
A Privacy-Preserving Face Recognition
Scheme Combining Homomorphic
Encryption and Parallel Computing

Gong Wang1, Xianghan Zheng1, Lingjing Zeng2, and Weipeng Xie1(B)

1 Fuzhou University, Fuzhou, China
2431455652@qq.com

2 Fujian Chuanzheng Communicatians College, Fuzhou, China

Abstract. Face recognition technology is widely used in various fields,
such as law enforcement, payment systems, transportation, and access
control. Traditional face authentication systems typically establish a
facial feature template database for identity verification. However, this
approach poses various security risks, such as the risk of plaintext feature
data stored in cloud databases being leaked or stolen. To address these
issues, in recent years, a face recognition technology based on homomor-
phic encryption has gained attention. Based on homomorphic encryp-
tion, face recognition can encrypt facial feature values and achieve fea-
ture matching without exposing the feature information. However, due to
the encryption, face recognition in the ciphertext domain often requires
considerable time. In this paper, we introduce the big data stream pro-
cessing engine Flink to achieve parallel computation of face recognition
in the ciphertext domain based on homomorphic encryption. We analyze
the security, accuracy, and acceleration of this approach. Ultimately, we
verify that this approach achieves recognition accuracy close to plaintext
and significant efficiency improvement.

Keywords: Homomorphic Encryption · Face recognition · Flink ·
Privacy Protection · Data Flow

1 Introduction

As the era of the Internet of Things approaches, various smart sensing devices
are widely used, and face recognition systems are widely applied in areas such
as law enforcement, payment, transportation, access control, and more. Com-
pared to traditional identity authentication mechanisms, face recognition fea-
tures the advantages of being less prone to forgetting or damage and offers con-
venient usage, effectively enhancing the efficiency of authentication. One com-
mon attack on face recognition is the use of facial feature template libraries. For
instance, attackers can reconstruct the original face image to successfully bypass
the authentication or infer personal attributes like age and gender.

Since data involves sensitive information, uploading data to the cloud poses
risks of leakage. An effective solution is to encrypt the data before uploading it,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14510, pp. 38–52, 2024.
https://doi.org/10.1007/978-981-99-9788-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9788-6_4&domain=pdf
https://doi.org/10.1007/978-981-99-9788-6_4


Secure Face Recognition with Encryption and Parallel Computing 39

which can prevent data leaks, but it hinders feature matching in the ciphertext
domain. General encryption algorithms can only perform encryption, and it has
become a hot topic in academia to find a solution for performing computations
on encrypted data.

Enabling computation on encrypted data has been a challenging issue that
has perplexed many scholars until the advent of Fully Homomorphic Encryption
(FHE) schemes. FHE can perfectly solve this problem as it allows computa-
tions on encrypted data. Subsequently, many scholars, inspired by his work,
have gradually developed various FHE schemes, enriching the field of encrypted
computation and providing theoretical support for achieving face recognition in
the ciphertext domain.

In comparison to the existing homomorphic encryption face recognition algo-
rithms, which are extremely time-consuming, this paper focuses on the challenges
faced by face recognition in the ciphertext space, such as low efficiency and mas-
sive computational overhead. To address these challenges, the paper proposes a
data stream computing framework for face privacy protection. It encrypts face
data using the CKKS homomorphic encryption scheme and processes the data
as a data stream using Flink, a stream processing framework. Flink features
real-time processing, multi-threading, and stateful data processing, dividing the
stream data processing into two Map-Reduce stages. The proposed framework
aims to protect the facial ciphertext information stored in the database, enabling
approximate homomorphic encryption for matching calculations while utilizing
Flink for stream processing to improve the efficiency of facial ciphertext compu-
tation. This approach ensures both the security of facial data and high efficiency
and practicality in the process.

2 Related Work

2.1 Homomorphic Encryption

Homomorphic encryption is one of the important techniques for privacy protec-
tion. The idea behind homomorphic encryption is to perform encryption first and
then perform encrypted calculations based on the ciphertext data. The result of
the encrypted computation, when decrypted, will match the result of the same
computation on the original unencrypted data.

In 2017, Cheon et al. proposed the CKKS (Cheon-Kim-Kim-Song) homo-
morphic encryption scheme [1]. It is an approximate homomorphic encryption
scheme that supports floating-point number calculations and has high efficiency.
Currently, it is one of the most widely used homomorphic encryption schemes [2].

