
FedCMK: An Efficient Privacy-Preserving
Federated Learning Framework

Pengyu Lu1 , Xianjia Meng1,2(B) , and Ximeng Liu2

1 Northwest University, Xi’an, Shaanxi 710069, China
xianjiam@nwu.edu.cn

2 Fuzhou University, University Town Fuzhou, Fujian 350108, China

Abstract. Federated learning emerged to solve the privacy leakage
problem of traditional centralized machine learning methods. Although
traditional federated learning updates the global model by updating the
gradient, an attacker may still infer the model update through back-
ward inference, which may lead to privacy leakage problems. In order
to enhance the security of federated learning, we propose a solution to
this challenge by presenting a multi-key Cheon-Kim-Kim-Song (CKKS)
scheme for privacy protection in federated learning. Our approach can
enable each participant to use local datasets for federated learning while
maintaining data security and model accuracy, and we also introduce
FedCMK, a more efficient and secure federated learning framework. Fed-
CMK uses an improved client selection strategy to improve the training
speed of the framework, redesigns the key aggregation process accord-
ing to the improved client selection strategy, and proposes a scheme
vMK-CKKS, to ensure the security of the framework within a certain
threshold. In particular, the vMK-CKKS scheme adds a secret verifica-
tion mechanism to prevent participants from malicious attacks through
false information. The experiments show that our proposed vMK-CKKS
schemes significantly improve security and efficiency compared with the
previous encryption schemes. FedCMK reduces training time by 21% on
average while guaranteeing model accuracy, and it provides robustness
by allowing participants to join or leave during the process.

Keywords: Homomorphic encryption · Federated learning ·
Multi-key · CKKS · Machine learning · Secret sharing

1 Introduction

With improved computing power and increased data volume, deep learning has
achieved remarkable success in computer vision, natural language processing,
and other fields. However, large-scale data collection and storage often lead to
privacy leakage and data security issues. To solve the problem of privacy leakage

Supported by National Natural Science Foundation of China under grant number
62276211.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14509, pp. 253–271, 2024.
https://doi.org/10.1007/978-981-99-9785-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9785-5_18&domain=pdf
http://orcid.org/0009-0005-8006-9415
http://orcid.org/0000-0003-4485-457X
http://orcid.org/0000-0002-4238-3295
https://doi.org/10.1007/978-981-99-9785-5_18

254 P. Lu et al.

in machine learning with a large amount of data and the problem of data island
that a large amount of data cannot be applied, the concept of federated learning
comes into being, aiming at distributed machine learning under the premise of
protecting data privacy [14,19]. In contrast, federated learning empowers indi-
vidual devices to train models locally and share only the model updates with a
central server, preserving the users’ privacy. In recent years, federated learning
has received much attention from academia and industry due to its potential in
various applications such as healthcare, finance, and the smart internet of things
[4,15,23].

Nevertheless, federated learning still faces some challenges in practical appli-
cations [16]. In order to enhance the security of federated learning, many scholars
have carried out research on homomorphic encryption, differential privacy, and
secure multi-party computation [9,11,24]. Additionally, federated learning can
also be attacked by malicious actors who may transmit faulty model updates or
manipulate training processes, damaging overall model performance [1]. There-
fore, it is crucial to design an effective security mechanism to detect and resist
such attacks. Furthermore, federated learning involves multiple participants con-
ducting model training locally, which may result in a slower overall convergence
speed. Balancing the process of local training and global aggregation to improve
training speed and model performance is also a problem worth studying.

In this study, we use improved client selection strategies and multi-key homo-
morphic encryption schemes to solve the problems of data leakage, malicious
party attacks, model training, and convergence rate optimization. Specifically,
we improve the client selection strategy to improve model training and conver-
gence speed [20]. Based on the improved client selection strategy, we designed a
multi-key homomorphic encryption scheme, namely vMK-CKKS, to protect data
privacy and solve the problem of collusion attacks of malicious actors. We pro-
pose a complete federated learning framework, FedCMK, and verify its security
and robustness through experiments. Our contribution is as follows:

(1) We propose a client selection strategy to solve the device heterogeneity prob-
lem and ensure the model’s accuracy while maximizing the training effi-
ciency. Experiments show that our client-selected federated learning frame-
work can improve the training speed by about 21% compared with the tra-
ditional federated learning framework without more than 1% accuracy loss.
For a specific model, the training speed can be improved by up to 33%.

(2) We design a MK-CKKS scheme: vMK-CKKS. Based on the client selection
strategy, we redesigned the way of public key aggregation for different clients.
The vMK-CKKS scheme is based on verifiable secret sharing, ensuring secu-
rity within a limited threshold. It prevents the participants from maliciously
sending false information to destroy the decryption. Experiments show that
our multi-key CKKS scheme is more efficient and secure than the traditional
encryption schemes.

