedding), and the param-
eters of 10 transformer blocks. Specifically, the matrix dimensions are as follows:
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Wte has dimensions of 13317 × 768, and Wpe has dimensions of 300 × 768. The
300 dimension corresponds to the standard input length n = 300. Each trans-
former block performs self-attention learning with 12 attention heads internally
and optimizes the parameters recorded in the parameter matrix. Although this
model has only 10 layers of transformer blocks, it has a total parameter count
close to 100 million.

3.3 The Federated Updates and Aggregations

We adopt the relatively simple yet highly effective FedAvg algorithm [9]. FedAvg
aims to address the privacy and security issues associated with using private data
on mobile devices for model training. This algorithm has been extensively evalu-
ated and proven to be robust against imbalanced and non-IID data distributions.

The core idea of FedAvg is as follows: There is one server and a fixed set
of clients, with a total of clients, each having its own local dataset. Before each
training round, C clients are randomly selected. The server sends the current
global model to these C clients. These C clients then perform local training on
their respective local datasets for several local epochs using the received global
model. After local training, these C clients send back their updated models to
the server, which synchronizes these updates into the global model. This process
continues for a certain number of global epochs or until the model reaches a
certain level of accuracy. The objective of this algorithm can be represented by
the following equation.

minwf(w) =
1
C

n∑

i=1

fi(W ) (4)

where fi(W ) is the corresponding loss function for the task. w represents the
parameters updated in each round of iteration. C represents the total number
of clients randomly selected to participate in this round of iteration.

4 Experiments

4.1 Datasets and Settings

To study whether medical dialogue models can be pre-trained and fine-tuned
using different data sources using federated learning methods, we designed the
following experimental process: select the pre-trained GPT-2 model from a uni-
fied data source; select three fine-tuned data sources Corresponding to three
clients, named as client1, client2, client3; set up a federated server, named as
server, to execute the federated learning FedAvg algorithm and perform param-
eter fusion. The following training is performed respectively: on the server side,
perform model evaluation on the model that has not been pre-trained; on client1,
client2, and client3, we use local data to train separately to evaluate the per-
formance of their respective models; perform federated fine-tuning, and perform
parameter fusion on the server side.
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The public large-scale MedDialog-CN dataset [18] is used for pre-training on
the server side. The short video based RealMedDial dataset is used for the fine-
tuning process [14]. The original RealMedDial only contains dialogue collected
from the Kuaishou platform. To increase the data source for federated learning,
we enrich the data by collecting short video based medical dialogue from Douyin
and Xiaohongshu platforms. The final collected data are divided into three parts
according to different platforms: Kuaishou data, Douyin data, and Xiaohongshu
data. The statistics of the used datasets are shown in Table 1.

Table 1. Statistics of the used datasets

dataset No. of Dialogue No. of Disease No. of Departments

MedDialog-CN 3,407,494 172 51

RealMedDial (Kuaishou) 2637 55 17

Xiaohongshu 240 31 9

Douyin 208 25 13

Different automatic evaluation metrics are used to evaluate the model effec-
tiveness, including Perplexity, NIST-n (where n is the size of the n-gram and
is set to 4), BLEU-n (where n is set to 2 and 4), Entropy-n (where n is set
to 4), Dist-n (where n is set to 1 and 2), and Perplexity that measure whether
the generated text is rich enough and of high quality. The calculated value of
Perplexity can be understood as the type of reasonable words that the model
can provide when predicting a certain word. The higher the Perplexity value on
the same data set, the better the model performance.

4.2 The Effect of Federated Learning on Medical Dialogue
Generation

This group of experiments compares the performance of the full-process feder-
ated training model with the pre-trained model without fine-tuning to verify
whether the global model can effectively learn feature knowledge from dispers-
edly stored data. From the Table 2, we can see that

(1) The Perplexity value has decreased after federated training compared with
each client, indicating that federated training comprehensively uses data
from all parties and effectively enhances the model’s prediction ability;

(2) The values of BLEU and NIST are slightly increased after federated train-
ing. There is a greater improvement compared to the model that does not
participate in fine-tuning, which shows that the federated training method
can effectively improve the prediction ability on the datasets;

(3) The value of Entrop-4 and Dist indicators shows that during the federated
fine-tuning process, the model can obtaining richer word representations
from the data increases the richness of the generated text;
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Table 2. Experimental Results

before fine-tuning Client1 Client2 Client3 Federated Training

loss 0.163 0.128 0.131 0.0893 0.0832

BLEU-2 0.003 0.018 0.015 0.055 0.062

BLEU-4 0.001 0.005 0.004 0.027 0.031

Dist-1 0.007 0.005 0.005 0.004 0.006

Dist-2 0.015 0.010 0.012 0.008 0.009

Entropy-4 1.202 0.718 0.824 0.606 0.595

NIST-4 0.005 0.845 0.768 1.033 1.063

Perplexity 31647 6597 8977 309.874 288.260

(4) When there is a significant difference in the local data volume, the partic-
ipants with smaller data volumes achieve significantly better results with
the federated model compared to their locally trained models. In this exper-
iment, client3’s data volume represents more than 70% of the total data,
which shows that while the federated model has some improvements com-
pared to its local training, its performance is far from significant compared
to the other two clients.

Overall, the results prove that the federated learning method could be used in
language model training, and can keep the model performance while increasing
the privacy-preserving utility.

4.3 Loss Change in Federated Learning and Centralized Training

The Table 3 below shows the results of the experiments where the federated
parameters from four rounds, each consisting of 20 local training iterations, were
compared to the equivalent centralized training with 80 local training iterations,
where all three clients’ data were aggregated at the server for centralized training.

Table 3. The comparison of loss change between federated training and centralized
training

Centralized training Federated Training

loss 0.0775 0.0832

BLEU-2 0.105 0.062

BLEU-4 0.033 0.031

Dist-1 0.009 0.006

Dist-2 0.020 0.009

Entropy-4 1.674 0.595

NIST-4 1.494 1.063

Perplexity 220.071 288.260
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The results indicate that while federated training has advantages in protect-
ing data privacy, it suffers some performance loss. Compared to centralized train-
ing, the models trained through federated training exhibit inferior performance
in certain performance metrics. This suggests that while federated learning is
a powerful method for privacy protection, it may lead to a sacrifice in model
performance under certain circumstances.

5 Conclusion

Due to the increase in model size, there is a growing need in the training pro-
cess to aggregate more high-quality data to enhance the model’s capabilities.
However, in privacy-sensitive domains like healthcare, traditional methods of
purchasing or collecting relevant data are subject to strict legal regulations.
Faced with the “data island” problem in the medical dialogue generation field,
we propose to combine the federated learning approach with pre-trained dialogue
generation models, forming the architecture of federated generation models. The
concept of federated learning was incorporated in the GPT-2 model. Training
was distributed across different client institutions with non-independent dis-
tributed data. This approach enabled distributed training while keeping data on
the clients’ local institutions, ensuring privacy and data security. The experimen-
tal results indicate that federated learning methods can have a positive impact
on medical dialogue generation for privacy preserving.
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Abstract. Radiology imaging examination is an important basis for disease diag-
nosis and treatment. Based on existing radiology images and reports, automated
generation of image-to-report can effectively relieve pressure on physicians. The
generation of radiology reports utilizes the terminology and expertise inherent to
the field of radiology. The integration of this specialized knowledge into automated
report generation not only enhances the precision of disease findings descriptions,
but also significantly elevates the quality of the reports produced. In this paper,
we propose a fine-grained knowledge fusion model for radiology report gener-
ation that reduces the gap between visual and textual features by fusing image
features with fine-grained radiographic knowledge. Specifically, the image-text
cross-modal retrieval model, CLIP, is utilized to retrieve report from the dataset
that are similar to the current image. The feature representations of the image and
the fine-grained knowledgewhich are extracted from the similar report, are aligned
by an Entities-Enhanced Multi-Head Attention mechanism. Then the fused fea-
tures are decoded by a Transformer decoder with a semantic information fusion
module to generate the radiology report. Experimental results on IU X-Ray and
MIMIC-CXR show that the fusion of fine-grained knowledge guides the model to
produce higher quality radiology reports.

Keywords: Report Generation · Radiology Images · Cross-modal Alignment

1 Introduction

In the clinic, the reading of medical images is completed by professional radiologists,
and the accurate writing of radiology reports depends on the professional knowledge and
clinical experience of doctors, which has high requirements for their professional level
[1]. With the advancement and widespread use of radiological imaging technology, the
size of imaging data in hospitals has grown by leaps and bounds. Topol [2] posited that
the need for diagnosing and drafting reports for image-based examinations significantly
surpasses themedical capabilities of physicians. This scarcity of specialized physicians is
particularly pronounced in resource-limited nations [3]. Deep learning’s swift advance-
ments in computer vision and natural language processing have opened up promising
avenues for applications within the medical sector [4]. Given the vast repository of exist-
ing radiographic images and reports, there is a compelling research interest in developing
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models capable of autonomously generating diagnostic reports from images. Such an
innovation could significantly aid radiologists and alleviate physicians’ workload.

The text of a radiology report contains rich semantic information andmedical knowl-
edge, including terminology, descriptive conventions, etc. When using only image fea-
tures as input, it is difficult for the model to learn fine-grained semantic information in
radiology reports. Radiologists often refer to existing reports for revision and refinement
when writing radiology reports. Drawing on this process, incorporating fine-grained
knowledge in the training process enables the model to learn more information and
improves the quality of the reports generated by the model. In this regard, we explore
Fine-grained Knowledge Fusion for radiology report generation (FgKF). Specifically,
we obtain similar reports of input images through image-to-text cross-modal retrieval
and extract anatomical entities and observed entities in similar reports as knowledge
information. When performing knowledge fusion, an Entities-Enhanced Multi-Head
Attention mechanism (EEMHA) is proposed for image features alignment with entities
features. A decoder with a semantic information fusion module is used to finally decode
and generate the radiology report. We have experimented and analyzed our approach on
two datasets, IU X-Ray [5] and MIMIC-CXR [6].

Our contributions can be summarized as follows: (1) We propose a radiology report
generation model FgKF that incorporates fine-grained knowledge, which makes full use
of radiology domain knowledge and enables the model to generate radiology reports
that are more in line with the requirements of the radiology domain. (2) Our model
achieves alignment and fusion of visual and textual features to strengthen the connection
between the current image and related descriptions through Entities-Enhanced Multi-
Head Attention and semantic information fusion module. (3) A series of tests conducted
on two publicly accessible datasets, namely IU X-Ray and MIMIC-CXR, substantiate
the efficacy of our proposed methodology.

2 Related Work

2.1 Image Captioning

Image captioning refers to describing the visual content of an image in natural language.
Early research on image description mostly used traditional machine learning methods
[7–9]. The advent of deep learning, particularly the popularity of encoder-decoder archi-
tectures [10–12], has led to an exponential surge in the evolution of image captioning
models [13–15]. Based on the good performance of Transformer [16] in the field of
natural language processing and computer vision, a large number of Transformer-based
methods have been applied to the field of image caption. Fang [17] et al. proposed a
purely visual Transformer-based image captioning model called ViTCAP, which uses a
grid representation without extracting regional features. To improve the performance,
a novel Concept Token Network (CTN) is introduced to predict the semantic concepts,
which are then incorporated into the end-to-end description generation. The rich seman-
tic information contained in the semantic concepts effectively improves the performance
of the model. Li et al. [18] introduced COS-Net (Comprehending and Ordering Seman-
tics Networks), an image captioning model designed to comprehend and order semantic
information. This model integrates rich semantic information and a learnable semantic
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ordering process into a unified structure. The system procures sentences related to the
image via cross-modal retrieval, fetches corresponding words through the same process,
and refines and supplements semantic words through tasks of both single and multi-
classification. In recent years, contrastive learning-based visual-language pre-training
models have made significant strides in representation learning. A prime example of
this is Microsoft’s CLIP [19] (Contrastive Language-Image Pre-training) model. Lever-
aging CLIP, text is processed through data augmentation to construct negative samples
with grammatical errors. A classifier is then employed to predict positive and negative
samples from these examples. This process is combined with reinforcement learning,
which is rewarded with natural language generation metrics to jointly enhance the per-
formance of the text encoder. This approach effectively improves both the relevance of
the generated descriptions to the image and their grammatical correctness.

2.2 Radiology Report Generation

The automatic generation of radiology reports, which uses radiological images as input
and generates report text describing the content of the images, is an application of image
captioning in the medical field. Therefore, some methods in image captioning have
reference significance for radiology report generation. Similar to image captioning, early
research on radiology report generation was based on CNN-RNN structures. Jing et al.
[20] proposed a multi-task learning model that uses CNN to extract image features from
various sub-regions of the image and calculates the interaction between image features
and semantic features through joint attention to strengthen the correspondence between
images and reports. In reality, doctors often follow a certain template to write reports,
and then modify them according to specific findings. Based on this observation, Li et al.
[21] proposed a reinforcement learning model that integrates retrieval and generation,
attempting to combine humanprior knowledge and learning-based generationmethods to
automatically generate diagnostic reports. With the advent of the Transformer encoder-
decoder structure, Chen et al. [22] introduced a memory-driven, Transformer-based
structure for generating radiology reports, achieving state-of-the-art results at the time.
Unlike the image captioning model where each word carries equal weight, the mention
of disease keywords in radiology reports is of paramount importance. Therefore, greater
emphasis should be placed on disease keywords and their attributes when assessing the
quality of the generated report. In response to this, Zhang et al. [23] proposed a graph
structure model equipped with a priori knowledge of chest findings. They constructed
a chest abnormality graph for common diseases and their attributes in the report and
introduced a novel evaluation mechanism, MIRQI (Medical Report Quality Index). This
mechanism provides a more accurate measure of the generated report’s accuracy in the
medical domain compared to traditional generation metrics. You et al. [24] predicted
disease labels on input images and employed a multi-layer stacked attention module to
align image features and disease labels at multiple levels of granularity. This approach
not only heightened themodel’s focus on disease keywords but also effectivelymitigated
data bias issues. Wang et al. [25] propose a cross-modal prototype driven network to
promote cross-modal pattern learning and exploit it to improve the task of radiology
report generation. Current research on radiology report generation is predominantly
data-driven, with relatively little focus on incorporating knowledge. However, domain
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knowledge can significantly enhance the medical expertise of generated reports. In light
of this, our work will concentrate on studying the automatic generation of radiology
reports with fine-grained knowledge fusion.

Fig. 1. Overview of our proposed FgKF which consists of four modules, namely visual encoder,
knowledge fusion, cross-modal retrieval and decoder with a semantic information fusion module.

3 Proposed Methodology

3.1 Model Architecture

As shown in Fig. 1, the visual encoder mainly preprocesses the input images and uses
the pre-trained ResNet101 [26] as the image features extraction model to extract image
features from the pre-processed images, after which the image features are encoded
by the Transformer encoder. Based on the image-text cross-modal pre-training model
CLIP [19] and the training set of MIMIC-CXR, an offline process of retrieving reports
from images is pre-constructed, so that the retrieval results can be used directly during
model training. The retrieved similar reports are used as a source of knowledge, which
is combined with the entity types defined in the Knowledge Graph RadGraph [27]
to extract fine-grained knowledge. In the process of knowledge fusion, fine-grained
knowledge is first encoded by a pre-trained Bio_ClinicalBERT [28]. When performing
entities information fusion, an Entities-Enhanced Multi-Head Attention is designed to
facilitate interaction and alignment between different features. Finally, image features
fusedwith fine-grained knowledge are decoded by a decoderwith a semantic information
fusion module to generate the report.
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3.2 Visual Content Encoding

In this work, ResNet101 [26] is used as an image feature extraction model. Before
feature extraction, the images are first normalized to remove the photometric and color
differences in the images to better fit the training of the network. The images are also
scaled to a fixed size to accommodate the input size requirements of the convolution and
pooling layers in the network. After preprocessing, the pixel value representation of the
image is obtained Img ∈ R

3×224×224 (which means that it contains 3 channels and the
image size is 224 × 224). For the input image Img, the feature extraction procedures are
as follows:

{p1, p2, . . . , pn} = ResNet101(Img) (1)

{x1, x2, . . . , xn} = Linear(p1, p2, . . . , pn) (2)

Taking the image features output from the fifth convolutional layer {p1, p2, . . . , pn} ∈
R
2048 as the feature representation of the image. Afterwards, a linear layer is used

to map the image sub-region features to obtain the image features extraction results
{x1, x2, . . . , xn} ∈ R

d as the input to the encoder and d is the dimension of the model
hidden layer. The image features encoding part consists of multiple Transformer encoder
stacked together. Taking Hl as the input of the current layer and Hl+1 as the output of
the current layer, the computation of the image features encoding are as follows:

Hl
1 = LayerNorm

(
MHSA

(
Hl,Hl,Hl

)
+ Hl

)
(3)

Hl+1 = LayerNorm
(
FeedForward

(
Hl
1

)
+ Hl

1

)
(4)

where MHSA denotes Multi-Head Self-Attention Mechanism, FeedForward denotes
Feedforward Neural Network, LayerNorm denotes Layer Normalization and Hl

1
denotes intermediate state. The first layer input is the image features representation
{x1, x2, . . . , xn}, the input of subsequent layers is the output of the previous layer, and
finally the hidden layer state of the image representation is Hi = {i1, i2, . . . , in} ∈ R

d .

3.3 Cross-Modal Retrieval

To obtain the text of the radiology reports associated with the input images, a large-
scale image-text cross-modal pre-trained model CLIP [19] is used as a retrieval engine
based on its fine-tuning on the radiology image dataset. The fine-tuning of the CLIP is
performed on the training set of theMIMIC-CXR. A retrieved sample is shown in Fig. 2,
where it can be seen that the retrieved report contains a correct description of the heart
and lungs (underlined and italicized sections).

For the current input image, the fine-grained entities information contained in the
similarity report is obtained as knowledge based on the retrieval of the similarity report.
Two types of entities,AnatomyandObservation, are defined in the knowledgegraphRad-
Graph [27]. And three attributes, positive, negative and uncertain, are defined for Obser-
vation. This fine-grained information can provide more accurate and specific anatomical
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and imaging knowledge for radiology report generation models. For example, in the
report text “Increased right lower lobe opacity, concerning for infection. No evidence
of pneumothorax.”, which contains the Anatomy entities “right”, “lower” and “lobe”,
as well as the Observation entities “Increased”, “opacity”, “infection” and “pneumoth-
orax”. The attribute information contained within an Observation entity is appended to
the entity word. This is done by “present”, “absent”, or “uncertain”, depending on the
label type. The entities information corresponding to the aforementioned report will ulti-
mately be “increased, opacity present, right, lower, lobe, infection present, pneumothorax
absent”. This information accurately encapsulates the medical features associated with
the current input image and the interconnections among these features. In this work, we
utilize this information as the fine-grained knowledge corresponding to the input image.

Fig. 2. A retrieved sample of the CLIP

3.4 Fine-Grained Knowledge Fusion

Prior to the fusion of fine-grained knowledge, the Bio_ClinicalBERT [28] is employed
to obtain a superior feature representation for the fine-grained entities in the retrieved
similarity report. Bio_ClinicalBERT has been pre-trained on the BioBERT [29], which
is specifically optimized for the biomedical domain. The procedure can be formulated
as follows:

Emb(e) = T (e) + P(e) (5)

{he1, he2, . . . , hek} = Bio_ClinicalBERT (e1, e2, . . . , ek) (6)

{e1, e2, . . . , ek} = Linear(he1, he2, . . . , hek) (7)

where T ∈ R
|v|×db represents the word embedding, P ∈ R

512×db represents the posi-
tional embedding, |v| and db denote the size of the word list and the dimension of the
hidden layer of the Bio_ClinicalBERT, respectively. Obtain the last hidden layer state
of the Bio_ClinicalBERT model and map it to He = {e1, e2, . . . , ek} ∈ R

d to keep the
dimensions consistent and k denotes the length of the entities.
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There may be some discrepancies between the retrieved similarity reports and the
true reports corresponding to the current image. As shown in Fig. 2, among the retrieved
similar reports, “Enlargement of the cardiac silhouette persists”, “No focal consolidation
pleural effusion”, “No focal consolidation pleural” and “No overt pulmonary edema
is seen” are relevant descriptions that are consistent with the current image features,
while the rest of them belong to the noise information introduced during the knowledge
acquisition process. In order to make the model pay more attention to the relevant
descriptions, the Entities-EnhancedMulti-HeadAttention (EEMHA) is proposed, which
calculates the interaction between image features and entities features to strengthen the
connection between the current image and the relevant descriptions. The process for
fine-grained knowledge fusion can be formulated as follows:

{∼
e1,

∼
e2, ...,

∼
ek } = MHA(He,He,He) (8)

{i′1, i
′
2, . . . , i

′
n} = MHA

(
Hi,

∼
He,

∼
He

)
(9)

{e′
1, e

′
2, . . . , e

′
l} = EEMHA

( ∼
He,Hi

′
,Hi

′
)

(10)

EEMHA
(
H̃e,H

′
i ,H

′
i

) = MHA
(
H̃e,MHA

(
H ′
i , H̃e, H̃e

)
,MHA

(
H ′
i , H̃e, H̃e

))
(11)

Hie = Concat
(
i1, . . . , in, e

′
1, . . . , e

′
l

)
(12)

where MHA denotes Multi-Head Attention Mechanism,
∼
He=

{∼
e1,

∼
e2, . . . ,

∼
ek } is the

updated entities features representation.H
′
i = {i′1, i

′
2, . . . , i

′
n} is the image representation

after incorporating shallow entity information. The computation of EEMHA is divided

into two parts. Firstly, H
′
i is used as the query matrix Q and

∼
He is used as the K , V for

computation of the multi-head attention. Then
∼
He is used as the query matrix Q and

the result of the previous step as K and V for one more computation of the multi-head
attention to get the updated feature representationH

′
e = {e′

1, e
′
2, . . . , e

′
l}. Finally,Hi and

H
′
e are concatenated to obtain the output of the fine-grained knowledge fusion layer.

Hie = {h1, h2, . . . , hn+l} ∈ R
d , denotes concatenation along the sequence dimension.

3.5 Sentence Decoding

The decoder consists of multiple stacked Transformer blocks, each of which includes
multi-head attention mechanism, semantic information fusion module, feed-forward
neural network layers, residual connectivity and layer normalization. Segment the refer-
ence report by word to get the input sequenceY = {y1, . . . , yL}, the word embedding and
positional embedding of the reference report are obtained byword embeddingmatrix and
position embedding matrix, which are summed up as the embedding representation of
the reference reportEmb(Y ). TakeHl as the input of the current layer,Hl+1 as the output
of the current layer, H (∗)l

1 , Hl
2 and H

l
3 as the intermediate states. The masked multi-head
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attention is first computed on Hl to obtain the semantic context H (s)l
1 . Then Hl as query

Q, the output of the visual encoder Hie, which incorporates fine-grained knowledge as
key-value pair K ,V , is subjected to the computation of Semantic-Enhanced Multi-Head
Attention (SEMHA) to obtain the overall visual context H (c)l

1 :

H (s)l
1 = MMHA

(
Hl,Hl,Hl

)
(13)

H (c)l
1 = SEMHA

(
Hl,Hie,Hie

)
(14)

The overall visual context and semantic context are fused by a sigmoid gate function
[18]. And the learnt hidden layer state Hl

2 is used as the query Q for the next multi-head
attention:

Hl
2 = LayerNorm

((
g∗H (s)l

1 + (1 − g)∗H (c)l
1

)
+ Hl

)
(15)

g = Sigmoid
(
Wg

[
H (s)l
1 ,H (c)l

1

])
(16)

The output of the encoding layerHie is then used as the key-value pairK ,V formulti-
head attention computation. Finally a feedforward neural network layer is connected,
adding residual connections and layer normalization after all three layers:

Hl
3 = LayerNorm

(
MHA

(
Hl
2,Hie,Hie

)
+ Hl

2

)
(17)

Hl+1 = LayerNorm
(
FeedForward

(
Hl
3

) + Hl
3

)
(18)

After obtaining the output H of the last layer of the decoder, a linear layer and a
Softmax activation function is used to map the feature dimension to the size of the list
of words reported by the diagnostic and compute the predicted probability distribution
for each word:

pi = Softmax(Linear(H ))# (19)

Building on the aforementioned structure, the process of radiology report generation
unfolds in an aggressive manner. At each time step, reports are generated word-by-word,
based on the encoder state and the current sequence, until either the predetermined max-
imum sequence length is reached or a terminator is generated. The model’s training pro-
cess can be conceptualized as a recursive application of chain rules given the radiological
images and fine-grained knowledge E:

p(Y |Img) =
T∏
t=1

p(yt |y1, . . . , yt−1, Img;E) (20)

Themodel is optimized by a cross-entropy loss function and θ denotes the parameters
of the model:

L = −
N∑
t=1

log(Pθ (yt |y<t, Img;E)) (21)
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4 Experiments and Results

4.1 Datasets and Metrics

Datasets. We conduct experiments to evaluate the effectiveness of the proposed FgKF
on two widely used radiology report generation benchmarks, i.e., IU-Xray [5] and
MIMIC-CXR [6]. The IU X-Ray is a chest X-ray collection that includes 7,470 X-ray
images and 3,955 corresponding reports. MIMIC-CXR is the largest publicly available
chest X-ray dataset containing radiology reports. The dataset contains 227,827 studies
involving 377,110 X-ray images, where one study corresponds to one or more exams of
a single patient, and one radiology report corresponds to images from single or multi-
ple views. In the course of the experiments, samples with missing image findings were
omitted from both datasets. In other words, images corresponding to different views of
the same report were treated as distinct samples. The statistics of the filtered datasets
are shown in Table 1.

Table 1. Statistical information on IU X-Ray and MIMIC-CXR

Datasets IU X-Ray MIMIC-CXR

TRAIN VAL TEST TRAIN VAL TEST

IMAGE 4,138 592 1,108 270,790 2,130 3,858

REPORT 2,069 292 590 138,267 1,158 2,344

AVG. LEN 36.44 35.71 32.50 53.00 53.05 66.40

Metrics. Togauge the performance,we employ thewidely-used natural language gener-
ation (NLG) metrics. We utilize the most widely used BLEU [30] as the main evaluation
metric. At the same time, evaluation based solely on N-tuples easily ignores the gram-
matical soundness of the generated text, as well as synonyms and near-synonyms. To
address the aforementioned problems, we incorporate theMETEOR [31] and ROUGE-L
[32] metrics, which provide a more comprehensive evaluation.

4.2 Implementation Details

ViT-B/32 [33] and ResNet101 [26] are utilized as the visual encoder for the fine-tuning
of the CLIP. For ViT-B/32, experiments are conducted with learning rates of 1e−6 and
5e−6, respectively. For ResNet101, experiments are conducted with learning rates of
5e−5 and 5e−6, respectively. The weight decay is set to a relatively large 0.2. The
number of training rounds is set to 15 and the batch size is set to 64. The experimental
parameter settings are consistent with [22]. For the IU X-Ray dataset, samples that
included both frontal and lateral frontal views were retained. The image features from
both views were amalgamated to serve as input for a single sample. On the other hand,
for the MIMIC-CXR dataset, images were utilized as base units. In other words, images
corresponding to different views of the same report were treated as distinct samples.
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4.3 Results and Analysis

Main Results. In order to validate the effectiveness, we compare the performances of
ourmodelwith awide range of state-of-the-artmodels on the IU-Xray andMIMIC-CXR,
which include image captioning models [14, 34, 35] and radiology report generation
models [22, 36, 37]. The BLEU-4 score is used as a measure of model performance
during training. The experimental results are presented in Table 2, where FgKF denotes
the model proposed in this work. The models used for comparison include ST [34],
ATT2IN [35], R2Gen [22], PPKED [37], and others [14, 36].

Table 2. Comparison on IU-Xray (upper part) and MIMIC-CXR datasets (lower part)

Dataset Methods B-1 B-2 B-3 B-4 M R-L

IU X-Ray ST 0.216 0.124 0.087 0.066 - 0.306

ATT2IN 0.224 0.129 0.089 0.068 - 0.308

ADAATT 0.220 0.127 0.089 0.068 - 0.308

R2Gen 0.470 0.304 0.219 0.165 0.187 0.371

R2GenCMN 0.475 0.309 0.222 0.170 0.191 0.375

PPKED 0.483 0.315 0.224 0.162 0.190 0.376

FgKF 0.470 0.306 0.225 0.177 0.193 0.364

MIMIC-CXR ST 0.299 0.184 0.121 0.084 0.124 0.263

ATT2IN 0.325 0.203 0.136 0.096 0.134 0.276

ADAATT 0.299 0.185 0.124 0.088 0.118 0.266

R2Gen 0.353 0.218 0.145 0.103 0.142 0.277

R2GenCMN 0.353 0.218 0.148 0.106 0.142 0.278

PPKED 0.360 0.224 0.149 0.106 0.149 0.284

FgKF 0.347 0.215 0.146 0.106 0.138 0.278

As shown in Table 2, our proposed FgKF model outperforms all the compared
models on the BLEU-3, BLEU-4 and METEOR on the IU X-Ray dataset. Compared
to the models that are not optimized for the healthcare domain [14, 34, 35], our model
shows significant improvement in all the metrics. The BLEU-3 and BLEU-4 scores of
our FgKF outperform those of the models designed for radiology report generation [22,
36, 37], which illustrates the effectiveness of our introduction of fine-grained knowledge
and fusion in the decoding process. However, we notice that on theMIMIC-CXRdataset,
there is still a performance gap between our model and the best baseline (i.e., PPKED
[37]). The reason may be that after integrating fine-grained knowledge information, the
model’s ability to model long-term dependencies in the text is improved, resulting in
slightly lower scores on BLEU-1 to BLEU-3.

Ablation Studies. In order to explore the impact of fine-grained knowledge fusion
on model performance, we perform ablation tests, and the ablation results are listed
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in Table 3. “Base” refers to the foundational Transformer model. There are two vari-
ants: (1) wo/EEMHA, which does not consider EEMHA but directly concatenates the
visual embedding with the entities embedding, (2) wo/KF, which only considers the
Transformer-base decoder but not the semantic information fusion decoder. As shown
in Table 3, compared to the full model, the performance of wo/EEMHA drops signifi-
cantly on both datasets. This illustrates the importance of introducing fine-grained entity
information. However, for wo/KF, the performance of various metrics remains nearly
the same as the full model. This could be due to the fact that during the fusion process
of the overall visual context and semantic context, the fine-grained entity information
integrated in the overall visual context duplicates with the semantic information in the
semantic context. Then, the sigmoid gate filters out the unique information from each
and retains the duplicated information. Therefore, during the knowledge fusion process,
some good methods for fusing and filtering the two parts of knowledge may have a
positive impact on the results. Moreover, the improved performance of the model on
the IU X-Ray dataset suggests that using the MIMIC-CXR training set as a knowledge
base is feasible when spanning datasets. Since RadGraph was developed based on the
MIMIC-CXR dataset, the use of RadGraph will not affect the portability of the model.

Table 3. Ablation studies

B-1 B-2 B-3 B-4 M R-L

IU
X-Ray

Base 0.396 0.254 0.179 0.135 0.164 0.342

wo/EEMHA 0.411 0.269 0.196 0.151 0.175 0.347

wo/KF 0.467 0.301 0.222 0.172 0.184 0.364

FgKF 0.470 0.306 0.225 0.177 0.193 0.364

MIMIC CXR Base 0.314 0.192 0.127 0.090 0.125 0.265

wo/EEMHA 0.328 0.201 0.135 0.097 0.131 0.271

wo/KF 0.337 0.210 0.142 0.103 0.138 0.277

FgKF 0.347 0.215 0.146 0.106 0.138 0.278

Qualitative Analysis. To further investigate the effectiveness of the proposed method,
reports generated by different models are compared and analyzed. As depicted in Fig. 3,
for a randomly chosen sample from the IU X-Ray dataset, both the R2Gen, R2GenCMN
and FgKFmodels correctly describe imagingmanifestations such as “no pleural effusion
or pneumothorax” and “osseous structures of the thorax are without acute abnormality”
in their generated reports. However, the R2Gen inaccurately describes “the heart and
mediastinumarewithin normal limits” as “cardiomediastinal silhouette is unremarkable”
and the report generated by the R2GenCMN model lacks the observation of “lungs
are clears”. In contrast, the FgKF model, which incorporates fine-grained knowledge,
provides a more accurate description of the heart and generates reports that align closely
with the actual reports. This indicates that the integration of fine-grained knowledge
enhances themodel’s ability to generatemore precise radiology reports. To better observe
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the impact of incorporating fine-grained knowledge on the model, we obtained and
mapped the attentional weights of the cross-attention module in the last hidden layer in
the decoder (i.e., the attentional weights between the report text and the image) to the
original image.

Fig. 3. Sample report generated by FgKF, “Ground truth” stands for the real report. Correct and
incorrect descriptions in the generated report are marked with different colors.

As illustrated in Fig. 4, after incorporating fine-grained knowledge, the model not
only correctly describes “no pleural effusion” and “cardiomediastinal silhouette appears
grossly unchanged”, but also identifies anddescribes surgically implanted devices.More-
over, the transition from “coarsened lung markings” to “underlying emphysema” aligns
with the logic of the true report “compared to prior study in the background of emphyse-
ma”. The attention distribution map shows that correct attention was paid to the location
of the clips, lungs, and effusions. More attention was given to the bone structure, consis-
tent with the skeleton distribution. These results suggest that the fusion of fine-grained
knowledge enables the model to focus on important anatomical locations, image repre-
sentations, and other information in radiology reports. This, in turn, helps improve the
quality of reports automatically generated by the model.
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Fig. 4. Sample Attention Visualization by FgKF “Base” stands for the Transformer-base model,
and “FgKF” stands for the model proposed by us. Colors ranging from blue to red indicate that
the weights range from low to high.

5 Conclusion

In this paper, we propose a fine-grained knowledge fusion model for radiology report
generation by fine-tuning the cross-modal pretrained model CLIP to perform a cross-
modal retrieval process from images to reports using the MIMIC-CXR training set as
a knowledge base. The radiological entities contained in the obtained similarity reports
are used as fine-grained knowledge information. In the knowledge fusion process, a
multi-attention mechanism for entity information enhancement and a knowledge fusion
module are proposed to interact and align image features and report features to facilitate
the fusion of different modality features and improve the quality of generated reports.
Experiments on two datasets, IUX-Ray andMIMIC-CXR, demonstrate the effectiveness
of the cross-modal retrieval procedure with the fine-grained knowledge fusion approach.
In futurework,wewill attempt to edit and distill the fine-grained knowledge in the hidden
layers of the neural network to guide the model in generating more accurate radiology
reports.
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Abstract. Discharge summaries are a significant component of electronic medi-
cal records, playing a crucial role in follow-up treatment and scientific research.
However, there are few researches on automated discharge summary generation
based on deep learning, and there is also a lack of available datasets. To address
this, in this paper, we construct a small-scale dataset containing various types of
entity information for the task of automated discharge summary generation from
electronic medical records. In order to make full use of the rich entity informa-
tion implied in medical records, we design a generation model based on a T5
architecture that encodes various types of entity information and incorporates
the information contained in the entities into the encoder using multi-granularity
fusion methods. Meanwhile, we use pointer-generator networks to enhance the
model’s generalization capability. The experimental results show that the pro-
posed dataset is challenging, and compared to the baseline models, the proposed
model achieves significant improvements on the evaluation metrics. Addition-
ally, ablation studies further demonstrate that incorporating entity information
and pointer-generator networks positively contributes to the summarization qual-
ity of the model.

Keywords: Discharge Summary Generation · Entity Information ·
Multi-granularity Fusion · Pointer-generator Networks

1 Introduction

Automatic text summarization technology, also known as automatic summarization,
uses short sentences to compress a large amount of text, retaining the key information
in the text, solving the problem of redundant and complex content of the original text,
which can effectively reduce the burden brought by a large amount of information and
improve the speed of Internet users to obtain information, so as to replace manual work
and save a lot of manpower and material resources. The application scope of automatic
text summarization is very wide, such as in the news [10,30,31], public opinion analy-
sis, opinion/emotional summary, scientific paper summary [4,21] and other fields have
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important research value. Although there are a large number of studies on automatic
summarization generation, they are mainly concentrated in the fields of economics and
journalism, and there is little work in the clinical field. With the widespread adoption of
electronic medical records in the medical field, each patient accumulates a large amount
of medical history. While these records contain rich information about the patient, there
is also a lot of redundancy. Doctors need to spend significant time going through all the
records when writing discharge summaries for patients. Therefore, utilizing automatic
summarization techniques to generate discharge summaries can effectively simplify the
doctor’s work and improve efficiency.

Currently, research in the medical field primarily focuses on tasks such as medi-
cal entity relationship extraction [18,36,52], disease risk prediction [19,27], medical
imaging report generation [42,45], and auxiliary diagnosis [14]. Although some work
has also viewed medical text generation as a summarization task, for example, sum-
marizing radiology reports to generate clinical impressions [50]; summarizing patient
health records to generate medical history [38] and extracting important clinical enti-
ties from radiology reports and inpatient records [9,40]. However, research has been
predominantly focused on the English medical domain, with very few studies on dis-
charge summary generation in the Chinese domain. To address this gap and provide
researchers with sufficient data for training and evaluating models based on electronic
medical record data in real-world healthcare settings, we have constructed a small-scale
electronic medical record dataset (EMRDS) containing diverse entity information.

Considering that incorporating additional knowledge can improve summarization
model performance [8,39,41], and electronic medical records contain abundant struc-
tured entity information such as diseases, symptoms, examinations, drug treatments,
surgical procedures, etc., how to effectively utilize such key entity information to
improve text generation quality is a promising direction to explore. Therefore, based
on the constructed dataset for discharge summary generating from electronic medical
records, this paper proposes an entity-enhanced model called DSGE for discharge sum-
mary generation from electronic medical records.

The main contributions of this paper can be summarized as follows:

– We construct an annotated dataset EMRDS for discharge summary generation from
electronic medical records across three diseases. The dataset contains various types
of entity information and is manually labeled.

– By introducing the method of multi-granularity fusion, DSGE enriches the semantic
information of original text with various entity information from electronic medical
records.

– To enhance the generation ability of sequence-to-sequence models, DSGE uses
pointer-generation networks to enhance the generalization ability of models by using
the information of the original text.

– Comparative experiments with various baseline models on the EMRDS dataset ver-
ify the effectiveness of the two proposed methods. Ablation studies are also con-
ducted to analyze the impact of different numbers of entity types and two fusion
approaches, as well as the effect of pointer-generator networks.
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2 Related Work

2.1 Abstractive Summarization

Unlike extractive automatic summarization which produces summaries by simply con-
catenating content from the source text, abstractive automatic summarization generates
summaries through understanding the semantics of the original text and utilizing natu-
ral language generation techniques. There are two issues with attention-based seq2seq
model for abstractive summarization. First, During encoding, it only considers sev-
eral preceding words when computing vector representations or hidden states for each
word, leading to suboptimal results. Second, The UNK problem where words outside
the vocabulary cannot be handled properly. To address the first issue, Zeng [48] pro-
posed a read-again mechanism which reads the input sequence again before comput-
ing representations to identify key words. For the second issue, pointer-generator net-
works [39] are adopted to balance generation and copying, improving generalization
capability. In addition to the implicit learning, existing work also focuses on explicit
structure. In particular, explicit structure plays an important role in recent deep learning-
based extraction and abstract summarization methods [20,26]. Different structures con-
tribute to summarization from different aspects [5,43]. Dependency parse trees facil-
itate semantic understanding for summarizers, helping generate sentences with better
semantic relevance [12]. In addition to sentence-level structure, document-level struc-
ture has also attracted widespread attention. Fernandes [6] constructed a simple graph
consisting of sentences, tokens, and parts of speech for summary generation. By com-
bining RST tree, Xu [44] proposed a discourse perception model to extract sentences.
Besides, structure from semantic analysis is helpful, Abstract Meaning Representation
(AMR) guide summary to better understand the input context [22].