As the theory of homomorphic encryption continues to evolve, this technol-
ogy has been widely applied in various fields [2–6], such as machine learning [7,8],
secure multi-party computation [9–11], federated learning [12,13], and cloud com-
puting [14–16]. However, the high computational overhead and low efficiency of
homomorphic encryption privacy protection schemes have been major bottlenecks
restricting the development of homomorphic encryption technology. In recent
years, many experts and scholars have been dedicated to improving the efficiency



40 G. Wang et al.

of homomorphic encryption technology [17–21]. Parallel computing techniques
have been widely used to enhance the execution efficiency of homomorphic encryp-
tion schemes, such as ciphertext packing techniques [22], batch processing, and
single instruction multiple data (SIMD) techniques, among others.

2.2 Flink Stream Processing Engine

Apache Flink is a distributed processing engine primarily designed to handle
streaming data and supports stateful computations. In the Flink framework,
all data is treated as data streams, where batch data represents bounded data
streams and real-time data means unbounded data streams. As a result, Flink
is a unified big data processing engine that can perform stream and batch pro-
cessing operations. One of the critical features of Flink is that it is event-driven.
It can receive data from multiple data sources as data streams and triggers
corresponding data operations only when data is received. No procedures are
performed when data is not available.

2.3 FaceRecognition

FaceRecognition is an open-source face recognition library based on the Python
programming language. It utilizes a simple API to perform face detection and
recognition. The library offers a range of powerful functionalities, including face
alignment, feature extraction, and more, making it suitable for various applica-
tions such as face recognition and face verification.

3 Methodology

3.1 Methodology Overview

In this paper, the features extracted from facial images are first encrypted and
stored in a cloud-based database. During face identity verification, the features
of the current face are extracted and encrypted. The feature matching phase
utilizes Flink for data stream processing, which consists of two sub-stages. The
Map operator calculates the differences between encrypted data streams for each
sample and then squares them. The Reduce operator aggregates the results of
all data streams and computes the sum. Finally, the encrypted comparison score
between the two is returned.

This scheme aims to protect the private information of users stored in
the template database by performing approximate homomorphic encryption for
matching calculations. Simultaneously, it utilizes Flink for data stream process-
ing to improve computational efficiency. The approach ensures both data security
and efficiency, providing a practical and effective solution.



Secure Face Recognition with Encryption and Parallel Computing 41

System Model: In privacy-preserving machine learning algorithms, one of the
most common computations is the matrix multiplication between two matrices.
Matrices can be viewed as special types of vectors, which allows us to transform
the matrix multiplication into the form of a vector inner product. The vec-
tor inner product involves the multiplication of corresponding elements in two
vectors followed by their summation. The element-wise multiplication process
between vectors is independent of each other, making it amenable to paral-
lelization to improve efficiency. Finally, the results of parallel computations are
aggregated and summed up. The framework can be seen in Fig. 1.

Fig. 1. Frame Work

3.2 Feature Encryption

To prevent malicious attacks on the template database, which could lead to
obtaining real facial images and their corresponding feature attributes, it is nec-
essary to protect the stored feature templates in the cloud. Therefore, the pro-
posed scheme suggests encrypting the successfully extracted feature templates
using approximate homomorphic encryption and then sending the encrypted
feature templates to the cloud. The key generation and encryption process for
approximate homomorphic encryption are as follows:

Key Generation: Use the SEAL library to get the locally transmitted parms
build parameter container. The CKKS framework is then generated using the
parameter params: contextSEALContext context(params). Obtain the key list
through local transmission. After the key is generated, the decrypted private key
is saved by the local client by calling the HE.save key key saving function in the
homomorphic encryption module.

The public key, relinearized key, and rotating key need to be sent to the
cloud for subsequent homomorphic calculation. Relinearized key is mainly used
to reduce noise. Euclidean distance calculation requires the use of rotation keys.
The algorithm flow can be seen in Algorithm 1.

Feature Encryption: After obtaining the facial feature values, it is neces-
sary to encrypt them using the generated keys. The entire facial floating-point
feature values are converted into a vector called DoubleVector. The encryption



42 G. Wang et al.

Algorithm 1: Key generation algorithm
Data: keypath

1 key list ← HE.registration();
2 HE.save key(keypath,key list);

Result: public key, relinearized key, rotated key

is performed using the HE.encrypt function from the homomorphic encryption
module. This function will return the encrypted ciphertext of the facial fea-
tures. Subsequently, the local client uploads the encrypted facial feature cipher-
text to the cloud-based ciphertext database. The algorithm flow can be seen in
Algorithm 2.