(3) We propose a cross-device federated learning framework FedCMK based on
the client selection strategy with vMK-CKKS encryption scheme. Under
the premise of enhancing privacy security and training efficiency, the

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 255

framework also supports arbitrary training strategy and has high scalability
and robustness. Experiments show that FedCMK can effectively complete dif-
ferent cross-device federated learning tasks and resist malicious attacks from
participants within a certain threshold.

(4) We theoretically prove the security of our federated learning framework and
compare its communication cost and computation cost with some existing
homomorphic encryption schemes, evaluate the efficiency and performance
of our federated learning framework, and discuss some potential risks.

The remainder of this paper is organized as follows. In Sects. 2 and 3, we
introduce related works and the preliminaries. In Sect. 4, we introduce the Fed-
CMK framework, improved client selection strategies, and vMK-CKKS scheme.
Then we present the experimental environment and parameters in Sect. 5, and we
evaluate the experimental results. Finally, we provide proof of the framework’s
security in Sect. 6 and conclude the paper in Sect. 7.

2 Related Work

Our research is mainly aimed at federated learning and multi-key homomorphic
encryption. In this section, we will summarize the current federated learning
framework based on multi-key homomorphic encryption. At the same time, we
will introduce traditional single-key homomorphic encryption schemes.

2.1 Homomorphic Encryption Based FL

Federated learning based on homomorphic encryption offers more robust security
without affecting model accuracy. Homomorphic encryption has become the most
common privacy protection method in federated learning. Recently, many fed-
erated learning frameworks using homomorphic encryption have been proposed.
For example, Dimitris et al. proposed MetisFL, a homomorphic encryption-based
federated learning model for training neural models and predicting certain dis-
eases [21]. However, their research did not optimize homomorphic encryption
schemes or consider potential model leakage. Moreover, their focus was on per-
sonalized FL [22]. In recent years, many federated learning frameworks have used
the Paillier semi-homomorphic encryption scheme [24–26]. However, the Paillier
scheme’s nature is unsuitable for large-scale machine-learning gradient encryp-
tion. In recent years, the CKKS scheme has become the mainstream homomor-
phic encryption framework for federated learning. Microsoft has implemented
CKKS in the SEAL library, and the CKKS scheme has been widely researched
and applied in recent years.

2.2 Multi-key Homomorphic Encryption Based FL

Multi-key homomorphic encryption is more suitable for large-scale multi-party
federated learning scenarios than traditional single-key homomorphic encryption

256 P. Lu et al.

schemes [5]. Ma et al. have proposed the xMK-CKKS scheme, which simplifies
the aggregation of public keys by adding them to form an aggregated public key
for encrypting model updates [17]. This approach has the advantage of being easy
to implement. It can be extended to multiple participants while maintaining a
certain level of security against collusion between K − 1 participants and the
server. However, this approach also has some limitations. Firstly, when there are
many participants, aggregating all public keys may lead to excessive noise, which
can negatively impact the accuracy of the ciphertext and increase computation
and communication costs. Secondly, the entire aggregate public key must be
reset if a participant drops out. Finally, although it effectively prevents collusion
between the server and other actors, it is assumed that the server is a trusted
third party in federated learning. In extreme collusion cases, the server can send
false information to obtain private data. In contrast, Du et al. have proposed the
tMK-CKKS scheme, which uses Shamir’s secret sharing to reduce overhead while
ensuring security [7]. However, Shamir’s secret-sharing scheme is not effective in
preventing malicious secret sharing between participants, which could result in
decryption failure. Some studies focus on vertical federation learning scenarios,
such as CryptoBoost, an XGBoost framework proposed by Jin and Wang et
al. based on multi-party homomorphic encryption technology [12]. CryptoBoost
is end-to-end secure, and it proposes a new set of communication protocols to
reduce costs. Applying multi-key homomorphic encryption under vertical fed-
eration learning is also a primary direction for future research [18]. Based on
this, we improve the above algorithm and design a multi-key CKKS variant that
addresses efficiency and security issues in existing schemes.

3 Preliminaries

In this section, we outline part of the notations used in the paper and introduce
the FedCS client selection protocol, which is the basis of our improved client
selection protocol, while we present the multi-key homomorphic encryption-
related techniques.

We set the secret distribution chi to be the uniform distribution over the
set of polynomials in R with coefficients {0,±1}. Each coefficient of the error
e ← ψ is plotted according to a discrete Gaussian distribution centered at zero
and standard deviation σ = 3.2. The model’s weight used in the experiment is
represented by 32 bits of floating point numbers.

3.1 Federated Learning

Federated learning is a cutting-edge artificial intelligence technology that pri-
oritizes user privacy and data security by ensuring participants cannot access
each other’s data. As a mainstream algorithm in federated learning, FedAvg
allocates a fixed number of training steps to each participant and aggregates
locally trained models to compute a new global model. This approach allows for
model updates without requiring the exchange of raw data between participants,

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 257

ensuring privacy and security. The FedAvg algorithm has been widely adopted
in practical applications of federated learning.