2.2 Text Generation in Medical Field

The field of medical language generation has garnered growing research attention. For
example, generating radiology reports from chest X-ray images [13,24,25], generating
clinical records from emergency department medical records from discharge diagno-
sis coding [16], and mental health record generation [11]. For the medical generation
field, most of the research has focused on the production of radiology reports [28,51].
In biomedical natural language processing, some domain-specific pre-trained language
models (PLMs), such as BioBERT [15], SciBERT [2], and PubMedBERT [7], have
been proposed by training domain-specific texts in PubMed/MEDLINE. These domain-
specific models show remarkable performance on downstream tasks within the domain.
Similarly, following the success of PLMs based generation encoder-decoders such as
BART [17], T5 [35], and BERT2BERT [37], pre-trained biomedical generation models
such as SciFive [33] and BioBART [47] have been proposed. These models can han-
dle generative tasks in the biomedical field, such as clinical conversations, biomedical
questions and answers, and biomedical text summaries.

However, as research has been more focused on the English language, in order to
fill the gap in the Chinese medical domain, this paper conducts research on the Chinese
medical domain using the proposed dataset.



Automatic Generation of Discharge Summary 257

Fig. 1. EMRDS dataset construction details.

3 Dataset Construction

Due to high construction costs, Chinese EMR data is relatively scarce. This study col-
lected EMRs from endocrinology, cardiology, and neurology departments at a top tier
3 hospital, and constructed an EMR discharge summary generation dataset (EMRDS).
The EMRDS construction process had three main steps: preparation, annotation, and
post-processing, as shown in Fig. 1. As the EMRs were from the same source and had
an overall consistent structure, the data preprocessing, annotation system, and annota-
tion specifications were generally consistent.

3.1 Preparatory Work

This paper refers to the existing electronic medical record annotation system and anno-
tation specification [3,46] to guide the training of annotators and the physical annotation
of electronic medical records.

EMRs for different diseases have slightly different structures, but generally con-
tained admission records, first course of disease, ward round records, and discharge
summaries. Analysis showed discharge summaries could be divided into five sections:
admission situation, admission diagnosis, diagnosis basis, diagnosis and treatment pro-
cess and discharge situation. Furthermore, analysis found each section of the discharge
summary originated from other parts of the EMR, while the remaining parts were also
interrelated. The relationships are shown in Table 1.

The left half of Table 1 can serve as the original text for the EMR discharge sum-
mary generation dataset, while the right half as the summary. Specifically, this study
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Table 1. The correspondence of medical record data after segmentation.

Source Target

Admission record First course of disease

Admission record Diagnostic basis

First course of disease Admission diagnosis

First course of disease Admission situation

Ward round record Diagnosis and treatment process

Ward round record Discharge situation

used the five discharge summary sections - admission situation, admission diagnosis,
diagnosis basis, diagnosis and treatment course, and discharge situation from the EMRs.
Finally, 1250 EMRs were selected for the dataset.

In order to improve the efficiency and quality of data annotation and facilitate the
review of annotation progress, the entity and relationship annotation platform developed
by Zhang [46] was adopted in this paper to manually annotate entities in electronic
medical records.

3.2 Entity Information Annotation

Pre-annotation. EMRs annotation relied on medical expertise, the annotators were
computer science graduate students. To ensure quality and consistency, annotators
received pre-annotation training on platform operation, guidelines, and specifications.
Trial annotation deployed same-source, same-type data to avoid trial errors impact-
ing formal annotation yet ensure quality. Pre-annotation training and trial annotation
ensured annotators thoroughly understood tasks and requirements, laying groundwork
for subsequent formal annotation. This study emphasizes standardized annotation pro-
cess management, adopting quality control measures to build high-quality dataset.

During analysis, we found admission records’ general examination section con-
tained dense, repetitive text with many entities. For such repetitive, entity-rich dense
text, we used rule-based automatic pre-annotation before manual annotation. Rule-
based pre-annotation can reduce human labor costs while facilitating overall annotation
control for such content, improving efficiency and quality.

Formal Annotation. For dataset formal annotation, a multi-round cross-review strat-
egy was used where each EMR was jointly annotated by two annotators. Annotator A
did primary annotation, manually supplementing rules/dictionary omissions and record-
ing issues for discussion, forming the first annotated file. Annotator B then reviewed the
first file, modifying erroneous/missing annotations to produce the second file. Contro-
versial issues were recorded and discussed jointly by A and B for resolution by A in a
confirmation pass, finally producing the third annotated file.

After two rounds of multi-round annotation, entity annotation files were exported in
entity-attribute pair format and checked for inconsistent annotations of the same entity
and guideline violations. Finally, issues were fed back to A for rectification.
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Table 2. Different lengths of medical record data.

Section Length avg

First course of disease 652.56

Admission situation 349.55

Admission diagnosis 28.29

Diagnosis and treatment process 722.92

Diagnostic basis 550.08

Discharge situation 54.08

Table 3. Entity types and numbers of different diseases.

Entity types Diabetes mellitus Cardiovascular Cerebral stroke

Symptoms 3682 5347 2118

Examinations 2049 1566 2035

Diseases 1039 1064 896

Drug therapy 1010 718 490

Decorate 456 544 466

Other treatment 392 428 321

Time 330 328 283

Body 242 504 868

surgical operation 155 96 204

3.3 Data Processing

Segmentation of Electronic Medical Records. As EMRs are typically long (avg 2358
words) and commonly used pre-trained models limit max input text to 512 tokens, the
corresponding medical history and discharge summary sections can be split into mul-
tiple summary text pairs for model training and inference. This addresses overly long
input while ensuring section correspondence, as shown in Table 1.

To facilitate limiting model input/output lengths, average section lengths were ana-
lyzed, with results shown in Table 2. The analysis shows the average lengths after split-
ting are close to the 512 maximum input text length limit of the model. This indicates
splitting the EMRs into multiple summary pairs avoids losing original EMR data infor-
mation, allowing the model to fully leverage the textual information.

Entity Information Processing. To enable entity information comparison across dif-
ferent disease EMRs, entity types and quantities were statistically analyzed for the
three diseases. cerebral stroke EMRs contained 10,595 unique entities, diabetes mel-
litus 9,355, and cardiovascular 7,681 (Table 3). Symptoms, examinations, and diseases
types accounted for 65% of all entities, likely due to the numerous examinations in the
cases including general and disease/symptom-specific. Since diseases, symptoms, and
examinations were the most relevant and numerous entities in the EMRs, only these
three entity types were retained in the dataset.
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Fig. 2. DSGE Model Architecture.

Labeling Consistency Evaluation. To evaluate annotation quality, the initial and final
annotated files were exported after dataset annotation completion for comparison of
annotation consistency between the two rounds. Annotation consistency was calculated
as:

P =
A1 ∩ A2

A1
(1)

R =
A1 ∩ A2

A2
(2)

F1 =
2∗P∗R

P + R
(3)

where A1 and A2 refer to the annotation results for the same EMR in the initial and final
annotated files, respectively, and ∩ denotes their intersection, i.e. the identical annota-
tions between the two files. Artstein [1] stated annotation consistency values above 80%
indicate trustworthy annotation results.

After calculation, the entity consistency rate for the dataset was 89.66%. The high
consistency demonstrates the annotated content is reliable.

4 Model

Based on the constructed dataset, this study proposes an EMR discharge summary gen-
eration model enhanced by entity information. By improving multi-granularity informa-
tion fusion, entity information is embedded into the encoder to obtain enriched encoded
text representations. Since discharge summaries largely originate from the original text,
the model utilizes a pointer-generator network to rewrite the decoded results after
decoding to obtain the final outputs. The overall architecture of the DSGE model is
shown in Fig. 2.

4.1 Multi-granularity Entity Information Fusion

To integrate different entity information and obtain more comprehensive, accurate
results, one approach is direct concatenation of text contents as the fusion result. This is
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Fig. 3. Fusion Gate Structure Diagram.

simple to implement with little impact on original text, retaining existing semantics and
syntax. However, concatenation cannot deeply fuse information, making it difficult to
internalize new information, leading to inconsistent granularity and less fluent seman-
tics. Therefore, this study adopts fusion gates to fuse different granularity information,
with adjustments to commonly used fusion gates to suit the dataset.

We define the disease entity sequence D = d1, d2, ..., dn, where n is the length of
the disease entity sequence; the symptom entity sequence S = s1, s2, ..., sm, where
m is the length of the symptom entity sequence; the examination entity sequence
E = e1, e2, ..., ek, where k is the length of the examination entity sequence; and the
original sentence sequence T = t1, t2, ..., tl, where l is the length of the original sen-
tence sequence. In this study, we chose the pretrained model Bert as the encoder for the
entity information. During model training, the encoded three types of entity information
are fed into Bert separately to obtain the latent vector representations for each,

hx = Bert (x1, x2, . . . , xn)
where x = d, s, e

(4)

where hd, hs, and he represent the encoded outputs for the disease, symptom, and exam-
ination entities respectively. To integrate information from different entities, we adopt
an improved fusion gate strategy Fusiongate to fuse the three entity representations,
with the structure shown in Fig. 3. Taking the latent vectors hd and hs as an example,
we define Fusiongate(hd, hs) as:

h1 = fusion (add (hd, hs)) (5)

h2 = fusion (add (hd, hs)) (6)

Wfusion = sigmoid (add (h1, h2)) (7)

featfusion = Wfusion∗hd + (1 − Wfusion) ∗ hs (8)

where fusion is a sequential module for non-linear feature extraction, implemented by
combining two Linear layers with aReLU activation function. It is used to extract infor-
mation from different representational subspaces to enhance the expressive capability
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Fig. 4. Pointer-generator Network Decoder.

of features. Wfusion represents the gating weights for fusing entity pair representa-
tions hd and hs. Let h1 and h2 denote the structural and content information respec-
tively before fusion. The feature representation after fusing the three entity information
sources is:

Ffusion = Fusiongate (Fusiongate (hd, hs) , he) (9)

The fused entity pair representation Ffusion is further fused with the text sequence rep-
resentation ht from the encoder in the same gated manner to obtain the final sequence
feature hm:

hm = Fusiongate (Ffusion, ht) (10)

4.2 Decoding Based on Pointer Network

Since abstractive summaries often contain content copied from the original text, a
pointer-generator network decoder is constructed to enhance the sequence-to-sequence
model’s generation capability, as shown in Fig. 4. This decoder has a dual-channel
architecture, consisting of a generation channel and a copying channel.

Specifically, let mt be the decoder hidden state at time step t, and αt be the atten-
tion distribution over the original sequence. The probability distribution of the copying
channel is computed as:

Pcopy =
∑

i:wi=w

αt,i (11)

where wi is the i − th word in the original sequence, and α(t, i) is the attention weight
for the i − th word at time step t. The final output logits are a convex combination of
the generation and copying distributions, fused by a gating unit g:

P (w) = g ∗ Pcopy (w) + (1 − g) ∗ Pgen (w) (12)

where g is obtained by mapping the decoder hidden state ht and original context vec-
tor ct from the attention mechanism through a single layer network with a sigmoid
function:

g = sigmoid (Wg [ht, ct] + bg) (13)
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Fig. 5. Flow chart of electronic medical record discharge summary generation.

Wg and bg are the weight and bias of the fully connected layer. This dual-channel
decoder architecture allows the decoder to freely copy words from the input as well
as generate novel words. This ensures both accuracy and generalizability, enhancing
the generation capability of the model. During training, cross-entropy loss is computed
between the decoder outputs and target sequences to end-to-end learn the parameters of
the gating unit, achieving adaptive control over generation and copying. During infer-
ence, we search over both the target vocabulary and original sequence words, and output
the most likely target sequence.

5 Experiment

5.1 Experimental Settings

To verify model effectiveness, we used the constructed EMR dataset. Specifically, when
a new EMR is obtained, it is pre-processed to split into admission records, first course
of disease and ward round records and extract contained entity information. The text
and entities are then fed into the DSGE model to generate admission situation, admis-
sion diagnosis, diagnosis basis, diagnosis and treatment process and discharge situa-
tion. Finally, post-processing obtains the final discharge summary. The specific process
is shown in Fig. 5.

The experiments were conducted on an NVidia GeForce RTX4090 GPU, using
Pytorch 1.13.1 and CUDA 11.10.3. The hyperparameter settings for the experiments
are shown in Table 4.

Since different diseases have varying data amounts, to prevent training and test dis-
tribution bias and better evaluate model generalization, equal disease data amounts were
extracted for the test set (100 data total). The remaining data was split 9:1 into training
and validation sets.
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Table 4. Experimental Settings.

Parameter Value

Epoch 15

Batch size 4

Input Part Admission records 512

First course of disease 512

Ward round records 512

Output Part Admission situation 100

Admission diagnosis 64

Diagnosis and treatment process 512

Diagnostic basis 512

Discharge situation 448

lr 1e-5

Optimizer AdamW

Entity information Disease entity 512

Symptom entity 512

Examination entity 512

Table 5. Experimental results on the EMRDS dataset.

Model R-1 R-2 R-3 Bleu R-avg

TextRank 42.23 27.94 28.51 – 32.90

LEAD-3 45.89 33.40 31.27 – 36.85

T5 77.15 68.98 68.30 56.47 71.48

Prophet 77.86 69.57 69.77 59.56 72.40

Pegasus 79.86 72.16 72.16 61.17 74.72

T5-pegasus 80.31 71.33 74.11 61.81 75.24

DSGE 82.82 75.84 75.39 63.77 78.02

5.2 Baselines and Evaluation

To understand EMRDS dataset challenges and comprehensively evaluate the DSGE
model, we trained and evaluated several common abstractive models including two
unsupervised models, including LEAD-3 and TextRank [29]. In addition, we used the
pretrained language models T5, Pegasus [49], ProphetNet [34], and T5-pegasus.

To verify summary quality, we adopted Rouge [23] and Bleu [32] metrics to com-
pare model-generated discharge summaries against original EMR discharge summaries
for matching degree.

5.3 Experimental Analysis

Analysis of Main Experiment Results. Table 5 shows the comparative experiment
results on the DSGE dataset, where R-1, R-2, and R-L represent Rouge-1, Rouge-2,
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Table 6. Ablation experiments with different methods.

Model R-1 R-2 R-3 Bleu R-avg

Baseline (T5) 77.15 68.98 68.30 56.47 71.48

+cp 79.39 71.72 71.43 60.54 74.18

+cp&en 82.82 75.84 75.39 63.77 78.02

and Rouge-L respectively, and R-avg represents the average of Rouge-1, Rouge-2, and
Rouge-L.

The experimental results show that just fine-tuning pretrained models like T5 on the
dataset can significantly outperform unsupervised models like TextRank and LEAD-3.
This further validates the superior performance of pretrained language models on text
summarization tasks. Compared to the T5 model, DSGE achieved improved results on
the test set, with increases of 6.54% points on Rouge-avg and 7.30% points on BLEU.
Moreover, DSGE outperformed unsupervised models, and compared to pretrained mod-
els Pegasus and Prophet, obtained 3.30 and 5.62% point gains on Rouge-avg, and 2.60
and 4.21% point gains on BLEU respectively. This sufficiently demonstrates the effi-
cacy of the proposed method in improving text summarization quality.

The analysis is that the performance gains of DSGE can be attributed to the entity
information providing multi-faceted understanding for the model, while the pointer-
generator network utilizes statistical characteristics of the data itself, enabling the model
to integrate local and global features. The organic combination of the two leads to
remarkable improvement in model performance. Compared to Pegasus and Prophet
models which rely more on the pretrained language model frameworks themselves,
DSGE injects prior knowledge into the internal framework, tapping the potential of
model capacity.

Ablation Experiments with Different Methods. To further analyze the necessity
of incorporating multi-granularity entity information and pointer-generator networks
in the model, ablation experiments were conducted on the dataset. The experimental
results are shown in Table 6.

Where +cp represents adding pointer-generator network on top of the base-
line model, and +cp&en denotes using both pointer-generator network and multi-
information fusion on top of the baseline.

Compared to the baseline T5 model, adding pointer-generator network improved
Rouge-avg by 2.70% points and Bleu by 4.07% points. This shows that employing
pointer-generator networks can help the model copy key words and phrases from the
original text more accurately, thus generating more fluent and logically clear text.

Furthermore, with pointer-generator network as the basis, adding multi-information
fusion led to further significant improvements across metrics. This indicates that fusing
different entity information can provide richer contextual support, enabling the model
to learn better semantic matching relationships, and thus generate text more conforming
to logic and semantics.
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Table 7. Ablation experiments with different entity quantities and fusion modes.

Model R-1 R-2 R-3 Bleu R-avg

Baseline (T5+CP) 79.39 71.72 71.43 60.53 74.18

+il 80.90 73.71 73.22 60.93 75.94

+sy 80.09 72.46 71.68 59.20 74.74

+ex 80.36 72.98 72.50 59.71 75.28

+il&sy&ex 80.31 73.10 72.79 60.18 75.40

+il � sy � ex (DSGE) 82.82 75.84 75.39 63.77 78.02

Ablation Experiments of Different Entity Quantities and FusionModes. This paper
further analyzes the effect of different numbers of entity information and different
fusion methods on the model, with experimental results shown in Table 7.

Where +il represents incorporating disease information on top of the baseline
model, +sy represents incorporating symptom information, +ex represents incorporat-
ing examination information, +il&sy&ex represents directly concatenating the three
types of entity information on top of the baseline model, and +il � sy � ex represents
incorporating the three types via a fusion gate on top of the baseline model.

Comparing the results of +il, +sy, and +ex with the baseline T5+CP, incorporat-
ing different additional entity information on top of the baseline model can effectively
enhance the summarization performance. The results show that using different entity
information leads to varying degrees of improvement, indicating that incorporating dif-
ferent entity information into the baseline model can optimize the model to different
extents.

Furthermore, directly concatenating (+il&sy&ex) and using a fusion gate (+il �
sy � ex) were explored for integrating the three types of entity information. The for-
mer directly concatenates the information while the latter selectively aggregates infor-
mation by learning weights. Experiments show that the fusion gate mechanism better
utilizes the different types of entity information, leading to significant improvements on
ROUGE and BLEU metrics. This demonstrates that the fusion gate can automatically
learn the importance of different types of information, achieving better information
fusion and providing an effective method for integrating multi-source heterogeneous
information for text generation tasks.

6 Conclusion

This paper primarily introduces an application of text summarization in the medical
domain - generating discharge summaries from electronic medical records. Due to the
high cost of collecting medical data, a small-scale dataset EMRDS was constructed. To
fully utilize the rich entity information in medical records, a multi-granularity infor-
mation fusion summarization model is proposed. Specifically, the model incorporates
various encoded entity information into the source text through an improved fusion
gate, enriching the semantic information of the source. Furthermore, a pointer-generator
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network is added on top of the base model to enhance generalizability. Experiments
show the proposed method is effective for discharge summary generation, and multi-
granularity information fusion complements the pointer-generator network. Informa-
tion fusion enriches the semantic representation, while the pointer-generator balances
decoding to obtain better summaries. For future work, knowledge graphs could be con-
sidered to better incorporate information and further improve the generation perfor-
mance of the model.
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Abstract. Clinical concept normalization plays a vital role in extract-
ing information from clinical documents, specifically clinical notes. The
presence of abbreviations within these texts has a substantial impact
on concept normalization performance. To address this issue, our objec-
tive is to propose an unsupervised learning approach for automatic dis-
ambiguation of clinical abbreviations. Our proposed pipeline consists of
three main modules: a) Prompt-based contextualized token prediction, b)
embedding-based semantic similarity calculation , and c) candidate rank-
ing and selection. Our method achieves accuracies of 73.6% and 74.3%
on two distinct clinical datasets, respectively. An ablation study demon-
strates the beneficial contributions of all modules within our pipeline for
acronym disambiguation. Our study highlights the effectiveness of the
prompt-based unsupervised method in the clinical acronym disambigua-
tion task, showcasing its potential application within existing clinical
NLP pipelines for entity concept normalization.

Keywords: Acronym disambiguation · Clinical concept
normalization · Clinical natural language processing

1 Introduction

Doctors usually write clinical notes with abbreviations and shorthand that are
difficult to decipher [1]. Although the usage of abbreviations can make writing
clinical notes more efficient [2], it adversely affects the comprehension and nor-
malization of the clinical text [3]. These clinical abbreviations can be clinical jar-
gon, ambiguous terms that require expertise to disambiguate, or domain-specific
vernacular. With the wide application of electronic health record (EHR) systems,
the reuse of historical clinical data can facilitate clinical practice and research.
As abbreviations are broadly used in clinical records and most of them have over
one meaning, it is significant to determine the right sense of an abbreviation [4].
For example, an abbreviation like ‘mg’ could be expanded to ‘myasthenia gravis
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(a disease) or ‘milligrams’ (a unit of measure) [5]. Moreover, a sentence often
has more than one abbreviation, such as ‘ba at a dosage of only about percent
ld mg kg’, containing four abbreviations, ‘ba’, ‘ld’, ‘mg,’ and ‘kg’.

Furthermore, abbreviations commonly appear in clinical notes and no corre-
sponding expansions are followed, which results in confusion and misinterpreta-
tions of the information extraction process. It requires medical knowledge and
contextual information to predict the full name of those acronyms precisely [6–
8]. Besides, medical terminology may only include the standard concept name
of some medical terms instead of their abbreviation format. For instance, in
LOINC [9] there is only ‘Hemoglobin A1c [Mass/volume] in Blood’ (41995-2) for
the Lab Test class. It may influence the compatibility of string-matching-based
concept normalization methods. Consequently, identifying the exact full name of
abbreviations in the clinical text would benefit the current clinical NLP pipeline,
especially for information extraction and information retrieval tasks.

Currently, a variety of models have been trained for disambiguating abbrevi-
ations in clinical notes, including naïve Bayes [10], support vector machines [11],
convolutional neural networks [5], profile-based approaches [12], long short-term
memory networks [13,14], encoder-based transformers [15], latent meaning cells
[16], and decoder-based transformers [17]. Supervised learning methods to solve
clinical concept normalization always require a large quantity of human-labeled
training data which is time-consuming to create. In this paper, we proposed
a purely unsupervised pipeline that did not require manual annotation data
and represents abbreviations with contextualized information, to solve clinical
abbreviation disambiguation. It can be helpful in semantic analysis with abstract
meaning representation parsing, and so on. And it can be employed in many
aspects such as machine translation, information retrieval, text analysis, auto-
matic summarization, and knowledge mining.

2 Related Work

Abbreviation sense disambiguation usually contains two key parts: abbrevia-
tion inventory creation, and abbreviation recognition and disambiguation. Many
researchers have made attempts to solve the problem from the perspective of
natural language processing.

2.1 Abbreviation Inventory Creation Depending on Clinical Textual
Material

Selecting or building a word sense inventory is critical in linking acronyms to
their expansions based on clinical texts. Sungrim Moon et al. [18] created a sense
inventory for clinical abbreviations using clinical notes and medical dictionary
resources. It used the most frequently occurring abbreviations and acronyms
from 352 267 dictated clinical notes. This work could be used as a foundational
resource with semi-automated techniques that aim to scale the disambiguation
of abbreviations for real-world use in the clinical field. Liu et al. [8] presented a
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deep database of medical abbreviations, the Medical Abbreviation and Acronym
Meta-Inventory. A systematic harmonization of eight source inventories across
multiple healthcare specialties and settings identified 104,057 abbreviations with
170,426 corresponding senses. The Meta-Inventory demonstrated high complete-
ness or coverage of abbreviations and senses in new clinical text, a substantial
improvement over the next largest repository (6–14% increase in abbreviation
coverage; 28–52% increase in sense coverage). Grossman et al. [19] presented an
automated method for harmonization of clinical abbreviation sense inventories.
The method involves integrating multiple source sense inventories into one cen-
tralized inventory and cross-mapping redundant entries to establish synonymy.
It may help generalize sense inventories to medical institutions that lack the
resources to develop them.

2.2 Abbreviation Recognition and Disambiguation for Clinical
Texts

Abbreviations often contain important clinical information that must be recog-
nizable and accurate in health records [20]. Proper ways are needed to recognize
and disambiguate abbreviations. Yu et al. [7] developed two methods of mapping
defined and undefined abbreviations. For defined abbreviations, they developed
a set of pattern-matching rules to map an abbreviation to its full form and imple-
mented the rules into a software program, AbbRE (for ‘abbreviation recognition
and extraction’). Besides, the application of machine learning also appears in the
solution strategy. Kim et al. [21] developed an abbreviation disambiguation tool
for clinical text in the context. Their semi-supervised abbreviation disambigua-
tion method with 12 abbreviations reached over 90% accuracy with five-fold
cross-validation. Wu et al. [22] developed an open-source framework for clinical
abbreviation recognition and disambiguation (CARD). It can be used to generate
corpus-specific sense inventories and can improve the performance of an existing
NLP system (MetaMap) on recognition and disambiguation of clinical abbrevi-
ations, thereby improving its performance on the disorder NER task. Improving
the method of selecting datasets can also effectively enhance the quality of the
method. Skreta et al. [23] proposed a novel data augmentation technique that
utilizes information from related medical concepts, which improves the model’s
ability to generalize.

3 Methods

3.1 Pipeline

The pipeline of the proposed method mainly consists of three modules: contex-
tualized token predicting, semantic similarity calculation, and candidate rank-
ing (Fig. 1). The sentence, the location of abbreviation were the inputs of our
pipeline. The most possible long form was the output.
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Contextualized Token Predicting. Inspired by the training method used in
the contextual language model, BERT, the pre-trained language model could
predict the masked word in the sentence. As shown in Fig. 2, the abbreviation,
‘VAD’, was replaced with a contextualized token ‘[MASK]’, and then the sen-
tence was put into the module contextualized token predicting.

To capture the contextual information of original abbreviations, we took
advantage of the pre-trained language model, BERT which could predict the
tokens where the ‘[MASK]’ was located. Considering the unsupervised training
process of the BERT-based model had already optimized the parameters of the
model for masked token prediction, the token was highly determined by contex-
tual semantics. We called the predicted results ‘contextualized tokens’. After the
processing of the BERT pipeline, a list of contextualized tokens was generated
with their confidence scores.

Fig. 1. The whole pipeline of the study containing three modules.

Semantic Similarity Calculation. After the generation of contextualized
tokens, we designed a semantic similarity calculation module to filter out the
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most semantically similar word or phrase with the tokens (Fig. 3). To compare
the semantic similarities between tokens and long forms of abbreviations, we
employed the word2vec-based method to represent word/phrase semantic mean-
ing with a fixed dimension vector. The semantic similarity would be quantified
by the cosine distance between vectors. The pre-trained word2vec model could
generate distributed representations in many NLP tasks. However, each word
only has one representation vector after the pre-trained processing of word2vec.
It would be a barrier for comparing the semantics of abbreviations with their
different long forms directly. To tackle this problem, we employed various con-
textualized tokens for abbreviations to represent different meanings in differ-
ent scenarios. The semantic comparison between the abbreviation and its long
forms was turned into the comparison between contextualized tokens and long-
form candidates. Additionally, while word2vec has achieved a breakthrough in
word representations, it only contains words and cannot handle the operation
of phrases. To overcome the weakness and enlarge the scope it acts on, a con-
cept embedding model called PubMedPhrase2vec model [24] was trained on all
PubMed abstracts with the same algorithm as word2vec. An open set of coher-
ent medical phrases, PubMed Phrase, was employed to contain a vast phrase
vocabulary. In the training corpus of the embedding model, multi-word expres-
sions are formatted as hyphenated connectives. Phrases can be treated as word
concepts by adding hyphens to connect words. Semantic similarity scores could
be calculated for the next module.

Candidate Ranking. In the last module of our pipeline, the long form of the
abbreviation in the clinical text was the output according to the candidate rank-
ing (Fig. 4). Considering the results of the first two modules comprehensively,
we defined a parameter to represent the possibility of expansion. The parameter
is the product of the confidence score in contextualized token predicting and
the similarity score from semantic similarity calculation. The score of each con-
textual token was multiplied by its corresponding similarity scores one by one.
As we got five words in contextualized token predicting for each prediction, we
would get five groups of products in this module. Then, these five groups were
merged and sorted from high to low by the products. At last, the long form in
the pair with the highest product was the final result.

3.2 Evaluation Method

We conducted two kinds of evaluation methods to study the accuracy of the
whole pipeline for the abbreviation disambiguation and the necessity of every
module. In the first experiment, we tested four pre-trained language models in
contextualized token predicting and five abbreviation sense inventories in seman-
tic similarity calculation to test the whole pipeline. In the second experiment,
we kept the first module and the second module respectively to do the ablation
experiment. We used accuracy as the main performance measure. Here, accuracy
was defined as the fraction of abbreviation instances for which the word sense
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Fig. 2. An example of contextualized token predicting utilizing pre-trained language
models.

Fig. 3. An example of semantic similarity calculation.

was correctly predicted out of the total abbreviation instances in the test set
with more than one sense.

accuracy =
number of correctly predicted abbrevations

total number of instances in the datasets
(1)
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Fig. 4. An example of candidate ranking.

Comparison of Pre-trained Language Models. Pretrained BERT-based
models served to predict the masked word in the clinical notes. Language models
trained on different corpora may result in various performances. To evaluate the
predicting capability of models trained with corpus from different domains, four
models, BERT [25], BioBERT [26], Bio_ClinicalBERT [27], and PubMedBERT
[28] were tested in this section.

– The BERT model, presented by Devlin et al., was pretrained on 800 million
words of BooksCorpus [29] and 2,500 million words of English Wikipedia.
They used a document-level corpus rather than a shuffled sentence-level cor-
pus such as the Billion Word Benchmark [30] to extract long contiguous
sequences.

– BioBERT model was pretrained with the same algorithm but on the corpus of
2.5 billion words in the general domain of English Wikipedia, 0.8 billion words
in the general domain of Book Corpus, 4.5 billion words in the biomedical
domain of PubMed Abstracts, 3.5 billion words in the biomedical domain of
PMC Full-text articles.

– Bio_ClinicalBERT model was initialized from BioBERT and trained on all
notes from MIMIC III, a database containing electronic health records from
ICU patients at the Beth Israel Hospital in Boston, MA.

– PubMedBERT model was pretrained from scratch using abstracts from
PubMed and full-text articles from PubMedCentral, including 14 million
abstracts with 3 billion words (21 GB), which achieves state-of-the-art perfor-
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mance and holds the top score on many biomedical NLP tasks (e.g., Named
Entity Recognition).

Comparison of Abbreviation Sense Inventories. The abbreviation sense
inventory is another external source for our pipeline. The completeness and
redundancy of the inventory would significantly influence the candidate genera-
tion in the last two modules. Five abbreviation sense inventories are compared
as follows:

– The metathesaurus proposed by Grossman et al. as a trimmed version of the
source sense inventories described below includes 52519 abbreviations, and
89298 full names [20].

– The source sense inventories are from UMLS LRABR [31], ADAM [32],
Berman, Vanderbilt Discharge Summaries, Vanderbilt Clinical Notes, Stetson,
Columbia OBGYN, Wikipedia. There are 376270 SF/LF pairs in the inven-
tories, including 97789 abbreviations and 157819 corresponding full forms.

– Clinical sense inventory version 1 (hereinafter referred to as VERSION 1) is
proposed by Sungrim Moon et al., containing 440 common abbreviations and
24156 corresponding full forms. It includes exact mappings of lexical forms
for each of the long forms from a given resource.

– Clinical sense inventory version 2 (hereinafter referred to as VERSION 2)
is proposed by Sungrim Moon et al., containing 440 common abbreviations
and 13027 corresponding full forms. It includes mappings of forms for each
resource after merging forms using Lexical Variant Generation (LVG)(2) nor-
malization and then performing semantic mappings [18].

– Anonymized Clinical Abbreviations And Acronyms Data Set(hereinafter
referred to as CASI) is proposed by Sungrim Moon et al. The inventory
includes 75 abbreviations and their corresponding 352 full forms. And each
abbreviation has 500 examples.

4 Evaluation

4.1 Datasets

To evaluate the performance of the proposed pipeline and modules in this work,
we used two datasets for testing. The first was randomly selected 500 sentences
from Clinical Abbreviation Sense Inventory (CASI) dataset [18], including 30
abbreviations and their corresponding 73 full forms. We also use the sample
which contains 268 sentences with 126 abbreviations and 143 expansions in total
from Medical Dataset for Abbreviation Disambiguation for Natural Language
Understanding (MeDAL) presented by Wen et al. [33] for testing. A majority of
sentences in the dataset have more than three abbreviations, so these sentences
were tested many times for different abbreviations. The whole dataset (MeDAL)
can be used for pre-training natural language understanding models. It contained
5,886 abbreviations and 24,005 pairs of mappings.
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4.2 Results of the Whole Pipeline

As shown in Table 1, for the sample of CASI, PubMedBERT performed best
at 73.6% accuracy, while BERT performed worst at 63.2% accuracy. The accu-
racy rates of the other two models were 64.2% and 67.6% from low to high.
Since the BERT model was a pre-trained model on the raw texts only and
not trained specifically in one aspect, it cannot predict tokens accurately com-
pared to other models trained on the medical corpus. BioBERT was a domain-
specific language representation model pretrained on large-scale biomedical cor-
pora. So, despite the same architecture across tasks, it largely outperformed
BERT. Bio_ClinicalBERT model was initialized from BioBERT, but there is
robust evidence that the clinical embeddings are superior to the general domain
or BioBERT-specific embeddings for non-de-ID tasks, and that using note-type
specific corpora could induce further selective performance benefits. Thus, its
ability to predict tokens was slightly higher than BioBERT. Compared with the
first three models, the PubMedBERT model was the most domain-specific model
in the medical field and it performed best to predict the highly relevant tokens.

The accuracy achieved the highest at 73.6%, with the application of CASI
compared with the other four inventories. The pairs of abbreviations and long
forms in the inventory achieved a higher homology rate with the content in the
dataset. Therefore, it was more conducive to finding the correct long form in the
inventory. VERSION 2 got the lowest rate 21.4%. Compared with VERSION 1,
37.8%, it has fewer long terms, meaning a lower possibility to match irregular
forms, which resulted in poorer results. Source sense inventory had a modest
performance, 50%, due to quite a large quantity of entries. However, a large
quantity probably means that some irregular or obscure long forms will interfere
with the calculation of similarity due to the training method of the Phrase2Vec
model. Same with VERSION 2, Metathesaurus performed worse than the source
sense inventory, and its accuracy was 37.4%.

Table 1. Results of CASI for different language models and abbreviation inventories.

BERT BioBERT Bio_ClinicalBERT PubMedBERT

Grossman’s metathesaurus 25.40% 27.00% 25.40% 37.40%
Source sense inventories 30.40% 30.20% 31.40% 50.00%
Moon’s inventory v1
(VERISON1)

24.40% 26.60% 23.60% 37.80%

Moon’s inventory v2
(VERISON2)

13.80% 13.20% 15.40% 21.40%

CASI 63.20% 64.20% 67.60% 73.60%

Skreta et al. used reverse substitution (RS) with replacement and augmen-
tation with related medical concepts as well as global context to train models to
do abbreviation disambiguation. For the classification task, they built one model
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for each abbreviation. They used 65 abbreviations from CASI. On average, each
abbreviation had 4 expansions with 459 test sentences. And they labeled the
abbreviation with the expansion having the largest probability. They considered
two forms of accuracy: Micro accuracy was the total number of abbreviations
correctly disambiguated divided by the total number of samples in the test set
across all abbreviation disambiguation abbreviations with two or more possible
expansions. Macro accuracy was the average of individual abbreviation accura-
cies. The two accuracies of their concept model trained as described above on
test sets from CASI were both 0.760.

As shown in Table 2, for the sample of MeDAL, PubMedBERT still performed
best among the four models at 74.3% accuracy, but the worst performance for
this dataset was Bio_ClinicalBERT instead of BERT, at 45.1% accuracy. Con-
sidering the analysis in the previous paragraph, the possible reason was the lack
of sufficient training data for Bio_ClinicalBERT, and its generalization ability
for this sample was weaker than BERT’s. It seemed that source sense invento-
ries covered the most acronyms and corresponding expansions among the five
inventories (The acronyms in this sample had a very low crossover rate in CASI,
so the results were not for reference.). In this table, there were 14 cells with two
results. The former result in each cell included acronyms that could not be found
in the sense inventories, but the latter did not. And the lowest accuracy was 9.3%
with the application of VERSION 2. However, if abbreviations which missed in
the inventories were not classified as an error but eliminated, the accuracy was
much higher at 47.2%. This might be due to inventories’ coverage of acronyms
and whether acronyms in the test set were common in medical scenes.

Table 2. Results of MeDAL for different language models and abbreviation inventories.

ERT BioBERT Bio_ClinicalBERT PubMedBERT

Grossman’s metathesaurus 30.60%/35.30% 37.70%/44.90% 27.60%/32.90% 42.90%/85.80%
Source sense inventories 54.10%/– 63.10%/64.80% 45.10%/46.40% 74.30%/–
Moon’s inventory v1
(VERISON1)

10.40%/50.00% 12.70%/64.10% 9.70%/49.00% 16.00%/76.80%

Moon’s inventory v2
(VERISON2)

10.80%/51.80% 12.70%/64.10% 9.30%/47.20% 16.40%/78.60%

4.3 Ablation Experiments

To ensure the effectiveness of each module in our pipeline, we conducted ablation
experiments. And to ensure the high probability validity of each dictionary, we
chose the CASI dataset for the ablation experiments and analysis. We only kept
contextualized token predicting module, the accuracy was only 6.6%. When using
the same model, the result was 67% lower than the 73.6% obtained with the entire
process. And when we only kept the semantic similarity calculation module,
the accuracy was 51.8%. Using the same inventory, the result was 21.8% lower
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than the 73.6% obtained with the entire process. As shown in Table 3, without
either of the two modules, it gave rise to poor results. Without contextualized
token predicting, acronyms lost their meanings in context, and we could not find
a contextual expansion from a large number of long forms. Without semantic
similarity calculation, we did not have a measurable way to find the long form
with the closest meaning. All in all, both modules were necessary.

Table 3. Results of ablation experiments.

Module Name Model Accuracy

Contextualized BERT 2.20%
Token BioBERT 2.60%
Predicting Bio_ClinicalBERT 2.60%
(only) PubMedBERT 6.60%
Semantic Grossman’s metathesaurus 1.40%
Similarity Source sense inventories 7.00%
Calculation Moon’s inventory v1 2.20%
(only) Moon’s inventory v2 1.00%

CASI 51.80%
Full pipeline PubMedBERT+CASI 73.60%

5 Discussion

By incorporating clinical acronym disambiguation within the NLP pipeline, sev-
eral benefits can be realized. First, it improves the accuracy of clinical concept
normalization, ensuring that the intended meanings of acronyms are correctly
identified and associated with their respective full forms. This enhances the
interoperability and semantic understanding of clinical data, facilitating data
integration and exchange between healthcare systems and applications.

Furthermore, clinical acronym disambiguation aids in reducing ambiguity
and potential errors in downstream clinical NLP tasks, such as named entity
recognition, information extraction, and clinical coding. It enhances the precision
of these tasks by providing unambiguous references to clinical entities, thereby
improving the overall quality and reliability of automated clinical text analysis.

Additionally, accurate disambiguation of clinical acronyms contributes to
the development of comprehensive clinical knowledge bases and ontologies. It
supports the creation of standardized terminologies and controlled vocabular-
ies, enabling consistent representation and interpretation of clinical information
across different healthcare settings and systems.

Clinical acronym disambiguation serves as a valuable component in the clin-
ical NLP pipeline, facilitating more accurate and meaningful analysis of clini-
cal texts, improving healthcare decision support, and fostering advancements in
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clinical research and knowledge discovery. In this section, we analyzed errors in
detail. Besides, limitations and future work were outlined.

5.1 Error Analysis

The results indicated that our method still has space in progress. As shown in
Table 4, for the contextualized token predicting module, among all the incor-
rectly predicted long forms, 4.01% of errors were caused by the format of pre-
dicted tokens. When the predicted tokens were digit, it was difficult to calculate
similarity scores precisely. Besides, 10.3% of errors were due to predicted tokens
that were not even words, such as ‘##dine’, and symbols like ‘.’, ‘(’, ‘-’. They
were generally meaningless, resulting in subsequent calculation deviations. These
errors were related to the vocabulary and training strategy of the BERT-based
model. Since the dataset used for pre-training could not cover a certain aspect,
the predicted tokens were more likely to be meaningless, which would affect the
similarity calculation in the next module.