Algorithm 2: Face Feature Encryption Algorithm
Data: feature

1 feature dv ← DoubleVector(feature);
2 encrypted feature ← HE.encrypt(feature dv,context,publice key);

Result: encrypted feature

3.3 Ciphertext Feature Stream Distributed Computation

The approximate homomorphic encryption used in this paper is based on poly-
nomial encryption, and only linear functions can perform corresponding approx-
imate homomorphic operations. However, when the function model is nonlinear,
it needs to undergo an approximate transformation to convert it into an approx-
imate linear function.

Since face recognition calculates the similarity between features using the
Euclidean distance between them, the closer the Euclidean distance between
two facial features, the higher the likelihood that the two faces belong to the
same person. As shown below, the formula represents the Euclidean calculation
in an N-dimensional space.

dist(x,y) =

√
√
√
√

n∑

i=1

(xi − yi)2 (1)

From the formula, it can be deduced that all operations are linear, except
for the final square root calculation. In this paper, homomorphic computation is
performed on the cloud side, and the homomorphic results are returned to the
client, where the square root is performed in the plaintext domain.

The homomorphic encryption module currently does not directly support
summation. Therefore, vector rotation is required to achieve summation with
respect to the first element.



Secure Face Recognition with Encryption and Parallel Computing 43

The approach proposed in this paper is based on the Flink data stream pro-
cessing engine. Similar to traditional big data frameworks like Hadoop and Spark,
Flink’s parallel computing framework also supports the Map-Reduce paradigm.
In Flink, data processing is done on data streams, where the Map operator per-
forms operations on the data stream, and the Reduce operator aggregates the
results of all data streams. Prior to the Reduce operation, a KeyBy operation
is needed to split the data stream into different partitions and group data with
the same key into the same partition.

In the proposed approach, we need to identify parallelizable steps in the
ciphertext computation process. In the CKKS algorithm’s ciphertext computa-
tion, ciphertexts are mutually independent and do not interfere with each other.
Therefore, we can follow the parallelization techniques used in plaintext data
processing to design parallelized computation for ciphertext data. The algorithm
flow can be seen in Algorithm 3.

Algorithm 3: The Face Feature Distance Algorithm in a Data Stream
Environment
Data: cip1,cip dict

1 gal keys ← load key(gal keys path);
2 foreach key in encrypted feature dict do
3 cip sub ← HE.sub cipher(cip1,cip dict[key]);
4 cip sqrt ← HE.square cipher(cip sub);
5 cip rot ← Ciphertext(cipher sqrt);
6 foreach i = 1,2,...,k do
7 evaluator.rotate vector(cip rot,1,gal key);
8 cip sum ← HE.add cipher(cip rot,cip sqrt);

9 end
10 score dict[key] = cip sum;

11 end
Result: score dict

3.4 Feature Matching

The local client receives a dictionary of encrypted squared sums of facial fea-
ture values sent from the cloud. In this dictionary, the keys represent the user
information identifiers, and the values represent the encrypted squared sums
of facial feature values corresponding to each user. The HE.decrypt function is
used to decrypt the values, and then a plaintext square root operation is per-
formed locally, resulting in the plaintext facial feature values. Afterward, using
the corresponding plaintext feature value threshold, the client filters out user
information that meets the condition of having the smallest distance between
facial feature values. The algorithm flow can be seen in Algorithm4.



44 G. Wang et al.

Algorithm 4: Feature Matching Algorithm
Data: score dict

1 foreach key in score dict do
2 score ← HE.decrypt(score dict[key],secret key);
3 score sqrt ← Math.sqrt(score);
4 if score sqrt ≤ threshold && score sqrt ≤ score sqrt min then
5 score sqrt min = score sqrt;
6 user id = key;

7 end

8 end
Result: user id

4 Algorithm Analysis

4.1 Security Analysis

Assuming that all entities (clients and servers) in the system model are honest
and curious, they can honestly perform protocol computations but may try to
obtain data from other entities. An adversary is defined with the following capa-
bilities: (1) it may eavesdrop on the transmission of facial feature data; (2) it may
eavesdrop and obtain intermediate results of facial feature template matching
on the server, such as the squared Euclidean distance, leading to the inference
of other private data based on the intermediate results and its own facial data.