3.2 Client Selection

In cross-device federated learning, the participation of numerous edge devices
and mobile terminals with limited performance capabilities can lead to a signifi-
cant waste of computing resources or the exclusion of numerous devices that can-
not perform multiple epochs within a given time frame. Nishiod et al. proposed
the FedCS protocol to solve the heterogeneous problems in federated learning
[20]. We improved on this to fit our framework.

3.3 MK-CKKS Scheme

Song and Dai proposed a multi-key homomorphic encryption (MK-HE) scheme
based on CKKS in their work [3,5,6,8]. They designed multi-key variants of
Brakerski-Fan-Vercauteren (BFV) and CKKS and provided a new relinearization
scheme. Moreover, they applied the MKHE scheme to evaluate convolutional
neural network (CNN) models.

However, directly applying the MK-CKKS scheme to federated learning may
result in privacy risks since the server can decrypt model updates and access
personal data during decryption. While the server is typically trustworthy, this
contradicts the goals of federated learning. Therefore, our MK-CKKS scheme
limits the decryption ability of the server to the ciphertext of a single client,
preventing the potential privacy leakage risk on the server side. Specifically, for
encrypted model updates, the server can only decrypt the sum of all model
updates in ciphertext and cannot decrypt the model updates of individual par-
ticipants separately.

4 FedCMK

In this section, we introduce our cross-device federated learning framework Fed-
CMK, including its system model, our simulated attack model, improved client
selection algorithm, and its encryption algorithm and overall system flow.

4.1 Problem Statement

Suppose there is an encrypted cross-device federated learning framework, a total
of K clients participate in the training process, and the whole training process is
based on the Federated Average (FedAvg) algorithm. The server randomly selects
several clients for this round of learning and sends them the global model. The
selected clients use the local data set for local training and upload the updated
gradient information to the server after encryption. In such a system, we might
face the following challenges:

258 P. Lu et al.

Device Heterogeneity: In a cross-device federated learning system, the per-
formance between devices and the amount of data is different. If the client is
randomly selected, it may cause a lot of computing power or data waste. There-
fore, how to choose the client will affect the accuracy and time of training.

Encryption and Decryption of Gradients: In this cross-device federated
learning system, each participating client may have its key. If each client encrypts
the gradient with its key and uploads it, the decryption process will be difficult
for the server. If a uniform key is used, the security of the key is not satisfactory to
every client, and the parties may be malicious and conspire to steal data. At the
same time, if the server can decrypt the ciphertext of each client separately, then
a not fully trusted server will easily steal all the data, which is also unacceptable.
Therefore, selecting an appropriate encryption scheme is essential to ensure local
data security.

Robustness of the System: In this cross-device federated learning system,
any client may join or leave during the process, and their actions should not
affect the entire training.

4.2 Threat Model

In our threat model, we default the federation launcher to be a trusted entity.
In the vMK-CKKS scheme, it will generate the secret to building the aggregate
public key used for encryption. While the federation controller and federation
learners are honest and curious, they will strictly follow the protocol but will be
curious to infer the data of other learners. In order to better reflect the security,
we introduce an active adversary A into the model. In the vMK-CKKS scheme,
we set A = t. A should be several learners smaller than A, or a federation
controller and several learners smaller than A. The goal of A is to obtain as
many ciphertext decryption results as possible to steal the local data of learners.
The following are some possible inferences:

1. A may consist of at most A − 1 learners who obtain each other’s ciphertexts
or decrypt shares by collusive attacks and wish to decrypt the ciphertexts to
steal data from the remaining learners.

2. A is some maliciously participating learner who broadcasts the wrong secret
shares to other learners.

3. A maliciously sends the wrong decrypt share and hopes to cause an error in
the decryption process.
We notice that such an opponent is very typical in the threat model [2].

4.3 Our Client Selection Design

The original FedCS scheme uses a greedy algorithm to strive for as many high-
performance participants as possible to participate in the training task, but this
also has some shortcomings. Secondly, it may lead to many devices being unable
to participate in the training task. In the case of uneven data distribution, it may

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 259

lead to certain data waste problems. Finally, some high-performance devices may
be malicious, leading to persistent malicious attacks. Therefore, we make some
optimizations based on Nishio et al. ’s FedCS framework to be more suitable for
our federated learning framework and homomorphic encryption scheme. Firstly,
we notice that the choice of Tr in the original scheme has a significant impact
on the final model update, so we compare the training time and accuracy of
FedCMK under different Tr, and choose a more appropriate Tr value. We also
add a safety margin Trs = 1

60Tr to account for the network fluctuations that
communication may face in real-world applications. Second, we clustered all the
clients and selected clients for each clustered client set to make use of as many
devices as possible. Finally, we observe that clients with larger datasets tend
to be underutilized, leading to severe data wastage and potentially lower model
accuracy. To solve this problem, we introduce a weighted selection scheme in
which we add several clients with large datasets according to a weight Wsin the
S set. In addition, we cache the clients with excellent performance in subset
S′and can directly schedule them for subsequent training if they are idle. The
Settings of weight Ws and subset S′ vary from device to device. Our experiments
compare the accuracy and time of training under different Ws. Considering the
balance of performance and efficiency, we chose Ws = 0.2 and |S′| = 0.1 |S|.