For the semantic similarity calculation module, there were some errors due to
inconsistent parts of speech. For instance, the true long form was ‘intramuscular’,
an adjective, while the final output was ‘intramuscularly’, an adverb. Moreover,
the correct long form was composed of several words side by side, and there were
separators between them, such as ‘cyclophosphamide, vincristine, prednisone’.
Also, the initials of words that made up the long form were not related to
acronyms in the abbreviation inventory. For example, ‘Biochemical’ became an
extended form of the abbreviation ‘PSA’. Moreover, a qualified inventory needed
sufficient abbreviations and corresponding expansions to test. if not, it would
adversely affect semantic similarity calculation, and the final result might not
come up.

Table 4. Illustration of error analysis. The second column of the first module means
what was predicted in the part. For the second module, the column ‘Error analysis’
demonstrates some reasons of errors.

Module Name Error analysis Example

Contextualized Digit predicted token: 1, 2, 3...
Token Incomplete words predicted token: ‘##dine’
Predicting Symbols predicted token: ‘-’, ‘.’, ‘(’...
Semantic Inconsistent parts of speech ground truth ‘intramuscular’;

final result: ‘intramuscularly’
Similarity Non-standard form of expansion ‘cyclophosphamide, vincristine,

prednisone’
Calculation Initials of expansions differing

from acronyms
expansion: ‘Biochemical’;
abbreviation:‘PSA’
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5.2 Limitations and Future Work

This work still has several limitations. First, most current pre-trained language
models were not able to predict phrases for the masked token, but a number of
abbreviations have extended forms that are phrases. If the predicted token is a
phrase instead of one word, it will match more closely with possible candidates.
Consequently, the accuracy of similarity score calculation will be improved a lot.

Besides, the irregularity of acronyms and their standard forms can harm
the performance of the method. Domain-oriented inventory might be helpful
and more efficient for candidate generation. Pre-trained language models for
our pipeline were task-specific and domain-specific. For example, the frequently
used acronyms in clinical notes might be different from those used in clini-
cal trials. The separation of clinical notes-oriented inventory and clinical trial-
oriented inventory would benefit both domains and improve the performance of
our method.

In the whole pipeline, predicting contextual tokens by the pre-trained lan-
guage model is a downstream task. Sometimes the downstream tasks do not
fully utilize the knowledge in the model, perhaps because of bias caused by word
frequency, case, subword, etc. in BERT’s native model, and the layers of BERT
itself do not correct this problem. Based on the training process of BERT mod-
els, the addition of prompt learning can help to adjust the downstream task to
accommodate the model, thus utilizing the knowledge in each layer of BERT
more effectively.

6 Conclusion

In this work, we proposed a pipeline to disambiguate abbreviations in clinical
texts, which was an early attempt to adopt a pure unsupervised pre-trained
language model for abbreviation expansion. It replaced the abbreviation in the
sentences with the contextualized token, which enabled the representation of
different semantics in different scenarios and solved the problem of multiple
meanings of the same abbreviation. With the evaluation on the two datasets, it
proved that the method could be potentially applied in the existing clinical NLP
pipeline for the acronym disambiguation.
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Abstract. Since the emergence of social media, misinformation has
become prevalent and is propagated through various social media plat-
forms. Time plays a crucial role in verifying the source and authenticity
of information, especially when it comes to detecting misinformation.
Although current research on misinformation detection often focuses on
timestamps for temporal analysis, it tends to overlook the time interval
between an event’s occurrence and its reporting, which can provide valu-
able insights. To address this gap, we propose the Time Interval Guided
Knowledge Inductive Graph Neural Network (TIG-KIGNN) for detect-
ing health-related misinformation. Our approach leverages time interval
features in social media texts and integrates domain expertise from the
knowledge graph into the semantic features of the texts, thereby enhanc-
ing the detection process. Moreover, to improve efficiency and minimize
resource consumption, we employ inductive graph neural networks to
optimize feature representation and update by neighboring nodes during
training and when adding new nodes. We validate the effectiveness of our
model using a real-world dataset and demonstrate significant improve-
ments over existing methods based on experimental results.

Keywords: Graph Neural Network · Knowledge Graph ·
Misinformation · Social Media · Time Interval

1 Introduction

With the increasing popularity of social media, people are increasingly relying on
it as a source of information. However, there is a significant amount of false news
that can potentially mislead people. According to Darwish, O. et al. [8], informa-
tion from social media is highly susceptible to manipulation due to contextual
conventions, and the credibility of its source is constantly questioned. This makes
users on social media more prone to being misled by false information. Since the
outbreak of COVID-19, there has been significant attention given to the detec-
tion of misinformation from social media [3,4,14,15]. People often share false
information about COVID-19 without thoroughly considering its accuracy [24].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Xu et al. (Eds.): CHIP 2023, CCIS 1993, pp. 287–300, 2024.
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Misinformation not only deprives people of the right to know the truth [24] but
also has a negative impact on the stability of society and undermines official
credibility. Therefore, there is a clear need for effective misinformation detection
to combat its widespread dissemination.

According to Muhammed T S et al. [21], verifying false news takes time.
Most current research on the temporal dimension focuses on specific points in
time, such as the publication time of news articles. However, using a single point
in time as temporal information does not fully capture the temporal dynam-
ics. In the medical field, medical knowledge is crucial for assessing the validity
of news, and there are various graph neural network models [7,31] for knowl-
edge fusion. Several studies [7,11,30] combine transductive graph neural network
(GNN) models with knowledge graphs for misinformation detection tasks. How-
ever, in many cases, the graph evolves with changing network structures and the
emergence of new nodes. These methods often require loading the entire graph
for information updates, which may introduce noise that negatively affects the
accuracy of predictions.

Addressing the aforementioned issues, we propose a novel method called TIG-
KIGNN (Time Interval Guided Knowledge Inductive Graph Neural Network) for
misinformation detection. This method effectively captures the temporal dimen-
sion by using time intervals as a feature representation. To improve the efficiency
of graph loading during training, the method combines domain expertise with an
inductive Graph Neural Network. Specifically, the method enhances the semantic
information of articles by incorporating entities extracted from the knowledge
graph and employs the inductive graph neural network to optimize the feature
representation of each article by utilizing a subset of neighboring articles in the
article-article bipartite graph. This approach enables more efficient learning of
article features while reducing noise introduced by unnecessary data.

In a nutshell, our contributions are listed as follows:

· We extract the interval between the time mentioned in the article and the
time the article was published as the time feature information of the article.
· We apply an inductive graph neural network to optimize the article feature
representation for information-containing knowledge graphs.
· We use a real-world dataset called ReCOvery. Our experiments have demon-
strated the effectiveness of TIG-KIGNN. The report results show that TIG-
KIGNN has achieved the best results in terms of precision, recall and F1
score.

2 Related Work

2.1 Misinformation Detection

Kumar S et al. [18] conducted a survey on misinformation, discussing various cat-
egories of misinformation, existing methods for detecting it, and potential future
directions. Shin J et al. [27] focused on investigating misinformation in interdis-
ciplinary fields. Their research can be divided into four main aspects: examin-
ing false knowledge that can deceive people, analyzing writing styles, studying
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propagation patterns, and evaluating the credibility of individuals who spread
misinformation. Dou Y et al. [10] developed models that combine content-based
and graph-structure-based approaches for detecting fake news. They considered
users’ spreading performance as an endogenous factor in their analysis. Shu K
et al. [28] constructed hierarchical propagation networks to distinguish between
genuine news and false news. They analyzed network features, including struc-
tural, temporal, and linguistic aspects, to detect misinformation.

2.2 Time Interval

When it comes to misinformation detection task, the time dimension is a crucial
piece of information which can help the task to be carried out more effectively.
Most of the studies in the time dimension are now studies based on timestamp.
Ji J et al. [16] has studied the feature effectiveness at different time points.
However, according to Galli A et al. [12], they argue that the spurious news
meaning has evolved over the time. Rastogi S et al. [25] provides an overview
of misinformation detection tasks that include a temporal dimension, but they
consider points in time and do not take into account time intervals as a temporal
dimension. We adopt the interval between the time mentioned in the article and
the time of the news release as the article’s temporal characteristic.

2.3 Graph Neural Network

Since the proposal of the graph neural network model [26], it has been widely
utilized. Cui L et al. [7] applied the graph neural network to the misinforma-
tion detection task, achieving better performance and providing more possible
solutions for misinformation detection. Some solutions have explored the utiliza-
tion of Graph Neural Networks [20,29]. Li J et al. [20] proposed models based
on GCN for misinformation detection, while Song C et al. [29] utilized GAT
to detect misinformation on social media. However, transductive graphs require
loading the entire graph with vertex and edge information, which consumes sig-
nificant resources and time. If the task requires updating information for specific
vertices, the entire graph needs to be updated. Hamilton W et al. [13] proposed
a model that eliminates the need to re-process the entire graph. Inspired by
Brennen J S et al. [2] and S.B. Parikh et al. [22], our method focuses on the
paragraph level of article features.

3 Method

Our proposed method consists of three components, shown in Fig. 1.

3.1 Time Encoder Layer

The time information is an essential part of our model. To guide our model in
extracting more efficient time information, we provide 2 possible time informa-
tion for model. Firstly, there is the case of article with publication date, in which
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Fig. 1. Schematic overview of the proposed methodology.

case we can extract the time interval information directly from the article. The
can be expressed as t intervali

t intervali = Interval(t posti,min{t1, ..., tn}) (1)

where t intervali means the extracted article interval information, represents the
article posting time information and {t1, ...tn} represents the set of events time
mentioned in the article. For each article Si, we obtain its post time t posti along
with a time set {t1, ..., tn}. We then regularize the time information. Finally, we
subtract the minimum value of the time set {t1, ..., tn} from the post time t posti
to obtain t intervali.

To obtain the positional embedding, the obtained time interval information
is encoded with the original text. Then normalize it to acquire the time interval
representation. The t repi can be expressed as:

t repi = tanh(Sigmoid(t intervali) (2)

where t repi serves as the time interval representation.

3.2 Information Embedding Layer

In our method, we focus on paragraph-level feature representation. The contex-
tual representations are concatenated from paragraph-level feature representa-
tion.

Contextual Embedding. Each paragraph-level feature representation is
obtained via ALBERT [19]. Based on BERT [9], ALBERT solves the problem
of a large number of model parameters in BERT. We use the pre-training model
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of ALBERT on huggingface to obtain article features at the paragraph-level. To
fully capture the feature representation of each article, we use Bidirectional Gat-
ing Recurrent Unit (BiGRU) [1] to encode paragraph-level feature representation
ai.

Knowledge Embedding. The knowledge embedding in TIG-KIGNN is based
on a knowledge graph. The knowledge graph can effectively organize and repre-
sent knowledge so that it can be efficiently utilized in advanced applications [6].
For example, 2019-nCoV (entity) is one of (relation) coronavirus (entity), and
its representation is (2019-nCoV, one of, coronavirus).

Knowledge embedding aims to obtain the entities in knowledge graph. To
obtain the knowledge representation in the article, we can consider methods
to match entities of the knowledge graph and article. For each article Si, the
knowledge representation k repi can be expressed as:

k repi = getKnowledge(Si,KnowledgeGraph) (3)

In Eq. (3), for each article Si, extract its entities and attempt to find a
match with in the knowledge graph. Once a match is found, we leverage the
relationships of these entities in the knowledge graph to further extract relevant
knowledge information from the article.

In our work, we mainly focus on the final article representation, the knowl-
edge graph will provide additional information for the article. We model this
knowledge information into the article. The structures of the knowledge graph
are shown in Fig. 2 and Fig. 3:

Fig. 2. Properties of one entity in knowledge graph.

The final article representation fi can be expressed as:

fi = concat(ai, k repi, t repi) (4)

where ai represents the article feature, k repi represents the knowledge embed-
ding and t repi represents time interval feature representation.
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Fig. 3. Relations of entities in knowledge graph partly.

3.3 Information Optimizing Layer

In our work, we use an inductive graph neural network graphSAGE [13] to reach
the goal. It generates embeddings by sampling and aggregating features from a
vertex’s neighborhood. It means that instead of learning the embedding of all
vertexes on a graph, graphSAGE learns a mapping that generates the embedding
for each vertex.

GraphSAGE. We use an inductive graph neural network graphSAGE (sample
and aggregate) to optimize each article feature. The output of the graphSAGE
embedding generation is as follows:

Output = graphSAGE(G, f,K,W k) (5)

where G represents the input graph structure G(V, ε), f represents input features
set {fi,∀i ∈ V }, K represents the depth of the searching neighborhood of each
node and W k represents the weight matrices ∀k ∈ {1, ...,K}. The pseudocode
of the graphSAGE embedding generation forward propagation algorithm is as
follows:

For each aggregated neighbor operation, we have:

hk
N(i) = AGGREGATEk({hh−1

u′ ,∀u ∈ Nk(V )}) (6)

hk
i = σ(W k · CONCAT (hk−1

i , hk
N(i))) (7)

where the hk
N(i) represents the results of each layer of aggregation via aggregator

functions AGGREGATEk,∀k ∈ {1, ...,K} and hk
i represents the final result of

aggregation of a node by the neighborhood function N:i → 2V .
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Sampling and Aggregation. We choose a two-layer network centered on a
specific node. From this node, we select up to 20 neighbors, aggregate their fea-
tures, and then update the feature of the center node. The aggregation function
we use mean aggregator, the algorithm is as follows:

hk
i = σ(W · MEAN({hh−1

i } ∪ {hk−1
u ,∀u ∈ N(i)})) (8)

The aggregator function is the mean operator, which takes the elementwise
mean of the vectors in {h(k − 1),∀u ∈ N(i)}. The aggregator function is used to
convert a collection of unordered vectors into a vector, where N(i) represents the
set of neighboring nodes of node i. And the mean aggregator function algorithm
is as follows:

AGGREGATE =
∑

u ∈ N(i)
hl

N(i)
(9)

Update. After obtaining an aggregated representation based on the neighbors
of node i, update the current node i using a combination of its previous repre-
sentation and the aggregated representation. The update algorithm is as follows:

hk
i = UPDATE(hk

N (i), hk−1
i ) (10)

the UPDATE function only needs to be differentiable, in our task, we use the
mean function MEAN as the UPDATE method.

3.4 Prediction Layer

We next feed the embedding to a softmax layer for classification as follows, where
ŷ is the predicted result, compared to Softmax, LogSoftmax solves the problem
of possible Softmax overflow.

ŷ = LogSoftmax(hk
i ) (11)

4 Experiment

4.1 Dataset

We use the dataset ReCOvery [33]. The dataset investigated about 2000 news
publishers, from which 60 are identified with extreme (high or low) levels of
credibility.

The dataset provides multimodal information on news articles on COVID-19,
including textual, visual, temporal, and network information, in our work, we
will use textual information only. The credibility of the website that published
each article contains 9 parts and each score of the part was from an authoritative
website NewsGuard.

The general statistics on ReCOvery are presented in Table 1:
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Table 1. statistics on ReCOvery

Reliable Unreliable Total

News articles 1364 665 2029

Tweets 114402 26418 140820

Users 78659 17323 93761

4.2 Knowledge Graph

As a knowledge graph in the COVID-19 domain, we use the open-sourced knowl-
edge graph openKG which contains 108298 examples and 298663 tripes collected
from 5 encyclopedias. We use Medical Encyclopedia and English Encyclopedia
of it, while the Medical Encyclopedia contains 26852 examples, and 31031 triples
and English Encyclopedia contains 11051 examples, and 56864 triples.

4.3 Settings

To evaluate the performance of our model, we use the following metrics, which
are commonly used to evaluate classifiers: Precision (P), Recall (R), and F1-score
(F1).

We implement our model with PyTorch. The dataset is divided into train-
ing and testing datasets with a proportion of 4:1. After merging the paragraph
embeddings into article embedding. We tested the depth of optimizing layer
K = 1, 2, 3.

For TIG-KIGNN, we use SGD for the optimizer and the training epoch is
set as 2000 to find the best-performing models and observe the convergence
situation.

5 Results

5.1 Baseline Methods

During the experiment, we use the same training and testing data as the work
on the proposed dataset. The following methods are involved as our baselines.

DT [5]: DT (Decision Transformer) is an autoregressive model and its advan-
tage is that it performs well for sparse problems in reinforcement learning.

LIWC [23]: LIWC (Linguistic Inquiry and Word Count) is a widely-accepted
psycholinguistic lexicon, which can classify words into many classes about psy-
chology.

RST [17]: RST (Rhetorical Structure Theory) generates article content as
a tree structure that captures the rhetorical relation among its phrases and
sentences.

Text-CNN [32]: Text-CNN is a classic text classifier using a convolutional
neural network, which can capture different granularity of text features with
multiple convolution filters.
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SAFE [34]: SAFE is a method that utilizes multimodal information for mis-
information detection, where article feature is learned by article and image infor-
mation.

BERT [9]: BERT provides a powerful foundational model for various natural
language processing tasks by learning contextually rich language representations
through pre-training and fine-tuning, which enhances the accuracy and effective-
ness of the model in understanding and processing natural language.

5.2 Performance Evaluation

We show the precision, recall, and F1-score to compare with the baselines in
Table 2.

Table 2. Performance on ReCOvery dataset.

Method Reliable news Unreliable News

P R F1 P R F1

LIWC [23]+DT [5] 0.779 0.771 0.775 0.540 0.552 0.545

RST [5]+DT 0.721 0.705 0.712 0.421 0.441 0.430

Text-CNN [32] 0.746 0.782 0.764 0.522 0.472 0.496

SAFE [34] 0.836 0.829 0.833 0.667 0.677 0.672

BERT [9] 0.746 0.966 0.841 0.868 0.407 0.554

TIG-KIGNN 0.900 0.945 0.920 0.874 0.776 0.822

· In Table 2, LIWC combined with Decision Trees (LIWC+DT) outperforms
due to LIWC’s enhancement of informational content. However, as a psycho-
logical lexicon, LIWC is less effective for sentiment analysis, a divergence from
misinformation detection. Rhetorical Structure Theory (RST), while struc-
turing article content, becomes complex and noisy with longer texts, impact-
ing classification. Text-CNN excels in capturing semantic details locally but
overlooks the valuable insights from inter-article relationships crucial for com-
prehensive understanding.
· In Table 2, BERT demonstrates enhanced recall for reliable news, owing
to its adept learning of their semantics, reinforced by their prevalence in the
dataset. Its ability to grasp contextually rich linguistic representations enables
precise, fact-focused comprehension, leading to accurate predictions.
· Among the methods based on time interval, article contents, and knowl-
edge graph, our method TIG-KIGNN consistently outperforms other meth-
ods in terms of Precision, Recall, and F1-score on the ReCOvery dataset.
TIG-KIGNN shows an improvement of 6.4%, 11.6%, and 8.7% on reliable
news, and 20.7%, 9.9%, and 15% on unreliable news, respectively.
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5.3 Ablation Studies

In this section, to prove the efficiency of our model and the influence of each
module, we show the ablation studies in Table 3 and Table 4.

Table 3. Ablation experiment results on reliable news.

Method P R F1 �F1

TIG-KIGNN 0.900 0.945 0.920 –

(w/o) time interval 0.859 0.938 0.896 –0.024

(w/o) knowledge graph 0.866 0.926 0.895 –0.025

(w/o) graphSAGE 0.865 0.881 0.873 –0.047

(w/o) graphSAGE + time interval 0.800 0.930 0.860 –0.060

(w/o) Knowledge Graph + time interval 0.875 0.890 0.883 –0.037

Table 4. Ablation experiment results on unreliable news.

Method P R F1 �F1

TIG-KIGNN 0.874 0.776 0.822 –

(w/o) time interval 0.844 0.687 0.757 –0.065

(w/o) knowledge graph 0.828 0.711 0.765 –0.057

(w/o) graphSAGE 0.734 0.705 0.719 –0.103

(w/o) graphSAGE + time interval 0.840 0.600 0.700 –0.122

(w/o) Knowledge Graph + time interval 0.706 0.675 0.691 –0.131

Tables 3 and 4 reveal a marked 8.9% decline in recall for unreliable news
when excluding time intervals, attributed to the brief gap between event occur-
rence and news release, compromising authenticity. Furthermore, removing the
GraphSAGE module degrades the performance for both news types due to the
absence of neighbor-informed node optimization.

5.4 Comparison of K

In our work, we use a graph to optimize the information in each article. There-
fore, we should consider the effect of the depth of graph aggregation on the
classification results.

Table 5 shows the performance and training time with each node’s neighbor-
hood in depth K = 1, 2, 3 on reliable news and unreliable news. When K = 2,
the model obtains the best result. The results are as Table 5.
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Table 5. Result of different depth of aggregation.

Depth of aggregation Reliable news Unreliable news

P R F1 P R F1

K = 1 0.868 0.914 0.890 0.818 0.736 0.774

K = 2 0.900 0.945 0.920 0.874 0.776 0.822

K = 3 0.880 0.862 0.871 0.777 0.803 0.790

Table 5 shows that aggregating with depth K = 1, encompassing only the cur-
rent node and its immediate neighbors, may lead to inadequate information for
robust node analysis. Conversely, a depth of K = 3, which aggregates information
from a broader network, risks introducing noise that can hinder misinformation
detection, while also prolonging training time. This highlights the necessity of
balancing aggregation depth with information quality and computational effi-
ciency.

5.5 Case Study

TIG-KIGNN’s proficiency in managing time intervals, expertise, and contextual
semantics is highlighted in Fig. 4, which compares its attention to post content
against baseline models. Notably, TIG-KIGNN assigns darker shades, indica-
tive of greater attention, to time and expertise-related elements, signaling its
potential for higher accuracy in results.

5.6 Error Analysis

In our study, TIG-KIGNN shows limitations in accurately predicting data-driven
content, such as in the sentence reporting COVID-19 cases, where it fails to dis-

Fig. 4. Schematic overview of the proposed methodology.
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cern fabricated data. Instead of relying on data truthfulness, the model assesses
news authenticity through contextual semantics and external knowledge, ana-
lyzing the article’s overall structure.

6 Conclusions

We introduce TIG-KIGNN, a Time Interval Guided Knowledge Inductive Graph
Neural Network, tailored for COVID-19 misinformation detection. It utilizes time
interval data and a specialized COVID-19 knowledge graph to enrich article
embeddings, further optimized by neighboring node analysis. Validated with a
real-world dataset, TIG-KIGNN surpasses existing methods. However, it faces
limitations like dependence on the knowledge graph, interpretability challenges,
and an imbalanced dataset. Future enhancements will consider author credibility
to refine its efficacy.
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Abstract. Global media with international influence play a crucial role in shap-
ing international public opinion related to China. These media report on objective
events and shape people’s perceptions and viewpoints. So, we are studying how
international public opinion forms are crucial for constructing a positive national
image, improving the international public opinion environment, and resisting var-
ious forms of ideological infiltration. This paper focuses on conducting an inter-
national media portrait analysis of China during the COVID-19 pandemic as a
typical case study. The task involves fine-grained sentiment classification through
aspect-based sentiment analysis. Due to the complexity of online comments and
inaccurate parsing results, improving the accuracy of this task presents significant
challenges. We propose a KD-Dual-GCN model based on knowledge distillation
and dual graph convolutional networks to address these challenges, considering
both syntactic structure and semantic correlation. Our SynGCN module lever-
ages rich syntactic knowledge to mitigate dependency parsing errors, and our
SemGCNmodule incorporates a self-attentionmechanism to capture semantic cor-
relation. Additionally, we employ knowledge distillation to reduce model latency
and network parameters. The results from experiments conducted on three stan-
dard datasets show that our KD-Dual-GCN model outperforms existing methods,
validating the effectiveness of our proposed approach.

Keywords: COVID-19 · media portrait · knowledge distillation

1 Introduction

Against unprecedented global changes in a century, the world is undergoing structural
reforms, and public opinion has emerged as a significant power source. The development
and integration of online social platforms have created a new communication ecosystem,
emphasizing the increasing importance of international media in shaping the evolving
international environment [1]. In this context, studying China’s latest developments
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and trends in overseas media coverage can help us understand the dominant forces
in international public opinion, enhance our communication capabilities, and foster a
favorable external environment for China’s reform, development, and stability.

International public opinion analysis primarily focuses on the emotional tendencies
and language styles of news texts published by the media, aiming to reveal their opinions
and attitudes toward specific events. Traditional international public opinion research
methods heavily rely on manual reading and data statistics, which consume significant
time and resources and are prone to subjective bias. However, with the explosive growth
of new information online, relying solely on traditional qualitative analysis has become
impractical, making accurate and efficient data processing challenging. As machine
learning and deep learning methods such as extensive data analysis continue to advance,
constructing portraits of network media has become a commonly used approach for
studying the evolution of public opinion. Analyzing online public opinion using big
data and exploring hot topics and trends in international mainstream media can provide
relevant government departments with timely, comprehensive, and accurate insights into
the direction of international public opinion. Analyzing online public opinion is crucial
in establishing an international discourse power that aligns with China’s comprehensive
national strength and international status [2].

In sentiment analysis, employing deep learning architectures to analyze the emo-
tional stance of international media typically requires a large amount of labeled data
[3]. Considering the substantial volume of news data, annotating all the collected data
would demand significant human and material resources. Furthermore, the model’s per-
formance may decrease due to distributional shifts during training, testing, and practical
operations. Domain adaptationmethods effectively address this issue by learning the dif-
ferences between data from the source and target domains, allowing themodel trained on
the source domain to transferwell to the target domain andmaintain optimal performance
[4]. However, adversarial learning in the domain adaptation process may lead to knowl-
edge forgetting because of the disparities in data between the source and target domains
and the unavailability of target domain labels. To overcome this challenge, knowledge
distillation techniques widely used in natural language processing allow the injection
of external knowledge into the model [5]. By leveraging a teacher model, knowledge
can be better transferred to the student model, mitigating knowledge forgetting during
adversarial training. Initially, this technology involved applying temperature scaling to
teacher predictions for specific instances. Subsequently, Li and Caraga [6] introduced a
novel method of dynamic temperature scaling for knowledge extraction, aiming to fine-
tune the teacher’s predictions at each step of the generation process. These advancements
contribute to emotional stance detection tasks and knowledge extraction methods.

We propose a public opinion analysis model that incorporates knowledge distillation
and dual graph convolutional networks to detect the emotional tendencies of mainstream
international media. Since the outbreak of the COVID-19 pandemic,Western media out-
lets and politicians, led by the United States, have distorted facts, disregarded the signif-
icant sacrifices and efforts made by the Chinese government and people in handling the
crisis, and exploited the pandemic to launch an offensive against our country, attacking
our socialist system. The behavior of Western media poses a grave threat to our ideo-
logical security. Therefore, this paper utilizes the GDELT database as the data source,
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crawling articles published by international mainstream media during the COVID-19
epidemic to construct a comprehensive profile of international media sentiment.

Our contributions are highlighted as follows:

1) We made a media portrait of the international media during the COVID-19 epidemic
and obtained many profound results.

2) We propose orthogonal and differential regularizers to address the challenges of
reducingmodel latency and compressing network parameters through knowledge dis-
tillation. The orthogonal regularizer promotes the learning of an orthogonal semantic
attention matrix within the SemGCN network. In contrast, the differential regular-
izer encourages the SemGCN network to develop semantic features distinct from the
syntactic features built by the SynGCN network.

3) The experimental results demonstrate the effectiveness of our KD-Dual-GCNmodel.
Additionally, we constructed a GDELT and Twitter-based dataset suitable for ABSA
tasks.

2 Related Work

2.1 Research on Media Portraits

The construction of media portraits aims to describe the characteristics and evolving
trends of public opinion of a media outlet or a group of media outlets by analyzing
the themes, emotions, and language styles of their news articles [9]. Within the field
of communication, theories on media effects and emotional analysis have provided a
theoretical foundation for the development of media portraits. Research has shown that
media impacts public attitudes, beliefs, and behaviors [10], while emotions are crucial
in driving human thinking and behavior [11]. In summary, media profiling is a practical
approach to understanding the characteristics and emotional tendencies of the media,
providing a basis for in-depth analysis and comprehension of media public opinion.

Sentiment analysis involves determining the emotional polarity of a text and is an
essential task inmedia portraits. Taboada et al. [12] employed a semantic-based approach
to analyze the emotional orientation of words in a text. They utilized these orientations to
assess the overall emotional orientation of the text. Socher et al. [13] adopted a machine
learning-based sentiment analysis method, training a model using a large dataset and
then applying it to classify new samples based on sentiment. While semantic-based
methods offer fine-grained analysis, they are often constrained by resources such as sen-
timent dictionaries. On the other hand, machine learning-based approaches are relatively
objective but heavily rely on training data.

Theme modeling uses deep learning techniques to extract and represent underlying
themes from textual data [14]. This represents another important aspect of constructing
media portraits. For instance, Wu Peng et al. [15] employed the latent dirichlet allo-
cation (LDA) topic model to analyze the evolution of policy-related themes during
the COVID-19 pandemic, providing insights into government emergency management
strategies. Yang Jiayun et al. [16] integrated thematic and emotional information to con-
struct a thematic-emotional model, exploring the emotional evolution of online public
opinion and identifying hot topics of negative public sentiment during sudden public
health events. Researchers have recently explored using LDA and other deep learning
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technologies for public opinion analysis. For example, Zeng Ziming et al. [17] used an
LDA and Bi-LSTM attention model to analyze online public opinion’s thematic and
emotional evolution during the COVID-19 pandemic.

2.2 Research on Public Opinion of Google News Database GDELT

The Global Database of Events, Language, and Tone (GDELT) is currently the world’s
largest open-source political event database. Since 1979, GDELT has been recording
a wide range of significant events from global news media. It monitors news events
from television, radio, and online news sources in over 100 languages across various
countries and regions worldwide. The database is updated in real-time, with new data
available every 15 min. GDELT provides daily media coverage data in three formats:
the event database (event), the global knowledge graph (GKG), and the event mention
table (element). Within international relations research, many scholars and research
institutions are utilizing the GDELT database as a primary data source for studying
the evolution of public opinion worldwide. For instance, Chi Zhipei [23] conducted a
quantitative study on the China-US bilateral relationship using GDELT, while Qin Kun
[24] employed complex network theory and methods to analyze international relations
based on the network data available in GDELT.

3 Methods

This paper proposes a public opinion analysis model KD-Dual-GCN to study interna-
tional public opinion during the COVID-19 epidemic. The model focuses on detect-
ing international emotional positions through a ternary classification task. The model’s
overall structure is illustrated in Fig. 1 and consists of three main components. First,
the model conducts pretraining on the source encoder and classifier using target data.
This step aims to establish baseline performance by training the encoder and classifier
with data from the target domain. Next, adversarial training is performed on the target
encoder using a domain adaptive model with knowledge distillation. This process aligns
the feature representation of the target data with the representation of the source data.
The model enhances its ability to handle diverse data sources by reducing the domain
discrepancy. Finally, the hidden representations of sentences are fed into the SynGCN
and SemGCN modules. These modules capture syntactic and semantic information,
enabling the model to understand the nuances of public opinion. To facilitate adequate
information flow, we propose a BiAffine module. The representations from the SynGCN
and SemGCN modules are aggregated through pooling and concatenation to form the
final aspect representation.
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Fig. 1. The overall structure of the KD-Dual-GCN model

3.1 Word Encoding Layer

The word encoding layer uses a large pretrained language model, BERT, to encode and
extract corresponding features from news segments. Assuming formulas represent the
labeled source domain data (1), (2), and (3):

XS = {(xis)}NS
i=0 (1)

YS = {(yis)}Ns
i=0 (2)

(xs, ys) ∼ (Xs, Ys) (3)

Formulas represent the unlabeled target domain data (4) and (5):

XT =
{(

xit
)}Nt

i=0
(4)

xt ∼ XT (5)

where NS represents the number of samples in the source domain and Nt represents the
number of samples in the target domain. Input the given source data XS and target data
XS into the BERT encoder in the form of “[CLS]xi1, xi2, . . . xim” i ∈ [S,T ]. Assuming
that the target data share the same label space as the source data, the source encoder
is represented by function Es(x), where x represents the input of the network and Et(x)

represents the target encoder. In addition, C represents the source classifier function, and
D represents the target classifier function.
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3.2 Fine-Tuning the Source Domain Encoder and Classifier

By accessing source data (Xs,Ys), fine-tune source encoder Es and classifier C using
the standard cross entropy loss function, and fine-tune them using the cross entropy loss
function:

min
Es,CLs(Xs, ys) = E(xs,ys) −

∑K

k=1
1[k=ys] logC(Es(xs)) (6)

3.3 Adversarial Adaptive Model Training Target Encoder with Knowledge
Distillation

First, the target encoder and discriminator are alternately trained in the original adver-
sarial network of the domain adaptive framework, which allows the target encoder to
have greater flexibility in learning the data features of the source domain. The process
is as follows:

min
D Ldis(XS ,XT ) = Exs − logD(Es(xs)) + Ext − log(1 − D(Et(xt))) (7)

min
Et Lgen(XT ) = Ext − logD(Et(xt)) (8)

In the context of limited access to labeled target data and the inherent dissimilarity
between the target domain task and the source domain, feature forgetting may occur,
resulting in random classification. This paper introduces the concept of knowledge distil-
lation loss. The goal of incorporating knowledge distillation is to provide the model with
enhanced flexibility in adversarial adaptation while retaining important class informa-
tion. It is achieved using a knowledge distillation technique that leverages a maximum
temperature value of t. The process can be summarized as follows:

LKD(Xs) = t2 × Exs

∑K

k=1
−softmax

(
zsk/t

) × log (softmax
(
zTk /t

)
) (9)

where zs = C(Es(xs)) and zT = C(Et(xs)). Therefore, the final objective function used
for training the target encoder becomes:

Emin
t

LT (Xs,XT ) = Lgen(XT ) + LKD(Xs) (10)

We developed a self-attention mechanism with orthogonal regularization to enhance
the capture of semantic relationships in reports and short text comments. This module
generates an attention score matrix by calculating the weights using Eq. (11). Equa-
tion (11) represents the weight calculation formula, which determines the importance
of each token in the context based on its relevance to other tokens. By incorporating
orthogonal regularization, the self-attention mechanism promotes the independence and
diversity of the attention weights, leading to a better representation of the semantic
relationships within the text. This approach improves the ability to capture and model
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the intricate semantic connections in reports and short text comments through the self-
attentionmechanismwith orthogonal regularization. Equation (11) underpins the weight
calculation process that determines the significance of each token in the context:

A = softmax

(
QWQ × (

KWK
)T

√
d

)
(11)

where Q and K are graph representation matrices, and WQ andWK are learnable weight
matrices.

An orthogonal regularizer is applied to the initial attention score matrix to enhance
the semantic representation. By incorporating the orthogonal regularizer, we aim to
ensure that the attention scores assigned to different words are mutually independent
and diversified. It helps capture a more comprehensive range of semantic information
and improves the overall quality of the representation. Equation (12) reflects the equation
used for the orthogonal regularization:

R =
∥∥∥AsAsT − I

∥∥∥
F

(12)

where I is the identity matrix. The subscript F represents the Frobenius norm. Minimize
each nondiagonal element of A to maintain the orthogonality of the matrix Asem.

The attention score matrix is fed into the GCN module for feature fusion. This step
leverages the strengths of the self-attentionmodule and the semantic-based graph convo-
lution. The self-attention module captures the semantic relationships among words in a
sentence, providing flexibility in understanding their interconnections beyond syntactic
structures. Meanwhile, semantic-based graph convolution can adapt to online comments
that may not heavily rely on syntactic information. By combining these two modules,
the GCN module generates a sentiment probability distribution. This distribution repre-
sents the likelihood of different sentiment categories for the given input. A normalization
function is applied to the output to ensure a valid probability distribution. A loss function
is defined to train the model, as shown in Eq. (13). This loss function guides learning
by measuring the discrepancy between the predicted sentiment probability distribution
and the ground truth labels. Minimizing this loss improves the model’s ability to pre-
dict sentiment accurately. In summary, the attention score matrix is utilized in the GCN
module for feature fusion. The combined strength of the self-attention module and the
semantic-based graph convolution allows for a more comprehensive understanding of
the input.

LT = LC + λ1R + λ2‖θ‖2 (13)

LC = −
∑

(s,a)∈D
∑

c∈C log p(a) (14)

where λ1,λ2 is the regularization coefficient, θ for all trainable model parameters. C is
the standard cross entropy loss (14). Among them, D contains all sentence pairs, and C
is a set of different emotional polarities.
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4 Experiment

4.1 Dataset

We used Web Crawler to obtain 735,566 pieces of original data from GDELT from
December 5, 2021, to January 5, 2022, then deleted 381,040 pieces of invalid data with
empty titles and content, and finally obtained 354,526 pieces of valid data, with a crawl
success rate of 48.20%. We selected 3,000 pieces of data to label as the GDELT dataset
manually.We conduct experiments on three public standard datasets. The Restaurant and
Laptop datasets are made public from the SemEval ABSA challenge. All three datasets
have three sentiment polarities: positive, negative, and neutral. Each sentence in these
datasets is annotated with marked aspects and their corresponding polarities. Statistics
for the three datasets are shown in Table 1.

Table 1. Statistics for the three experimental datasets.

Dataset Division # Positive # Negative # Neutral

GDELT Training 566 751 441

Testing 356 542 344

Restaurant Training 2164 807 637

Testing 727 196 196

Laptop Training 976 851 455

Testing 337 128 167

4.2 Baseline Methods

We conducted a comparison between KD-Dual-GCN and several state-of-the-art
baseline models. Here is a brief description of each model:

1) kumaGCN [19]: This model incorporates a latent graph structure to complement
syntactic features for better performance.

2) InterGCN [20]: InterGCN utilizes a graph convolutional network (GCN) over a
dependency tree to learn aspect representations, leveraging syntactic information.

3) R-GAT [21]: R-GAT proposes an aspect-oriented dependency tree structure and then
encodes new dependency trees using a relational graph attention network (GAT).

4) DGEDT [22]: DGEDT introduces a dependency graph-enhanced dual-transformer
network that considers flat and graph-based representations jointly.

5) RGAT-BERT [23]: RGAT-BERT reshapes and prunes the original dependency tree to
generate a unified aspect-oriented dependency tree. It then applies a relational graph
attention network for tree encoding.

6) T-GCN [24]: T-GCN designs a type-aware GCN, explicitly utilizing dependency type
information for aspect-based sentiment analysis (ABSA).
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7) BERT4GCN [25]: BERT4GCN enhances the dependency graph using attention
weights from intermediate layers in BERT. It then applies GCNs over the augmented
dependency graph.

8) DR-BERT [26]: DR-BERT learns dynamic aspect-oriented semantics by employing
a dynamic reweighting adapter. This adapter selects the most important words at each
step and updates the semantics accordingly.

These models represent the current state-of-the-art approaches in sentiment analysis
and aspect-based sentiment analysis. By comparingKD-Dual-GCNwith these baselines,
we aim to assess its performance and demonstrate its advancements in tackling sentiment
analysis tasks.

4.3 Comparison Results

We adopted accuracy and macroscopic average F1 score as the primary evaluation met-
rics to evaluate the ABSAmodel. The experimental results are presented in Table 2, and
our KD-Dual-GCNmodel consistently outperforms all other attention and syntax-based
methods on the Restaurant, Laptop, and GDELT datasets. These outcomes demonstrate
that our KD-Dual-GCN effectively integrates syntactic knowledge and semantic infor-
mation, improving performance on formal, informal, and complex comments. Compared
with attention-based methods, our KD-Dual-GCN model utilizes syntactic knowledge
to establish dependency relationships between words, thereby avoiding any noise or lim-
itations resulting from attention mechanisms. This feature enables our model to capture
the sentiment of the input text more accurately.

Table 2. Experimental results comparison on three publicly available datasets.