Regarding the facial feature templates, the client’s information is encrypted
using homomorphic encryption before uploading it to the privacy service
provider. The decryption key required for decryption can only be obtained by
the client, and the server cannot decrypt the encrypted feature templates. This
ensures that the server cannot access users’ facial information.

The squared Euclidean distance, which is an intermediate result obtained
through homomorphic operations, also requires the decryption key for decryp-
tion, and thus the server cannot obtain this data. Therefore, the client’s data
is secure and cannot be accessed by the server or the adversary, only requiring
attention to the security of approximate homomorphic encryption itself. The
hardness of the RLWE problem ensures the security of approximate homomor-
phic encryption.

4.2 Algorithm Performance Analysis

Serial Performance Analysis
We assume that the data stream contains N data points, each consisting of m
features. After encryption, there are N ciphertexts, each ciphertext containing
m ciphertext slots with data. The ciphertext computations are derived from



Secure Face Recognition with Encryption and Parallel Computing 45

two fundamental operations: homomorphic addition and homomorphic multi-
plication. As mentioned in the previous introduction to the CKKS algorithm,
homomorphic addition and multiplication primarily involve additions and mul-
tiplications. In computer computations, the time consumed by addition and
multiplication is roughly the same and denoted as Tm.

Homomorphic addition requires one addition operation and one modulo oper-
ation, while homomorphic multiplication requires 9 additions or multiplications
and one modulo operation. Additionally, after each homomorphic multiplica-
tion, a re-scaling operation is needed, which requires 2 multiplications. The time
consumed by the modulo operation is denoted as Ta.

In ciphertext computations, the time consumed by homomorphic addition
or subtraction is denoted as Tm + Ta, and the time consumed by homomorphic
multiplication is denoted as 11Tm + Ta. Homomorphic vector dot product is
implemented through operations that traverse ciphertext slots. Assuming the
time taken to traverse one ciphertext slot is denoted as Tc, the time consumed
by homomorphic vector dot product is (10m + 2)Tm + Ta + mTc.

In this scheme, calculating the Euclidean distance requires N homomorphic
vector subtractions, N homomorphic vector dot products, and N homomorphic
additions. The time taken for homomorphic vector subtraction is Nm(Tm +Ta),
the time taken for homomorphic vector dot product is N [(10m+2)Tm+Ta+mTc],
and the time taken for homomorphic addition is NTm.

When performed sequentially, the time consumed for calculating the
Euclidean distance is denoted as Tserial, and it is equal to the sum of the
times taken for vector subtraction, vector dot product, and addition: Tserial =
Nm(Tm + Ta) + N [(10m + 2)Tm + Ta + mTc] + NTm = (11m + 3)NTm + (m +
1)NTa + NmTc.

Parallel Performance Analysis
Assuming parallelism, the data stream is divided into s sub-data streams and
assigned to s maps for ciphertext computations. Each sub-data stream contains
s data points, so it satisfies k = N/s. Assuming the cluster has d nodes, and on
average, each node can process v sub-data streams, then s = dv.

The parallel ciphertext computation process can be divided into two parts:
Map and Reduce. In the Map phase, data stream computations and communi-
cation between Maps are performed. In the Reduce phase, node scheduling and
merging/sorting of sub-data streams are carried out. Let the time consumed by
a single Map be M0, and the total time for the Map phase be M . Then:

M = vM0

Mmain
0 = (11m + 3)kTm + (m + 1)kTa + kmTc

(2)

When there are s Maps working in the cluster, there will be at least 2s
communication events. Let the communication time be Tf = δsTm. The speedup
of the algorithm in the Map phase can be calculated as follows:



46 G. Wang et al.

Tmain

TMap
≈ Tmain

vMmain
0 + Tf

=
(11m + 3)NTm + (m + 1)NTa + NmTc

v[(11m + 3)kTm + (m + 1)kTa + kmTc] + δsTm

=
1

kv

N
+

δsTm

(11m + 3)NTm + (m + 1)NTa + NmTc

=
d

1 + dδSTm

(11m+3)NTm+(m+1)NTa+NmTc

≈ d

(3)

In practical environments, N is usually much larger than the number of
cluster nodes and the number of sub-data streams, and the communication time
between nodes is almost negligible. Therefore, the theoretical speedup in the
Map phase can reach the theoretical value of d.