4.4 Our MK-CKKS Scheme Design

We have optimized and proposed a MK-CKKS variant that will be used to build
our federated learning framework FedCMK. The vMK-CKKS scheme is based
on verifiable secret sharing (VSS), which is similar to Shamir’s secret sharing
but with an additional verification mechanism [10]. This mechanism enables
participants to verify the correctness of the received secret fragments, helping
to prevent malicious actors from tampering with or forging shares during the
sharing process, thus enhancing the system’s security. Moreover, the verification
function of all parties of VSS improves the system’s fault tolerance and robust-
ness since even if some participants provide incorrect shares when restoring the
aggregate public key, the final result will not be affected. We will discuss this
method in more detail below.

– SecretShare : A trusted third party performs secret generation, and we refer
to this third party as the generator hereinafter(GH). GH randomly selects
ai ∈ Zp, and construct a polynomial of degree t-1, satisfying f(x) = a0 +
a1x + · · · + at−1x

t−1(modp), sets a0 = z. For a client ki , its secret share is
zi = f(i). Any t participants can jointly reconstruct the secret.

– Setup : For a given security parameter λ, set the RLWE dimension n,
ciphertext modulus q , key distribution χ and error distribution ψ over R.
Then, takes all the security parameters as input and returns the public
parameterization(n,q ,χ,ψ,R).

– KeyGen : For the generator hereinafter, randomly selects a secret z ∈ Zp,
this secret will be split into n shares, and each of which will be held by one
participant. Simultaneously GH computes Aj = gaj , where j = 0, 1 . . . , t − 1,

260 P. Lu et al.

and exposes those parameters. Therefore, the aggregated public key can be
expressed as b̃ = −si · a + e (mod q), where si = z · s (mod q), s ← χ.

– Verify : For a client ki verifies the correctness of the secret after receiving it
and refuses to perform subsequent operations if the equality gzi = Πt−1

j=0A
xj
i

j

is not met.
– Encryption : Let a = a[0], b = b[0]. Sample v ← χ and e0, e1 ← ψ, For a

client ki, encoding a plaintext mi ∈ M and outputs a ciphertext cti ∈ {0, 1},
where

cti = (cki
0 , cki

1) = (v′ki · b̃ + mi + eki
0 , v′ki · a + eki

1) (mod q) (1)

– Add : The sum of ciphertext is as follows:

Csum =
K∑

i=1

cti � (Csum0 , Csum1,) =

(
K∑

i=1

(v′ki · b̃+mi + eki
0),

K∑

i=1

(v′ki · a+ eki
1)

)

(mod q)

(2)
– Decryption : Any K participants can jointly reconstruct the ciphertext, and

the decryption share is calculated as follows:

Di = si · Csum1
+ e∗

i = si ·
K∑

i=1

(v′ki · a + eki
1) + e∗

i (mod q) , e∗ ← ψ (3)

Then the sum of all plaintexts Csum can be decrypted as the same.

4.5 FedCMK Design

Based on the above discussion, we have designed a federated privacy-preserving
learning framework using the vMK-CKKS scheme. In this framework, a trusted
server acts as the federation launcher, serving as the entry point for the entire
federated learning process. Before the federated learning process begins, the
federation launcher initializes the model and defines the required machine learn-
ing architecture. It also generates hyperparameters and a secret for aggregating
public keys distributed to all learners. The federation controller is responsible
for scheduling learners to perform federated learning tasks and aggregating the
local model updates of each learner to compute a new global model. Prior to
each round of training, the federation controller selects K ′ learners, who transmit
their performance status and resource information to the federation controller.
The federation controller then selects S learners to participate in the current
round of training. Each participant in the federated learning process is referred
to as a federated learner, and communication between learners is limited to the
broadcast phase during secret verification. The learner receives the global model
from the federation controller and trains it locally using their private dataset and
the tasks assigned by the federation controller. After completing one round of
training, the learner sends the ciphertext of their model update to the federation
controller.

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 261

Therefore, a complete round of federated learning process will be expressed
as follows:

Fig. 1. The Federated Learning Framework Based on our MK-CKKS Homomorphic
Encryption (FedCMK)

Initialization: The federation launcher completes the setting of hyperparame-
ters, such as the dimension of RLWE, the ciphertext modulus, and the sampling
distribution, and sets up the federation environment. At the same time, the
federation launcher generates secrets for aggregated public keys.

Client Selection: The federation controller randomly selects K ′ learners, and
the selected K ′ learners send their current resource information to the federation
controller, such as whether the CPU/GPU is occupied, the approximate size of
the local dataset. The federation controller then selects S learners according to
the client selection strategy for this round of training.

Local Training: After determining the learners for this round, the federation
controller selects the training model, and the selected learners download the
global model and conduct local training on their private dataset, generating the
local model.