Models GDELT Restaurant Laptop

Accuracy F1 Accuracy F1 Accuracy F1

kumaGCN (Chen et al., 2020) 71.22 69.64 81.43 73.64 76.12 72.42

InterGCN (Liang et al., 2020) 72.23 69.12 82.23 74.01 77.86 74.32

R-GAT (Wang et al., 2020) 80.3 73.05 83.3 76.08 77.42 73.76

DGEDT (Tang et al., 2020) 78.9 70.06 83.9 75.1 76.8 72.3

RGAT-BERT (Wang et al., 2020) 81.6 75.05 86.6 81.35 78.21 74.07

T-GCN (Tian et al., 2021) 79.16 71.85 86.16 79.95 80.88 77.03

BERT4GCN (Xiao et al., 2021) 70.01 69.95 73.01 77.11 77.49 73.01

DR-BERT (Zhang et al., 2022) 81.72 79.3 87.72 82.31 81.45 78.16

KD-Dual-GCN (Ours) 82.59 80.5 88.25 83.02 80.45 79.23
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4.4 Ablation Study

We conducted extensive ablation studies to further delve into the role of modules in the
KD-Dual-GCN model. These studies revealed that removing one or both regularizers
responsible for orthogonal and differential correlations caused a substantial decrease in
model performance, particularly on theRestaurant andLaptopdatasets. Specifically,KD-
Dual-GCN w/o RO&RD indicates that we removed both the orthogonal and differential
regularizers, whileKD-Dual-GCNw/oROorRDdenotes thatwe removed only one. The
experimental results showed that both regularizers play a crucial role in encouraging the
KD-Dual-GCN to capture semantic correlations accurately. Overall, our KD-Dual-GCN
model with all modules achieved the best performance. These findings demonstrate the
effectiveness of the orthogonal and differential regularizers in improving the model’s
ability to capture complex semantic relationships (Table 3).

Table 3. Experimental results of the ablation study.

Models GDELT Restaurant Laptop

Accuracy F1 Accuracy F1 Accuracy F1

KD-Dual-GCN w/o
RO&RD

79.16 71.85 82.93 75.79 76.58 72.03

KD-Dual-GCN w/o
Ro

70.01 69.95 83.56 77.43 76.58 72.78

KD-Dual-GCN w/o
RD

81.72 79.3 83.65 76.34 77.53 73.72

KD-Dual-GCN (Ours) 82.59 80.5 88.25 83.02 80.45 79.23

4.5 International Public Opinion Analysis in the COVID-19 Pandemic

We proposed a calculation method for social media influence. We filtered the attribute
data of seven social media accounts through specific fields, including the New York
Times, BBC News, CNN International, CBC News, MFA Russia, DW News, and RFI.
We evaluate media influence (IF) in three aspects: transmission power (TP), guidance
(GD), and degree of trust (DT).

Transmission power reflects the ability of a social media account to spread infor-
mation. It is evaluated by the number of tweets (TS) the account posts. Protected (PR)
indicates whether the account has privacy protection. In Formula (15), the value of PR
is only 0 and 1. If the account has privacy protection, we consider the media to have no
transmission power. At this time, the value of PR is 0. Otherwise, it is 1. The value of
parameter α is 1*104.

TP = TS

α
· PR (15)
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Public participation in tweeting calculation: Select random tweets, calculate the
public participation of each tweet, and then take the average value as the final result.
Public participation in tweets is the product of the number of replies (RE), followers
(FL), and forward (FW) of this tweet. In formula (16), the parameter t is the number of
tweet samples, and our value is 5. In addition, the value of parameter β is 1*107.

GD = FS

β
·

t∑
i=1

RE · FL · FW (16)

The degree of trust reflects the credibility of a social media account. It is evaluated
by the number of lists (LS) associated with the account. Verified (VD) is used to indicate
whether the media account has passed official verification. If the account does not pass
the verification, we consider this media has no credibility. In Formula (17), the value
of VD is only 0 and 1. If the account fails to pass official verification, we consider the
media to have no guiding force. At this time, the value of VD is 0. Otherwise, it is 1.
The value of parameter γ is 1*104.

DT = LS

γ
· VD (17)

As shown in Fig. 2, the New York Times’s indicators are superior to other media’s.
All BBC indicators are relatively balanced. Through this study, media portraits can be
carried out to provide data support for public opinion analysis. This study provides a
reference for countermeasures to enhance the influence of the media.

Fig. 2. Media influence and its parameters

Based on the previous work, we selected two special periods to conduct sentiment
analysis of seven media on the timeline. They are the declining period of tweets (3.21–
3.24) and the stable period (3.28–4.08). Then, based on the tweets of these seven media
accounts, we screened out tweets related to the Chinese epidemic and analyzed their
sentiment (as shown in Fig. 3).
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Fig. 3. Sentiment analysis in two special periods

During the period of an increasing number of cases in China, most media accounts
were pessimistic about the epidemic. When the epidemic situation in China improved,
media accounts were more optimistic about the epidemic in China. We classify Twitter
users’ replies to seven social media accounts. They were divided into three categories:
economic, political, and military.

Fig. 4. Sentiment analysis in three aspects

As shown in Fig. 4, except for the political tweets of the New York Times, users’
replies to all accounts were negative. Users’ replies on Twitter are not subject to any
restrictions, while those on mainstream media are different. Therefore, the results of
this part of the emotional analysis are more realistic. It can more genuinely reflect the
genuine attitude of Western public opinion toward the epidemic in China.

We selected the top 20 media according to the number of articles published. We took
the media as the research object to analyze the sentiment tendency of different media
outlets toward the epidemic in China.

According to the sentiment analysis results of all the news items in Fig. 5, different
colors represent different sentiments. The length of a certain color determines the pro-
portion of the sentiment. We choose the longest as the final result of sentiment tendency,
which is the last column of Table 4.
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Fig. 5. Sentiment tendency of different media

Table 4. Media portrait data results

Media Sentimental indicator Media influence Sentimental tendency

msn 0.2863 0.3629 negative

bignewsnetwork 0.0917 0.1015 positive

menafn 0.0275 0.0884 negative

bnnbloomberg 0.1779 0.0574 negative

sina 0.0947 0.0367 negative

forbes 0.2391 0.0406 positive

prnewswire 0.4321 0.0325 positive

chinanationalnews 0.2427 0.0255 negative

cnn 0.1679 0.0326 negative

indiatimes 0.0319 0.0239 positive

iol.co.za 0.0309 0.0219 positive

thehill 0.3481 0.0246 negative

shanghaisun 0.1064 0.0223 negative

thestar 0.0888 0.0251 negative

beijingbulletin 0.0446 0.0208 negative

We calculate the absolute value of the positive and negative scores of the article as an
indicator of the article’s sentiment indicator. The calculation method of media influence
here is different from that of Twitter. The influence of mainstream media is calculated
by media scope and media activity. Media scope refers to the number of topics covered
by the article. Media activity refers to the number of articles published by the media. We
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took sentimental indicators, media influence, and sentimental tendency as the parameters
of media portraits.

Table 4 shows media portraits for 15 media. We focused on the top five media
regarding the number of publications. After that, we used a radar map to make a more
critical comparative analysis of their data.

Figure 6 shows the difference in five mainstream media attribute values on five
evaluation indicators. The farther the point representing each value is from the center of
the radar chart, the greater the value. Regarding the attribute of sentiment analysis, the
farther the distance is, the more positive the sentiment is. In general, MSNs have a more
substantial media influence than others. However, its article is highly subjective. Among
the five media, only large news networks have positive sentiments toward China, while
the other four are negative.

Fig. 6. Data comparison of the top five media

5 Conclusion

In this paper, we propose a novel architecture called KD-Dual-GCN, which effectively
tackles the limitations of attention-based and dependency-based methods in ABSA
tasks. Our proposed KD-Dual-GCN model integrates syntactic knowledge and seman-
tic information by incorporating SynGCN and SemGCN modules. Additionally, to
address concerns regardingmodel size and latency and compress network parameters,we
employ knowledge distillation techniques. Through extensive experiments conducted on
benchmark datasets, we demonstrate that our KD-Dual-GCN model surpasses baseline
approaches and achieves superior performance.

Research and analysis have revealed that China garners significant attention from
international mainstream media. However, emotional analysis indicates that biases
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toward China persist in Western countries, leading to a negative attitude in most for-
eign mainstream media outlets. In light of these findings, we must adopt suitable com-
munication strategies, reporting angles, and timing, all guided by the principles gov-
erning the dissemination of international public opinion. By promptly responding to
distorted reports fromWestern media and actively working to eliminate misunderstand-
ings, we can mitigate the impact of biased narratives. Engaging in effective communi-
cation that addresses misconceptions and presents a balanced and accurate portrayal of
China’s perspectives and actions is imperative. Doing so can foster a more nuanced and
comprehensive understanding among international audiences.

Acknowledgment. This work is supported by a grant from the Social and Science Foundation of
Liaoning Province (No. L20BTQ008).
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Abstract. Intelligent diagnosis is an effective method to assist doctors in dis-
ease diagnosis. Integrating domain knowledge graphs into the intelligent diagno-
sis process can enhance diagnostic effect. The enhancement effects of different
knowledge in the knowledge graph are different. The knowledge introduced based
on electronic medical record text can explain medical terms, extract hidden rela-
tions, and enrich text representation. However, this method is prone to generating
noise and affecting the diagnostic results. Disease is our diagnostic goal, intro-
ducing external knowledge centered around diseases can not only obtain richer
and more professional disease-related information, but also make the introduced
knowledge more accurate and reduce the impact of external knowledge noise.
Therefore, this paper proposes a Double-Graphs Knowledge-Enhanced Intelligent
Diagnosis Model (DGKE). Firstly, we extract the knowledge related to electronic
medical record text from the knowledge graph and construct a text subgraph. At
the same time, we obtain the knowledge associated with the disease to be diag-
nosed and construct a disease subgraph. Then, the two graph representations are
fused using a light-attention to obtain an external knowledge representation for the
disease to be diagnosed. Finally, the disease-oriented knowledge representation is
fused with the hierarchical information-enhanced text representation to obtain the
knowledge-enhanced text representation, which is mapped to the disease list space
to be diagnosed for prediction. Experiments are conducted on the COEMRs (Chi-
nese Obstetric Electronic Medical Records) and the C-EMRs (Chinese Electronic
Medical Records). Compared with models without disease knowledge enhance-
ment, the F1_micro increase by 0.65% and 1.44% respectively and the F1_macro
increase by 4.06%, 2.23% respectively.

Keywords: Electronic Medical Records · Knowledge Graph · Knowledge
Enhancement

1 Introduction

Intelligent diagnosis refers to using of artificial intelligence technology to analyze the
patterns of patient’s symptoms, learnmedical knowledge, simulate the reasoning process
of doctors, and provide preliminary diagnostic results [1]. Combining artificial intelli-
gence technology with medical diagnosis and treatment to create an auxiliary diagnosis
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system is one of the effective ways to alleviate the current shortage, unreasonable allo-
cation of medical resources and the difficulty of people seeing a doctor [2]. Since the
release of the “Basic Specifications for Electronic Medical Records (Trial)” [3], the
medical informatization has developed rapidly, a large amount of electronic medical
record data has been made public and available, and data-driven research methods have
gradually become the mainstream of disease diagnosis [4].

The early development process of intelligent diagnosis research can be divided into
expert systems, intelligent diagnosis based on statisticalmachine learning, and intelligent
diagnosis based on deep learning. However, these methods are limited by the training
corpus andmodel capabilities, limited knowledgememory, and are extremely dependent
on the quantity and quality of electronic medical records [5]. With the rise of knowledge
graphs, researchers have begun to apply them to the organization and expression of
medical information. Knowledge graphs incorporate medical knowledge mapping into
knowledge service systems. Compared with traditional knowledge representation, KG
has wider coverage, can represent different semantic information, and quickly replicates
the domain knowledge and clinical experience of medical experts. Intelligent diagnosis
based on medical knowledge graphs has also become an important research direction
[6].

In the past few years, many tasks have used knowledge graph fusion methods to
enhance the representation capabilities of the model. According to the stage of knowl-
edge enhancement in the model, it can be divided into: (1) Knowledge learning in the
pre-training stage. The given text and external knowledge are input into the model as
pre-training corpus for retraining. This method broadens the knowledge coverage of the
model, which well extends the language model training tasks and simultaneously learns
language representation and knowledge representation with context, such as SMed-
BERT [7], ERNIE [8], DialoKG [9], etc. However, these methods require retraining,
require a large amount of data, and have higher requirements for experimental condi-
tions. (2) Knowledge combination in the task-related stage. The knowledge introduced
in this stage is usually closely related to the specific text and task. The knowledge is
more accurate, and the original pre-training model parameters are directly called with-
out re-doing. It can be roughly divided into: a) Adding knowledge to the input data
for enhancement, such as K-BERT [10] and KEGCN [11]. b) Add new fusing module.
This method decouples the knowledge enhancement process from the data flow of the
original PLM, and interact with modules outside the model to obtain knowledge, such as
KEDA [12] and GSKN [13]. These methods introduce a wealth of external knowledge
to the model, provide expert interpretations of complex or critical terms, dig deeper
into hidden relations in the data, but also introduce noise that can interfere with the
final diagnosis. However, in the task of disease diagnosis as the core, constructing dis-
ease subgraphs centered around diseases can provide rich disease-related information as
diagnostic basis, and can make the introduced knowledge more accurate and reduce the
impact of external knowledge noise. Therefore, this paper proposes the Double-Graphs
Knowledge-Enhanced Intelligent Diagnosis Model (DGKE). The main contributions of
this article are as follows:

1) We extract electronic medical record text and knowledge related to the disease to
be diagnosed from the knowledge graph, and construct text subgraphs and disease
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subgraphs respectively, then use a light-attention to fuse the vector representations
of the two subgraphs to obtain external knowledge representations for the disease to
be diagnosed.

2) Wepropose a fusionmechanismbasedon interactive attention to fuse disease-oriented
knowledge representationwith hierarchical information enhanced text representation,
and obtain the knowledge enhanced text representation, then map it to the list space
of the diseases to be diagnosed for diseases prediction.

2 Methods

2.1 Overview

The overall structure of DGKE is shown in Fig. 1, which can be divided into text repre-
sentation (TR) module, knowledge representation (KR) module, and Fusion Module. A
hierarchical information enhanced text representation was obtained in the TR module.

Fig. 1. The architecture of the DGKE model.
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A knowledge representation for the disease to be diagnosed was obtained in the KR
module. In the fusion module, the knowledge-enhanced text representation is obtained
and mapped to the disease list space for diseases prediction.

2.2 Text Representation Module

Due to the fact that ours electronic medical records mainly contain Chinese textual
information,weusedMacBERT,which performswell on variousChinese datasets, as our
pretraining model. We extract disease course records (text information), chief complaint
and numerical information from electronic medical records for intelligent diagnosis
based on the diversity of electronic medical record data types and the degree of impact
on diagnostic results. The chief complaint is a description of the patient’smain symptoms
or signs (about 20words). For the numerical information appearing in the text, such as the
number “6” in “menopause formore than 6months”, the non-enumerability of numerical
features during training makes it difficult to capture numerical features, resulting in
numerical sparsity. Drawing on the success of hierarchical information enhancement
in electronic medical records [14], the DGKE model adds a separate layer of KeyInfo
Embedding containing the main complaint information to the embedding of MacBERT,
and then adds it to the rest of theEmbedding as input. For the numerical information in the
text,weuse themin-maxand zero-meanmethods to normalize and standardize it to obtain
numerical features. Finally,we fuse the text-encoding information andnumerical features
through the multi-head attention mechanism to obtain the final hierarchical information-
enhanced text representation [C ′]. The specific formula is shown in Eqs. (1)–(4).

Q = K = V = Concat([C];Nums) (1)

Attention(Q,K,V ) = softmax(QKT /
√
dk)V (2)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

[C ′] = Concat(head0, . . . , headi)W
O (4)

where [C] represents the hidden layer representation marked in theMacBERT enhanced
with chief complaint, which contains information of the entire input sequence. Q, K, and
V represent the parameters of the attention mechanism, respectively.WQ,WK ,WV ,WO

represent trainable matrices, [C ′] represents the text representation enhanced with chief
complaint information and numerical information enhancement, andNums represent the
processed numerical features.

2.3 Double Graphs Knowledge Representation Module

Text Subgraph Module. For a given electronic medical record text sequence Seqi =
(s0, s1, …, sn-1) and knowledge graph KG = (V, E), we construct the corresponding
text subgraph TeSG = (Vsub, Esub), where V and E represent all entities and relations
in the knowledge graph, respectively. In the text subgraph, Vsub represents the entities
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and Esub represents relations between entities in Vsub. The text subgraph construction
process is as follows. First, we use the disease set in CSKB [15], ICD10 [16] and the
symptom, disease, drug entity set in the knowledge graph to construct the vocabulary
Voc. Then, we use the bidirectional maximum matching method based on Voc to obtain
the n candidate entities Entitiesi = (e0, e1,…,en−1) with the highest scores from Seqi.
Next, due to the diversity of electronicmedical record writing, a multi-strategy similarity
weighting algorithm [17] is used to calculate the similarity between entities ei and the
entities in V, and all entities with scores above the threshold are added to the entity
set Entitie s′i. Then, according to each entity in Entitie s′i, m triples matched from KG
Triplesi = {(h0, r0, t0), (h1, r1,t1), . . . , (hm-1,rm-1,tm-1)}which are used to construct text
subgraphs. Finally, these triples are constructed as subgraphs TeSGi by connecting the
same entities and maintaining relations as edges.

We construct an adjacency matrix A based on TeSG. Since the representation of the
node itself can affect the representation of the next layer of nodes, the identity matrix I
is added based on A. In order to avoid the distortion problem of the graph neural network
when aggregating neighbor information, the adjacency matrix A is normalized with the
help of the degree matrix D. Finally, we use GCN for calculation, and the mean_node
algorithm is used in the last layer of the graph neural network to read out the entire graph.
The output is a vector K, which is the knowledge representation result corresponding to
TeSG. The formulas are shown in (5–9).

Aij = Aji =
{
1, (vi, vj) ∈ Esub

0, (vi, vj) /∈ Esub
,∀vi, vj ∈ Vsub (5)

A = A + I (6)

Dij =
{∑

k
Aik , i = j

0, i �= j
(7)

Â = D− 1
2AD− 1

2 (8)

H (l+1) = f (H (l), Â) = σ(ÂH (l)W (l)
0 + b(l)

0 ) (9)

where vi ∈ Vsub represents the i-th entity in the graph, (vi, vj) ∈ Esub represents the
relation between entity i and entity j, H (l) represents the representation of the text
subgraph at the l-th layer, f represents the specific inference formula, H (0) obtained by
the TransR model, and W (l)

0 , b(l)
0 are the trainable parameters of the l-th layer of GCN,

σ represents the activation function, and in this paper, the ReLU activation function is
chosen.

Disease Subgraph Module. Linking knowledge graphs with the diseases to be diag-
nosed as the center can construct disease subgraphs which can provide rich disease-
related information for the diagnosis process, and can make the introduced knowledge
more accurate and reduce the impact of external knowledge noise. The example of the
disease subgraph we introduced is shown in Fig. 2. The disease subgraph is constituted
by the diseases and its characteristic entities.
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Fig. 2. The example of the disease subgraph

We identify the corresponding disease subgraph DeSG from the knowledge graph
based on the set of diseases to be diagnosed in the EMRs. The construction process
is as follows: First, we identify all the list of diseases to be diagnosed Diseases =
(dis0 … disi … disn−1). However, the description of the same disease may differ. For
example, “chronic obstructive pulmonary disease” is also called “COPD”. We need to
obtain relevant symptoms through these two diseases as nodes for COPD. Therefore,
the disease dictionary Dict = {dis0:sy0,… Disi:syi,…, disn−1:syn−1} is constructed, and
syi represents the synonym list of disi. Then, according to disi and syi, several triples are
matched in the knowledge graph and extract several triples D_Triplesi used to construct
the subgraph corresponding to disi. Next, for disi, the D_Triplesi obtained through the
above steps is based on disi and syi. Therefore, using each entity inD_Triplesi as a node
and the relations as edges can obtain the disease subgraph DeSGi corresponding to disi.
Finally combine DeSGi into a graph structure to obtain the disease subgraph DeSG.

The disease subgraph DeSG has n connected subgraphs. In order to reduce the
number of parameters of the model and training time, we set shared parameters for the
n connected subgraphs. With the batch operation provided by Deep Graph Library [18],
the n connected subgraphs can be established into a graph batch, and then the graph
convolutional neural network is used to dynamically update the n connected subgraphs.
The formula is as follows: (10–12) shown. The final disease subgraph can be obtained
by splitting the entire batch of images to obtain the updated disease subgraph DeSG′ =
(DeSG′

0,DeSG
′
1, . . . ,DeSG

′
n−1). Read out the disease subgraphs one by one to obtain

the final vector representation of the disease subgraph De = (e0, e1, . . . , en−1), where
ei represents the vector representation corresponding to the i-th subgraph DeSGi.

Disease(l+1)
i = σ(b(l)

1 +
∑

j∈N (i)

h(l)
j W (l)

1

cji
+ Disease(l)

i W (l)
2

cii
) (10)

h(l+1)
j = σ(b(l)

2 + Disease(l)
i W (l)

3

cij
+ W (l)

4 h(l)
j

cjj
) (11)

cij = cji = √|N (j)|√|N (i)| (12)

whereN(i) represents the set of neighbor nodes of node i,Disease(l)
i is the representation

of the i-th disease in the l-th layer of GCN, and h(l)
j is the representation of the j-th non-

disease node in the l-th layer of GCN.Disease(0)
i and h0j are the initial vectors of TransR,
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andW (l)
1 ,W (l)

2 ,W (l)
3 ,W (l)

4 , b(l)
1 , b(l)

2 are the trainable parameters in the l-th layer ofGCN.
σ is the activation function, Relu is selected, and the product of the square root of the
node degree, which is represented by cij.

Double-GraphsFusionModule. DGKEfuses disease subgraph representation and text
subgraph representation based on a light-attention [19]. Compared with the multi-head
self-attention mechanism in Transformer, the light-attention has fewer parameters and
better fusion effects. Advantages of better results. The light-attention divides information
into original global features and global features to be updated. The original features are
defined as shown in Eq. (13).

K̃ = mean(K + De) (13)

whereK represents the text subgraph representation,De represents the disease subgraph
representation, and K̃ represents the original global features. The global features to be
updated K are obtained through a weight matrixWe, K, De, and the calculation process
is as shown in Eqs. (14)–(16).

Com = Concat(K̃ � K; K̃ � De) (14)

We = softmax(W5Com + b5) (15)

K = We ∗ Concat(K;De) (16)

where W5 represents the trainable parameter matrix and b5 represents the offset. We is
a weight that measures the importance of K and De for subsequent updates, which is
obtained by normalizing the dot product, K, De.

The final output of the knowledge representation module K ′
i is obtained by weighted

sum of the global features to be updated K and the original global features K̃ . Where
w1 ∈ 0, 1],w2 ∈ [0, 1][0, 1] is a hyperparameter that measures the relative importance
between K and K̃ in each update.

K ′
i = w1 ∗ K + w2 ∗ K̃ (17)

Similar to Transformer’s multi-head self-attention mechanism, the light-attention
also supports multi-head operations. The multi-head light-attention calculation process
is shown in Eqs. (18)–(19). The K ′

i of each disease can be used as head head ′
i for

multi-head attention calculation, and we finally obtain the knowledge representation for
diseases K ′.

head ′
i = w∗

1K̄ + w∗
2K̃ (18)

K ′ = Concat(head ′
0, . . . , head

′
n−1)W6 + b6 (19)

where W6 represents the trainable parameter matrix and b6 represents the offset.
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2.4 Fusion Module

Through the above modules, we can obtain text representation [C ′] that integrates chief
complaint information, numerical information, and disease-oriented knowledge repre-
sentation K ′. We propose a fusion mechanism based on interactive attention to fuse [C ′]
and K ′, which can be divided into knowledge self-attention mechanism, knowledge-text
attention mechanism and gated fusion mechanism.

Knowledge Self-attention Mechanism. In order to measure the impact of knowledge
representation on the final diagnosis result, The light-attention is used to perform self-
attention calculation. The process is shown in Eq. (20). Where W7 , W8 represent the
trainable parametermatrixs, and b7 , b8 represent the offsets.αi can be viewed as aweight
matrix obtained from the global features to be updated. The process can be regarded as
a feature selection, in which relatively important knowledge has a larger weight and
unimportant knowledge tends to 0.

αi = softmax(W8tanh(W7K
′ + b7) + b8) (20)

Knowledge-Text Attention Mechanism. In the process of integrating knowledge into
text, although the knowledge representation has integrated information related to the dis-
ease to be diagnosed, knowledge noise may still be generated. DGKE uses a knowledge-
text attention mechanism to measure the correlation between text and knowledge. The
calculation process is shown in Eq. (21). Among them,W9, W10 represents the trainable
parameter matrixs, and b9, b10 represents the offsets.

βi = softmax(W10tanh(W9Concat(K
′; [C ′]) + b9) + b10) (21)

Gated Fusion Mechanism. In order to further alleviate the problem of knowledge
noise, the gated mechanism is used to identify and filter it. The specific calculation pro-
cess is as shown in Eqs. (22)–(24).WhichW11 represents the trainable parameter matrix,
b11 represents the offset, and out represents the output result of the final model.Weight2
can further measure the impact of knowledge representation and text representation on
the final output result.

weight2 = sigmoid(W11Concat(αi;βi) + b11) (22)

weight′2 = (1 − weight2) � αi + weight2 � βi (23)

G = weight′2 � [C ′] (24)

The final prediction result can be obtained bymapping the final hidden representation
to the disease space. The process is shown in Eq. (25).

output = σ(WGG) (25)

where WG represents the trainable parameter matrix and σ represents the sigmoid
activation function.
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3 Experiments

3.1 Datasets

The experiments use the multi-label Chinese Obstetric Electronic Medical Records
(COEMRs) and the single-label Chinese Electronic Medical Records(C-EMRs) [20].
The basic information of the two experimental datasets is shown in Table 1. In this
paper, the Chinese Obstetric Knowledge Graph (COKG) [21] is chosen as the knowl-
edge source for COEMRs, and the Chinese Medical Knowledge Graph (CMeKG) [22]
is chosen as the knowledge source for C-EMRs. The basic information of the two knowl-
edge graphs is shown in Table 2. In order to better verify the performance of the model,
the entire dataset is divided into training and testing sets in a 9:1 ratio, ensuring that the
label sets of the training and testing sets are consistent.

Table 1. The statistical results of COEMRs and C-EMRs.

Dataset Total Training Set Test Set Total Diseases Multilabel

COEMRs 24,339 21,905 2,434 73 yes

C-EMRs 18,331 16,498 1,833 10 no

Table 2. The statistical results of COKG and CMeKG.

Dataset Total Number of Entities Number of Relations

COKG 10,674 15,249

CMeKG 16,498 1,833

COEMRs is a dataset of real electronic medical records from multiple hospitals
in China. After going through preprocessing such as de-privacy, standardization, and
structuring, there are a total of 24,339 data samples. After dividing into training and
testing sets with a ratio of 9:1, there are 21,905 train samples and 2,434 test samples.
The number of diseases to be diagnosed is 73. The frequency of diseases in COEMRs is
shown in Fig. 3 (only the top 35 diseases are displayed here). Due to the large number
of diseases, it is not feasible to embed the entire disease subgraph in the knowledge
reasoning process, so only 16 diseases with lower occurrence frequencies are selected.

After data cleaning and filtering, the EMRs dataset retains 18,331 data samples.
After dividing into train and test sets with a ratio of 9:1, there are 16,498 train samples
and 1,833 test samples. The diagnostic results are in a single-label format, and there are
10 diseases to be diagnosed. The disease distribution is shown in Fig. 4.
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Fig. 3. Distribution of diseases in the COEMRs

Fig. 4. Distribution of diseases in C-EMRs

3.2 Experimental Results and Analysis

Experimental Results on COEMRs. The experimental results of using COKG as
external medical knowledge on COEMRs are shown in Table 3.

The experimental results show that compared to traditional CNN, RNN, and their
derivative deep learning models, the pre-trained model has learned more knowledge
during the training process and outperforms traditional deep learning models in various
performance indicators. Similar to the doctor’s diagnostic process, KAIE [23] fusing
medical knowledge in triples and GKSN fusing graph structure knowledge both obtain
further performance improvement based on BERT. DGKE integrates hierarchical infor-
mation enhanced text representation and double-graph knowledge representation, and
the experimental results show the F1_micro increase of 0.65% compared to GSKN. Due
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Table 3. The results on COEMRs.

Model F1_micro (%) P (%) R (%) F1_macro (%) AP (%) HL

TextRNN 42.87 73.81 30.04 1.17 40.57 0.02732

TextCNN 59.64 82.81 46.29 11.34 68.63 0.02138

TextRCNN 65.81 78.70 56.55 13.76 71.25 0.02005

TextRNN + Att 58.21 78.36 46.31 7.78 65.08 0.02268

DPCNN 68.76 80.10 60.23 19.50 73.13 0.01867

MacBERT 80.50 86.98 73.93 31.82 72.53 0.02230

KAIE 80.83 81.44 80.22 47.59 81.99 0.01298

GSKN 81.16 83.20 78.33 41.86 82.18 0.01241

DGKE 81.81 85.95 78.06 45.92 82.65 0.01184

to the complexity of the labels in COEMRs, it is difficult to make accurate judgments
on all diseases to be diagnosed based on related symptoms in the knowledge graph.
However, GSKN with graph neural network-based knowledge reasoning has a certain
degree of decline in F1_macro compared to KAIE, its performance is still higher than
the baseline MacBERT. In comparison with GSKN, DGKE adds corresponding label
enhancement to the knowledge reasoning part based on GCN, which slightly alleviates
the above situation, so the F1_macro ofDGKE is closer toKAIE.Meanwhile, ourDGKE
shows the best performance in Hamming Loss, which evaluated the error classification
score, Average Precision, which summarized the accuracy under different thresholds
and F1_micro.

To further analyze the experimental results, GSKN and DGKE were further com-
pared. By analyzing the F1 value of each disease diagnosis, it is found that among the 73
diseases to be diagnosed, the F1 value of 34 diseases has been further improved, and the
F1 value of 25 diseases remains unchanged, we conducted statistics on 16 diseases that
were enhanced with disease subgraphs, and the specific results are shown in Table 4.
Among the 16 diseases added with disease subgraph enhancement, the F1 value of 11
diseases has been improved, and the F1 value of 3 diseases remains unchanged.

From themodel perspective, on the onehand, the knowledge reasoningbasedonGCN
confers more accurate and comprehensive external medical knowledge to MacBERT.
On the other hand, adding disease subgraph enhancement to the knowledge reasoning
process can help the model learn related knowledge of the diseases to be diagnosed,
thereby increasing the accuracy of the model.

Experimental Results on C-EMRs. In order to further verify the effectiveness of
DGKE, a comparative experiment was conducted on C-EMRs, as shown in Table 5.
Since the diseases covered in C-EMRs are relatively broad, the more general CMeKG
was selected as the external knowledge graph for the experiment.

Due to the single-label dataset nature of C-EMRs, and the much smaller number
and imbalance of labels compared to COEMRs, traditional deep learning models also
show strong performance. The experimental results of the DGKEmodel on C-EMRs are
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Table 4. Impact of disease subgraph enhancement on various diseases in COEMRs.

Disease DGKE (%) GSKN (%) Changing (%)

Arrhythmia 80.00 0.00 +80.00

Anemia in pregnancy 45.45 27.27 +18.18

Preeclampsia 30.77 16.22 +13.55

Group B streptococcal infection 23.00 18.18 +5.82

Preterm prelabor rupture of membranes 88.60 85.00 +2.60

Placenta previa 82.81 80.75 +2.06

Gestational diabetes mellitus 86.04 83.79 +1.25

Oligohydramnios 81.14 80 +1.14

Twin pregnancy 92.85 92.20 +0.65

Uterine fibroids in pregnancy 63.11 63.00 +0.11

Polyhydramnios 72.65 72.60 +0.05

Hyperemesis gravidarum 92.33 92.33 +0.00

Macrosomia 0.00 0.00 +0.00

Gastrointestinal dysfunction 0.00 0.00 +0.00

Twin-to-twin transfusion 72.73 72.00 −0.27

syndrome 96.77 97.10 −0.33

Premature rupture of membranes 80.00 0.00 +80.00

Table 5. The results on C-EMRs.

Model F1_micro (%) P (%) R (%) F1_macro (%)

TextRNN 63.63 79.97 53.23 30.38

TextCNN 75.53 87.50 66.45 55.24

TextRCNN 76.32 87.01 67.98 57.70

TextRNN + Att 73.70 85.56 66.28 52.76

DPCNN 77.79 82.90 72.50 61.26

MacBERT 89.37 89.85 87.36 88.33

KAIE 89.70 83.50 92.56 87.49

GSKN 89.95 87.85 85.92 86.77

DGKE 91.39 90.86 87.40 89.00

better than those of the comparison models. Since the public dataset C-EMRs has only
10 label categories, it is easier to obtain disease features, and the fused text subgraphs
and disease subgraphs are more accurate, resulting in more improvement in F1_micro.
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At the same time, since the single-label dataset does not have couplings, the diagnosis
of a certain disease will not affect the diagnosis of other diseases, so the DGKE model
also achieved the highest results in F1_macro.

To further verify the effectiveness of the DGKEmodel, we visualize the F1 values of
theDGKE,GSKN, andMacBERTmodels onC-EMRsdataset for each disease, as shown
in Fig. 5. It can be seen from the figure that DGKE achieves the highest F1 values in six
diseases, including “Hypertension” and “Diabetes”. For the three diseases of “Gastritis”,
“Gastric polyp”, and “Gastric ulcer”, since the corresponding symptoms have a high
similarity, it is unable to effectively distinguish them based on symptoms during the
knowledge enhancement process, so the F1 values of the MacBERT model are slightly
higher than those of theGSKNmodel with knowledge added. For “urinary tract infection
(UTI)”, since the knowledge related to it in the knowledge graph is quite different from
the content included in the electronic medical records, the F1 values of both GSKN and
DGKE are lower than MacBERT. Among these four diseases, the DGKE model with
double graph knowledge enhancement has a much better performance improvement
compared to the GSKN model. The experimental results on C-EMRs dataset further
prove the effectiveness of the DGKE model.

Fig. 5. F1 values of DGKE model for each disease on C-EMRs

Ablation Experiments. To evaluate the effectiveness of knowledge enhancement and
the light-attention in graph neural networks, we conduct ablation experiments as shown
in Table 6. In these experiments, NoGCN represents the knowledge enhancement mod-
ule for removing text subgraphs. MSHA represents using the multi-head self-attention
mechanism in Transformer to replace the light-attention. NoAtt represents the removal
of the light-attention. Since DGKE that removes the entire disease subgraph enhance-
ment module is similar to GSKN, which can be used to represent DGKE that removes
the disease subgraph enhancement content.

From the experimental results, it can be seen that when the text subgraph module is
removed, the evaluation indicators of the DGKE on COEMRs and C-EMRs datasets all
have a significant decline, which indirectly proves the necessity of introducing double
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Table 6. The ablation experiments results of DGKE.

Dataset Model F1_micro (%) P (%) R (%) F1_macro (%) AP (%) HL

COEMRs DGKE 81.81 85.95 78.06 45.92 82.65 0.01184

NoGCN 81.38 85.22 77.88 43.76 82.24 0.01216

MSHA 81.40 85.64 77.55 43.92 82.96 0.01209

NoAtt 81.29 87.44 75.95 38.95 81.31 0.01193

C-EMRs DGKE 91.39 90.86 87.40 89.00 − −
NoGCN 90.93 90.58 87.10 88.60 − −
MSHA 90.96 89.40 87.68 88.37 − −
NoAtt 90.54 88.00 87.93 87.85 − −

graph knowledge enhancement in intelligent diagnosis tasks. When the light-attention
is replaced with the multi-head self-attention mechanism in Transformer, the evaluation
indicators of DGKE on COEMRs and C-EMRs all have a certain degree of decline.
During the experiment, the light-attention has a total of 4,202,512 trainable parameters
and requires 16.81MB of memory, while the multi-head self-attention mechanism has a
total of 16,789,504 trainable parameters and requires 67.58MB of memory, demonstrat-
ing the effectiveness of the light-attention. When the attention mechanism is completely
removed, DGKE model can not distinguish well the knowledge in disease subgraphs
and text subgraphs. It intuitively shows that the performance of DGKE has a significant
decline, but it is still slightly higher than the GSKN model without introducing disease
knowledge enhancement. Due to the high number of diseases to be diagnosed in multi-
label COEMRs, the DGKE without attention mechanism has a 6.97% decline in the
F1_macro, lower than the GSKNmodel without introducing disease subgraph enhance-
ment. In the single-label C-EMRs, due to the small number of labels and independence,
Integrating the disease subgraphs without relying on attention can also effectively pay
attention to the knowledge related to the disease, so the F1_macro has declined by
1.15%, but it is still higher than the GSKN model without introducing disease subgraph
enhancement.

4 Conclusion

We propose a DGKE model for intelligent diagnosis. Firstly, we obtain text subgraphs
and disease subgraphs from the knowledge graph. Then we fuse the GCN embedding
representations of the two subgraphs through a light-attention mechanism to obtain a
knowledge representation for the diseases to be diagnosed. Afterwards, we propose a
fusion mechanism based on interactive attention that integrates knowledge representa-
tion and hierarchical information enhancement for text representation, and obtained a
knowledge enhanced text representation. Finally, we map this representation to the dis-
ease space for prediction. We conducted experiments on the COEMRs and the C-EMRs
to verify the effectiveness of the DGKE model. In the future, we will study the impact
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of different types of knowledge on model performance, introduce knowledge more pre-
cisely, and pay less cost while improving model performance. We will also combine
cutting-edge path inference methods to improve the interpretability of the model.
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Abstract. Medication recommendation is a pivotal task for AI in the realm of
healthcare. Previous works have primarily focused on recommending medication
for intricate medical conditions solely based on patients’ electronic health records
(EHR).Although extensive progress has been made, current research still faces
the following limitations: ignoring data integrity in EHR, disregarding the impact
of single-visit data on recommendation results; not adequate in learning about
multilevel dependencies; and ignoring the effect of asynchronous relationships in
irregular time intervals on recommendation results. To solve the above limitations,
the Multilevel Asynchronous Time Network for Medication Recommendation
(MLATNet) model is proposed. MLATNet first enhances the embedding of the
EHR data using graph attention networks. Secondly, we use a transformer global
fusion module to learn patients’ long-distance global information, and a multik-
ernel CNN module to learn local time dependencies information, thus obtaining
global-localmultilevel dependency information. Then,we design an asynchronous
timemodule to fuse irregular time series.Moreover, through aDDI loss,MLATNet
effectively controlling DDI rate to achieve medication recommendation. MLAT-
Net outperforms all baseline methods, achieving a Jaccard score of 52.96%, an
F1-score of 68.93%, and a PR-AUC of 77.56% on the MIMIC-III test set.

Keywords: Multilevel dependencies · Asynchronous time · Multikernel CNN ·
Medication recommendation

1 Introduction

Medication recommendation [11–13] has attracted a lot of attention in recent years.
Deep learning techniques have been successfully applied to medication recommenda-
tion. Some methods learn representations of medical entities (e.g., patients, diagnoses,
medications) from patient EHR data and then use them to generate new representations
to complete the healthcare recommendation task. To accurately learn the representa-
tions, To learn the characterization accurately, some methods are based on transformer
for drug recommendation, such as, G-BERT [20], TAHDNet [15], COGNet [16]. These
methods are generally used to capture information about a patient’s global characteris-
tics to enable more accurate drug prediction. In addition, some methods use the time

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Xu et al. (Eds.): CHIP 2023, CCIS 1993, pp. 333–351, 2024.
https://doi.org/10.1007/978-981-99-9864-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9864-7_22&domain=pdf
https://doi.org/10.1007/978-981-99-9864-7_22


334 J. Shi et al.

dependency between clinical events, e.g. [1, 2, 4].These methods make drug recommen-
dations by learning the similarity of the patient’s historical visit information. However,
these deep learning basedmedication recommendationmethods have the following three
limitations:

• Discarding single-visit data in the training, disregarding the impact of single-visit
data on recommendation results.

• Most methods are built on the assumption that visits occurring at the same time
intervals exert an identical impact on the course of a disease, a premise that may
occasionally contradict the actual progression of the disease [2, 5]. The asynchronous
dependency of irregular time series in dynamic procedure history should be important,
but most people don’t consider it.