In the Reduce phase, the main time-consuming tasks are the integration
and sorting of computation results from Map nodes and communication among
nodes. Let the communication time in this process be Tfr = δ1sTm. Additionally,
using a sorting algorithm with a complexity of O(slogs), the sorting time is
denoted as S = εslogsTm.

The overall speedup in the parallel computation process can be calculated as
follows:

Tmain

TP
=

Tmain

vMmain
0 + Tf + S + Tfr

≈ Tmain

vMmain
0 + Tf

≈ Tmain

TMap
≈ d

(4)

In the experimental environment of this paper, the average computation time
for the Map phase is 0.5121 s, while the average computation time for the Reduce
phase is 0.6163 s. The Reduce phase’s computation time is 1.204 times that of
the Map phase.

S + Tfr ≈ 1.2(vMmain
0 + Tf ) (5)

The overall speedup is given by:

Tmain

TP
=

Tmain

vMmain
0 + Tf + S + Tfr

≈ Tmain

vMmain
0 + Tf + 1.2(vMmain

0 + Tf )
≈ 1

2.2
d

(6)

Based on the above analysis, it can be concluded that due to the relatively
large computation time in the Reduce phase, the overall speedup will be approx-
imately 1/2.2 times the numwber of cluster nodes.



Secure Face Recognition with Encryption and Parallel Computing 47

5 Experiments

Precision Comparison: In this experiment, the Labeled Faces in the Wild
(LFW) dataset was used, which consists of 5,749 folders containing 13,233
images. The face verification task was performed using the face pairs infor-
mation provided in pairs.txt, which includes 3,000 matching pairs and 3,000
non-matching pairs. The goal was to determine the facial similarity and verify
whether two face images belonged to the same person.The CPU device used in
this experiment is: 11th Gen Intel Core i7-11800H @ 2.30 GHz, Octa-Core. The
memory device used is: 32 GB (Kingston DDR4 3200MHz). The Flink cluster
was set up using Ubuntu virtual machines, consisting of one Taskmanager and
two Jobmanagers.

The results are shown in Fig. 2.

Fig. 2. Face Similarity

Obtain the matching results and conduct error analysis of the similarity
between the unencrypted and encrypted schemes. The calculation of the error
rate for the encryption scheme is done using the following formula:

error rate =
ABS(Unencrypted − Encrypted)

Unencrypted
∗ 100 (7)

Figure 3 corresponds to the error rate for 6,000 pairs of face verification, and
the final accuracy was 98.05%, with an average error rate of 0.004618455%. The
face verification scheme based on homomorphic encryption produces similarity
calculation values that are close to the values obtained in plaintext. Furthermore,
when compared with the accuracy results from [23], as shown in the Table 1, our
method significantly improves accuracy and demonstrates higher efficiency.

Further experimental comparison of unencrypted and encrypted data is
shown in Fig. 4. From the ROC curves of the False Acceptance Rate (FAR)
and True Acceptance Rate (TAR), it can be observed that both unencrypted
and encrypted ROC values are 98.3401%. The parallel processing of homomor-
phic encryption hardly affects the recognition accuracy, and this experimental
result is consistent with the error analysis results.



48 G. Wang et al.

Fig. 3. Face Feature Error Rate

Table 1. Accuracy Comparison

Method [24] [25] [23] [ours]

Accuracy of the top-1 match 91.55% 95.50% 96.60% 98.05%

Feature volume 1600bits 3000bits 256bits 128bits

The smaller the values of False Acceptance Rate (FAR) and False Rejection
Rate (FRR), the better the performance. However, changes in individual metrics
can affect other metrics. From the Detection Error Tradeoff (DET) curve of FAR
and FRR, it can be observed that the encrypted ERR (Equal Error Rate) value
is 0.02567. A curve that leans towards the lower-left corner indicates better
performance of the scheme, meaning that the difference between actual and
measured values is small. The results are shown in Fig. 5.

Efficiency Comparison: This paper conducts serial and parallel tests on
encrypted face recognition using a test dataset containing 10,000 pairs of
encrypted face images. The parallelism of the cluster is adjusted by control-
ling the available slot slots and task parallelism. The experiment records the
training time of the algorithm in serial and with different degrees of parallelism
in the cluster. By using the serial time as a reference, the speedup ratio for dif-
ferent degrees of parallelism is calculated, and finally, the experimental results
are analyzed. The results are shown in Table 2 and Fig. 6.