Model Update Encryption: The learners encrypt their local model updates
using the secret and public key distributed by the federation launcher and upload
the encrypted model updates to the federation controller.

Ciphertext Aggregation: After the federation controller receives the model
update ciphertexts of all participating learners, it adds all the ciphertexts into
Csum.

Decryption: The federation controller sends Csum1 to learners in this round
(if learners in this round S are less than the decryption threshold t, learners in
K ′ are selected in turn), then the selected learners calculate their decryption
shares and upload to federation controller. After the federation controller gets
all the decrypted shares, it uses Csum and the decrypted shares to restore the

262 P. Lu et al.

plaintext and then updates the global model for w + 1 rounds. Then federation
controller distributes the new global model to learners participating in the next
round (Fig. 1).

5 Performance Evaluation

5.1 Experimental Setup

Our evaluation of the federated framework was conducted on a server with an
Intel i5-11400F CPU, NVIDIA RTX 3060Ti GPU, and 16GB RAM, running
the Ubuntu 22.04 operating system. We implemented the FedAvg algorithm
using Pytorch to evaluate our federated framework. Our multi-key encryption
scheme was built using the HEAAN library and compared with several previous
multi-key CKKS schemes. We also compared the privacy-preserving learning of
Paillier’s scheme.

5.2 Results

To evaluate our federated framework, we first measured the accuracy and time
cost of one round of FedAvg without multi-key homomorphic encryption. Next,
we measured the accuracy and time cost of the round of communication after
adding the vMK-CKKS scheme. We used three datasets, MNIST, Shakespeare,
and CIFAR100, to conduct four experiments. Additionally, we compared the
performance of our federated learning framework with several recent federated
frameworks.

Client Selection: We first compared the classical FedAvg federated learning
scheme without introducing the client selection strategy and the federated learn-
ing scheme with the introduction of the client selection strategy. After compar-
ison, the average time to reach convergence of the federated learning scheme
with the introduction of the client selection strategy is significantly reduced.
Due to different data sets and different parameter Settings, the convergence
will be greatly affected. Tr = 1min, and the number of clients selected in each
round S = 0.1K ′. Under this parameter setting, the average accuracy difference
between the experiment and the federal learning scheme without client selection
is less than 1%, but the training time is reduced by 23% on average.

Accuracy: To compare the accuracy and security of our federated learning
framework, we evaluated the performance of different models and different
datasets and compared it with several other federated learning frameworks.

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 263

Table 1. Comparison of convergence time of different FL schemes

FL Scheme Total training time Accuracy
Paillier based FL 105min 78.9%
xMK-CKKS based FL 73min 79.5%
tMK-CKKS based FL 61min 79.6%
vMK-CKKS based FL 52min 78.8%

We contrast our federated framework with a federated learning framework
without privacy protection. Four experiments were conducted for each scheme,
using the MNIST, Shakespeares, and CIFAR100 datasets. After comparing
the experimental results, before adding homomorphic encryption, the federated
learning framework has an accuracy rate of 79.2%, 79.8%, 65.5% and 53.0%
in the four experiments, and then added our two multi-key After the CKKS
scheme, the accuracy rates are 78.9%, 79.1%, 65.2%, 52.8%, and 78.8%, 78.9%,
64.2%, 52.9%. It means that our multi-key CKKS scheme keeps the accuracy
of federated learning model training the same. We list some parameters of the
experiment and the final result curve, and we can see that our federated learn-
ing framework curve is very similar to the original framework without privacy
protection. We detailed our experimental parameter Settings in Table 1, and the
results obtained are shown in Fig. 2.

Efficiency: In order to evaluate the performance of the two MK-CKKS schemes,
we compared it with the mainstream federal environment homomorphic encryp-
tion scheme Paillier, and we also compared it with the xMK-CKKS scheme and
the tMK-CKKS scheme. Our experiments mainly compare the following aspects:
first, the model update ciphertext size under the Paillier scheme and the model
update ciphertext size under different multi-key CKKS schemes, which are com-
pared in detail in Table 2, and second, the time cost of encryption and decryption
in the process of other encryption schemes and our encryption scheme, that is,
the computational cost.

(a) MNIST - LR (b) MNIST - CNN (c) CIFAR (d) Shakespeare

Fig. 2. Performance of different datasets and models under several FL frameworks

264 P. Lu et al.

According to Table 2, although the encryption and decryption speed of the
Paillier scheme is faster than that of the MK-CKKS scheme within a spe-
cific range, the average encryption time of the CKKS scheme(0.04ms) is much
smaller than that of the Paillier scheme(0.34ms) because of more plaintext can
be packaged in the ciphertext. For several MK-CKKS schemes, xMK-CKKS,
tMK-CKKS, and vMK-CKKS are homomorphic schemes that meet a threshold.
The threshold of MK-CKKS is K, and the threshold of tMK-CKKS and vMK-
CKKS can be unified into t so that the decryption time will change according
to the values of t and K. Theoretically, when t is less than K, The xMK-CKKS
scheme takes longer to decrypt. In general, S will be much smaller than t and K,
so the decryption time per round will be shorter than several other MK-CKKS
schemes.