• Multilevel dependencies between global and local are not fully considered. Learning
global information means learning the distant information of each visit to get the
overall representation of the visit. Learning local information means learning the
local representation between neighboring visit records [15]. Therefore, the multilevel
dependencies are important for recommendation results, butmost people ignore them.
The multilevel dependency structure refers to the visit information in Fig. 1.

Fig. 1. This is a patient’s visit information.

To reduce the above limitations, the MLATNet model is proposed. MLATNet is an
end-to-end deep learningmodel formedication recommendation. Themain contributions
of MLATNet are summarized as follows:

• We propose MLATNet, a novel drug recommendation model that predicts accurate
and safe drug recommendation by learning multilevel dependency and asynchronous
time dependency.

• Wedesign amultilevel dependencymodule. The goal of thismodule is to capture both
global and local information. Themodule consists of a global transformermodule and
a multikernel CNN module. The global transformer module captures local informa-
tion through a multihead self-attention mechanism and allows the model to establish
distant relationships between different locations. The multikernel CNN module cap-
tures temporal correlations in irregular time intervals through different convolutional
kernels for better extraction of local features.

• We propose an asynchronous time module for calculating the correlation between
irregular time intervals and other data items so that the model can focus on
asynchronous irregular time intervals.
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2 Related Work

Existing methods for medication recommendation can be categorized into three
main approaches: longitudinal-based methods, instance-based methods, and rule-based
methods.

1. Longitudinal-based methods. Longitudinal approaches, as proposed by Choi et al.,
aim to leverage the time-dependent nature of clinical history. Among these
approaches, RETAIN [1] employs a two-level Recurrent Neural Network (RNN)
with inverse temporal attention to capture longitudinal information. GAMENet [13],
on the other hand, utilizes a memory neural network to store historical medication
data as a reference for predicting future procedures.

2. Instance-based methods. Instance-based methods mainly center on the patient’s cur-
rent health status. For instance, LEAP, which extracts feature data from the patient’s
present condition and utilizes a multi-instance multilabel (MIML) framework for its
recommendation. LEAP formulatesmedication recommendation as aMIML task and
utilizes a content attention mechanism.

3. Rule-basedmethods.Rule-basedmodels typically rely on clinical guidelines designed
by human experts, which often necessitate considerable input from clinicians. Despite
the initial success of these approaches, they still have the following limitations: they
ignoring the impact of asynchronous timing information on drug recommendation;
and they inadequately model global- local multilevel dependencies.

In this paper, asynchronous time refers to temporal interactions between time inter-
vals, especially for irregular time intervals.While most neural network approaches focus
on modeling the sequential aspects of EHR data, it’s crucial to recognize that EHR data
possess both sequential and temporal attributes. Furthermore, due to the dynamic and
irregular nature of each visit time, effectively utilizing irregular temporal information
becomes a paramount concern. Existing solutions includeRetainEX [7],which addresses
irregular time intervals in longitudinalmedical records by considering information decay
in addition to traditional attention mechanisms.

The concept of multilevel dependency involves capturing interaction information
fromvarious perspectiveswithin visit records to enhance data representativeness, thereby
improving its utility inmedical tasks. The incorporation of attentionmechanisms [8] into
neural networks has led to the development of several models that utilize attention to
assign different weights to individual patient visits and produceweighted representations
[9–13]. A global attention mechanism (GATT) was introduced by Zhou et al. They
evaluate the importance of each input visit to the overall visit order reconstruction,
with special emphasis on the local contribution of the recommendation task. RETAIN
[1] trains two RNNs in reverse chronological order to effectively compute attention
variables. It simulates physician behavior by attending to electronic medical records in
reverse chronological order, thus assigning higher attention weights to recent clinical
visits. On the other hand, INPREM takes a different approach by employing a transparent
linear model. It encodes patient representations as learning weights using nonlinear
connections to represent dependencies between local visits. It allows the model to derive
the contribution matrix of input variables, serving as evidence for predicted outcomes.
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In summary, existing approaches often ignore global-local dependency learning and
asynchronous time-series information. Therefore, we propose amultilevel asynchronous
time series network (MLATNet). It focuses on asynchronous interactions of irregular
time series based on a new perspective on global and interlocal multilevel dependency
learning for more accurate drug recommendations.

3 Methods

3.1 Problem Formalization

Definition 1 (EHR).
Apatient’sEHRdata describe the patient’smedical history in a longitudinal vector format
of medical codes (e.g., diagnosis Cd , procedure Cp, and medication Cm). Formally, we
denote that theEHRof patient P can be represented as a continuousmultivariate sequence
xP = [x(1)

1 , x(2)
2 , x(3)

3 , ...x(i)
t) ], where i denotes the total number of patients, and t denotes

the number of visits of the t-th patient. To simplify the formula expression, for the same
patient we use two primary medical codes (diagnosis code Cd (ICD-9) and medication
code Cm (ATC)) to represent each visit of the patient, xP = CP

d ∪ CP
m. Where CP

d ∪ CP
m

is the diagnosis code CP
d ∈ Cd and the concatenation of the medication code CP

m ∈ Cm.

Definition 2 (Asynchronous Time Interval Sequence).
For a patient with multiple visits, we calculated the asynchronous time interval (in days)
between two adjacent visits for that patient. The asynchronous irregular time interval

sequence can be expressed as: δ(i) =
[
δ1T (1), δ

2
T (2), δ

3
T (3)...δ

i
T (i)

]
, where i denotes the

total number of patients and T (i) is the number of visits of the ith patient. To simplify
the expression, in the same way as for describing EHR. The asynchronous time interval
is expressed as δn = Wδ(tn − tn−1) + bδ , where δn denotes the embedded asynchronous
time interval between the n−th visit and the previous visit. Since there is no time interval
for the first visit, we set δ1 = 0.

Definition 3 (Medication Recommendation Results).
For the same patient, given the diagnosis code Ct

d at visit time t, the patient’s med-
ical history, based on the patient’s visits prior to time t, is represented as: x1:t−1 =
{x1, x2, x3...xt−1}. In this paper, we recommend multiple medications by generating a
multilabel output yp ∈ {0, 1}|Cm|.

The main notations used in this article are listed in Table 1.

3.2 Overview

In this section, we introduce theMLATNetmodel. Figure 2 is the overview ofMLATNet.
The MLATNet model includes three components: (1)GATEmbedding module, which
filters the EHR data to reduce the data scale and uses a graph attention network to encode
EHR data. (2) Multilevel Dependency module, which consists of Global Transformer
module andMultiKernel CNNmodule. The goal of this module is to capture both global



Multilevel Asynchronous Time Network 337

Table 1. The main notations used in MLATNet

x(i)t The clinical visit of the patient i at visit t

Cd ,Cm,Cp The diagnosis, drug and procedure code

Cd
ij,C

m
ij ,Cp

ij
The diagnosis, drug and procedure similarity

αd
ij, α

m
ij , α

p
ij

The diagnosis, drug and procedure attention coefficient

Xp, tp The EHR data, irregular time interval sequence emdedding

eP, δp The EHR data, irregular time interval sequence linear vectors

zi The multi-head self-attention weights of global information

Og The global perceptual feature representation

t
′
C3, t

′
C5, t

′
C7 The local features representations of different convolution kernels

Om The global-local multilevel dependency feature representation

W(i,c) The irregular time intervals sequence correlation weight matrix

Ot The asynchronous time dependency feature representation

and local information. The global transformer fusion module captures local infor-
mation through a multihead self-attention mechanism. The multikernel CNN module
captures temporal correlations in irregular time intervals through different convolutional
kernels. (3) Asynchronous Time module, which learn the correlation of asynchronous
irregular time intervals. We input irregularly time data and the patient’s EHR representa-
tion code. Then, by calculating the inner product, we obtain a correlation matrix, which
is used as the weight matrix of the attention. Finally, we introduce a controlled loss
function (DDI loss) to determine the drug recommendation results.

3.3 GAT Embedding Module

Inspired by G-BERT [20], for the GAT embedding module we use a similar approach
to G- BERT. For EHR, diagnosis codes are coded using ICD-9, and drug codes are
coded using ATC. We cleaned the data in the diagnosis records and procedure records,
and performed deletion operations for duplicates, missing data, and unneeded data. This
greatly reduces the data size and reduces the training time scale of the model.

GAT augmented embedding first calculates the similarity between neighboring data
in diagnosis records, medication records, and procedure records, which is calculated as
follows:

Cd
ij = a

(
w

−→
Cdi,w

−→
Cdj

)
(1)

Cm
ij = a

(
w

−→
Cpi,w

−→
Cpj

)
(2)

Cp
ij = a

(
w

−→
Cmi,w

−→
Cmj

)
(3)
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Fig. 2. The architecture of MLATNet.

where
−→
Cdi,

−→
Cdj represent the diagnosis vectors,

−→
Cdi,

−→
Cdj ∈ R

h̃, and h̃ is the hidden

size.
−→
Cpi,

−→
Cpj represent the direction vector, and

−→
Cmi,

−→
Cmj represent the drug vector. w

is the hyperparameter. The function a maps the spliced high-dimensional features to a
numerical value.

Using Softmax function for Cd
ij, C

m
ij and C

p
ij to obtain the attention coefficient of EHR

data,

(4)

(5)

(6)

where is the number of vectors. αij is the attention coefficient.
Then, we use the GAT [16] to enhance the embedding of the EHR data to obtain the

embedding Xp of EHR data. And we extracted the irregular time interval sequence data
to obtain the embedding encoding tp of the time series. The embedding process is as
follows:

Xp = GAT(αd
ij, α

p
ij, α

m
ij ) (7)

tp = select(Xp) = Select(GAT(αd
ij, α

p
ij, α

m
ij )) (8)



Multilevel Asynchronous Time Network 339

3.4 Multilevel Dependency Module

EHR data contain multiple sequences, such as diagnosis records, procedure records, and
medication records. Each of them contains multilevel structural information. Due to the
multilevel structure of EHR data, we propose a multilevel dependency module based
on global transformer and multikernel CNN to fully capture the multilevel relationships
between global and local information.

Global Transformer Fusion Module
The transformer architecture has achieved much in medication recommendation, but
existing transformer-based models do not adequately take into consideration the depen-
dencies between multiple levels. Inspired by COGNet [16], we utilize the transformer
architecture to capture the global information of patients and fuse the global information.

First, we convert the patient’s electronic health records (EHR) into embedding
vectors using the following linear function:

eP = WeXp + be (9)

where ep ∈ R
h̃, h̃ is the hidden size, We ∈ R

h̃×N is the weighting matrix, and be ∈ R
h̃

is the bias vector. In this way, the input data for each patient can be represented by
E = [e1, e2, · · · , eP].

The learning of the correlation between the input embedding vectors ep, is calculated
as follows:

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i , i = 1, 2, . . . 8 (10)

where Q,K,V ∈ R
h̃, Q, K, V is the learning of the correlation between the input

embedding vectors ep. To learn Q, simultaneously multiply ep by 8 different random
matrices to obtain Qi. Similarly, Ki,Vi can be obtained.

Then, we use the Transformer architecture with multi-head self-attention to learn the
global information of the patient and compute the weights of each embedding vector.
The computation process is shown in the following:

zi = softmax

(
QiKT

i√
dk

)
Vi = exp(zi)

∑8
i=1

(
exp

(
QiKT

i√
dk

)) , i = 1, 2, . . . 8 (11)

where
√
dk is set to the default value of 64, which gives the model a more stable gradient.

Finally, these vectors are weighted and averaged by the weights to obtain the global
perceptual feature representation Og :

ZC = concact(z1, . . . z8) (12)

Og = ZC ·WO (13)
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where ZC is the sum of each embedding vector weight zi,WO is the weight matrix, and
Z is the product of the dot product of ZC and WO.

Multi-Kernel CNN Module
Currently, most drug recommendation models [17] are based on recurrent neural net-
works (e.g., RNN, LSTM, GRU, etc.) to capture and enhance interactions between time
series, but ignore the local irregular time correlation problem. Instead, we choose to
use multikernel CNN networks to capture local irregular time information of patients.
Irregular time intervals between the current visit and previous visits can be modeled
using multikernel CNN networks.

In this section, we draw on thework of TAHDNet [15] andmake a few adjustments to
its lD-CNNstructure:We change the input to irregular time interval sequences,which can
better capture the dependencies between the patient’s local information and the irregular
time intervals. For irregular time interval sequences, different sizes of convolutionkernels
are applied to perform convolution operations to capture local features at different time
scales. Then,we useResNet to unify the dimensions of the features generated by different
convolutional kernels.

First, the irregular time interval sequence is transformed into an embedding vector
using the following linear function:

δp = Wetp + be (14)

where δp ∈ R
h̃, h̃ is the hide size, We ∈ R

h̃×N is the weight matrix, and be ∈ R
h̃

is the bias vector. In this way, the input data for each patient can be represented by T
= [δ1, δ2, · · · , δP].

Next, irregular time interval data are processed using convolutional operations. The
embedding vectors are taken as input and use different sized convolution kernels to
capture local features at different time scales. The computational procedure is as follows:

t
′
C3 = CNNT3(δ1, δ2, · · · , δP) (15)

t
′
C5 = CNNT5(δ1, δ2, · · · , δP) (16)

t
′
C7 = CNNT7(δ1, δ2, · · · , δP) (17)

where t
′
C ∈ R

h̃×|C∗| is the output of the hidden layer of the multikernel CNN network,
while h̃ is a hyperparameter of the hidden size of the MLATNet.

Since different convolutional kernels produce different feature dimensions, we use
ResNet to downscale the feature dimensions produced by 5*5 convolutional kernels as
well as 7*7 convolutional kernels, so that the feature dimensions are consistent with
those produced by 3*3 convolutional kernels. The calculation process is as follows:

T ′
C = xl +

∑2

i=1
F(xi,Wi) (18)

where x1 represents tC5′, x2 represents tC7′, and xl represents the input to the residual
unit, and F is the learned residual.
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To avoid internal covariate shifts, we introduce layer normalization in the Multi-
Kernel CNN block,

TC = LayerNorm
(
h′
C

) = α � x − μ√
σ 2+ ∈ + β (19)

where μ is the mean of the layer, σ 2 is the variance of the layer, and α and β denote the
parameter vectors for scaling and translation.

Then, through the fully connected layer, we combine the transformer’s global
information with the multikernel CNN’s local information to generate a global-local
multilevel dependent feature representation Om :

Om = OpWo + TCWo (20)

where Op is the feature representation generated by the transformer-based global fusion
module,TC is the local feature representation generated by themultikernel CNNmodule,
and Wo is the weight matrix.

3.5 Asynchronous Time Module

Traditional medication recommendation models [1, 6, 7] deal with time intervals with
the assumption that the effect of past visits on current visits decays as the time interval
increases. However, this assumption is not true. The progression of some diseases is
cyclical, which results in cyclical diagnosis and medication. Therefore, it is important
to learn the asynchronous interaction information between irregular time intervals by
taking into account the correlation between irregular time interval sequences and patient
medication information. We propose an asynchronous timing module to model irregular
time intervals to generate better representations for prediction tasks. The module is
implemented by means of an inner-attention mechanism.

First, we correlate the patient’s electronic health records (EHR) embedding vector
E with a sequence of irregular time intervals T to obtain a correlation matrix.

S(i,i)(E,T) = cov(ei, ti)

(σei ∗ σti)
, (i = 1, 2 . . . p) (21)

M(i,i) =
⎡
⎢⎣
S(1,1) · · · S(1,i)

...
. . .

...

S(i,1) · · · S(i,i)

, (i = 1, 2 . . . p)

⎤
⎥⎦ (22)

where p is the number of visits per patient and M(i,i) is the obtained correlation matrix.
Apply Softmax function to the correlation matrix to obtain the correlation weight

matrixW(i,c):

W(i,c) = exp
(
M(i,c)

)
∑p

i=1 exp
(
M(i,c)

) (23)
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The correlation between the patient’s electronic health records (EHR) embedding
vector E and the sequence of irregular time intervals T is learned and calculated as
follows:

Qi = QW(i,c),Ki = KW(i,c),Vi = VW(i,c), i = 1, 2, . . . p (24)

According to the internal attention mechanism, we compute the attention weights,
generate the feature representation of asynchronous tensors, and normalize them to
obtain the feature representation Ot of the dependencies between asynchronous time:

φi = Attention(Q,K,V ) = QiKT
i√

dk
Vi, i = 1, 2, . . . p (25)

Ot = LayerNorm(φ1, φ2, · · · , φi), i = 1, 2, . . . p (26)

where Q, K, V ∈ R
h̃, Qi, Ki, Vi are the matrices generated by learning the correlation

weight matrix.

3.6 Model Training and Inference

Based on the global-local multilevel dependency feature representation Op obtained in
4.3 and the asynchronous time dependency feature representationOl obtained in 4.4, we
construct an MLP-based prediction layer to predict the recommended medication codes
by stitching Op and Ol :

O
′ = Concat(Om,Ot) (27)

yp = Sigmoid
(
WpO′ + bp

)
(28)

where O
′ ∈ R

5×h̃, Wp ∈ R
|Cm|×5h̃, and bp ∈ R

|Cm|. Wp, bp are hyperparameters.
In this paper, we formulate the medication recommendation task as multilabel binary

classification. Assume that is the total number of medications. We denote the target
medication recommendation by m(t) and the output of the medication recommendation
by o

∧(t). We treat the prediction of each medication as a subproblem and use binary cross
entropy (BCE) as the loss:

(29)

wherem(t)
i and ô(t)

i refer to the i-th term. Tomake the results more stable, we also employ
a multilabel loss:

(30)

Inspired by SafeDrug [18], we introduce a controlled loss function (incorporating
the DDI loss) to control the level of DDI.

(31)
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Ultimately, by incorporating the above losses to determine the outcome of the
medication recommendation,

L = β(αLbce + (1 − α)Lmulti) + (1 − β)Lddi (32)

β =
{

1, DDI ≤ γ

max
{
0, 1 − DDI−γ

Kp

}
, DDI > γ

(33)

whereαusually predefinedhyperparameters,Kp is a correcting factor for the proportional
signal and γ is the highest bound of the output DDI rate.

4 Experiment

4.1 Dataset

We used EHR data from MIMIC-III. MIMIC-III is a large and free dataset built by the
MIT Computational Physiology Laboratory [19]. The dataset consists of health data
information on more than 40,000 patients [17]. The dataset focuses on clinical diagnosis
reports of patients hospitalized in ICUs since 2001. The report includes patient vital
characteristic fluctuations, laboratory test results, treatments, medications, nursing staff
work records, imaging reports, and death information notes.

4.2 Preprocessing

The diagnosis records of this dataset were coded using the ICD-9 coding system [14] and
administered using the ATC system [15] coding medication records. We preprocessed
the dataset to obtain single-visit data and multi-visit data. Among them, there are 30,744
single-visit data and 6,351 multi-visit data. Then, we randomly split the multiple access
data in the ratio of 4

5 : 1
10 : 1

10 .
1
10 of the single-visit data are randomly selected as the

training set, and then 1
100 of the remaining single-visit data are selected as the test set.

The training set, evaluation set, and test set are finally constructed, and the model is
tested according to the cross-validation method. The statistics of the postprocessed data
are shown in Table 2.

Table 2. Statistics of the EHR (rc: medication code, dc: diagnosis code).

Stats Multi-Visit Single-Visit

# of patients
avg # of visits

6,350
2.36

30,745
1.00

avg # of dc
avg # of rc

10.51
8.80

39
52

# of unique dc
# of unique rc

1,958
145

1,997
323
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4.3 HyperParameters

The model was trained on NVIDIA GeForce RTX 3090 GPUs. The configuration
environment is NVIDIA CUDA 11.1.1, PyTorch 1.8.0.

The hyperparameters forMLATNetwere configured tomirror the baseline of TAHD-
Net [15], including a hidden layer dimension of 300, a location perspective network
dimension of 300, 200 hidden layers, and 4 attention heads per layer. To establish initial
parameter stability, we conducted pre-training for 100 epochs. For model evaluation, we
trained MLATNet for an additional 100 epochs, using a batch size of 64. We opted for
the Adam optimizer with a learning rate of 0.0006.

4.4 Baseline Methods

We compare the MLATNet model with the following advanced methods.
Leap [3] proposes the LEAP (learn to prescribing) algorithm, which decom-

poses treatment recommendations as continuous strategies and personalizes drug
recommendations based on the patient’s specific situation.

TAHDNet [15] proposed a dynamic time-aware hierarchical dependency network
that senses global as well as local information.

SafeDrug [18] has introduced a drug recommendation model that is controlled
by Drug-Drug Interaction (DDI) considerations and employs the molecular structure
of the drugs as a foundational element in its construction. The model incorporates a
novel Knowledge Propagation Neural Network in conjunction with localized molecular
structures to enhance its recommendation capabilities.

G-BERT [20] proposed a new model that combines the capabilities of graph neural
network (GNN)andBERT.G-BERT is thefirstmodel to introduce apretrainingparadigm
for language models into the healthcare domain.

SARMR [21] introduced a self-supervised adversarial regularization model. It
achieves this by deriving target distributions related to safe drug combinations directly
from unprocessed patient records. Furthermore, it mitigates Drug-Drug Interactions
(DDI) by molding the distribution of patient representations through a regularization
process.

4.5 Evaluation Metrics

Based on previous work on drug recommendation [19–21], we used Jaccard similarity
(Jaccard), F1 score and precision recall AUC (PR-AUC) as evaluation metrics [15].
What’s more, inspired by Safedrug [18], we used the DDI rate to measure the safety of
recommended drugs with the following formula.

�DDI =
∑N

k
∑Tk

i

∑
i,j

∣∣∣
{(

ci, cj ∈ Ŷ k
i

)}∣∣∣(ci, cj ∈∈d
)

∑N
k

∑Tk
i

∑
i,j 1

(34)

where each drug pair (ci, cj) counts if the drug pairY
∧

belongs to the side recommendation
set εd .N is the number of patients, Tk visits for the test dataset.
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5 Experimental Results

5.1 Overall Performance

In this section, we compare MLATNet’s work with existing work on drug recommenda-
tion, and the results are shown in Table 3. By analyzing the results of the experiments,
we draw some conclusions.

Table 3. The performance of different medication recommendation networks.

Methods �DDI Jaccard F1 PR-AUC

LEAP 0.0731 ± 0.0008 0.3921 ± 0.0006 0.5508 ± 0.0004 0.5855 ± 0.0004

SARMR 0.0627 ± 0.0011 0.5019 ± 0.0033 0.6654 ± 0.0031 0.7687 ± 0.0026

SafeDrug 0.0589 ± 0.0005 0.5193 ± 0.0030 0.6768 ± 0.0027 0.7647 ± 0.0025

G-BERT − 0.4536 ± 0.0008 0.6144 ± 0.0008 0.6904 ± 0.0005

TAHDNet − 0.4824 ± 0.0010 0.6411 ± 0.0017 0.7188 ± 0.0008

MLATNet 0.0595 ± 0.0004 0.5296 ± 0.0005 0.6893 ± 0.0008 0.7756 ± 0.0001

Based on the evaluation metrics, we propose that the MLATNet model outperforms
almost all other models. Among them, MLATNet ensures a low DDI rate while main-
taining a high recommendation accuracy, and these metrics prove the effectiveness of
our model. The MLATNet model has a significant advantage over TAHDNet [15], with
increases of 4.72%, 4.82%, and 5.68% in Jaccard, F1, and PR-AUC, respectively.

Regarding recommendation safety, SafeDrug [18] is designed with controlled DDI
losses to ensure safer drug recommendations that keep DDI at lower levels. Compared to
SafeDrug, MLATNet further increased the Jaccard and F1 values by 1.03% and1.25%,
respectively. This is because the asynchronous time module focuses on irregular time
interval sequences and calculates the correlation between irregular time intervals and
patient information.

Based on themodel architecture, the SARMR[20]model has good results in the accu-
racy of drug recommendation and keeps the DDI at a low level. Compared to SARMR,
MLATNet also further reduced the DDI rate by 0.32%, increased the Jaccard and F1
values by 2.77% and 2.39%, respectively. This is due to the transformer global fusion
module as well as the multikernel CNN local time series module, which learns the mul-
tilevel dependencies between global and local, allowing for better learning of patient
representations.

In summary, the MLATNet model enhances the embedding of EHR data through
GAT. The patient’s EHR representation is then encoded into embedded vectors using
the transformer global fusionmodule, and the vectors areweighted and averaged through
amultihead self-attentionmechanism. Thereby, the long-distance dependencies between
different locations are captured to generate a globally-aware feature representation.Next,
a convolutional operation is employed to process irregularly spaced data through themul-
tikernel CNN module. Different sizes of convolution kernels are used to capture local
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features at different time scales. The irregular interval data and the patient’s EHR repre-
sentation code are then input the asynchronous time module to compute the correlation
between the irregular time interval dependence on medication. Finally, a controlled loss
function (DDI loss) is introduced to determine the drug recommendation outcome.

5.2 Ablation Experiment

In this section, to evaluate the effectiveness and necessity of eachMLATNet component,
we employed three different variants of MLATNet. Table 4 presents the performance
results for these variants alongside the complete MLATNet. The experimental setup and
metrics align with those detailed in Sect. 5.3.

Table 4. The performance of the variants and the full MLATNet.

Methods �DDI Jaccard F1 PR-AUC

No-GAT 0.0628 0.4901 0.6703 0.738

No-GTF 0.0606 0.4879 0.6631 0.7235

No-AT 0.07 0.4564 0.6498 0.706

No-MKC 0.0731 0.4296 0.6356 0.6896

MLATNet 0.0595 0.5296 0.6893 0.7756

• No-GAT (No-GAT Embedding):MLATNet uses a graph neural network to learn to
encode EHR. no-DG does not perform this learning, but simply encodes the EHR.

• No-GTF (No-Global Transformer Fusion): MLATNet weights and averages the
vectors through a multihead self-attention mechanism to generate a globally-aware
feature representation, which in turn captures the long-distance dependence between
different locations. no-GTF does not learn the global information.

• No-MKC(No-Multi-KernelCNN):To further investigate the correlation of irregular
time interval dependence on medication, Multi-Kernel CNN networks with convo-
lutional kernels of different sizes are used to capture local features at different time
scales. The No-Multi-Kernel CNN does not focus on local irregular time interval
features.

• No-AT(No-AsynchronousTime): Ignore the asynchronous timedependencieswhen
recommending medications to patients.

The results in Table 4 show that MLATNet has the best performance. As shown in
Fig. 3, No-MKC has the highest DDI rate, and No-MKC has the lowest Jac-card, F1, and
PR-AUC. No-MKC performs worse than the other variants, demonstrating the impor-
tance of learning local time dependency information. No-AT performs worse than the
other variants, demonstrating the importance of learning asynchronous time dependency
information. The performance of No-GAT and No-GTF is also degraded compared to
the full MLATNet, which verifies that learning global dependency information and GAT
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Fig. 3. The performance of the variants and MLATNet.

enhanced embedding is also crucial for the drug recommendation task. The results sug-
gest that asynchronous time information in the diagnosis and procedure processes should
be modeled separately, rather than being treated directly as a whole.

5.3 Parameter Influence

To study the effect of hyperparameter settings on the model and to explore the effect of
different embedding dimensions on MLATNet, this section sets up different embedding
dimensions for parameter search experiments. Figure 4 depicts the performance of dif-
ferent embedding dimensions on �DDI, Jaccard, F1 and PR-AUC. From the results in
Fig. 4, it can be seen that the performance of the model reaches its maximum when the
embedding dimension is 300. (Given that the DDI represents the side effects between
drugs, the lower the�DDI the better.) Therefore, the embedding dimension is set to 300
in this paper [19].
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Fig. 4. The performance of different embedding dimensions.

In addition, we set up experiments with different learning rates to explore the effect
of different learning rates on the model. Each learning rate was repeated five times and
the average of the five tests was calculated. Figure 5 depicts the performance of different
learning rates on �DDI, Jaccard, F1 and PR-AUC. From the results in Fig. 5, it can
be seen that the performance of the model reaches its maximum when the learning rate
is 0.0006. (Given that the DDI represents the side effects between drugs, the lower the
�DDI the better.) Therefore, the learning rate is set to 0.0006 in this paper.
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Fig. 5. The performance of different learning rates.

5.4 Case Study

As mentioned above, our proposed MLATNet outperforms all baseline models in medi-
cation recommendation. Therefore, in this section,we choose an example of aMIMIC-III
patient to illustrate howMLATNet can improvemedication recommendation through the
asynchronous time module. We will use the asynchronous timing module as an example
to further analyze how the components of MLATNet can make comprehensive decisions
about medication.

First selecting a patient from the MIMIC-III dataset, we chose a complex case for
comprehensive decision making. This case had a visit record involving multiple disease
complications and treatment medications. This patient visited the hospital three times.
The visit information is shown inTable 4. The patient’s first visit was onMay 8, 2015, and
he was mainly treated with codes 4513, 9904, and 3893. Later, the patient visited once
again, on May 14, 2015, where the patient developed some new illnesses in addition to
the previously diagnosed illnesses and underwent treatment coded as 4444. The first two
visits were three days apart and were strongly correlated, with a high rate of duplication
among the recommended medications. Based on the first two visits we can see that the
asynchronous time interval has a significant impact on drug recommendations. When
the patient goes to the hospital for the third time, after a series of laboratory tests and
diagnoses, and further learning from the correlationwith the asynchronous time intervals
of thefirst twovisits,MLATNetmodel canpredict in advance themedications thatmaybe
needed for this treatment,which canbeused as a reference for the doctor’s comprehensive
decision. In this way, although the prediction results may not be completely correct, the
prediction results can also help doctors improve the efficiency of decisions, especially
for junior or inexperienced doctors, who can provide some reference value (Table 5).

As shown in Table 5, we can visualize the accuracy of medication recommendation
after learning the asynchronous time interval correlation. At the third visit, our model
learns the time correlation of the previous two visits to make medication recommenda-
tions.Visit3 (MLATNet) recommended a large number of medications that were present
at the previous two visits, such as A06A, A12C, and N02A, and a larger number of med-
ications were recommended. In contrast, when there was no asynchronous time module
processing, significantly fewer medications were recommended and the correctness rate
was reduced. The results are shown in Visit3 (No-AT) in Table 5. The above analysis
shows that the asynchronous time module in the MLATNet model learns the relevance
of the previous visit interval and makes recommendations with reference to the drugs
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Table 5. The records of the patient’s three visits.

Vist Time Diagnosis Procedures Medica�ons

Visit 1
2015.05.0

8

530.7,344.00,285.1,
599.0, 577.1, V12.51,
907.2, 337.9, 442.84

4513, 9904, 
3893

A06A,A12A,B05C,N02B,
A12B,A12C, A02B,N05C, 
A04A,N05B,N02A,N05A, 

B02B, C05A

Visit 2
2015.05.1

4

442.884,578.1,344.0,
305.01,305.60,599.0,
305.1,305.20,V16.3,

V12.51

4444, 3893, 
9904

A06A,A07A,A12B,A1A,
A12C,A02B,N05C,A0A,

N02A, B03A

Visit 3
(MLATNet)

2015.11.2
0

442.84, 599.0, 285.1,
790.7, 9072, E9298,

V12.51, 411.1, V09.0,
577.1

4444, 
8847,9904

A06A,N02B,A12B,A02B, 
B02B,A12C,J01M, N02A, 

N05B,D04A, J01E

Visit 3
(No-AT)

2015.11.2
0

442.84, 599.0, 285.1,
790.7, 9072, E9298,

V12.51, 411.1, V09.0,
577.1

4444, 
8847,9904

A06A,A12B,B02B,A12C,
J01M, N05B,D04A, J01E

used in the visit records with higher relevance. In addition, some new drugs such as
D04A and J01E can be generated appropriately. This shows that MLATNet can not only
learn historical drugs based on the correlation of time intervals, but also generate new
drugs based on new diagnoses.

6 Conclusion

In this paper, we propose a multilevel asynchronous time network (MLATNet) for med-
ication recommendation tasks. MLATNet better captures the changes in patient’s condi-
tion by learning asynchronous time information of patient’s visit and multilevel depen-
dencies, thus giving more accurate and lower DDI drug combinations. We validated the
performance of the model on the public dataset MIMIC-III. We conclude the article
by demonstrating the effectiveness of each component in MLATNet through ablation
experiments and parametric experiments. In the future, we will consider combined drug
potentiation for more accurate drug recommendations with the lowest DDI.
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Abstract. In recent years, depression has caused severe social and psycholog-
ical problems. The purpose of the paper is to automatically identify users with
depressive tendencies to facilitate early intervention and prevent the progression
of depression into more severe consequences. The paper proposes a Depression
Prediction model based on Multi-feature Fusion (DPMFF), which extracts con-
textual semantic features and deep emotional features from user documents to
predict depression risk. The behavioral and linguistic features of depressed users
were examined through statistical analysis. Experiments on micro-blog datasets
demonstrate that DPMFF can effectively identify users with depressive tendencies
and outperform other models. The data analysis found that compared with normal
users, users with depressive tendencies were usually active on social networks
late at night, and the proportion of content containing absolute words and negative
words was significantly higher than average.

Keywords: Early depressive prediction · Feature Fusion · Attention mechanism
Introduction

1 Introduction

In recent years, mental health problems such as depression have been widely discussed
by people. According to the World Mental Health Report released by the World Health
Organization (WHO)1 in 2022, as of 2019, about 1 billion people around the world are
suffering from mental disorders, especially after the COVID-19 pandemic. The number
of people suffering from significant depression and anxiety increased by 28% and 26%,
respectively. Depression has become a major cause of death and disability worldwide.
Therefore, it is vital to detect and intervene in the early stage of depression.

1 https://www.who.int/publications/i/item/9789240049338.
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The traditional intervention for depression is through a mental health questionnaire
combined with a professional doctor’s diagnosis. Because patients are required to dis-
close negative psychology, this method has subjective bias and requires a lot of man-
power and material resources. With the development of the internet, social media has
become universal and diversified. The number of netizens is increasing, and the public
is more willing to share their feelings and emotions on social media [1]. The advantages
of openness and low cost of social platforms overcome the limitations of traditional
depression detection methods, and there is a link between users’ online behavior and
depression. Studies have shown that social media can provide meaningful data to infer
the mental health status of the public [2]. The latest Micro-blog financial report2 shows
that Weibo currently has more than 250 million daily active users and more than 590
million monthly active users, which provides data support for early depression tendency
prediction research based on Micro-blog.

Table 1 is an example of user posts obtained from Microblog. It can be seen that the
posts of users with depressive tendencies contain negative words such as “death”, “pain”
and “tired”. On the contrary, such words are obviously absent from normal users’ posts,
which makes it possible to automatically identify users with depressive tendencies from
online posts.

Table 1. Comparison between posts with depression and normal posts

Post Category Text Content

Normal Post My daughter’s painting tonight, although not a dragon, is
perfect, and she has to borrow my phone to take a selfie.
Wishing everyone a happy New Year!

Posts with Depressive Tendencies I’m speechless and don’t want to live at all. Breathing is
tiring. Once you die, you will be forgotten, and you won’t
have to think so much. I am in great pain

Recent studies have shown that negative emotions do not form in a short period of
time, and this time span can be as long as several months or even years [3]. Historical
content posted byMicro-blog users can help identify depressive tendencies. An example
of a user post with a depressive tendency is shown in Fig. 1.

From the examples, it can be observed that the user did not exhibit significant depres-
sive tendencies in the latest posts. Without a complete analysis of historical texts, it is
difficult to identify the user’s potential depressive tendencies, indicating that time cues
play an important role in modeling the user’s psychological state. Unlike extracting fea-
tures from a single post, this article extracts features from all posts posted by a user
within a specific time interval to predict whether the user has a depressive tendency,
which is more practical.

In previous studies, Sawhney et al. used a time-aware transformer model to model
user tweets for preliminary screening of suicide risk [4]. Ren et al.’s experiment showed

2 http://ir.weibo.com.

http://ir.weibo.com
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that increasing emotional information is beneficial for predicting depressive tendencies
[5]. Although the previous methods achieved good results, they did not fully interact
with semantic features and emotional features, neglecting the role of deep emotional
semantic information in identifying changes in user psychological states. Based on this,
on the basis of the hierarchical structure of user documents, this article uses hierarchical
attention networks to fully capture the contextual semantic information of users, which
solves the problem of incomplete feature extraction of historical information in previ-
ous text structures and shows promising results in long text classification work; At the
same time, the advanced emotional semantic perception module is used to obtain deep
emotional semantic features to identify user emotional change points and different fea-
tures are extracted from users’ open Micro-blog accounts for the past year to construct
user document representations, providing a methodological basis for early prediction of
depression tendency based on user documents.

I'm not happy at all. I think this world is scary and has no end. I feel like I'm mentally ill.

This has been a very bad year, and my departure won't bring too much sadness. It feels like 

throwing everything away.

July 28, 2018

July 29, 2018

Eat and drink well, nourish your spirit, listen to class well, haha! April 25, 2019

~ Ten months

Dpression

Fig. 1. Example of the user at risk of depression

2 Related Work

In the field of predicting depression propensity, commonly used methods include
questionnaire-based methods and social media-based methods. The method based on
questionnaire surveys has apparent drawbacks; the subjectivity of emotions and experi-
ences increases the variability of conclusions. With the development of the internet, the
anonymity of social media has made people more willing to express emotions on social
platforms. Research has shown that users tend to use mass social media for mental health
information exchange activities [12], which provides theoretical support for predicting
depression propensity based on social media.

2.1 Traditional Questionnaire-Based Depression Detection

Research has shown that predicting depression propensity based on psychological mea-
surement self-report has high effectiveness and credibility [6]. Early clinical methods
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used various questionnaires for scoring. For example, Beck Depression Scale II (BDI-II)
[7], Hamilton Depression Scale (HRSD) [8], Self-Rating Depression Scale (SDS) [9],
etc. They can intuitively reflect the mental state of patients with depression and are pro-
fessional and effective. However, questionnaires rely on the subjective will of a person
and are often unreliable, and when faced with large-scale groups, they can incur signifi-
cant human and time costs [10]. Research has shown that conducting suicide assessments
may have negative effects on people with depressive symptoms [11].

2.2 Depression Detection from Social Media

Recently, significant progress has beenmade in using socialmedia for depression screen-
ing, mainly by identifying users’ risk of depression tendencies based on their language
content and online behavior on social media.

Dictionary-Based Vocabulary Method. Determine the user’s depression tendency
based on whether depression-related words appear in the text. The Internet Early Risk
Detection eRisk Challenge aims to locate depressed users by searching for specific
expressions such as’ I have been diagnosed with depression’ [14]. Alternatively, use a
LIWC dictionary to analyze posts on social media based on language features such as
part of speech and tense [13]. However, with the increasing number of people suffering
from depression, it is unrealistic to use dictionary-based vocabulary methods to identify
social media data in Shanghai. It is not only time-consuming and labor-intensive but also
unable to accurately identify potential users with depression tendencies solely through
simple language expression.

Machine Learning-Based Methods. The rise of machine learning has brought new
methods for researchers to conduct quantitative analysis. Using machine learning meth-
ods to predict early depression tendencies can improve work efficiency and accuracy.
At present, traditional machine learning algorithms widely used in the field of predict-
ing depression propensity include logistic regression (LR) [15], K Nearest Neighbors
(KNN) [16], NaiveBayes (NB) [17], Support VectorMachine (SVM) [18], etc. Although
applying traditional machine learning methods to social media-based depression ten-
dency prediction can perform automated, objective, and effective assessments, its per-
formance often depends on feature selection and construction, which not only requires
the knowledge and experience of domain experts but also requires a lot of manpower.

DeepLearning-BasedMethods. With the development of deep learning in natural lan-
guage processing, more and more methods for predicting depression tendencies based
on deep learning have been proposed. Compared to traditional machine learning, deep
learning has stronger stability and generalization due to its ability to extract features auto-
matically and can achievemore outstanding detection performance [19]. At present, deep
learning architectures such as Convolutional Neural Networks (CNN) [20], Recurrent
Neural Networks (RNNs) [21], Attention Mechanism (AM) algorithms [22], and Trans-
former based BERT [23] have been widely used in the field of depression detection.
For example, Cao et al. used suicide-oriented word embedding technology combined
with Long Short Term Memory (LSTM) and Attention mechanism to detect users with
suicidal ideation on Micro-blog datasets [24]. Senn et al. integrated multiple BERT
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models and adopted an integration strategy to improve the classification performance of
depression on 12 thematic datasets [25].