Based on the analysis of Table 2 and Fig. 6, the following conclusions can
be drawn regarding the increase in available slots and parallelism of the Flink
cluster:

(1) The overall execution time of the ciphertext gradually decreases with the
increase in parallelism. Particularly, before reaching the maximum avail-
able slots in the cluster, the execution time of the ciphertext significantly
decreases, leading to a notable improvement in algorithm performance. Once
the parallelism exceeds the maximum available slots in the cluster, all nodes
are fully utilized for computation. Moreover, the impact of increased paral-
lelism on the cluster performance becomes relatively small, and the cipher-
text execution time stabilizes gradually.



Secure Face Recognition with Encryption and Parallel Computing 49

Fig. 4. ROC Curve for Encrypted and Unencrypted Data

Fig. 5. DET Curve for Encrypted and Unencrypted Data

(2) As the size of the Flink cluster increases, theoretically, it can handle more
data volume and more complex computational tasks. However, in practical
applications, the extent of efficiency improvement does not always directly
correlate with the size of the cluster. This is mainly due to the following
factors:
– Data Partitioning: For some datasets, it may be challenging to distribute

them evenly among all nodes in the Flink cluster. This leads to some nodes
being overloaded while others remain idle, which decreases the overall
efficiency of the cluster.

– Network Communication: With the growth of the cluster, the amount of
data that needs to be transferred between nodes also increases. If the
network bandwidth is insufficient or there are high network latencies,
it can slow down the communication between nodes, thus affecting the
overall efficiency of the cluster.

– Hardware Limitations: Before increasing the size of the Flink cluster, it
is essential to ensure that each node has sufficient hardware resources
such as memory, CPU, and disk space. Otherwise, adding more nodes
may result in wastage of resources without a corresponding increase in
efficiency.

(3) Due to the significant time consumption in the Reduce stage, the overall
speedup ratio decreases. The highest overall speedup ratio is 4.8, which
is close to 9/2.2 = 4.09, and it is consistent with the theoretical analysis
value mentioned earlier. Moreover, compared [23], the average encryption
matching time per pair of images has reduced from 0.71 s to 63.5 ms, greatly
improving the efficiency.



50 G. Wang et al.

Table 2. Runtime and Speedup at Different Parallelism Levels

Parallelism Execution time/ms Speedup

1 3032227 1.00

2 1581397 1.91

3 1081455 2.80

4 898669 3.37

5 751976 4.03

6 690305 4.39

7 656067 4.62

8 643639 4.71

9 635354 4.77

10 632041 4.80

11 632626 4.79

12 636156 4.77

Fig. 6. Runtime and Speedup Curves

Feasibility Analysis: Based on the precision comparison experiments con-
ducted on encrypted data, it can be concluded that the average error rate of the
face recognition algorithm in the current encrypted domain is approximately
0.004618455%, which ensures high accuracy in practical application scenarios.

Furthermore, based on the efficiency comparison experiments, in the experi-
mental environment with nine slots, the highest parallel efficiency for retrieving
10,000 facial images took approximately 635,354 ms. The average retrieval time
for each image in the database was 63.5 ms. According to the conclusions from
the performance analysis of parallel algorithms, by increasing the slots to 54,
the acceleration ratio can reach approximately 24.5 times, and the retrieval time
for each image is around 10.58 ms. If the encrypted clustering search algorithm
is also applied simultaneously, it can effectively meet the requirements for daily
applications.



Secure Face Recognition with Encryption and Parallel Computing 51

6 Conclusion

This paper proposes a parallel privacy-preserving homomorphic encryption face
verification scheme to address the issues of face information leakage and low
computational efficiency in traditional face recognition. The scheme reconstructs
the feature template matching protocol based on the homomorphic encryption
module to achieve feature vector matching in the ciphertext domain. Security
analysis and experimental comparisons demonstrate that the proposed scheme
can achieve vector feature template matching while ensuring the security of the
feature templates.

Leveraging the parallel computing concept of Map-Reduce, the scheme com-
bines the stream data processing engine Flink with the homomorphic encryption
algorithm CKKS to accelerate feature value matching in the ciphertext domain.
Through algorithm performance analysis and experimental results, the acceler-
ation ratio and accuracy of the algorithm are verified.

In conclusion, the proposed approach achieves efficient and accurate face
verification while ensuring the security of data information during transmission
and storage in the cloud.