Table 2. Different Homomorphic Scheme Parameters And Time Costs

Scheme Library Security level Packing Size Key size Ciphertext size Enc(ms) Dec(ms) Add(ms)
Paillier Python-Paillier 128 60 3072 6144 31.3 15.7 0.1
xMK-CKKS HEAAN 128 2048 4096 8192 77.1 19.2 2.5
tMK-CKKS HEAAN 128 2048 4096 8192 77.1 19.2 2.5
vMK-CKKS HEAAN 128 1024 2048 4096 33.7 12.4 1.8
vMK-CKKS HEAAN 128 2048 4096 8192 77.1 19.2 2.5

Figure 3 shows the effect of different client weights and clustering on federated
learning training time and accuracy. We notice that when the considerable data
weight reaches 0.25, which means that there is at least one-quarter of big data
clients, our federated learning model can guarantee almost the same accuracy
as the original model, but the training time decreases by about 17%. When
the weight reaches 0.3, the accuracy of the model is improved by 0.01%, but
the training time is only decreased by 10% compared to the original model.
Considering the efficiency requirement in practical applications, we set the weight
to 0.25 to ensure the balance between accuracy and time overhead. The model
can obtain high accuracy quickly for the clustering strategy when the number of
clusters is 4. That is, 1000 clients are grouped into 4 clusters of 250 clients per
group. Compared with the unclustered algorithm, the accuracy of the model is
reduced by less than 0.01% when divided into four clusters, but the iteration time
of each round is reduced by about 27%, and the overall training time is reduced
by about 10%. In summary, the improved client selection strategy ensures the
accuracy of the model while reducing the training time and making more clients
participate in the training.

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 265

(a) Accuracy and time cost under different client weights (b) Accuracy and time cost under different client clusters

Fig. 3. Accuracy and time cost under different client clusters and weights

Figure 4 shows the computational cost of encryption, decryption, ciphertext
addition, and ciphertext decryption under several schemes. We compare the
computational cost of our two schemes with Paillier’s scheme, the xMK-CKKS
scheme, and the tMK-CKKS scheme. For Paillier’s scheme, as the CKKS scheme
packs more ciphertexts simultaneously (based on polynomial dimension), as the
amount of data increases, It is faster than Paillier’s scheme in encryption and
decryption, and the gap increases linearly with the number of models to be
encrypted. For xMK-CKKS and tMK-CKKS schemes, there is no obvious differ-
ence in the speed of encryption, decryption, and ciphertext addition under the
same parameters. However, in the decryption phase, the xMK-CKKS scheme
requires all K clients to calculate the decryption share, so the computational
cost is high. For the tMK-CKKS scheme and vMK-CKKS scheme, more than t
clients must jointly decrypt the calculation because t is usually less than K, and
the computational cost is low. At the same time, due to client selection, clients
involved in vMK-CKKS decryption share calculation often have better perfor-
mance. Therefore, the decryption speed is faster than tMK-CKKS. We show a
more detailed comparison of several MK-CKKS schemes in Fig. 5.

(a) Average encryption time cost (b) Average decryption time cost (c) Average addition time cost

Fig. 4. Comparison of calculation time cost between Paillier and different MK-CKKS
schemes

Figure 6 shows the computational overhead on the server side. In Fig. 6(a),
we compare the influence of different client numbers K, threshold size t, and the

266 P. Lu et al.

number of clients selected in each round of the client selection strategy S on the
decryption of the aggregated ciphertext. It can be seen that the value of K is
much larger than t and S in general. The decryption cost of xMK-CKKS is higher
than that of other schemes because it requires all clients to aggregate. For differ-
ent choices of t, a smaller value of t will bring faster decryption speed but reduce
the security of collusion attacks. The threshold-based secret sharing method for
decryption is still faster than the aggregation method in xMK-CKKS. For our
multi-key homomorphic scheme, since S in the client selection strategy is smaller
than t, the decryption still requires at least t clients to participate. Therefore,
the whole is still faster than the tMK-CKKS scheme under the same threshold
t. In Fig. 6(b), we compare the time cost of different models. It can be seen
that the vMK-CKKS scheme reduces the time cost by about 6% compared with
tMK-CKKS. In practical application, considering the balance between security
and efficiency, the weight of vMK-CKKS can further reduce the time cost.