3 Methods

The main goal of the model method depression tendency recognition task is to ana-
lyze userUlε{U1,U2, ...,UL} posted on social media by piε{p1, p2, ......, pN } to predict
users’ depressive tendencies Yε{0, 1}, where L is the number of users and N is the num-
ber of posts posted by the user, where 0 indicates that the user has a depressive tendency
and 1 indicates a normal user. The paper abstracts the work of predicting depression
propensity as a binary classification task.

The overall architecture of the DPMFF model is shown in Fig. 2, which mainly
consists of two parts. The first part uses the Context Semantic Understanding Module
(CSU) to extract the historical contextual semantic features of a given user. In order to
accurately identify users with depressive tendencies in social media, attention mecha-
nisms are used to capture keywords and sentences related to depression. The second part
extracts deep emotional semantic features through the Advanced Emotional Semantic
Perception Module (AESP) to enhance the model’s ability to identify depression risk.
Finally, the two features are fused and fed into the classifier to predict whether the user
is at risk of depression.

Fig. 2. Architecture of the DPMFF Model
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3.1 Context Semantic Understanding Module

Based on the hierarchical structure of user documents, this section uses the CSUmodule
to capture contextual semantic information of user documents. TheCSUmodule includes
a word-level encoding layer, a word-level attention layer, a post-level encoding layer,
and a post-level attention layer.

Word-Level Encoding Layer. For user posts pi = {ωi1,ωi2, . . . . . . ,ωiM}, first apply
the pre-trained word vector through xim = Weωim embeds words into a vector and
obtains a sequence representation of X = {xi1, xi2, ......, xiM} ∈ RM×de , where We is
the embedding matrix, M is the number of words in the post, and de is the embedded
dimension. Then, input X into the bidirectional GRU to summarize the information of
words from the front and back directions to obtain word annotations, thereby obtaining
the contextual information of the post. Bidirectional GRU includes forward

−−→
GRU and

backward
←−−
GRU, and the former will post pi from ωi1 read ωiM, and the latter will post

pi from ωiM read ωi1. The specific calculation formula is as follows:

xim = Weωim,mε[1,M] (1)

−→
him = −−→

GRU(xim,
−−−→
him−1),mε[1,M] (2)

←−
him = ←−−

GRU(xim,
←−−−
him+1),mε[M, 1] (3)

Splicing Forward Hidden State
−→
him and Backward Hidden State

←−
him to Obtain

Words ωim Comment him = [−→him,
←−
him], thus obtaining the hidden layer output Hi =

[hi1, hi2, ..., hiM ] of the post.
Word-Level Attention Layer. Not all words in a post have the same effect on identi-
fying users’ depressive tendencies. In order to accurately capture keyword information,
attentionmechanisms are used to learn the weights of each word in the post. Aggregating
the expressions of words that have significant meaning to a post into a post vector, the
specific calculation formula is as follows:

uim = tanh(Wωhim + bω) (4)

aim = exp(uimᵀuω)
∑

texp(uim
ᵀuω)

(5)

pi =
∑

t
aimhim (6)

Among them, uim is the hidden representation vector of word annotation him, Wω,
bω is the model parameter, and uω is the word context vector that is randomly initialized
and jointly learned during the training process.

Post-level Encoding Layer. Given the post vector pi, A similar method can be used to
obtain the user’s document vector representation. Use bidirectional GRU to encode each
post of user Ul, and the specific calculation formula is as follows:

−→
hi = −−→

GRU(pi,
−−→
hi−1), iε[1,N] (7)
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←−
hi = ←−−

GRU(pi,
←−−
hi+1, iε[N, 1]) (8)

By concatenating
−→
hi and

←−
hi , the vector representation hi = [−→hi ,←−hi ] of post pi is

obtained. hi represents the contextual semantic feature information of post pi.

Post-level AttentionLayer. The time span of user posts is large, containing rich seman-
tic information, and not every post shows a tendency towards depression. Generally
speaking, among the large number of posts posted by users, only a few posts indicate
that the user is at risk of depression. Therefore, this section uses the attention mecha-
nism to introduce the post-level context vector up. And use this vector to measure the
importance of different posts. The specific calculation formula is as follows:

ui = tanh(Wihi + bi) (9)

ai = exp(uiᵀup)
∑

iexp(ui
ᵀup)

(10)

v =
∑

i
aihi (11)

Among them, v represents the document vector, which summarizes the contextual
semantic feature information of all posts in the user, and the post-level context vector
up is randomly initialized and jointly learned during the training process.

3.2 Advanced Emotional Semantic Perception Module

This section constructs a deep emotional semantic representation of user documents
based on the AESP module for predicting depression tendency. The AESP module
includes a feature extraction layer and a feature fusion layer.

Emotional Feature Extraction Layer. The emotion feature extraction layer includes
two parts: Negative Emotion Perception (NEP) and Positive Emotion Perception (PEP),
which are used to capture negative andpositive emotion information, respectively. Firstly,
based on the Chinese suicide dictionary, the user document is divided into the negative
word set NEG = {n1, n2, ......, nk} and the positive word sets POS = {n1, n2, ......, nr},
and mapped to the word vector matrix to obtain the word vector representations
Rpos and Rneg, respectively.

Bidirectional Long Short TermMemory Network (Bi-LSTM) is widely used in NLP
tasks to capture contextual information, including forward

−−−→
LSTM and reverse

←−−−
LSTM.

The paper uses Rpos and Rneg as inputs to the Bi-LSTM network to capture emotional

information in posts and obtain negative emotion hidden layer output hneg = [−→
hneg,

←−
hneg]

and positive emotion hidden layer output hpos = [−→
hpos,

←−
hpos]. In order to further capture

important emotions in the two-unit texts, an attention mechanism is applied, which
operates the same as the CSU module. Add hpos and hneg, as the input of the attention
network, assigns different weights to words, and ultimately obtains the negative word
emotional feature representation Attneg(i) from the negative emotion perception unit and
the positive word emotional feature representation Attpos(i) from the positive emotion
perception unit.
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Emotional Feature Fusion Layer. The fusion of negative and positive emotional infor-
mation in the emotional feature fusion layer is used to improve the performance of
depression tendency prediction. The deep emotion feature vectors Attpos(i) and Attneg(i)
can be learned during the training process, and these two parts can be fused to obtain the
final deep emotion semantic feature representation s. The specific calculation process is
as follows:

s = add
[
Attpos(i),Attneg(i)

]
(12)

3.3 Depression Prediction

In this section, the contextual semantic feature representation v obtained in theCSUmod-
ule and the advanced emotional feature representation s obtained in the AESP module
will be fused to obtain the final user document feature representation fend . The cross-
entropy loss function will be used for predicting depression tendency to minimize model
loss as much as possible. The final classification strategy for predicting user depression
propensity is achieved through the softmax function. The specific calculation formula
is as follows:

fend = Add[v, s] (13)

y
∧

i = softmax(w · fend + b) (14)

Loss = 1

L

∑L

i=1
[−

∑2

j=1
yxi logy

∧x
i ] (15)

Among them, L represents the size of the training sample. y
∧

i represents the predicted
category label of sample i, x represents the predicted categoryof user depression tendency
risk, and yxi represents the true category label of sample i.

4 Experiments

4.1 Depression Datasets

The experimental data in this article comes from the Sina-Weibo-Dataset3 released by
Tsinghua University, which includes 744, 031 posts from May 1, 2018 to April 30,
2019. The data is randomly divided into training, validation, and testing sets, and the
average F1 value is selected as the evaluation indicator. The specific distribution of
dataset categories is shown in Table 2.

Weibo text has the characteristics of colloquialism, free formatting, and a large
amount of dirty data. In order to reduce the impact of noisy data on experimental results,
this article implements the following data preprocessing program. 1) Use regularization
expressions to remove website-related content and meaningless characters such as # and
&. 2) Excluding stop words and English text, this experiment only focuses on Chinese.
3) All posts have the word “<PAD>” filled in with a fixed length of n and a fixed number
of m. 4) Using a Chinese suicide dictionary to assist in word segmentation using the
Jieba tool.
3 https://github.com/bryant03/Sina-Weibo-Dataset.

https://github.com/bryant03/Sina-Weibo-Dataset
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Table 2. Sina weibo dataset

Category Users Posts

Depression 3,652 252,901

No-depression 3,677 491,130

4.2 Experimental Setup

All experiments in this article were written and run using Python 3.6, using a deep
learning framework of Python 1.0.0. During the training process, the optimizer adopts
the Stochastic Gradient Descent (SGD), with the loss function set as the Cross-Entropy
Loss function. The word embedding layer uses a pre-trained word vector Word2vec4

based on the Weibo corpus. Some other important neural network parameters are shown
in Table 3 and determined through experimental debugging.

Table 3. Parameter settings

Parameter Description Value

Learning Rate 0.001

Bach 10

Word Embed 300

Epoch 200

Word-hidden-embed 50

Post-hidden-embed 50

Post Length 60

Number of Posts 60

4.3 Baseline

This article selects the following baseline methods to compare and verify their
effectiveness with the DPMFF model.

(1) Support Vector Machine (SVM), Logistic Regression (LR), K Nearest Neighbors
(KNN), Naive Bayes (NB): Four representative machine learning methods, with
classifiers accepting text features for predicting users’ depressive tendencies.

(2) TextCNN: Kim’s CNN-based text classification model extracts text features through
convolutional kernels of different sizes for depression tendency prediction.

(3) TextRCNN: Using Bi-LSTM instead of convolutional layers to extract contextual
features as a new word embedding representation, then concatenating the hidden

4 https://github.com/Embedding/Chinese-Word-Vectors.

https://github.com/Embedding/Chinese-Word-Vectors
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layer output with the original word embedding to form a new word embedding and
introducing maximum pooling for depression tendency prediction.

(4) TextRNN: Using Bi LSTM to extract features can capture contextual information
between depression-related words and other words.

(5) TextRNN+Attention: Add an attention mechanism on the basis of Bi-LSTM to give
different weights to words in the text in order to improve the recognition ability of
the model.

(6) DPCNN: Deep pyramid convolutional network, which mainly obtains long-distance
relationship dependencies of text by stacking convolutional layers.

(7) FastText: A fast text classifier and representation learning model based on ran-
domly generated vectors and layered softmax published byFacebook,which predicts
depression tendency based on three different word embeddings: unigram, bigram,
and trigram

(8) Transformer:A sequencemodel based on a self-attentionmechanismconsisting of an
encoder and a decoder. It is used to automatically model text sequences, extract text
features, and then use fully connected layers to predict users’ depression tendencies.

4.4 Results and Discussion

The comparative experimental results of various benchmark models and the DPMFF
method in the prediction task of depression propensity are shown in Table 4.

Table 4. Comparison of experimental results

Model F1 (%)

SVM 71.00

LR 73.00

KNN 60.70

NB 58.50

Text-CNN 81.60

Text-RCNN 86.10

Text-RNN 69.50

Text-RNN+Attention 87.10

Fast-Text 85.00

DPCNN 67.50

Transformer 75.10

DPMFF (Ours) 92.50

The experimental results show that the proposed model method has the best per-
formance indicators among all comparative models, and the specific analysis is as
follows:
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Deep learning methods are significantly superior to machine learning models that
manually construct features and have advantages in predicting depression tendencies.
The reason is that the accuracy of machine learning methods relies on manually con-
structed features for classification and recognition, and the selection of features is
achieved through manual construction for classification and recognition. Deep learning
models can automatically learn features fromdata to improve classification performance.

Therefore, the effectiveness of the TextRCNN method is superior to the TextCNN
and TextRNN. In the TextRCNNmethod, Bi-LSTM is used to replace the convolutional
layer to capture contextual information, which learns more sequence information than
the TextCNN method. The pooling layer can obtain critical features of the text, making
up for the shortcomings of the TextRNN method. The TextRNN+Attention model out-
performs the TextRNNmethod in F1 values, as the attention machine focuses on crucial
information in posts and documents, which can accurately express text semantics.

Extracting multi-feature information from text is effective. The FastText method
achieved good results in tasks because it obtained rich word embedding information.
Due to the limitation of text length in the Transformermethod, the features ofWeibo user
documents are missing, resulting in a decrease in model performance. Compared with
all baseline methods, the model proposed in this paper exhibits the best performance,
indicating that the depression tendency prediction model based on multi-feature fusion
can effectively mine the global information of users.

4.5 Ablation Experiment

The paper further designed several variants of DPMFF for ablation experiments to ana-
lyze the impact of different components on the model. This section takes DPMFF as the
benchmark, removing the contextual semantic understanding module (“w/o CSU”) and
the advanced emotional semantic perception module (“w/o AESP”), respectively. The
F1 score report is shown in Table 5. The experimental results showed that removing the
emotional semantic extraction module (“w/o AESP”) significantly reduced the perfor-
mance of the model, indicating that emotional features contain more information that
helps distinguish depressed users. When twomodules are combined, the model achieves
optimal performance due to the total fusion and interaction of contextual semantic fea-
tures and deep emotional semantic features, mining the rich feature information of users,
thereby improving classification performance.

Table 5. Effectiveness experiments of different modules

Model F1 (%)

w/o AESP 89.90

w/o CSU 90.50

DPMFF 92.50

In addition, this section takes the SemanticUnderstandingModule (CSU) as a bench-
mark to explore the impact of different categories of emotional perception units on the
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Table 6. Effectiveness experiments of different emotional units

Model F1 (%)

CSU 89.90

w/o PEP 86.70

w/o NEP 90.90

model. Among them, “w/o PEP” and “w/o NEP” respectively represent the removal of
positive and negative emotion perception units. The F1 scores of their ablation studies
are reported in Table 6. The experimental results indicate that the performance of the
experiment with the addition of positive emotional units (PEP) is better than that with
the addition of negative emotional units (NEP), as positive words contain more key
information that helps predict depression propensity. Adding both PEP and NEP units
at the same time constitutes the model in this paper. The optimal performance indicates
that mining different categories of emotional features can help predict user depression
tendencies.

4.6 Analysis of Factors Affecting Prediction Effectiveness

The number of posts (n-post) and the length of posts (n-post length) are two key parame-
ters that affect the effectiveness of the experiment. Statistics have found that the number
and length of posts in different user documents vary greatly, and the degree of tex-
tual information they contain varies. Therefore, this section explores the impact of the
number and length of posts on the predictive performance of the model.

a) The impact of post length on experimental results

According to the statistics of all user documents, it was found that the maximum
length of posts is 212. Based on the DPMFF model, keeping the number of posts at 60
and changing the length of posts, the experimental results are shown in Fig. 3. From
the figure, it can be seen that the F1 value gradually increases with the decrease of post
length. When the post length is reduced to 60, the performance is best. At this time, as
the post length decreases, the F1 value shows a downward trend. This is because when
the length of the post is set too large, it will cause too much noise data to be added when
aligning the text during the experiment, thereby affecting the predictive performance of
the model. When the length is set too short, it will also discard some important feature
information in the text, leading to a decrease in the model’s classification ability. Based
on the results obtained from this experiment, set the post length to 60.

b) The impact of the number of posts on experimental results

Statistics have found that among all users, the maximum number of posts in the
document is 100. Maintain a post length of 60 and continuously change the number of
posts during the experiment. The experimental results are shown in Fig. 4. From it, it
can be observed that as the number of posts continues to decrease, the F1 value shows
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Fig. 3. The impact of post length on model performance

an upward trend. When the number of posts decreases to 60, the F1 value of the model
reaches its highest, and then, as the number of posts continues to decrease, the F1 value
gradually decreases. This is similar to the reason why the F1 value changes with the
length of posts. Setting the number of posts too high will increase noise data, while
setting the number of posts too low will discard important information. Based on the
results obtained from this experiment, set the number of posts to 60.

Fig. 4. The impact of the number of posts on model performance
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4.7 Analysis of Internet Behavior of Users with Depression

Research has found that users’ online behavior contains psychological health informa-
tion. Analyzing the behavior of individuals at risk of depression on the internet can help
to understand the characteristics and preferences of depressed individuals from differ-
ent perspectives, providing support for accurately identifying depression-prone patients
from online communities.

The network behavior data of users mainly refers to the characteristics that can rep-
resent the content of user interaction behavior. This includes gender, username, number
of posts, followers, number of images, time of posting, etc.

The paper divides all user data containing such features into depressed user groups
and normal user groups, resulting in 3,453 normal users and 1,357 users with depressive
tendencies. After a series of statistical analyses, the online behavioral characteristics
of users with depressive tendencies were obtained, and the differences in behavioral
characteristics between them and normal users are shown in Table 7.

Table 7. Statistical results of network behavior characteristics

Characteristic Depression User Group Normal User Group

Followers (>100) 53.5% 84.1%

Fans (>100) 41.2% 89.57%

Per capita daily Post volume 1.94 2.92

Male users 22% 54.5%

Female users 78% 45.5%

Posting time (0:00–5:59) 7.8% 2.0%

From the table, it can be seen that 78% of users with depressive tendencies are
women, and compared to men, women are more likely to suffer from depression. There
are two main reasons: firstly, biological factors. Changes in progesterone and estrogen
can directly affect women’s mood, especially during the menstrual cycle, menopause,
pregnancy, and before and after childbirth, which is also an important reason for the
high incidence of postpartum depression in women. The second is social environmental
factors, where women are naturally disadvantaged in terms of physical strength and are
more susceptible to sexual abuse and domestic violence.

By dividing the daily interval of six hours into four time periods and analyzing
the posting behavior of two groups of users at different times, it was found that users
with depression tendencies have a clear pattern of active time on Weibo. Users with
depressive tendencies posted significantly more posts than normal users between 0:00
and 5:59, indicating that users with mental health issues mostly engage in late-night
activities, which is related to the prevalence of insomnia or sleep disorders in patients
with depression.

Pay attention to the average daily number of posts posted by users, and it can be seen
that the average number of posts posted by depressed users is significantly lower than
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that of normal users. Users with depressive tendencies usually have fewer followers than
normal users, indicating that they have fewer friends. The attention level of depressed
users is significantly lower than that of normal users, and their social participation ability
is relatively low.

4.8 Analysis of Language Characteristics of Weibo Users with Depressive
Tendencies

A searching analysis of posts published by users with depressive tendencies found that
posts with depressive tendencies had a higher frequency of negative related words such
as insults, irritability, terror, pain, and depression compared to normal users, indicating
that depressed users often experience emotional distress. Compared with normal users,
users with depressive tendencies usually prefer to use personal pronouns and use first-
person pronouns more, such as “me” and “myself”. This phenomenon indicates that
users with depressive tendencies are more concerned about themselves, have stronger
self-awareness, and have less contact with others. Researchers report that pronouns are
actually more reliable than negative words in identifying depressive tendencies.

From the perspective of language style, depressed users prefer to use vocabulary that
expresses absolute concepts, such as “always” and “never”. There is an experimental
inference that theworld in the eyes of depression patients is either black orwhite,which is
prone to extreme thinking patterns. In this way, these words are more suitable as markers
for identifying depression tendencies than pronouns or negative words. Compared to
normal users, posts posted by users at risk of depression are usually shorter, simpler in
form, lacking flexibility, and using more simple vocabulary.

4.9 The Risk of Depression Caused by Public Health Emergencies

In recent years, public health emergencies have brought great changes to people’s lives
around the world. The epidemic has increased the number of depression and anxiety
patients worldwide by 160 million, and the number of insomnia patients has also dou-
bled. During the outbreak of COVID-19, the detection rate of people’s anxiety increased
significantly, which is related to people’s fear that they or their families are in danger of
being infected. In addition, paying more attention to negative information can activate
users’ unreasonable health beliefs, prompting them to overly focus on their physical
feelings and triggering anxiety and panic about their own health. Therefore, when fac-
ing sudden public health events, the public should avoid paying too much attention to
negative information, participate more in sports, and release psychological pressure.

People with mental health problems may face discrimination, leading to a decrease
in public productivity and tension in social relations, thus hindering development. There-
fore, the mental health status of the public should be given attention by society. Social
institutions have the responsibility and obligation to make depression more widely
recognized by the public, popularize psychological disease education, provide profes-
sional assistance and standardized treatment for depression patients, and improve the
convenience and effectiveness of medical treatment. In the post-pandemic era, active
response strategies should be adopted to provide psychological counseling, training,
and intervention to populations experiencing sudden public health and safety incidents.
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5 Conclusion

Using text published on social media to predict the risk of depression has the advantages
of real-time and convenience, making it easy to carry out on a large scale. Accurate
identification of early depression patients can provide timely assistance to prevent the
worsening of depression and its serious consequences. Based on this, this article pro-
poses a depression propensity predictionmodel based onmulti-feature fusion (DPMFF),
which extracts complete contextual semantic features and deep emotional semantic fea-
tures from online users’ posts in the past year for predicting depression propensity. The
experiment shows that the performance of the model proposed in this article has signif-
icantly improved compared to other existing models. A series of ablation experiments
have verified the effectiveness of each part of the model. In addition, research and anal-
ysis have found that users with depressive tendencies on social media have differences
in behavioral and linguistic characteristics compared to normal users, which helps in the
early identification and intervention of depressed users.

Depression is seriously affecting people’s normal lives and even endangering their
lives. Early identification is important, butmore importantly, it can reduce the occurrence
of depression from its root. Future work will explore the underlying causes of mental
health problems by accurately identifying implicit data using more modal features based
on the behavioral language characteristics of individuals with depression and combining
them with clinical questionnaires. There are many online behaviors on social media that
are almost indistinguishable from normal users but are deeply troubled by depression.
What methods to use to identify such populations will also be a focus of future work.
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Abstract. In recent years, disease prediction based on electronic health
records (EHR) has attracted extensive attention in the field of biomed-
ical text mining. However, the existing work has two issues. First, most
of the existing methods focus on the prediction of a single disease and
little attention is paid to the prediction of multiple associated diseases.
Second, these methods usually use simple feature modeling, and fail to
fully capture and mine the information from EHR, which usually contains
two main information: the textual description and physical indicators. To
address these issues, we design a dual-attention neural network model to
predict the probability of coronary heart disease and kidney disease in
hypertension patients. Specifically, the proposed model consists of three
main parts: a textual module, a numerical module and a global BiLSTM.
Given one piece of EHR, the textual module is utilized for encoding
the textual information, such as diagnosis texts. The numerical module
handles the numerical indicators, such as physical indicators. The dual-
attention mechanism enables the model to better capture the intrinsic
and implicit semantic features behind the clinic texts and numerical indi-
cators, respectively. The experimental results on the datasets show the
effectiveness of the proposed model, and our model outperforms previous
methods and strong neural baselines by a large margin. Meanwhile, the
attention mechanism can capture the risk factors between the associated
diseases.

Keywords: Disease prediction · Attention mechanism · Electronic
health records · Neural networks

1 Introduction

Disease prediction is one of the important studies in biomedical text mining,
and has attracted extensive attention from researchers [5,17,27,63]. The existing
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Name:  Adam Birth:  1960/10/03
Demographic information

Gender:  male ID:  xxxxxxxx
Record Date:  2017/04/08

Heart rate:  80 Sbp:  150
Physical indicators

Temperature:  36.5 Dbp:  110
Pulse:  80

Record No. :  0005184

Blood glucose:  6.6
Respiration:  20

Diagnosis

Subjective: 
Condition description 

Objective: 

ICD No. :  I25.101

EHR

5 days ago the patient complained of no obvious 

causes of abdominal distention and pain, no nausea 

and vomiting, no treatment at home, symptoms have 

no obvious improvement

There was a history of hypertension and chronic 

gastritis. Conjunctiva hyperemia with tears 2 days, 

no obvious abdominal pain, a little hiccup, no 

nausea, vomiting...

Disease name:  Coronary heart disease

Name:  Adam Birth:  1960/10/03
Demographic information

Gender:  male ID:  xxxxxxxx
Record Date:  2017/01/05

Heart rate:  768 Sbp:  147
Physical indicators

Temperature:  36.3 Dbp:  108
Pulse:  80

Record No. :  0002247

Blood glucose:  5.7
Respiration:  28

Diagnosis

Subjective: 
Condition description 

Objective: 

ICD No. :  I10.X01

EHR

Angina pectoris, after a year of activity chest pain 

with more times ...

2 years ago, after patient activities, there were 

palpitation, diagnosis of "hypertension", control of 

blood pressure and other treatment, the patient's 

dizziness, palpitation symptoms have been relieved...

Disease name:  Hypertension

Fig. 1. Two pieces of EHRs for one patient.

work can be divided into two main directions. First, a line of work focuses on
the prediction of single target disease [1,6,30,37]. For instance, Jabbar et al.
(2016) use random forest and chi square to predict heart disease [30]. Liu et al.
(2018) apply deep neural network for predicting chronic disease by modeling the
EHR data [37]. Second, several efforts try to explore the molecular mechanism of
diseases [2,35,42,59]. For example, Le and Dang (2016) investigate an ontology-
based similarity network for disease gene prediction [35]. However, less attention
is paid for the associated prediction of multiple diseases.

In recent years, an increasing number of people has suffering from various
diseases such as hypertension, coronary heart disease, kidney disease and dia-
betes, etc. Unfortunately, some people are attacked by multiple diseases at the
same time, and these diseases are closely interrelated that one disease is likely to
trigger another. Taking coronary heart disease as example, many studies analyze
the risk of coronary heart disease and it is generally accepted that hypertension
is closely associated with the development of coronary heart disease [3,15,62].
For kidney disease, it is widely believed that hypertension can lead to the devel-
opment of kidney disease under certain conditions [11,14,29,36,39,43].

Two real EHRs are shown in Fig. 1. We can observe that the patient Adam
was diagnosed with hypertension on January 5, 2017. Three months later, he
was diagnosed with coronary heart disease (CHD). For this patient, it can be
inferred that the occurrence of coronary heart disease is strongly associated with
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previous hypertension, which has been confirmed by a large number of previous
studies [3,15,62]. If we can design models that accurately predict the proba-
bility of developing coronary heart disease or other complications based on his
EHRs, and capture risk factors and indicators among these associated diseases.
Based on these warning information, the patient can receive timely treatment
and even avoid these complications. Therefore, it is particularly important to
design models for predicting the associated diseases.

Multiple diseases associated prediction (MDAP) is an important research
topic, which aims to predict the probability of a target disease in the case of
another specific disease that has been diagnosed. Chen et al. (2017) first eval-
uate risk factors for the development of coronary heart disease in hypertension
patients using a logistic regression model [11], while they adopt traditional sta-
tistical model that requires a number of hand-designed features. More recently,
Ren et al. (2019) predict kidney disease in hypertension patients using a hybrid
neural model by integrating BiLSTM and autoencoder [47]. However, this model
fails to take into account multiple EHRs of one patient in different times, limiting
the performance of the task.

Given a hypertension patient, this paper aims to predict the probability of
the patient developing coronary heart disease and kidney disease. Inspired by the
success of neural networks in various text mining tasks [31,32,49,50,54,55,61],
we propose a dual-attention neural network model for predicting coronary heart
disease and kidney disease in hypertension patients, and capturing the risk fac-
tors of multiple associated diseases. Specifically, we first construct two datasets
based on a large amount of raw EHR data. Then we build a dual-attention
neural network model by incorporating a bi-directional long short-term memory
(BiLSTM) and convolutional neural network (CNN). Here, BiLSTM is used to
process the textual information in EHR for learning the textual representation,
and CNN uses the physical indicators as input to represent the numerical fea-
tures. To handle multiple time-ordered EHRs of a patient, we employ another
BiLSTM to globally encode the EHR representation. Finally, we use a softmax
classifier to make prediction.

The experimental results on the datasets show that our model achieves the
competitive performance, outperforming previous methods and strong baseline
systems by a large margin. Meanwhile, the proposed dual-attention mechanism
captures the risk factors that uncover the association from hypertension to coro-
nary heart disease and kidney disease.

2 Related Work

Disease prediction, especially chronic disease such as coronary heart disease and
hypertension, is becoming a heated research topic in the field of biomedical text
mining [8,13,20,22,23,57]. Early studies aim at making predictions with various
numerical indicators, such as laboratory test characteristics, physical examina-
tion factors, demographic information, etc. For example, Wilson et al. (1998)
predict coronary heart disease using a logistic regression model combined with
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discrete features [58]. Subsequent researchers exploit more non-traditional risk
factors to predict coronary heart disease for achieving better results [44,57].
Another a line of work tries to predict the disease risk from genetic perspective
and attempts to look for underlying molecular mechanism of diseases [16,26,35].
For example, Wray et al. (2007) present the dense genome-wide single-nucleotide
polymorphism (SNP) panels to assess the genetic risk of diseases [59]. Recently,
some studies also investigate the genes associated with diseases to better under-
stand the genetic mechanisms of these diseases [2,42]. However, the existing
studies have two limitations. First, these work mainly focuses on the predic-
tion of a single disease, and less attention is paid to the prediction of multiple
associated diseases. Second, most of the existing work uses traditional statisti-
cal models with hand-designed discrete features, and fails to fully capture the
information in EHRs. Note that recent studies for disease prediction on EHR
has investigated neural models [37], while unfortunately we find that no efforts
are paid for the direction of multiple association diseases prediction.

More recently, some preliminary work is proposed for the prediction of mul-
tiple association diseases based on electronic health records [11,47]. Typically,
Chen et al. (2017) first evaluate risk factors for the development of coronary
heart disease in hypertension patients using a logistic regression model [11],
while they adopt traditional statistical model with a number of hand-designed
features. Furthermore, Ren et al. (2019) predict kidney disease in hypertension
patients using a hybrid neural network model, which integrates bidirectional long
short-term memory and autoencoder [47], while this model fails to fully capture
the information in the EHRs. For example, they do not consider multiple EHRs
for one patient in different times.

With the success of deep learning, neural network models such as CNN, RNN,
and LSTM, are widely used in various text mining tasks, achieving competitive
results [18,19,46,51,52,60,61,64]. Recently, neural network models have been
gradually applied to various tasks in biomedical text mining [4,9,38,48,65]. For
instance, Zhao et al. (2016) investigate a deep multi-layer neural network model
to extract the information of protein-protein interaction from the biomedical
literature [65]. More recently, neural networks have been successfully utilized for
representing the EHR data for predicting disease risks or medical events. For
example, Cheng et al. (2016) propose a CNN approach to represent EHR as a
temporal matrix for disease risk prediction [12]. Rajkomar et al. (2018) explore
a representation of patients’ entire raw EHR using a deep learning method [45].
Different from the above methods, we explore an dual-attention neural network
model for the prediction of coronary heart disease and kidney disease in hyper-
tension patients.

3 Task Modeling and Dataset Construction

3.1 Task Modeling

Given a hypertension patient, this paper aims to predict the probability of the
patient to meanwhile suffer from coronary heart disease or kidney disease. We
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denote hypertension as source disease (s), and coronary heart disease or kidney
disease as target disease (t). However, we cannot directly predict whether the
target disease is positive or negative for one patient based on one raw EHR
record. The reason can be three-fold. 1) One single record is insufficient to carry
the association clues of the source and target disease, which means that it is not
reasonable to make analysis based on one single EHR. 2) The diagnosis informa-
tion in EHR data for one patient scales over time. If we make prediction directly
for each EHR record, we may separate the underlying connection between multi-
ple diseases and the time-variant factors behind clinical diagnosis results. 3) The
goal of multiple association diseases prediction is individual-level, which means
that our research objective is an individual, instead of one EHR.

We consider a constructed collection of samples as our dataset:

D(s→t) = {d1, · · · , dp, · · · , dP } (p = [1, · · · , P ]), (1)

where P is the total number of the patients, and also the dataset size. s → t
denotes from the source disease s to the target disease t, and each sample is
denoted as dp for the patient p. Specifically, each sample of the patient p contains
a time-ordered EHR sequence, which is denoted as

dp = {(Ep
1 , L1), · · · , (Ep

K , LK)}, (2)

where Ep
k denotes the k-th EHR and K is the total number of EHR, with its

label Li ∈ {l+, l−}. For each sample dp, more than one EHR Ep
k of patient p

should be diagnosed and recorded in the source disease. The reason is that, we
want to predict the likelihood of a patient to further suffer from a target disease
in the condition of the source disease, so the source disease should be definitely
diagnosed as the precondition. In other words, we can formulate the process as
a conditioned probability prediction:

yp(t|s) = yp(Ep
1 (1s, L1), · · · , EK

1 (1s, LK)), (3)

where yp(t|s) is the goal conditioned probability for the patient p to be a positive
source disease t when p has already caught source disease s, denoted as 1s.
Furthermore, the target disease maybe or maybe not exists in the patient p’s
k-th EHR Ep

k . If a patient p is further diagnosed with the target disease, the
label Lk of EHR Ep

k is denoted as l+, a positive sample; if not, Lk = l−, a
negative sample. That’s it, we model the prediction as a binary classification
task, where our system first is trained based on the dataset D(s→t), and then to
make prediction of the label for a cohort of EHR.

3.2 Dataset Construction

Preprocessing. We first collect large amounts of EHR data, which contains raw
records from hospitals in China. As shown in Fig. 1, one EHR contains overall
clinical information about a diagnosis, including textual information and numer-
ical information. Since the raw EHR contains personal privacy, such as patient’s
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name, resident ID number and institute number, etc., which are irrelevant to
our research. In addition, there are some noises or errors in the records that
may have negative impact on our experiments. Moreover, some features, such
as gender and disease name, are presented as non-numerical form, which can be
better functioned if they are converted into numerical continuous values. Finally,
as mentioned above, our target is the prediction from the source disease to the
target disease, therefore we only keep those records where the observed diseases
(hypertension, coronary heart disease and kidney disease) are occurred. So we
conduct the following preprocessing steps for each record. We denote the EHR
data after preprocessing as D†.

– Filter out those records of the patients who are not involved in the source
disease.

– Remove the irrelevant fields of records, including name, resident ID, institute
number and inpatient number, etc.

– Assign 1 as male, 2 as female.
– Compute the age by the birth date and recording date.
– Replace the disease name by looking up the 10th International Classification

of Diseases (ICD-10) tables.
– Drop the wrong character in the textual fields and merge the textual descrip-

tion of subjective and objective into one.
– Drop those records where some numerical values are out of rational range.

Construction. Here, we elaborate the construction of datasets D(s→t) based
on D†, where (s → t) are (hypertension → coronary heart disease) and (hyper-
tension → kidney disease), respectively. As emphasized previously, the basic unit
of our goal is a patient. Thus, we first sort from EHR records D† into just one
sample dp belonging to same patient p. Also, the EHRs in dp is time-sequentially
ordered. We then assign the label for each sample dp, under the following criteria:

– For dp, at leat one EHR record Ep
k is recorded with target disease: Lp = l+.

– For dp, no EHR record is involved in target disease: Lp = l−.

We keep such steps for each sample dp, until we obtain two datasets D
(hypertension → coronary heart disease, hypertension → kidney disease). The
constructed dataset (hypertension → coronary heart disease) is illustrated in
Fig. 2.

In the dataset of predicting hypertension to coronary heart disease, we obtain
40,039 samples, of which 36,352 are recorded as negative and 3,687 as positive.
For the dataset of predicting hypertension to kidney disease, we obtain 40,097
samples, of which 34,232 are negative and 5,865 are positive. We can find that
two datasets are highly imbalanced, which is problematic for direct experiments.
To solve this problem, we use an undersampling approach to balance classes
[7]. Taking the prediction of coronary heart disease as example, we reduce the
sample size of the large number category by randomly selecting 3,687 samples
from 36,352. This reduces the sample size of the dataset to 7,374, thus making
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Fig. 2. The construction illustration of the dataset (hypertension → CHD).

the dataset balanced. To make the result more credible, the undersampling is
repeated ten times. The final result is the average of the algorithms over all
ten experiments. Similarly, the same method is conducted for the prediction of
kidney disease.

4 Method

Figure 3 shows the overall framework of the proposed dual-attention neural
network model, which consists of three main parts: a textual module, a numerical
module and a global BiLSTM. Given one piece of EHR, the textual module
is utilized for encoding the textual information, such as diagnosis texts. The
numerical module handles the numerical indicators, such as physical indicators.
The dual-attention mechanism enables the model to better capture the intrinsic
and implicit semantic features behind the clinic texts and numerical indicators,
respectively. Since one patient usually contains a list of EHRs ordered time-
sequentially. Finally, the global BiLSTM, on the top of the above two modules,
is used to integrate multiple EHRs representations.
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Fig. 3. The overall framework of the proposed model.

4.1 Textual Module

The textual information in the EHR describes the underlying disease symptoms,
in which may imply useful clues, either explicit or implicit. We first use the
embedding layer to take the textual data as input. For each word wi, a look-up
table E is used to obtain its embedding e(wi) ∈ R

L, where E ∈ R
L×V (L is the

dimension of embedding vector and V represents the vocabulary size).
BiLSTM is then used to learn the representation of textual description. Basi-

cally, LSTM represents each time step with an input, a memory and an output
gate. BiLSTM has two parallel layers in both forward and backward directions.
Here, hft and hbt denote the output of LSTM unit in forward layer and back-
ward layer, respectively. We then concatenate these two hidden outputs as the
words representation:

h
(T )
t = [hft ;hbt ], (4)

Textual Attention. Not all words or phrases in a text are equally important
for predicting the target disease. To capture the most task-relevant elements of a
sentence, we employ the self-attention mechanism, which has significant effect on
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textual modeling. We use an alignment function to aggregate the representation
of the salient words to form an attention vector v(Ti). Specific formula are as
follows:

u
(Ti)
t = tanh(W (Ti)h

(Ti)
t + b(Ti)),

α
(Ti)
t =

exp(u(Ti)T
t u

(Ti)
t )

∑
t exp(u(Ti)T

t u
(Ti)
t )

,

v(Ti) =
∑

t

α
(Ti)
t h

(bi)
t .

(5)

We first feed the word representation h
(T )
t by a linear transformation to

obtain u
(Ti)
t . Then we measure the importance of the word by computing the

relatedness of u
(Ti)
t with a word-level context vector u(Ti) to obtain a normalized

importance weight α
(Ti)
t . Thereafter, we compute the attention vector v(Ti) as

a weighted sum based on the weight, which is the final representation of the
textual module.

4.2 Numerical Module

In clinical data, numerical features usually suffer from temporality, sparsity, nois-
iness and bias, etc. Therefore, we employ a CNN to learn the representation of
numerical features. We first convert all numerical values into one-hot represen-
tation. Then, CNN takes temporal matrix of numerical features as input.

CNN has strong ability on learning feature locality by its filters, and can
capture the important features with the highest value for each feature mapping.
Here, xi ∈ R

d denotes the d-dimensional numerical feature vector corresponding
to the i-th one-hot representation of numerical features from a piece of EHR.
Then xi can be represented as:

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn, (6)

where ⊕ denotes the concatenation operator. xi:i+j refers to the concatenation
of numerical feature vector xi,xi+1, · · · ,xi+j . A one-side convolution operation
involves a filter w ∈ R

d×h, which is applied to a window of h features to generate
a new feature. The feature ci is generated from xi:i+h−1 by

ci = f(w · xi:i+h−1 + b). (7)

The filters are applied to each possible window of each element x1:n to pro-
duce a feature mapping:

c = [c1; c2; · · · ; cn−h+1], (8)

where c ∈ R
n−h+1. Then, we apply a max pooling over the feature mapping and

take the maximum value:
h(d) = max{c}. (9)

By this, we obtain the raw discrete representation for numerical values.
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Numerical Attention. To explore the most relevant factors from the physical
indicators, we also employ an attention layer. Different from the self-attention
mechanism in textual attention, we use an alignment function to measure the
word representation h

(T )
t from textual module and discrete representation h(d)

from numerical module. Specifically,

u
(Ni)
t = tanh(W (Ni)

N h
(di)
t +W

(Ni)
T h

(Ti)
t + b(Bi)),

α
(Ni)
t =

exp(u(Ni)T
t u

(Ni)
t )

∑
t exp(u(Ni)T

t u
(Ni)
t )

, (10)

v(Ni) =
∑

t

α
(Ni)
t h

(di)
t ,

where W
(Ni)
N and W

(Ni)
T are weight matrices for words representation h

(T )
t and

discrete representation h(d), respectively. After the numerical attention layer, we
output the representation from numerical module.