References

1. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

2. Titus, A.J., Kishore, S., Stavish, T., Rogers, S.M., Ni, K.: Pyseal: a python wrapper
implementation of the seal homomorphic encryption library (2018)

3. Li, Y., Ng, K.S., Purcell, M.: A tutorial introduction to lattice-based cryptography
and homomorphic encryption (2022)

4. Dowerah, U., Krishnaswamy, S.: Towards an efficient LWE-based fully homomor-
phic encryption scheme. IET Inf. Secur. 16(4), 16 (2022)

5. Xiaoming D., Department, E.T.: Research on fully homomorphic encryption
schems. Electronics World (2016)

6. Zhang, Z., Cheng, P., Chen, J., Wu, J.: Secure state estimation using hybrid homo-
morphic encryption scheme. IEEE Trans. Control Syst. Technol. 29, 1704–1720
(2020)

7. Wang, Y., Liang, X., Hei, X., Ji, W., Zhu, L.: Deep learning data privacy protection
based on homomorphic encryption in aiot. Mob. Inf. Syst. 2021(2), 1–11 (2021)

8. Park, J., Kim, D.S., Lim, H.: Privacy-preserving reinforcement learning using
homomorphic encryption in cloud computing infrastructures. IEEE Access 8,
203564–203579 (2020)

9. Aloufi, A., Hu, P., Song, Y., Lauter, K.: Computing blindfolded on data homomor-
phically encrypted under multiple keys: a survey. ACM Comput. Surv. (CSUR)
54, 1–37 (2021)

10. Yang, X., Yi, X., Kelarev, A., Han, F., Luo, J.: A distributed networked system for
secure publicly verifiable self-tallying online voting. Inf. Sci. 543, 125–142 (2021)

11. Xu, W., Wang, B., Hu, Y., Duan, P., Zhang, B., Liu, M.: Multi-key fully homomor-
phic encryption from additive homomorphism. Comput. J. 66(1), 197–207 (2023)

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15


52 G. Wang et al.

12. Fang, H., Qian, Q., Chen, M.L.: Privacy preserving machine learning with homo-
morphic encryption and federated learning. Future Internet 13, 94 (2021)

13. Wibawa, F., Ozgur Catak, F., Sarp, S., Kuzlu, M., Cali, U.: Homomorphic encryp-
tion and federated learning based privacy-preserving cnn training: Covid-19 detec-
tion use-case. arXiv e-prints (2022)

14. Zhang, J., Jiang, Z.L., Li, P., Yiu, S.M.: Privacy-preserving multikey computing
framework for encrypted data in the cloud. Inf. Sci. 575, 217–230 (2021)

15. Park, J.H.: Homomorphic encryption based privacy-preservation for iomt. Appl.
Sci. 11, 8757 (2021)

16. Mohammed, S., Basheer, D.: From cloud computing security towards homomorphic
encryption: a comprehensive review. TELKOMNIKA (Telecommunication Com-
puting Electronics and Control) (2021)

17. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

18. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 9

19. Tibouchi, M.: Fully homomorphic encryption over the integers: from theory to
practice. NTT Techn. Rev. 12(7), 273–81 (2014)

20. Zhao, D.: Rache: radix-additive caching for homomorphic encryption (2022)
21. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic

encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

22. Ertaul, L.: Implementation of homomorphic encryption schemes for secure packet
forwarding in mobile ad hoc networks (manets) (2022)

23. Ma, Y., Wu, L., Gu, X., He, J., Yang, Z.: A secure face-verification scheme based on
homomorphic encryption and deep neural networks. IEEE Access 5, 16532–16538
(2017)

24. Jin, X., Liu, Y., Li, X., Zhao, G., Guo, K.: Privacy preserving face identification
in the cloud through sparse representation. In: Chinese Conference on Biometric
Recognition (2015)

25. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: Scifi - a system for secure
face identification. In: IEEE Symposium on Security & Privacy (2010)

https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1007/978-3-662-53887-6_1

	A Privacy-Preserving Face Recognition Scheme Combining Homomorphic Encryption and Parallel Computing
	1 Introduction
	2 Related Work
	2.1 Homomorphic Encryption
	2.2 Flink Stream Processing Engine
	2.3 FaceRecognition

	3 Methodology
	3.1 Methodology Overview
	3.2 Feature Encryption
	3.3 Ciphertext Feature Stream Distributed Computation
	3.4 Feature Matching

	4 Algorithm Analysis
	4.1 Security Analysis
	4.2 Algorithm Performance Analysis

	5 Experiments
	6 Conclusion
	References