(a) Average encryption time cost of
different MK-CKKS schemes

(b) Average decryption time cost of
different MK-CKKS schemes

(c) Average addition time cost of different
MK-CKKS schemes

Fig. 5. Calculation cost of different MK-CKKS schemes

Figure 7 shows the communication cost under different encryption schemes,
and we take the ciphertext size simplicity of different schemes as the cost of
the communication overhead. In the Paillier scheme, the cost of the cipher-
text grows linearly much more than the other CKKS schemes. The xMK-CKKS
scheme (K = 1000) always has a higher ciphertext cost than tMK-CKKS and
vMK-CKKS based on a threshold (t = 300). In the tMK-CKKS scheme, due
to the client selection strategy of vMK-CKKS), the size of plaintext used for
encryption in each round is less than that of the tMK-CKKS scheme, and the
ciphertext size is also slightly reduced. However, in practice, because of the ver-
ification mechanism, vMK-CKKS needs to broadcast between clients to verify
the correctness of secret fragments, and the client selection strategy requires
the client to inform the server of its corresponding resource information, which
increases the communication requirement of each round by about 11KB com-
pared with other schemes. Suppose the total number of aggregated rounds is 50.
It will incur about 0.53MB of communication overhead, which is still an order
of magnitude smaller than ciphertext. Therefore, the communication overhead
of the vMK-CKKS scheme is still smaller than that of the other two MK-CKKS
schemes when the number of aggregation rounds is small.

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 267

(a) Decryption time cost on server (b) Average computation time cost

Fig. 6. Decryption time cost on server

(a) Communication cost of different encryption schemes (b) Communication cost with different number of clients

Fig. 7. Communication cost of different encryption schemes

6 Security and Functionality Analysis

6.1 Analysis of vMK-CKKS

In Sect. 6.1, we analyze the multi-key CKKS scheme and prove its security, based
on which we will analyze the security of the vMK-CKKS scheme.

Theorem 1. The vMK-CKKS scheme is semantically secure, based on the hard-
ness of the RLWE problem [3].

Proof. The security of the vMK-CKKS scheme follows directly from the security
of the CKKS homomorphic encryption scheme. We can see that cti = (cki

0 , cki
1) =

(v′ki · b̃ + mi + eki
0 , v′ki · a + eki

1) (mod q), and the decryption share Di = si ·
Csum1

+ e∗ = si · ∑K
i=1(v

′ki · a + eki
1) + e∗ (mod q), these messages are all added

with errors. The security of the CKKS scheme relies on the hardness of the Ring
Learning with Errors (RLWE) problem. RLWE problem is believed to be hard
in the worst-case sense, even in the presence of quantum computers.

The aggregate public key security of the vMK-CKKS scheme is guaranteed by the
Feldman threshold secret sharing scheme, which is information-theoretic secure.
If the secret is divided into s shares, any s−1 shares can not recover the original
secret so that the vMK-CKKS scheme can resist a certain threshold of collusion
attack.

268 P. Lu et al.

6.2 Security Analysis of FedCMK

We consider here a four-party scenario, with learners K1, K2, K3, K4 and fed-
eration launcher (i.e. S1) and federation controller (i.e. S2).

According to the previous definition, the federation initiator is a trusted
third-party server, assuming that the participants K1, K2, K3 are hon-
est and curious, they will abide by the corresponding communication pro-
tocol but try to obtain the private information of other participants, while
K4 is a malicious party, it may not transmit the correct information. Let
F = {S1, S2,K1,K2,K3,K4} be the set consisting of this federated learn-
ing framework. We consider potentially several kinds of adversaries A =
{As2 ,AK1 ,AK2 ,AK3 ,AK4}, where AK1 represents a possible inference attack
by learner K1, and so on.

If the encryption adopts the vMK-CKKS scheme, now consider the follow-
ing scenario. Firstly, S = {K1,K2,K4} is selected as the learner of this round
according to the client selection strategy. Ideally, the trusted federation launcher
generates and distributes the secret s. K1, K2 and K4 encrypt the model update
information m1, m2 and m4 through the aggregate public key b̃ formed by s and
output the ciphertexts ct1, ct2 and ct4. But in the secret distribution phase, K1,
K2, and K4 will verify whether their secret shares are correct by broadcasting.
Finally, suppose the secret shares of all participants reach the threshold t of the
secret sharing scheme. In that case, at least t participants have the correct secret
shares, and the federation controller decrypts and outputs the sum of plaintexts
m on the premise that at least t participants jointly decrypt. We consider the
algorithm to be secure.

6.3 The Security of FedCMK

Here, we perform the security proof of the federated learning framework FedCMK
based on the analysis in Sect. 6.2.

Theorem 2. Any private privacy information of the parties involved in Fed-
CMK will not be inferred, in the presence of honest and curious adversaries
A = {As2 ,AK1 ,AK2 ,AK3}.
Proof. We here analyze the effect of inference attacks by semi-honest adversaries
on the overall system. In the vMK-CKKS scheme, since the aggregate public
key used for encryption is based on the threshold secret sharing technique, nei-
ther individual semi-honest federation controllers nor learners can decrypt the
ciphertext independently because they cannot reconstruct the secret indepen-
dently. Therefore, a semi-honest adversary cannot steal the private data of other
learners alone.