4.3 Global Fusion

After encoding the textual and numerical parts of the i-th EHR in the sample dp,
we obtain the representation v(Ti) and v(Ni). We need to make comprehensive
learning for multiple time-sequential EHRs of the patient p. Therefore, we first
concatenate the above two representation of the i-th EHR:

EHRi = [v(Ti);v(Ni)]. (11)

Then, we use another BiLSTM to globally encode EHRi (i = [0, · · · ,K]) for
each EHR at each timestamp. Afterwards, we can obtain the final representation
of dp for the overall EHR sequence. Finally, we employ the softmax function as
a classifier to make final prediction based on the output representation.

5 Experiments Settings

5.1 Evaluation Settings

We conduct experiments on two datasets (hypertension → coronary heart
disease, hypertension → kidney disease). In our experiments, ten-fold cross-
validation settings are used to report the overall performance. Each dataset
is divided into ten equal sections, each decoded by the model trained from the
remaining nine sections. We randomly select one of the nine training sections as
the validating set to adjust hyper-parameters. The performance of all models is
measured by F1 score.
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Table 1. Parameter settings.

Parameter Value Parameter Value

max seq len 128 HglobalBiLSTM 400
max EHR num 50 λ 0.001
L 200 dropout 0.3
HtextBiLSTM 200 batch size 32
FCNN [2, 3, 4, 5] epoch 15

5.2 Parameter Settings

We set the dimension of hidden representation of textual BiLSTM and all embed-
ding dimensions as 200, and the hidden size of global BiLSTM is 400. Besides, L
denotes the dimension of the word vectors and FCNN represents the number of
filters of CNN layer. The sequence length is limited to 128, and the max number
of EHRs of one patient is limited to 50. We use Adam [33] to optimize the train-
ing with an initial learning rate λ of 0.001. Dropout is adopted for the attention
network with a 0.7 keeping rate. We initialize all matrices and vector param-
eters with Xavier methods [25]. The dropout rate is 0.3. All experiments are
conducted by using a GTX1080Ti GPU with 8 GB memory. Specific parameters
are shown in Table 1.

5.3 Baselines

To show the effectiveness of our model, we compare our model with multiple
baseline systems, which include two classes: discrete models (All discrete models
are implemented with sklean 0.21 toolkit.) and neural models (All neural models
are coded with keras 2.0 framework.).

Discrete Models. The representative discrete model includes Support Vec-
tor Machine (SVM), Naive Bayes (NB) and Gradient Boosting Decision Tree
(GBDT), which have been extensively utilized for text classification tasks,
achieving competitive results [40,41,56]. Besides, Chen et al. (2017) predict coro-
nary heart disease in hypertension patients by using a LR model with physical
indicators [10].

For discrete models, they can only take the discrete features as input. There-
fore, we represent the sentences with one-hot vectors, while keeping raw numer-
ical values as input features, and then we concatenate them as the input of
models. Moreover, discrete models cannot directly decode one cohort of EHRs
time-sequentially for a patient, so we concatenate all the one-hot vectors of each
EHR as the overall input of models.

Neural Models. We use two representative models as neural baselines includ-
ing CNN and BiLSTM, both of which are extensively employed in many NLP
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tasks. Our proposed model also employs these two basic models, where BiL-
STM encodes textual information and CNN encodes numerical values. For neu-
ral baselines, we additionally make CNN encode a text, or make BiLSTM encode
numerical values, or let them encode the concatenation of both textual informa-
tion and discrete values. Ren et al. (2019) predict kidney disease in hypertension
patients using a hybrid neural network model, which integrates BiLSTM and
autoencoder [47]. Besides, we also use a hybrid model of CNN+BiLSTM (CBiL-
STM) [34], which only takes as input the concatenation of textual information
and discrete values. Note that all these neural baselines only encode one piece
of EHR, so we use an additional BiLSTM for them to fusing the time-sequential
EHR representation, as our model does.

5.4 Feature Settings

In a EHR, there are two types of information: textual and numerical features.
In our experiments, we study the ablation by using different combinations of
two types of features for each model: 1) textual input only, note as Textual; 2)
numerical input only, note as Numerical; 3) textual input and numerical input,
note as Textual+Numerical.

To investigate the effectiveness of the dual-attention mechanism in our model,
we conduct ablation by removing the textual attention layer from textual mod-
ule, or removing the numerical attention layer from numerical module, or deleting
both the textual attention layer and numerical attention layer, respectively.

6 Experimental Results

6.1 Main Results

Table 2 shows the results of discrete models. Taking the prediction of coronary
heart disease as example, we can observe that the model LR proposed by Chen
et al. (2017) gives only 58.5% F1 score. The reason is that their model only uses
numerical physical indicators as input, and ignores the textual information of the
EHR, which is crucial for the final prediction. Furthermore, the performance can
be improved to 74.1% by integrating the textual description information. Among
all discrete models, GBDT achieves the best result (80.6% F1 score), based on
Textual+Numerical features. This is because GBDT contains multiple meta-
classifiers, which make the GBDT model more powerful. Similar to coronary
heart disease, the same trend can be found in the prediction of kidney disease.
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Table 2. Experimental results of discrete models, CHD denotes coronary heart disease.

Model Features CHD Kidney
F1 score (%) F1 score (%)

LR Numerical 58.5 60.6
Textual 70.3 68.5
Textual+Numerical 74.1 70.0

NB Numerical 52.6 61.6
Textual 68.6 66.0
Textual+Numerical 69.7 67.2

SVM Numerical 60.7 65.4
Textual 72.1 71.3
Textual+Numerical 74.6 71.8

GBDT Numerical 67.3 65.3
Textual 78.9 74.8
Textual+Numerical 80.6 76.5

Table 3. Results of different neural models. Original represents the original version of
our model. w/o T-Att denotes without textual attention, w/o N-Att denotes remov-
ing numerical attention, w/o T&N-Att denotes without both textual and numerical
attention. w/o Global means replacing the upper global BiLSTM encoder as a linear
transformation layer.

Model Features CHD Kidney
F1 score (%) F1 score (%)

CNN Numerical 70.5 72.6
Textual 83.6 82.7
Textual+Numerical 84.2 86.5

BiLSTM Numerical 72.6 71.0
Textual 82.3 81.3
Textual+Numerical 85.7 86.3

CBiLSTM Textual+Numerical 86.8 87.2
BiLSTM+AE Textual+Numerical 87.5 88.4
Original Textual+Numerical 91.9 90.6
w/o N-Att Numerical 77.7 75.4

Textual 86.1 84.3
Textual+Numerical 88.6 87.8

w/o T-Att Numerical 76.3 74.3
Textual 85.9 83.8
Textual+Numerical 87.6 86.5

w/o T&N-Att Textual+Numerical 87.5 88.5
w/o Global Textual+Numerical 80.4 74.2
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Table 3 shows the results of different neural models. Taking the prediction
of coronary heart disease as example, CNN gives 84.2% F1 score and BiLSTM
gives 85.7% F1 score, respectively, based on Textual+Numerical features. These
two simple neural models outperform traditional discrete models, even the best
discrete model GBDT. This shows the strong ability of neural models for the
task. By integrating BiLSTM, CBiLSTM achieves 86.8% F1 score with Tex-
tual+Numerical features, and gives a comparative result with the current best
model proposed by Ren et al. (2019), which investigate a hybrid neural model by
integrating BiLSTM and autoencoder [47]. This shows that the neural models
have a powerful ability to capture the intrinsic features from EHRs. Finally, the
proposed model gives the highest F1 score (91.9%) on Textual+Numerical fea-
tures. The same trend can be found in the prediction of kidney disease, and the
best result can be obtained (90.6% F1) by our model, outperforming the current
best model by a large margin. We also find that the performance of the model
slightly declines without textual attention or numerical attention. This indicates
that dual-attention module exerts the role in improving the performance. Fur-
thermore, we can observe that when replacing the global encoder layer with a
linear transformation layer based on the concatenation of time-series of EHRs
representation, the performances on two tasks drop a lot. This indicates the
effectiveness of the proposed global encoder for modeling the time-sequential
EHRs. The above analysis shows the effectiveness of the proposed model.

Besides, we can find that all model can achieve better performance based on
a combination of textual and numerical features compared with the only textual
features or numerical features. This is reasonable, since different types of features
in EHR can make different contributions. Moreover, we find that the models
with textual features can obtain better performance than those with numerical
features, demonstrating the usefulness of the diagnosis texts or descriptions in
clinic EHR. The main reason is that the textual data intuitively carry strong
cues for indicating the diseases association. For example, the most important risk
factors (e.g., the disease symptoms, and disease conditions), often are contained
in the textual description of a EHR. The neural model can effectively capture
such features and connections.

6.2 Effect of Word Embedding

Previous work shows that word representation is highly important to a neural
network model [21,53]. So we study the influences of word vector initialization,
by comparing pre-trained embedding Word2vec, pre-trained embedding Glove,
pre-trained embedding from bio&clinical corpus, and stochastically initialized
embedding. Specifically, for GloVe, we use Stanford publicly available embedding
trained on 6 billion words from Wikipedia and web text. For Word2vec, we train
a word embedding from Wikipedia corpus on 3.1 billion words using Google
Word2vec toolkit. For the bio&clinical embedding, we train it from biomedical
and clinical corpus: the PubMed Central Open Access subset (PMC) and the
available PubMed abstracts, to bring the rich functional semantic biomedical
and clinical knowledge for our model. The stochastically initialized embedding
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is initialized with uniform samples from [−
√

6
r+c ,+

√
6

r+c ], where r and c are
the number of rows and columns in the structure. All embedding parameters can
be trained and updated during training.

Figure 4 shows the results of different embeddings. We can see that word
embeddings with pre-trained initialization can improve the overall performance.
Meanwhile, the pre-trained embeddings from bio&clinical corpus can achieve
better performance, thanks to the additional transferred knowledge.

Fig. 4. Results of different word embeddings.

6.3 Impact of EHR Cohorts

Impact of Numbers of EHRs. For a patient p, one sample dp may contain a
list of EHRs. We now investigate the impact of the association prediction over
varying number of EHRs for a patient. We make statistics on the F1 score over
different number of EHRs on each patient’s sample based on the development
sets. The results are shown in Fig. 5, we can find that the model can obtain
better performance with more EHR numbers in the sample. Intuitively, this is
reasonable, because more sufficient information from EHRs can provide useful
clues or risk factors.

Impact of the Order of EHR Sequence. We further explore the impact of
different order for a EHR sequence. We first keep the original time-sequential
order, then we reverse the sequential order. We also shuffle the order of a
sequence. The results are displayed in Fig. 6. As what we exactly assumed, the
EHR sequences after shuffling cause negative influence on the performances of
two datasets. This indicates that some of the information behind the time-order
is useful for the association prediction. We also find the scores on the reversed
EHR sequences is slightly dropped, with an acceptable numbers. This owes to
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Fig. 5. F1 scores on different numbers of EHRs.

Fig. 6. Performances in different orders of EHR sequences.

the global bi-directional LSTM model, which encodes the EHR representation
from two directions, and makes it compatible with the reversed sequence.

6.4 Case Study

In order to validate the effectiveness of the proposed dual-attention mechanism,
we visualize the attention weights on two positive examples, which can illus-
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trate the risk factors for leading to coronary heart disease or kidney disease in
hypertension patients. The visualization is illustrated in Fig. 7.

Fig. 7. Visualization of textual and numerical attention.

For each example pair, the upper represents the numerical physical indicators,
and the lower represents the words or phrases in the textual description. The
color depth represents the weight. In the first example (hypertension → coronary
heart disease), the textual attention assigns larger weights for words “hyper-
tension”, “nausea”, and “headache”, and the numerical attention gives higher
weights on “Dbp”, “Pulse”. For the second example (hypertension → kidney dis-
ease), the numerical attention gives higher weights on “Dbp”, “Blood glucose”,
and “Sbp”. The textual attention gives higher weights on “facial edema”, “pal-
pitation”, “arrhythmia”, and “urination”. The words with high attention weights
represent possible risk factors that leads to this type of disease.
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6.5 Risk Factors

Fig. 8. Statistics of top 10 words/phrases highlighted by attention.

We further make statistics on the words or phrases to explore which factors
in the texts exactly are key for developing into coronary heart disease or kid-
ney disease in hypertension patients. Specifically, we first gather the top three
words or phrases which have higher attention weights in the textual description
information, and then show the top ten from all of them, as shown in Fig. 8. We
can find, for leading to coronary heart disease, the phrases “chest stifling”, “heart
palpitating”, “angina pectoris” and “headache”, etc., are the top ten keywords for
indicating the patient condition. These symptoms can be regarded as risk factors
for leading to coronary heart disease in hypertension patients. Note that these



Multiple Associated Diseases Prediction Using Neural Network 387

symptoms discovered by our system are much restricted by our used dataset,
and do not form any clinical or medical suggestions.

For leading to kidney disease, the words “hematuria”, “angina pectoris”,
“edema of extremities” and “frequent micturition”, etc., are the top ten keywords
describing the corresponding patient condition. Intuitively, we can draw a con-
clusion that a hypertension patient involves multiple symptoms of Fig. 8(a) at
the same time, and he or she is very likely to have coronary heart disease. If this
patient involves multiple symptoms of Fig. 8(b), he or she is very likely to have
kidney disease.

Table 4. Results from coronary heart disease and kidney disease to hypertension. Δ
means the difference between the score in this table and the score in reversed dataset
at Table 3. Note that we use both textual and numerical features for all models.

Model CHD Kidney
F1 score (%) Δ F1 score (%) Δ

CNN 85.6 1.4 84.2 −2.3
BiLSTM 87.8 2.1 83.4 −2.9
CBiLSTM 89.6 2.8 85.1 −2.1
Ours 93.5 1.6 89.4 −1.2

6.6 Diseases Association

In this paper, we aim to study multiple diseases association from hypertension to
coronary heart disease and kidney disease. A question can be naturally thrown:
can CHD or kidney disease directly lead to hypertension? Therefore, we construct
the datasets of (CHD → hypertension) and (kidney disease → hypertension),
following the previous construction process, and conduct experiments based on
the two reversed pairs of datasets.

The results are shown in Table 4 on both (kidney disease → hypertension,
CHD → hypertension) datasets, we can find that F1 scores are as significant
as that in Table 3. So we can say that the underlying association from kidney
disease to hypertension and from CHD to hypertension are both sufficient. The
observations coincide with the medical and clinical findings [24,28] that the asso-
ciations between hypertension and coronary heart disease, or the hypertension
and kidney disease are mutual and entangled.

7 Conclusion

We propose a dual-attention neural network model by integrating BiLSTM and
CNN for the prediction of coronary heart disease and kidney disease in hyper-
tension patients. Based on the constructed dataset from raw EHR data, the
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proposed model outperforms traditional statistical models and neural baseline
systems by a large margin. Meanwhile, the attention mechanism captures risk
factors that lead to coronary heart disease and kidney disease in hypertension
patients. In future, we will explore the associated prediction from coronary heart
disease and kidney disease to hypertension.
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Abstract. Knowledge graphs play a crucial role in the medical field.
Most existing knowledge graphs are manually created by experts or
extracted from medical encyclopedias, resulting in the omission of valu-
able knowledge from medical clinical practice. Entities like diseases and
symptoms in medicine exist at different levels, but current knowledge
graphs fail to handle the induction and integration of this multi-scale
information effectively. In our study, we constructed a knowledge graph
that better aligns with real clinical data and effectively integrates multi-
scale medical information by performing data preparation, medical entity
extraction, negation handling, relation extraction, and graph cleaning.
The reliability and rationality of the knowledge graph have been verified
through subjective and objective assessments.

Keywords: multi-scale knowledge · medical knowledge graph ·
knowledge graph construction

1 Introduction

Knowledge graphs express and store a large number of knowledge elements such
as entities, concepts, properties, and relationships in a structured way, forming
a knowledge network with associative relationships. It is widely used in various
fields such as healthcare [9], military [8], and finance [2]. With the development of
neural networks, knowledge graphs can provide support for other deep learning
tasks more effectively [11] and can also expand the scale of knowledge graphs
through deep learning [16], by which research on knowledge graphs is receiving
more and more attention from researchers.

Unlike other fields, medical knowledge has stronger specialization and higher
complexity. As shown in Fig. 1, this complexity is reflected in the multi-scale
characteristics of various types of medical knowledge such as symptoms, diseases,
signs, and locations, for example,“high fever” and “low fever” are both finer-
scale symptoms of “fever”. In many tasks in the medical field, such as assisted
diagnosis, medical Q&A, and ICD coding, information at different scales plays
an important role in refining task results and improving method robustness.
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For example, in an intelligent assisted diagnosis task, if an intelligent diagnosis
system diagnoses a patient with “acute pharyngitis” as “acute upper respiratory
infection”, it may seem like an incorrect diagnosis. However, in reality, “acute
pharyngitis” is a subclass of “acute upper respiratory infection”, so such an error
may not be strictly considered a mistake. Perhaps if the patient provides more
detailed information at a finer scale, the model can correct the result to “acute
pharyngitis”. However, current medical knowledge graphs generally ignore the
multi-scale characteristics of medical knowledge and do not effectively integrate
the hierarchical relationships between multi-scale medical knowledge into the
knowledge graph.

In terms of knowledge storage, most knowledge graphs store knowledge in
the form of triples (head entity, relationship, tail entity). The medical knowl-
edge described by each triplet is absolutely relevant (it can be understood that
the confidence level of each triplet is 1). However, in clinical practice, diseases
are often not absolutely related to other medical entities. For a certain disease,
some symptoms may occur in almost all patients with the disease, while oth-
ers may only appear in some patients. Whether the symptom appears in the
patient will be affected by other symptoms and signs of the patient. In knowl-
edge graphs stored in triple form, the relationships between these symptoms and
diseases are often blurred into the deterministic relationship of “disease-related
symptoms”, ignoring the modeling of the degree of correlation between diseases
and symptoms, resulting in information loss.

For medical knowledge, many connections between medical entities exist
implicitly in clinical text data, rather than explicitly in the cognition of medical
experts or medical encyclopedias. Currently, some researchers are constructing
medical knowledge graphs based on electronic medical record data [5,6,12,18].
However, in the process of extracting knowledge, they overlook the negation
expressions in medical record texts. For a patient, the descriptions of “having a
fever” and “not having a fever” have completely different meanings. If the con-
tent related to negation words such as “no” and “deny” is not handled separately,
it will inevitably lead to errors in the information contained in the constructed
knowledge graph.

To address the shortcomings of current medical knowledge graphs, we have
constructed a knowledge graph that is more in line with real clinical data and
incorporates hierarchical relationships between multi-scale knowledge based on
electronic medical record data, using a combination of manual construction and
automatic construction. We have verified the reliability of the constructed knowl-
edge graph and the rationality of the graph construction method through subjec-
tive evaluation by medical experts and objective evaluation through experiments.

The main contributions of this article are as follows: 1. Believing that infor-
mation at different scales is crucial for various applications in the medical field,
we effectively organize and integrate the hierarchical relationships between med-
ical entities of different scales into the constructed knowledge graph. These enti-
ties with hierarchical relationships include diseases, symptoms, signs, and loca-
tions. 2. In the process of mining implicit connections between medical entities
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from electronic medical record data, this paper proposes a new method to model
the correlation degree between medical entities, which ensures the rationality and
reliability of the medical knowledge graph. 3. When mining the relationships
between medical entities through electronic medical record texts, we handle the
entities related to negation words in the medical record texts separately, fur-
ther improving the quality of the knowledge graph. This is a feature that other
related works do not possess.

The remaining parts of the article will be presented in the following order.
In Sect. 2, we will review related work on the construction of medical knowledge
graphs. Section 3 will introduce the methods used to construct the knowledge
graph in this article. Section 4 will describe how we evaluate the quality of the
constructed knowledge graph. Section 5 will provide a summary of the work done
in this article.

Fig. 1. In the medical field, entities have multi-scale characteristics.

2 Related Work

With the advancement of technology in the field of knowledge graphs, the
construction of specialized and comprehensive medical knowledge graphs has
become a hot research topic. The construction of medical knowledge graphs is
driven by both medical knowledge resources from professional institutions or
open-source, such as UMLS [1] and SNOMED CT [3], and real world clinical
medical data.

There are some works constructing graphs based on co-occurrence relation-
ships between entities. Finlayson et al. [4]analyzed and merged medical terms
using over 20 million clinical medical data spanning over 19 years, constructing a
co-occurrence matrix of 1 million medical clinical concepts to quantify the rela-
tionships between medical terms. Some works focus on designing a knowledge
graph construction system for specific data, which are mainly based on rules. Lin
et al. [7] proposed the MEDLedge model, which employs a hierarchical segmen-
tation approach and a voting algorithm to extract entities and relationships from
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clinical data and construct a knowledge graph. Shi et al. [13] utilized data from
the Health Information System from Zhejiang, China, to propose a medical infor-
mation integration model that standardizes heterogeneous medical information
into a shareable and consistent format. Additionally, some constructed knowl-
edge bases are disease-centered, without relation exploitation between other
types of entities. Rotmensch et al. [10]extracted medical concepts from over
270 thousand patient records, utilizing probability models like Bayesian models
to automatically construct a knowledge graph that links diseases and symp-
toms, creating a high-quality knowledge base from medical records. Zhao et al.
[18] sampled 992 medical records, representing medical entities as nodes and
co-occurrence relationships as edges, to establish an EMR-based medical knowl-
edge network (EMKN). Furthermore, Zhao et al. [17] integrated EMKN with
Markov Random Fields (MRF) for general medical knowledge representation,
including five types of medical entities, and designed different energy functions
based on inference scenarios. Li et al. [6] constructed a knowledge graph from 16
million clinical records and comprehensively described the entire graph construc-
tion process. In contrast to traditional triplets, they proposed a new quadruplet
structure that leverages some attributes, including co-occurrence probability,
reliability, and specificity, to better express the relationship between entities.
However, their approach to constructing knowledge graphs only considers the
relationships between diseases and other types of medical entities, while neglect-
ing the interconnections between entities beyond diseases. Considering the large-
scale knowledge graph, Yu et al. [15] built the first large-scale publicly available
biomedical knowledge graph, containing millions of bilingual concepts and terms
and 7.3 million relation triplets, which are all generated algorithmically without
human participation.

To the best of our knowledge, there is no work that has taken advantage of
the multi-scale hierarchical relationships between entities in building a knowl-
edge graph based on electronic medical record texts. Additionally, most of them
only consider the correlation information between diseases and other types of
entities, while ignoring the correlation information between entities other than
diseases. Furthermore, no researchers have performed additional effective han-
dling of negative expressions in the process of constructing knowledge graphs
from electronic medical records, which greatly affects the quality of the knowl-
edge graphs.

3 Method

In this study, we comprehensively consider the professionalism of medical knowl-
edge and the authenticity of clinical knowledge. We determine the scale infor-
mation of medical entities based on expert experience and obtain the entity
relationships from medical records through automated methods. After five steps
including data preparation, medical entity extraction, negation handling, rela-
tionship extraction, and graph cleaning, we construct a high-quality multi-scale
medical knowledge graph. The overall construction process is shown in Fig. 2.
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Fig. 2. Framework of our method to build a multi-scale medical knowledge graph.

3.1 Data Preparation

We aimed to construct a knowledge graph focused on lung diseases with a hier-
archical structure. For these lung diseases, we sampled some medical records
from the electronic medical record database, ensuring the distribution of medical
records related to different diagnoses was as uniform as possible. These records
will be used for both the construction of a multi-scale medical knowledge graph
and as a dataset for subsequent validation of the quality of the knowledge graph.

Each medical record includes multiple sections such as “admission record”,
“initial course record”, “examination report”, and “discharge record”. Each
section contains multiple fields. To ensure comprehensive coverage of knowl-
edge, we will use a total of 7 sections including “admission record”, “examina-
tion report”, and “discharge record”, and 24 fields including “chief complaint”,
“present illness history”, and “main symptoms” for the construction of this
knowledge graph.

In addition to medical record data, the hierarchical relationships between dis-
eases, symptoms, signs, and locations are essential for constructing a multi-scale
medical knowledge graph. They organize the hierarchical information between
medical entities and establish connections between the information hierarchy
and diagnostic hierarchy. This hierarchical knowledge is annotated by medical
experts.

3.2 Medical Entity Extraction

After obtaining the medical records required to construct the knowledge graph,
we need to extract medical entities of different scales from the unstructured
medical record texts. In the medical record texts, there are medical entities such
as diseases, symptoms, signs, and medicine which are important for accurate
diagnosis. It is crucial to extract these entities effectively, accurately, and com-
prehensively for the high-quality construction of the knowledge graph.
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First, we remove irrelevant information such as symbols and stop words from
the medical record texts. Then we perform medical entity recognition. Regard-
ing the methods for entity recognition, we compared statistical-based recog-
nition methods with dictionary-based bidirectional maximum matching recog-
nition methods. It was observed that the statistical-based recognition method
tends to identify entities at a very rough level. Entities with finer granularity
often have longer text representations, and the statistical-based method often
recognizes a fine-grained entity as multiple coarse-grained entities. For instance,
the term “ANCA-associated vasculitis” is identified as three separate entities:
“ANCA”, “associated”, and “vasculitis”. “Chronic kidney disease stage 5” is
recognized as “chronic” and “kidney disease”. Obviously, this is very disad-
vantageous for constructing a medical knowledge graph with multiple scales of
information. In contrast, the dictionary-based bidirectional maximum matching
method effectively resolves this issue. Consequently, the dictionary-based bidi-
rectional maximum matching algorithm is employed in this study for extracting
medical entities.

3.3 Negation Handling

During the entity extraction process, we have observed a significant presence of
disease denials and negative symptoms in the medical records. For instance, in
the phrase “no fever symptoms, without vomiting”, both “fever” and “vomit-
ing” are negative symptoms. If these negative symptoms are not appropriately
addressed, they may be mistakenly identified as positive symptoms, leading to
confusion and compromising the quality of the knowledge graph.

To mitigate this issue, we employ text understanding techniques to identify
entities associated with disease denials and negative symptoms in the medical
records. Subsequently, we process these entities separately and incorporate the
negation semantic information into the knowledge graph.

3.4 Relation Extraction

Furthermore, we need to extract the relationships between entities from medical
records. Unlike conventional knowledge graphs that store entity relationships
using triplets, we calculate a weight for each possible triplet to measure its
confidence.

We refer to the graph construction method of TextGCN [14] and model the
medical record text as a disease document node. By calculating the TF-IDF
weights between the document node and various medical entities in the medical
record, we model the relevance between disease and non-disease entities. For the
relevance between non-disease medical entities in the medical record text, we
use PMI weights for modeling.

When calculating the weights between nodes in the knowledge graph, we take
into account that the number of medical records for each diagnosis varies and
the length of each medical record text is also different. Therefore, we consider
both factors and normalize the weights to a range between 0 and 1.
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In addition, for entities with hierarchical relationships in the hierarchy sys-
tem, considering that the weight reflects the relevance between two entities and
the hierarchical relationship is annotated by medical experts, we believe that
medical entities with hierarchical relationships have a strong correlation, so we
directly set their weight to 1.

3.5 Graph Cleaning

After completing the preliminary construction of the knowledge graph, there
remains a significant amount of redundant information that needs to be pro-
cessed. Whether it is introducing the relationship between disease and non-
disease entities through TF-IDF or introducing the relationship between non-
disease entities through PMI, a considerable amount of noise is introduced into
the constructed knowledge graph. The abundance of noise makes the connection
between different diseases relatively similar and difficult to distinguish.

Therefore, to enhance the diversity of connections between different diseases
in the graph, we undertake a cleaning process on the preliminary constructed
knowledge graph. Since the weights between entities directly reflect their rele-
vance, we establish thresholds for both PMI weights and TF-IDF weights. By
setting these thresholds, we delete edges with lower relevance, thereby further
improving the quality of the knowledge graph.

4 Knowledge Graph Quality Assessment

In order to validate our method, we selected 28 lung diseases that have hierar-
chical relationships with each other as the disease system within the knowledge
graph. We sampled a total of 4548 medical records with main diagnoses that
fall within the aforementioned 28 diseases from a large electronic medical record
database; and ensured that the distribution of medical records related to different
diagnoses was as uniform as possible. Based on the above process, we constructed
a multi-scale medical knowledge graph containing 21,950 entities and 1,540,375
edges, in which 3346 multi-scale entities are included, while the numbers of each
type of edge are illustrated in Table 1. The quality of this knowledge graph was
then verified through subjective and objective evaluations.

During the subjective evaluation, we primarily focused on two questions:
1. For sibling disease pairs, whether the differences reflected in the knowledge
graph support the differentiation of the two diseases? 2. For parent-child disease
pairs, whether there is consistency at the scale level between the hierarchy of
diseases and the hierarchy of related entities? In objective evaluation, we veri-
fied the quality of the constructed knowledge graph and the effectiveness of the
knowledge graph construction method through a disease classification task.

4.1 Subjective Assessment

After completing the construction of the knowledge graph, we conducted a
preliminary evaluation to assess the quality of the knowledge graph, verifying
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Table 1. Number of Different Types of Edges in our Knowledge Graph.

hierarchical edge TF-IDF edge PMI edge

3346 127403 1409626

whether the information reflected by different diseases in the knowledge graph
has discriminative significance. We selected some representative sibling disease
pairs and parent-child disease pairs from the disease tree, extracted disease sub-
graphs from the knowledge graph, compared the disease subgraphs, and counted
the discriminative entities between disease pairs. Medical experts then evalu-
ated the discriminative entities extracted from the knowledge graph to verify
whether they conform to the clinical significance of discrimination. Our method
for extracting discriminative entities is illustrated in Fig. 3.

Fig. 3. This figure illustrates our method for extracting discriminative entities. The
thickness of the lines connecting diseases and their related entities represents the degree
of correlation between them. In two scenarios, the associated entities of a disease are
extracted as discriminative entities. 1) The entity is only associated with that disease
and not with its sibling diseases. 2) The degree of correlation between the entity and
the disease is much higher compared to its sibling diseases (shown as a significant
difference in line thickness in the figure).

When verifying the information difference between sibling disease pairs, we
took “obstructive pneumonia” and “bacterial pneumonia” as examples. We
sorted the discriminative entities reflected by these two diseases in the knowledge
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graph based on their weights. We found that in the knowledge graph, the dis-
criminative entities of “obstructive pneumonia” include “pulmonary squamous
cell carcinoma”, “malignant tumor immunotherapy”, “small cell lung cancer”,
etc., while the discriminative entities of “bacterial pneumonia” include “T lym-
phocyte subset”, “acid-fast staining”, “serum myoglobin”, etc. We asked doctors
to label these high-confidence discriminating entities extracted from the knowl-
edge graph. The results of the doctor’s labeling are shown in Table 2. (where� represents approval, × represents objection, � represents uncertainty), it is
evident that doctors also believe these entities have significant discriminatory
value for these two diseases in clinical practice. In addition, relevant medical
knowledge further demonstrates the reliability of the knowledge graph. Medi-
cal knowledge shows that the cause of bacterial pneumonia is bacterial infec-
tion, and common pathogens include Streptococcus pneumoniae, Haemophilus
influenzae, Staphylococcus aureus, etc.; while the cause of obstructive pneu-
monia is chronic obstructive pulmonary disease (COPD) and other respiratory
system diseases, leading to airway narrowing, gas exchange disorders, etc. We
observed that the discriminative entities of bacterial pneumonia primarily consist
of examination entities, while the discriminative entities of obstructive pneumo-
nia mainly include some obstructive lung diseases, which are consistent with the
clinical etiology of the two diseases. Therefore, we believe that the associated
entities of sibling diseases in the constructed knowledge graph have differential
information for discrimination.

Table 2. Discriminative Entities of Sibling Disease Pair(Bacterial Pneumonia and
Obstructive Pneumonia), in which � represents APPROVAL, × represents OBJEC-
TION, � represents UNCERTAINTY.

Disease Discriminative Entities from Knowledge Graph Expert

Annotation

Bacterial Pneumonia
(细菌性肺炎)

T lymphocyte subpopulation(T淋巴细胞亚群) �

acid-fast stain(抗酸染色) �

acute upper respiratory tract infection(急性上呼吸道感染) �

absolute count(绝对计数) �

serum myoglobin(血清肌红蛋白) �

vena epigastrica(腹壁静脉) ×
Serum troponin T(血清肌钙蛋白T) �

gram stain(革兰染色) �

Obstructive Pneumonia
(阻塞性肺炎)

squamous-cell lung cancer(肺鳞癌) �

Castleman disease(castleman病) �

aversion to cold with fever(恶寒发热) �

immunotherapy for malignant tumors(恶性肿瘤免疫治疗) �

lung-distension(肺胀) �

lung adenocarcinoma(肺腺癌) �

small cell lung cancer(小细胞肺癌) �

liver puncture(肝脏穿刺) ×

In addition, we also observed the consistency of discriminative entities
between parent-child disease pairs, confirming the consistency of the scale level
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between superordinate and subordinate disease entities and other types of super-
ordinate and subordinate entities. We took the three diseases “respiratory tract
infection”, “acute upper respiratory tract infection” and “pulmonary infection”
as examples. “Acute upper respiratory tract infection” and “pulmonary infec-
tion” are both sub-disease nodes of “respiratory tract infection”. We found that
in the knowledge graph, “neck” is the discriminative entity for “respiratory tract
infection”, while the sub-entities “pharynx” and “tonsil” of “neck” are the dis-
criminative entities for “acute upper respiratory tract infection”. “Pain” and
“enlargement” are the discriminative entities for “respiratory tract infection”,
while the sub-entities “chest pain” and “enlarged cardiac silhouette” of “pain”
and “enlargement” are the discriminative entities for “pulmonary infection”.
Figure 4 shows the consistency of diseases and symptoms in terms of scale in the
knowledge graph. It can be seen that the constructed knowledge graph not only
reflects the differences in related entities between sibling diseases but also the
associated entities of parent-child diseases have consistency at the scale level,
which basically meets our expectations for the quality of the knowledge graph.

Fig. 4. For parent-child disease pairs (take “Respiratory Tract Infection”, “Acute
Upper Respiratory Tract Infection” and “Pulmonary Infection” as examples), there
is consistency at the scale level between the hierarchy of diseases and the hierarchy of
related entities.
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4.2 Objective Assessment

In order to further verify the quality of the constructed knowledge graph, we
designed a simple disease classification task. We used medical records as input,
extracted all medical entities from the records, and connected them to the knowl-
edge graph. Based on these entities, we extracted a subgraph from the knowledge
graph and directly classified it into 28 disease categories.

It is worth mentioning that in this validation task, we did not have any model
training process. For each subgraph of medical records, we set the node features
as 28 dimensions, with each dimension representing the TF-IDF weight value
of the node with respect to the 28 diseases. The PMI weights between nodes
in the subgraph were stored using an adjacency matrix. Then, we read out
each subgraph node into a 1*28 dimensional vector, and after applying softmax
operation, we unexpectedly achieved 44.0% accuracy in the 28-class classification
of the medical records. It should be noted that if these test data are randomly
classified into 28 categories, the performance can only achieve an accuracy of
5.1%. Based on this, we constructed a knowledge graph without considering
the handling of negation words; and applied this knowledge graph to the same
classification task. We found that the accuracy of the classification significantly
declined to 41.5%, indicating the importance of negation word handling for the
quality of the knowledge graph.

We also compared the performance of Bert on our dataset. Clearly, without
any training data, Bert is unable to classify these diseases. However, our knowl-
edge graph method can achieve a classification accuracy of 44.0% in the case of
zero-shot. This suggests that the quality of the knowledge graph we constructed
has a certain guarantee. In Table 3, we present the performance of different meth-
ods on the 28-classification task, in which methods with “(*)” mean that they
are zero-shot predictions.

Table 3. Performance of Different Methods on the 28-classification Task(Among them,
methods with * mean that they are zero-shot predictions.)

Method accuracy macro-precision macro-recall macro-f1

random(*) 0.051 0.028 0.033 0.030

KG-based w/o negation
handling(*)

0.415 0.519 0.419 0.464

KG-based w/ negation
handling(*)

0.440 0.541 0.443 0.487

Bert 0.521 0.492 0.510 0.501

5 Conclusion

In this paper, we constructed a multi-scale medical knowledge graph by mining
the hidden connections between medical entities in electronic medical record
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data and introducing medical multi-scale information through expert annotation.
It is worth noting that we also considered the impact of negation words in
medical record texts on the quality of the knowledge graph and made additional
processing during the construction of the knowledge graph. Subsequently, we
preliminarily confirmed the quality of the constructed knowledge graph through
subjective evaluation by medical experts, and further confirmed the effectiveness
of our multi-scale knowledge graph construction method and the importance of
handling negation through objective evaluation in experiments.

Acknowledgments. The work is supported by National Key R&D Program of China
(2021ZD0113404).
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Abstract. Clinical gout arthritis data tracks changes as essential indicators and
reflects the recurrence status of patients within several weeks after patients’ medi-
cation. Although the data may contain rich patient information, it is difficult to be
fully utilized due to clinical data quality issues such as various time lengths, data
missing, irregular sampling, etc. Time series prediction models have the poten-
tial to deal with these data problems. This paper compares a list of time series
prediction models on the indicators of patients with gouty arthritis. We collected
real data from the Guangdong Provincial Traditional Chinese Medicine Hospital
including 160 patients. The Bidirectional long short-term memory (Bi-LSTM)
model and the Crossformer model are applied to predict future physiological indi-
cators and the recurrence status of patients. According to the results of Bi-LSTM
and Crossformer, time series prediction models demonstrate strong performance
in forecasting physiological indicators and the recurrence status of patients.

Keywords: Gouty arthritis · Disease prediction · Multivariate Time series
prediction · Bi-LSTM · Crossformer

1 Introduction

Gouty arthritis is a common inflammatory disease that is aroused by the sedimentation
of Monosodium Urate (MSU) in joints or soft tissues, directly related to hyperuricemia
caused by the disorders of purinemetabolism [1]. Patientswith gouty arthritis often suffer
from severe arthritis pain, joint malformations and tophus, and have a high likelihood
of developing various comorbidities due to hyperuricemia, mainly affecting the patient
kidney and cardiovascular system [2]. The prevalence of gouty arthritis is 1% to 6.8%
worldwide [3] and 1.1% in China [4]. Unfortunately, the current situation of gout disease
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treatment is unsatisfactory. Many reasons are drawn out, for example, 22.7% of patients
are unable to sustain theirmedication due to side effects such as gastric ulcers and allergic
reactions [5]. Therefore, more therapeutic interventions are desperately needed to meet
different requests of individuals. If a model exists for predicting disease recurrence and
the alterations in physical indicators of patients with gouty arthritis in advance, based
on the patient’s time series data, it would be advantageous for physicians to proactively
devise treatment plans and expedite the patient’s recovery as swiftly as possible.

As a typical task for machine learning methods, time series prediction is mainly used
to analyze ordered data and make predictions about future data based on the informa-
tion hidden in the former. In recent years, with the development of artificial intelligence
and machine learning technology, predictive models based on neural networks and deep
learning have also attracted more and more attention. Therefore, an increasing number
of neural networks are being used to learn representations of data sets that are more chal-
lenging to understand [6, 7]. Many neural network models have demonstrated excellent
performance for tasks in the medical field. These successes have made researchers and
scholars in the field of healthcare aware of the excellent performance of recurrent neu-
ral networks (RNN) in the representation and processing of patient data [8–14]. The
time series prediction methods used in this paper are the Bi-LSTM based on improved
recurrent neural network and Crossformer based on Transformer architecture.

Sequence models such as long short-term memory (LSTM) recurrent neural net-
works [15] have achieved advanced results in many time series prediction applications,
including speech recognition [16] andmyoelectricmotion decoding [17]. In recent years,
the application of LSTM in the biomedical field has become more and more frequent.
The correlation of past events has been required taking into account among the task of
making predictions in the field ofmedicine, where the LSTM’s architecture is well suited
[18]. LSTM is used to combine the analysis of episodic clinical events and continuous
monitoring data in the ICU environment and to predict the deterioration of a patient’s
condition [19]. LSTM is used to model multivariate pediatric intensive care time series
to predict diagnosis for children. Pham et al. [20] proposed an extension of the LSTM
model that uses information about the patient’s diagnosis to modulate the input gate of
the LSTM.At the same time, the information about the patient’s diagnosis and procedure
or medication received is used to modulate the forgetting gate and output gate. Other
studies on medication adherence have also confirmed a strong relationship between time
series predictions and patients’ clinical history events [21, 22].

In recent years, novel time series forecasting methods have emerged, outperforming
traditional approaches across various domains. While research historically focused on
univariate time series forecasting, which analyzes temporal dependencies in individual
measurements, practical applications often involve multivariate time series forecast-
ing, where interconnected variables are more prevalent. With the rapid growth of deep
learning, researchers are increasingly turning to deep learning models to address time
series forecasting challenges. Deep learning models excel at data modeling and repre-
sentation, often yielding superior results compared to traditional models [23]. Presently,
significant research efforts are directed towards Transformer models, which hold great
promise [24, 30–33]. However, Transformermodels [25], known for self-attentionmech-
anism, excel at modeling autocorrelation within individual sequences but may overlook
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dependencies between variables in different dimensions. Unlike univariate time series
forecasting, the complexity of multivariate time series forecasting arises from potential
interactions among data features across different dimensions, rather than just focusing
on autocorrelation within individual sequences.

To that end, this paper utilizes theBi-LSTMmodel andCrossformermodel to explore
the use of time series prediction models to mine essential indicators of gout patients. The
data is 896 real outpatient medical records of 160 patients from Guangdong Provincial
Traditional Chinese Medicine Hospital. The models can effectively predict the interval
period and acute phase of the patients, which have dramatic effects on patients’ life
quality and also serve as a certain reference for clinical medication arrangement and
treatment.

The main contributions of this paper lie in the three aspects:

1) To the best of our knowledge, this is the first application of time series prediction
models on forecasting recurrence and changes in physiological indicators among
patients with gouty arthritis.

2) Through applying the Bi-LSTM model, the accuracy in predicting the recurrence
status of patients with gouty arthritis reaches 87%. These results can assist healthcare
professionals in devising proactive treatment plans for patients, offering valuable
insights for clinical practice.

3) In comparison to the latest state-of-the-art models in recent years, the Crossformer
model exhibits outstanding performance, showcasing an improvement ranging from
5% to 25% in predicting the physiological indicators of patients with gouty arthritis.

2 The Methodology

2.1 The Overall Framework

The overall framework of application of time series prediction model for the diagnosis
and treatment of gouty arthritis is shown in Fig. 1. The clinical indicator data and patient
recurrence status dataset are extracted from clinical electronic medical records (EMR)
and patient tracking log first. Then the data pre-processing mainly aims at combining
the indicator data and the recurrence status dataset. Each indicator data of the patients
should be matched with the recurrence status of the specific patient at the specific time,
to form the series data. Afterwards, the series data is sent to the models. Two models are
applied, the Bi-LSTM model and the Crossformer model. Both models are time series
prediction models trained for the prediction of certain time series data.

2.2 LSTM Model

Long Short-TermMemory recurrent neural network (LSTM) is a classical recurrent neu-
ral network (RNN) structure used to handle modeling and prediction tasks for sequence
data. LSTM introduces a gating mechanism based on common RNN. Through these
gating mechanisms, LSTM can better capture long-term dependencies, effectively avoid
the problems of gradient disappearance and gradient explosion, and achieve better per-
formance in sequence modeling tasks. The structure of a single LSTM unit is shown
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Fig. 1. The framework of time series prediction model for the treatment of gouty arthritis.

in Fig. 2. In the structure, bf , bi, bo, and ba respectively represent the bias weight of
the forget gate, input gate, output gate and the feature extraction process; xt represents
the input of the moment t, C(t − 1) and C(t) respectively represents the cell state of
the moment t − 1 and the moment t, ht−1 and ht respectively represents the state of the
hidden layer of the moment t − 1 and t.

Fig. 2. The structure of a single LSTM unit.

The core idea of LSTM is to guide the flow of information and update memory
through three gate control units (input gate, forget gate and output gate). Specifically,
the LSTM contains the following key components:

(1) Cell State: The cell state is a memory unit in LSTM, a line running through the
model that is mainly used to store and transmit information of hidden states. The
cell state is updated at each time step according to the input gate, the forget gate and
the extracted feature. The update of the cell state is shown in Eq. (1). i(t), f (t) and
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a(t) respectively represent the computational content of the input gate, the forget
gate, and the feature extraction.

C(t) = C(t − 1) � f (t) + i(t) � a(t) (1)

(2) Input Gate: The updating of the neuron state is controlled by the input gate. A
combination of the Sigmoid activation function and the tangent hyperbolic activation
function is used to determine what information needs to be updated. As shown in
Eq. (2), the tanh function is used to extract the valid information in the current
input, while the Sigmoid function determines the information that needs to be added
to the cell state through Eq. (3). Under the joint action of the two, the input gate
of LSTM will screen and grade the extracted effective information component. The
tangent hyperbolic function represented in Eq. (2) is shown in Eq. (4). The activation
function Sigmoid represented in Eq. (3) is shown in Eq. (5).Wi andWa represent the
weight coefficients of ht−1 and xt respectively of the input gate and feature extraction
process.

a(t) = tanh(Wa · [ht−1, xt] + ba) (2)

i(t) = σ(Wi · [ht−1, xt] + bi) (3)

tanh(x) = 1 − e−2x

1 + e−2x (4)

σ(x) = 1

1 + e−x
(5)

(3) ForgetGate: The information that needs to be forgotten in the cell state at the previous
moment is determined by the forget gate. It compresses the input to the interval of
(0,1) through the Sigmoid activation function, and forgets the information by judging
the result of multiplying the cell state and the output of the forget gate at the previous
time. The process of filtering using the Sigmoid function in the forgetting gate is
described in Eq. (6).Wf represents the weight coefficient of ht−1 and xt of the forget
gate.

f (t) = σ(Wf · [ht−1, xt] + bf ) (6)

(4) Output Gate: The information that needs to be output in the cell state at the current
moment is determined by the output gate. This part of the information is determined
by the Sigmoid activation function, and the cell state is multiplied by the output of
the output gate to obtain the final output of LSTM. The calculation process of the
output gate is described in Eq. (7).Wo represents the weight coefficient of ht−1 and
xt of the output gate. The final state of the hidden layer at the moment t is represented
in Eq. (8), which is calculated from the output gate and the cell state at the current
time. � is the Hardmard Product.

o(t) = σ(Wo · [ht−1, xt] + bo) (7)

h(t) = o(t) � tanh(C(t)) (8)
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2.3 Bi-LSTM Model

Although the traditional LSTM has some improvement in solving the problems of gradi-
ent vanishing and gradient explosion, it still has some limitations, such as large number
of parameters and high computational complexity. With the development of deep learn-
ing, some improved LSTMvariants (such as Bidirectional LSTM,Gated Recurrent Unit,
Mogrifier LSTM, etc.) have been proposed to further improve the performance of the
model.

Bidirectional Long short-term memory recurrent neural network (Bi-LSTM) is an
extended RNN structure used to handle modeling and prediction tasks of sequence data.
Compared to traditional LSTM, Bi-LSTM [26] introduces an additional reverse LSTM
layer, allowing information to be passed bi-directionally from the past to the future and
from the future to the past at the same time. The double layers better fulfill the task of
capturing contextual information.

Bi-LSTM has a good performance in sequence modeling tasks, especially for tasks
that need to consider contextual information, such as language modeling, named entity
recognition, sentiment analysis, etc. Bi-LSTM can capture dependencies and patterns
in sequences more accurately. The input layer in Bi-LSTM indicates the input of each
unit, and xt is the input of the time. The output layer indicates the output of each unit,
and ot is the output of the time. The timing information t of the time is represented by
ht and ht ′. The unit structure of Bi-LSTM is shown in Fig. 3.

Fig. 3. The structure of a Bi-LSTM unit.

Comparedwith LSTM,Bi-LSTMhas strongermodeling ability, but correspondingly
has higher computational complexity. Several differences between LSTM and Bi-LSTM
are as follows: information flow direction, parameter number, hidden states and output
representation.

(1) Direction of information flow: In LSTM, information can only be transmitted one
way from the past to the future in time series; An additional layer of reverse LSTM
is introduced in Bi-LSTM, making it possible for information to be passed bi-
directionally from past to future and from the future to the past at the same time,
so that the model can take advantage of both the past and the future contextual
information.
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(2) Number of parameters: LSTM has only one layer in one direction, so the number
of parameters is relatively small; Bi-LSTM contains a forward LSTM layer and a
reverse LSTM layer, so the number of parameters is relatively large.

(3) Hidden states: The hidden states of LSTMonly contain the information of the current
time step; The hidden states of the Bi-LSTM are composed of the hidden states of the
forward LSTM layer and reverse LSTM layer, with information of both the past and
the future hidden states contained. Equation (9) and (10) show the use of the past and
the future information by Bi-LSTM. ht−1, ht , h′

t and h
′
t+1 respectively represent the

timing information of a time t−1 on the forward LSTM layer, the timing information
of the time t on the forward LSTM layer, the timing information of the time t on the
reverse LSTM layer, and the timing information of the next time t+1 on the reverse
LSTM layer. ωif , ωf , ωib and ωb respectively represent the weight coefficient of
information from the input layer to the forward LSTM layer, the weight coefficient
of the forward LSTM layer, the weight coefficient of the input layer to the reverse
LSTM layer, and the weight coefficient of the reverse LSTM layer.

ht = f (ωif xt + ωf ht−1) (9)

h′
t = f (ωibxt + ωbh

′
t+1) (10)

(4) Output representation: The output of Bi-LSTM is a combination of forward LSTM
layer and reverse LSTM layer outputs, with both the past and the future predictions
contained. The output representation of Bi-LSTM is shown in Eq. (11). ωfo and ωbo
respectively represents the weight coefficients from the forward LSTM layer to the
output layer and the weight coefficients from the reverse LSTM layer to the output
layer.

ot = g(ωfoht + ωboh
′
t) (11)

2.4 Crossformer Model

In multivariate time series forecasting, the goal is to predict future values of a time
series at a specific time point xT+1:T+τ ∈ R

τ×D based on historical data x1:T ∈ R
T×D,

where the number of future and past time steps is denoted by τ and T , and D repre-
sents the number of variables. Improved predictive accuracy is often achieved when
variables exhibit correlation. The Crossformer model [27] comprises three main compo-
nents: the Dimension-Segment-Wise (DSW) embedding layer, the Two-Stage Attention
(TSA) layer, and the Hierarchical Encoder-Decoder (HED) [28] architecture. The DSW
embedding represents multivariate time series, the TSA layer captures dependencies
among embedded segments, and the HED architecture combines these components to
utilize information and features from various dimensions for the prediction task.

2.4.1 Dimension-Segment-Wise-Embedding

Traditional Transformer-based models for multivariate time series forecasting embed-
ded data points into vectors to capture temporal dependencies, but failed to capture
dependencies across variable dimensions, constraining predictive performance.
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In Dimension-Segment-Wise (DSW), data within each dimension is divided into
segments Lseg of a specific length L for embedding, resulting in a two-dimensional vector

array H =
{
hi, d |1 ≤ i ≤ T

Lseg
, 1 ≤ d ≤ D

}
. Each vector hi, d in the array represents a

univariate time series, created through operations like linear projection and positional
embeddings. Notably, the projectionmatrix E ∈ R

d mod el×Lseg and positional embeddings
E(pos)
i, d ∈ R

d mod el are trainable components.

x1:T =
{
x(s)
i, d |1 ≤ i ≤ T

seg
, 1 ≤ d ≤ D

}
(12)

x(s)
i, d = {

xt, d |(i − 1) × Lseg < t ≤ i × Lseg
}

(13)

hi, d = Ex(s)
i, d + E(pos)

i, d (14)

2.4.2 Two-Stage Attention

Cross-Time Stage. The TSA layer accepts a 2D array labeled as Z ∈ R
L×D×d mod el ,

with dimensions L and D. Z can be acquired from DSW embedding or preceding TSA
layers. For the sake of simplicity in notation, Zi, : signifies the vectors at the time step
i, while Z:, d signifies those spanning all time steps in dimension d . Throughout the
cross-time stage, multi-head self-attention is employed individually for each dimension.
The calculation is shown in Eq. (15) and (16).

Ẑ time
:, d = LayerNorm

(
Z i, : + MSAtime(Z:, d ,Z:, d ,Z:, d )

)
(15)

Ztime = LayerNorm
(
Ẑ time + MLP(Ẑ time)

)
(16)

LayerNorm is a commonly utilized layer normalization method. MLP stands for a
multi-layer feedforward network (in this scenario, featuring two layers). MSA(Q, K,
V) indicates the multi-head self-attention layer. All dimensions collectively employ a
shared multi-head attention layer.

Cross-dimension Stage. A limited number of nodes are selected as routing nodes
to gather information from dimensions before distribution, effectively reducing the
complexity to O(D ∗ L), as calculated in Eq. (17), (18), and (19).

Bi, : = MSAdim
1 (Ri, :,Ztime

i, : ,Ztime
i, : ), 1 ≤ i ≤ L (17)

Z
dim
i, : = MSAdim

2 (Ztime
i, : ,Bi, :,Bi, :), 1 ≤ i ≤ L (18)

Ẑdim = LayerNorm(Ztime + Z
dim

) (19)

Zdim = LayerNorm
(
(Ẑdim + MLP(Ẑdim)

)
(20)
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Ri, : ∈ R
c×d mod el functions as a learnable vector with the role of a router, serving as

the query for the initialmulti-head self-attention (MSA)module. In the subsequentMSA,
Bi, : ∈ R

c×d mod el takes on the roles of both the key and value, effectively consolidating
messages from all dimensions. Both MSAdim

1 and MSAdim
2 maintain consistency across

all time steps, and the resulting output of the Cross-dimension Stage is labeled as Zdim.
To achieve the ultimate TSA output, the results from both the Cross-time Stage and

the Cross-dimension Stage are combined through summation, as outlined in Eq. (21).
This integration ensures the capture of dependencies spanning across both time and
dimensions.

Y = Zdim = TSA(Z) (21)

2.4.3 Hierarchical Encoder-Decoder

The Crossformer employs a Hierarchical architecture to handle multi-scale information,
with lower layers processing smaller-scale vectors and upper layers handling larger-scale
vectors. It integrates predictions from different scales to generate the final output. In the
Encoder, starting from the second layer, adjacent vectors in the temporal domain are
merged to create a coarse-level representation. The TSA (Two Stage Attention) layer
captures dependencies at this scale, as shown in Eq. (22) and (23).

{
Ẑenc, l = H if l= 1

Ẑenc, l
i, d = M

[
Zenc, l−1
2i−1, d · Zenc, l−1

2i, d

]
, 1 ≤ i ≤ Lt−1

2 , 1 ≤ d ≤ D if l > 1
(22)

Zenc, l = TSA(Ẑenc, l) (23)

The Decoder employs N + 1 layers to process the N + 1 feature arrays generated
by the Encoder. It assigns an index ranging from 0 to N , with each layer represented as
l. Each layer takes the l-th encoding array as its input and produces a distinctive two-
dimensional decoding array specific to that layer. This calculation process is elucidated
in Eq. (24), (25), (26) and (27). Subsequently, the final result is output through a linear
layer, as delineated in Eq. (28), (29) and (30).

{
Z̃enc, l = TSA(E(dec)) if l = 0

Z̃dec, l = TSA(Zdec, l−1) if l > 0
(24)

Z
dec, l
:, d = MSA(Z̃dec, l

:, d ,Zenc, l
:, d ,Zenc, l

:, d ), 1 ≤ d ≤ D (25)

Ẑdec, l = LayerNorm(Z̃dec, l + Z
dec, l

) (26)

Zdec, l = LayerNorm
(
Ẑdec, l + MLP(Ẑdec, l)

)
(27)

x(s), l
i, d = WlZdec, l

i, d (28)

xpred , l
T+1:T+τ =

{
x(s), l
i, d |1 ≤ i ≤ τ

Lseg
, 1 ≤ d ≤ D

}
(29)
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xpredT+1:T+τ =
N∑
l=0

xpred , l
T+1:T+τ (30)

3 Experiment Setups

Dataset. The dataset contains 896 valid data of serum biomarkers from 160 patients
diagnosedwith gouty arthritis fromGuangdongProvincialHospital of ChineseMedicine
from 2020 to 2023. Data Masking (hiding the name and medical card number of the
patients) was performed when the data was obtained, and the acquisition and processing
of the data did not violate any ethical principles.

The datasetmainly consists of two parts. The first part is themasked serumbiomarker
data of patients at each examination. The serum biomarker data includes Fasting blood
glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST),
Urea, serum creatinine (Cr), uric acid (UA), Triglycerides, Total cholesterol, high den-
sity lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), cre-
atine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH),
glomerular filtration rate (eGFR) and hypersensitive C-reactive protein (hCRP). The
data for each patient were arranged chronologically, and each patient had at least two
reviews to form the time series data. In the serum biomarker data of the patients, the dis-
tribution of patients with different data strips is shown in Fig. 4 below. From the figure,
data distribution can be clearly observed where most patients have 7 or more records of
the serum biomarker data to form the time series data. Adequate patient data can help
improve the prediction effect of the model and reduce errors.

In addition to the serum biomarker data of patients, the second part of the dataset is
the patient recurrence status data at the corresponding time period with labeled records.
Two kinds of labels are displayed, “Interval Period” and “Acute Phase”, and they are used
as one of the prediction targets in this paper. The experiment data are the combination of
these two original datasets, and pre-processed to time series data. All the time series data
are used for the construction and prediction of the Bi-LSTMmodel and the Crossformer
model.
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Fig. 4. Number of patient records of the serum biomarker data.
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Evaluation Criteria. Mean Square Error (MSE) and Mean Absolute Error (MAE)
are standard metrics for time series forecasting, with smaller values denoting closer
predictions to the actual values [29].

BaselineModels. In order to assess the performance of the Crossformer model, the fol-
lowing models are compared as baseline methods, including seven of the latest state-of-
the-art transformer-based models: Autoformer [30], Nonstationary_Transformer [31],
LightTS [32], and Fedformer [33].

4 The Results

4.1 Results of the Bi-LSTM Model

Our results indicate that the Bi-LSTM model can successfully predict the recurrence
status of pre-processed clinical time series data. The training effect on this dataset is
shown in Fig. 5. The horizontal axis of both figures is the number of epochs, the vertical
axis of the left figure is the loss, and the vertical axis of the right figure is the accuracy.
The blue and red lines represent the performance of the training and validation sets,
respectively. The figure on the left clearly shows that whether it is the training set or the
validation set, the loss curve still fluctuates in a small range when the epoch is about
5, but tends to converge after the epoch reaches 10, and the loss is maintained at about
0.35. In the figure on the right, the prediction accuracy of the training set is maintained
at about 0.894, while the prediction accuracy of the validation set is maintained at about
0.900.

Fig. 5. Loss and accuracy of Bi-LSTM training set and validation set.

The result of the Bi-LSTMmodel plays an important role in predicting the recurrence
status of patients. By introducing a reverse LSTM layer, the Bi-LSTMmodel can utilize
both past and future information to capture context information in time series data.
The recurrence status of gouty arthritis patients not only reflected the current physical
condition, but also a long-term body state response which needs context information to
predict more accurately.

While our data is of large scale by clinical standards of the follow-up of gouty
arthritis patients, it is small relative to datasets in other deep learning tasks or prediction
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models. The discovery and sorting of time series data has always been a difficult point
in the search for gouty arthritis patients. The low number of patients who are willing to
provide indicator data and make complete records of serum biomarkers is one reason
why models such as time series predicting are not best expressed in such data. Data
integrity is also a concern. Although this kind of time series data has an insufficient
quantity in clinic gouty arthritis, the time series prediction model can still reach good
prediction results with more features and parameters that can be referred to. Time series
predicting models may perform better in other clinical applications with longer patient
data recording cycles.

4.2 Result of the Crossformer Model

The experiment conducted a comparative analysis of the effectiveness of multiple time
series forecasting models, with MSE and MAE used as standards for time series predic-
tion results. The experimental results are shown in Table 1. A smaller MSE and MAE
indicate that the model’s predictions are closer to the ground truth, indicating better
prediction performance. The best experimental results for each metric are highlighted
in bold.

Compared with other models, Crossformer achieved the top score in both metrics,
surpassing the second-ranked LightTS by approximately 5%. Furthermore, compared to
the lowest-performing models, Autoformer and Fedformer, it achieved an improvement
of around 25%. Overall, the Crossformer model demonstrated excellent performance.
The visualization of the data is depicted in Fig. 6. It can be observed that the model fits
well in the early stages but gradually deviates in the later stages.

Table 1. Time series forecasting results of different models.

Model MSE MAE Rank

Crossformer 0.737 0.511 1

Autoformer 0.976 0.633 4

Nonstationary_Transformer 0.870 0.552 3

LightTS 0.768 0.521 2

Fedformer 0.982 0.628 4

In the context of predicting physical detection indicators for gout patients, the Cross-
former model, built upon an enhanced Transformer architecture, employs a two-stage
attention mechanism. This approach effectively captures cross-temporal dimensions and
dependencies among various variables, surpassing other models and providing a closer
alignment with real patient scenarios. This predictive capability for gout disease serves
as a valuable reference for clinicians in hospitals, aiding in formulating tailored treatment
plans to alleviate patient discomfort and facilitate disease management.

Nevertheless, the Crossformer model does exhibit certain limitations. For instance,
there is room for improvement in enhancing its capacity to capture trend information
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Fig. 6. The forecasting performance of Crossformer.

within the temporal dimension. Additionally, consideration could be given to streamlin-
ing the model structure to reduce training time and memory usage. These areas represent
potential directions for future enhancements and refinements.

5 Conclusions

Two time series prediction models were used to mine the information from the indica-
tors to predict recurrence status and changes in serum biomarkers from gouty arthritis
patients. The displayed prediction results and evaluation of both Bi-LSTM and Cross-
formermodels show the suitableness of time series predictionmodel for this dataset. The
Bi-LSTM model shows that the accuracy of predicting the recurrence status of patients
can reach 87%. The Crossformer model outperforms other models in gout prediction,
demonstrating a notable improvement of 5% to 25% in both MSE and MAE evaluation
metrics. Furthermore, the predicted results exhibit the highest level of consistency with
real-world observations. Through the prediction results of the two models, reference can
be provided for the clinical diagnosis and medication of gouty arthritis.
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Abstract. Objective: Among the Omicron carriers, asymptomatic ones should
be paid close attention to due to their silence in clinical symptoms and uncer-
tainty in secondary transmission. The clinical characteristics associated with viral
shedding of asymptomatic patients need to be carefully investigated especially for
children. Methods: We revisited the clinical data from 471 pediatric patients who
have been infected with the SARS-CoV-2 Omicron variant in 2022. The cases
were divided into symptomatic and asymptomatic groups according to clinical
manifestations. Descriptive analysis and survival analysis were applied for the
comparison between the groups. Results: A total number of 333 patients were
selected out of the original 471 children according to certain eligibility criteria,
which resulted in 192 (57.7%) symptomatic and 141 (42.3%) asymptomatic cases.
According to the univariate analysis, we discovered that the asymptomatic carriers
had significantly shorter negative conversion time (NCT) (10± 8 days) compared
with the symptomatic ones (14 ± 7 days) (p < 0.001). Conclusion: The NCT
of asymptomatic patients, is shorter than the symptomatic ones, signifying that
the asymptomatic patients may be equipped with shorter periods of self- or cen-
tralized isolation. These results could provide important implications for future
policy-making or anti-virus treatment to lower the overall transmission risk to
society.
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1 Introduction

Starting from the end of 2021, Omicron has become one of the predominated variants
of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the infections
have exploded worldwide [1]. A study from Shanghai, China shows that in the last year’s
largest Omicron wave in Shanghai (April-June, 2022), 94.3% of cases were asymp-
tomatic [2]. Researchers found that the incidence rate of Omicron was 6 to 8 times that
of the Delta variant in children younger than 5 years old [3]. Accelerating the negative
conversion of SARS-CoV-2 for patients is beneficial in reducing the risk of secondary
viral transmission [4]. However, systematic research on asymptomatic pediatric patients
infected with Omicron remains lacking, and the corresponding information regarding
the clinical manifestations and outcomes is still limited. Clinicians usually evaluate the
virus infectivity for rapid antigen testing byRT-PCR cycle threshold (Ct) of nucleocapsid
protein (N gene) and open reading frame lab (ORF1ab) values [5]. The corresponding
Ct values and negative conversion time (NCT) of N genes and ORF1ab are significant
indicators in determining the discharge criteria during hospitalization or centralized
quarantine [6, 7]. Therefore, we carefully considered the aforementioned immunologic
factors during our analyses.

In this study, we carried out a retrospective study to analyze the clinical characteris-
tics of a pediatric cohort aged between 1 and 12 years. Attention was especially paid to
the asymptomatic cases who were diagnosed with SARS-CoV-2, and Omicron but with-
out any relevant clinical symptoms before hospitalization. Univariate and multivariate
analyses were conducted to investigate the clinical outcomes among different groups
to benefit the understanding of NCT and reduce the transmission risk of asymptomatic
pediatric patients.We experimentally proved the existence of varyingNCTs between dif-
ferent groups, hoping that our findings could provide useful implications for the precise
prevention and control of the disease.

2 Method

2.1 Cohort Selection

This retrospective cohort study was conducted on 471 children aged between 1 and
12 years infected with SARS-CoV-2 Omicron (BA.2) who have been admitted to Shen-
zhen Third People’s Hospital, China, between February 14, 2022, andApril 14, 2022, for
centralized isolation and clinical treatment. Patients diagnosed with SARS-CoV-2 were
based on the positive RT-PCR SARS-CoV-2 testing results from the oropharyngeal and
nasal swabs test. A total number of 333 patients were selected out of the original 471 chil-
dren according to certain eligibility criteria, which resulted in 192 (57.7%) symptomatic
and 141 (42.3%) asymptomatic cases. This study was approved by the Institutional
Review Board (IRB) of the Shenzhen Third People’s Hospital, China. All participants
have been informed of the potential benefits, risks, and alternatives associated with this
research.
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2.2 Group and Variable Definitions

The clinical characteristics and laboratory test results were collected from the record of
each patient. The clinical characteristics include demographic information (sex, age),
vaccination status (including doses), and clinical manifestations (including cough, fever,
sore throat, runny nose, nasal congestion, weak, bellyache, and vomiting). The lab-
oratory test results include white blood cell count (WBC), lymphocytes (LYMPH),
platelets (PLT), prothrombin time (PT), albumin (ALB), Natriuretic Peptide Tests (NT-
proBNP), IgMantibody (IgM) and IgG antibody values (IgG), IL6, Ct values forORF1ab
(ORF1ab_Ct) andN gene (N_Ct), etc. Empty valueswere imputed using the CART algo-
rithm to ensure consistency in distribution [8]. The symptomatic group was identified
according to the chief complaint upon admission to the hospital. Cases with a record of
any aforementioned clinical manifestations are considered symptomatic. The discharge
criteria are defined as the Ct values of both N genes and ORF1ab are higher than 35. The
NCT is subsequently identified as the latter time for the satisfaction of the two Ct values.
Thus, the negative conversion period is defined as the duration between admission and
NCT1. The age was stratified into two groups, i.e. 1 ≤ QUOTE ≤ age ≤ QUOTE ≤ 6
and 6 < age ≤ 12.

2.3 Statistical Analyses

In the univariate analysis, the continuous variables which satisfy normal distribution
(according to the Shapiro-Wilk normality test) were expressed as the mean and standard
deviation (SD) and others as the median and interquartile range (IQR). Categorical vari-
ables were described as numbers (percentages). Comparisons between groups (p-values)
were estimated by univariate analyses, i.e. Chi-square test for categorical variables, and
t-test and Wilcoxon Rank sum test for continuous variables. The risks of asymptomatic
or symptomatic manifestations in regard to NCT were estimated using a Kaplan-Meier
method that can be used with time-varying covariates. Propensity score matching (1:1
matching according to the clinical variables with the “nearest” matching strategy) and
multivariate Cox proportional hazards regression (Hazard ratio [HR] and 95% confi-
dence interval [CI]) were further leveraged to estimate the risk of negative conversion
comparing the asymptomatic with the symptomatic group. All analyses were conducted
using RStudio with R version 4.1.2. Two-sided p-values less than 0.05 were considered
statistically significant.

3 Method

3.1 Cohort Characteristics

Among the 333 cases, 192 belong to the symptomatic group, and 141 belong to the
asymptomatic group.

The characteristics of these patients are listed in Table 1. For the unmatched cohort,
this descriptive analysis demonstrates that male (p = 0.037) and younger aged patients

1 We use NCT to denote the negative conversion period for simplicity below.
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Table 1. .

Features Asymptomatic Symptomatic p-value Symptomatic p-value

Before PSM After 1:1 PSM

Cases, n (%) 141 (42.3) 192 (57.7) 141

Sex, n (%) 0.037* 0.339

male 72 (51.1) 120 (62.5) 80 (56.7)

female 69 (48.9) 72 (37.5) 61 (43.3)

Age group, n (%) 0.027* 0.074

≤ 6 65 (46.1) 112 (58.3) 80 (56.7)

>6 76 (53.9) 80 (41.7) 61 (43.3)

Vaccination, n (%) 0.134 0.302

unvaccinated 78 (55.3) 127 (66.1) 90 (63.8)

vaccinated (1 dose) 34 (24.1) 35 (18.2) 25 (17.7)

boosted (2 doses) 29 (20.6) 30 (15.6) 26 (18.4)

vaccinated (1 dose
+ 2 doses)

63 (44.7) 65 (33.9) 51 (36.2)

SNI, n (%) 0.63 0.812

No 66 (46.8) 95 (49.5) 71 (50.4)

Yes 75 (53.2) 97 (50.5) 70 (49.6)

Laboratory results

WBC (×109/L),
median (IQR)

6.6 (5.2, 8.5) 5.5 (4.6, 7.6) 0.001** 5.6 (4.7, 7.9) 0.029*

LYMPH (×109/L),
median (IQR)

2.7 (1.9, 3.8) 2.4 (1.4, 3.4) 0.02* 2.6 (1.8, 3.6) 0.321

PLT (×109/L),
median (IQR)

286 (229, 342) 256 (212.8,
306)

0.015* 270 (221,
323)

0.21

AST(g/L), median
(IQR)

35.2 (28.9,
41.9)

37.5 (31.2,
45.4)

0.002** 36.3 (29.7,
43)

0.25

ALB (g/L), mean
(SD)

44.9 (43.1,
47.8)

45.1 (43.4,
46.9)

0.7 45.3 (43.4,
46.9)

0.856

PT(second),
median (IQR)

13.5 (0.7) 13.7 (0.8) 0.132 13.6 (0.7) 0.414

NT.proBNP(pg/m),
median (IQR)

34.8 (19.3,
68.1)

36.9 (18.5,
76.6)

0.621 34.8 (16.9,
72)

0.794

IgM (g/L), median
(IQR)

1.1 (0.3, 3.1) 0.5 (0.2, 1.5) 0.001** 0.6 (0.2, 2) 0.044*

(continued)
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Table 1. (continued)

Features Asymptomatic Symptomatic p-value Symptomatic p-value

IgG (g/L), median
(IQR)

44.4 (0.6,
108.3)

7.2 (0.3,
55.5)

<0.001*** 16.7 (0.4,
68.3)

0.012*

IL6 (pg/ml),
median (IQR)

6.9 (2.6, 11) 7.4 (4.1,
12.6)

0.073 7.4 (5, 12.6) 0.103

N_Ct, median
(IQR)

36.6 (35.1,
37.8)

35.8 (33.4,
37.3)

0.002** 36.4 (34.5,
37.6)

0.279

ORF1ab_Ct,
median (IQR)

36.7 (31.4,
38.6)

35.3 (31.1,
37.9)

0.069 35.7 (31.2,
38.1)

0.2

NCT of N gene
(day), median
(IQR)

7 (1, 15) 13 (9, 17) <0.001*** 13 (9, 17) <0.001***

NCT of ORF1ab
(day), median
(IQR)

4 (0, 12) 11 (7, 14) <0.001*** 11 (8, 14) <0.001***

NCT, median
(IQR)

10 (3, 16) 14 (11, 18) <0.001*** 14 (11, 18) <0.001***

Significance levels: ***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

(≤6) (p = 0.027) are more likely to be symptomatic. There are significant differences
in several laboratory results including WBC (p = 0.001), LYMPH (p = 0.02), PLT
(p = 0.015), AST (p = 0.002), IgM (p = 0.001), IgG (p < 0.001), and N_Ct (p =
0.002) between the two groups. Specifically, the NCTs of both N genes and ORF1ab in
the asymptomatic group are shorter than those in the symptomatic group (p < 0.001),
resulting in the overall NCT of the asymptomatic group being significantly shorter (10
[3, 16] days versus 14 days [11, 18], p < 0.001). After PSM, the remaining significant
laboratory variables are WBC (p = 0.029), IgM (p = 0.044), and IgG (p = 0.012). And
the NCTs still show significant differences (p < 0.001).

3.2 Negative Conversion Rate

The Kaplan-Meier curve showed the different negative conversions between the two
groups, and the results are shown in Fig. 1. It is noticed that in the curves of both before
(p < 0.001) and after PSM (p = 0.003), the asymptomatic group shows a remarkably
faster negative conversion speed compared with the symptomatic counterpart.

3.3 Hazard Ratios of Negative Conversion

After adjusting to the considered variables, the results of Cox proportional hazardmodels
showed the hazard ratio of each factor considering possible confounders. FromFig. 2, we
notice that the “asymptomatic” condition is significantly associated with the negative
status (1.51 [1.20–1.91], p < 0.001 and 1.49 [1.17–1.91], p = 0.001). In addition,
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Fig. 1. The Kaplan-Meier curves show the different negative conversion speeds between the two
exposure groups where the asymptomatic group turns negative faster.

vaccinated one dose (p = 0.017 and p = 0.036), a higher level of IgG (p = 0.049 and p
= 0.036), and a lower value of the N gene Ct (p< 0.001) show increasing hazards with
negative conversion, both before and after PSM.

Fig. 2. The forest plot shows hazard ratios generated by the Cox model.

Sensitivity Analysis
We further split the asymptomatic patients into the two defined types (i.e. Type-I:
Pre-symptomatic Infection and Type-II: Asymptomatic Infection) and see if there are
specifics associated with negative conversion. Through multivariate Cox, we can still
observe increasing hazards of the asymptomatic condition with negative conversion
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among the subcohort consisting of the symptomatic and Type-I asymptomatic patients
(1.71 [1.29–2.26], p < 0.001). However, no significant associations were observed for
the subcohort consisting of the symptomatic and Type-II asymptomatic patients. The
KM curves and Cox results are shown in Figs. 3.

Fig. 3. KM curves and Cox results for subcohort analysis.

Since the vaccination of the second dose (the booster) is not quite prevalent among the
researched cohort (only 17.7%), it is hard to determine how the vaccination of different
doses functions clearly according to the small number of records. Although showing a
positive hazard ratio (1.25 and 1.53 before and after PSM), the function of vaccination by
two doses is not significant. Thus, we combined the patients vaccinated by one dose and
two doses to form a larger group of “vaccinated patients” to verify whether vaccination
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is associated with faster negative conversion. The adjusted hazard ratio of vaccination
generated by the Coxmodel (after PSM) is 1.36 (1.02–1.81) and p= 0.039, whichmeans
that vaccination accelerated the negative conversion (Fig. 4).

Fig. 4. Cox results after combining the vaccination doses.

4 Discussion

The percentage of asymptomatic infections was 42.3% among pediatric patients in our
study, which was higher than that of the general population reported in [9] (32.40%
[25.30–39.51%]). In the pooled percentage of asymptomatic infections was 43.75% in
the Omicron-positive individuals when the median age is less than 20 years, which
was similar to the result in our study. The univariate analysis revealed that the WBC
and lymphocytes of the asymptomatic infections are generally higher than those of the
symptomatic infections (with minor exceptions). During the same period, the children
infected with the Omicron variant with reduced lymphocyte proportion demonstrated a
longer time of viral nucleic acid negative conversion in Shanghai [10], which was similar
to those discovered in our study. This could be explained by the “cytokine storm” of
symptomatic infections. The higher Th1 cytokines including IL-2, IL-8, IL-2, IL-8, IL-
12p70, IFN-γ, and TNF-α, as well as Th2 cytokines including IL-10 and IL-13 lead to
the depletion of WBC and lymphocytes [11].
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We next compared the differences in SARS-CoV2-specific IgM and IgG antibody
values and positive rates between symptomatic and asymptomatic infections (Table 1).
The IgM value of the asymptomatic group was higher than that of the symptomatic
group (1.1 [0.3, 3.1] vs. 0.6 [0.2, 0.2], p = 0.044, after PSM). More significantly, the
IgG value of asymptomatic infected children was higher than that of the symptomatic
infected children (44.4 [0.6, 108.3] vs. 16.7 [0.4, 68.3], p = 0.012, after PSM). These
results may indicate that the virus in asymptomatic infected children can stimulate the
immune system to produce higher levels of SARS-CoV2-specific IgMand longer-lasting
IgGantibodies.Our findings suggested that asymptomatic infected childrenmayproduce
higher levels of SARS-CoV2-specific IgM and IgG to avoid body damage, thus affecting
the clinical manifestations and clinical type of children.

. In our study, we found that vaccination (including one dose and two doses) raises
the possibility of asymptomatic manifestation (46.3% asymptomatic without vaccina-
tion versus 55.3% with vaccination), which means vaccination can effectively decrease
the risk of appearing symptoms. Results also verified that vaccination was associated
with a faster negative conversion (1.37, [1.04–1.80], p = 0.027). Children show some
loss of cross-neutralization against all variants of SARS-CoV-2, with the most pro-
nounced loss against Omicron, while vaccination can effectively increase high titers
cross-neutralization against Alpha, Beta, Gamma, Delta, and Omicron [11].

The transmission risk of children Omicron infections may be different from that of
adults. This study found that the NCT of the asymptomatic infected children averages
10 days (3, 16), which is analogous to the NCT (averages 10 days) of the asymptomatic
children with the SARS-CoV-2 infection reported in [12]. But the NCT of symptomatic
infected children (average 14 days) is longer than the NCT of infected Omicron adults
reported in (6–9 days) [13]. The time of nasopharyngeal/pharyngeal swab viral RNA
turning negative was reported as ranging from 6 to 22 days (mean 12 days) in pre-
vious research [14]. Compared with the symptomatic infected children, the NCT of
asymptomatic infected children was shorter. It indicates that the risk of transmission
of asymptomatic infections is lower than that of the symptomatic infections, which is
similar to the result of adults in a previous study [15].

Multivariate Cox proportional hazards regression demonstrated that the NCT of
asymptomatic infection was inversely correlated with the Ct thresholds of N gene (p <

0.001) and ORF1ab (mildly significant with p-value of 0.066 after PSM) in our research.
It showed that even previous studies have summarized that having higher Ct values links
to lower amount of viral RNA, which means cases with higher Ct values tend to being
asymptomatic [15, 16].

This study has several limitations. Firstly, the study found that vaccination is more
prone to asymptomatic infection with clinical features, suggesting that vaccination has a
protective effect, butwe did not further analyzemore stratified situations. Secondly, there
is a proportion of empty values in the data. In addition, symptomatic and asymptomatic
children also have the risk ofLongCOVIDdisease. There is an urgent to build a follow-up
survey of those children to investigate the risk of long COVID.
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5 Conclusion

We conducted a systematic analysis of children infected with Omicron and found that
the NCT of asymptomatic patients, is shorter than the symptomatic ones, signifying that
the asymptomatic patients may be equipped with shorter periods of self- or centralized
isolation, in front of determining the measures to prevent community transmission. It is
also confirmed that vaccination assists in the acceleration of negative conversion. These
results could provide important implications for future policy-making, e.g. informing
targeted isolation periods, to lower the overall transmission risk to society.
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