Theorem 3. Even if at most n - 1 learners perform a collusion attack, any pri-
vate privacy information of the parties involved in FedCMK will not be inferred,
in the presence of honest and curious adversaries A = {As2 ,AK1 ,AK2 ,AK3}.
(In the vMK-CKKS scheme, n represents the threshold t of secret sharing)

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 269

Proof. We here analyze the impact of collusion attacks among multiple members
on the overall system. In the vMK-CKKS scheme, considering the worst case,
t−1 learners conduct a collusion attack with the federation controller, hoping to
infer the private information of the remaining learner. We introduce the model
in Sect. 6.4 for illustration, that is, the federation controller S2 conspires with
learners K2 and K4 to infer the private information of K1. Since the vMK-CKKS
scheme builds on the VSS scheme, any holder of t + 1 secret shares can recover
it by polynomial modulo q, while the holder of t − 1 shares cannot. The VSS
scheme is based on the discrete logarithm problem, and there is no probability of
cracking through the polynomial complexity algorithm, so it is computationally
secure. Therefore, t − 1 malicious attackers cannot obtain the data of other
learners through joint collusion.

Theorem 4. Even if some malicious adversary shares the wrong secret share,
it will not derive any private information of the parties involved in FedCMK
or break the decryption, in the presence of honest and curious and malicious
adversaries A = {As2 ,AK1 ,AK2 ,AK3}.
Proof. The vMK-CKKS scheme is based on Feldman’s verifiable secret sharing
scheme. After each client receives the secret share, it needs to verify whether zi

satisfies the equation gzi = Πt−1
j=0A

xj
i

j . The equality is derived as follows:

Πt−1
j=0A

xj
i

j (mod q) = g(ajx
t−1
i +bjx

t−1
i +cjx

t−1
i +vj) (mod q)

= gzi (mod q)
(4)

According to the difficulty of discrete logarithm calculation, all parameters are
hard to be calculated, so if one party provides the wrong secret share, it can not
participate in the final decryption calculation, nor can he steal the data. Since
only a threshold of t parties with secret shares is needed for secret reconstruc-
tion, the wrong secret shares sent by malicious parties do not affect the final
decryption.

7 Conclusion

We have improved xMK-CKKS and tMK-CKKS, the two previous multi-key
encryption schemes, and optimized the algorithm for efficiency and security.
We have improved the aggregation mode of public keys to better adapt to the
characteristics of distributed training of federated learning. The overall federated
learning framework is more secure, robust, and efficient.

We evaluate our scheme in terms of accuracy, computation cost, and commu-
nication cost and compare our scheme with the mainstream Paillier encryption
scheme and several different multi-key CKKS schemes. Experiments show that
our federated learning framework is more efficient than the traditional federated
learning framework while ensuring accuracy and can conduct secure federated
training under the condition of having a trusted server.

270 P. Lu et al.

However, when the number of clients is large, the verifiable secret sharing
mechanism requires broadcasting between clients to verify the correctness of the
obtained secret snippets, which can incur significant additional overhead, and
the communication between clients may cause potential security problems.

In future work, we may optimize scenarios for large-scale federated learning
for large-scale clients to ensure that there is not a large amount of additional
communication overhead. Optimizing the client selection mechanism may be
an option [13]. At the same time, we hope that our encryption scheme can be
more suitable for distributed scenarios, such as federated learning without the
participation of a trusted third party and vertical federated learning, where each
participant holds different keys.

References

1. Bagdasaryan, E., et al.: How to backdoor federated learning. In: International
Conference on Artificial Intelligence and Statistics. PMLR, pp. 2938–2948 (2020)

2. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1175–1191 (2017)

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9_29

4. Brisimi, T.S., et al.: Federated learning of predictive models from federated elec-
tronic health records. Int. J. Med. Inf. 112, 59–67 (2018)

5. Chen, H., et al.: Efficient multi-key homomorphic encryption with packed cipher-
texts with application to oblivious neural network inference. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, pp.
395–412 (2019)

6. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_15

7. Du, W., et al.: A efficient and robust privacy-preserving framework for cross-device
federated learning. In: Complex & Intelligent Systems, pp. 1–15 (2023)

8. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

9. Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic encryp-
tion and federated learning. Future Internet 13(4), 94 (2021)

10. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp.
427–438. IEEE (1987)

11. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

12. Jin, C., et al.: Towards End-to-end secure and efficient federated learning for
XGBoost (2022)

13. Konečnỳ, J., et al.: Federated learning: strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492 (2016)

https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
http://arxiv.org/abs/1712.07557
http://arxiv.org/abs/1610.05492

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework 271

14. Federated Learning: Collaborative machine learning without centralized training
data. Publication date: Thursday, April 6 (2017)

15. Li, T., et al.: Federated learning: challenges, methods, and future directions. IEEE
Signal Process. Mag. 37(3), 50–60 (2020)

16. Lyu, L., Yu, H., Yang, Q.: Threats to federated learning: a survey. arXiv preprint
arXiv:2003.02133 (2020)

17. Ma, J., et al.: Privacy-preserving federated learning based on multi-key homomor-
phic encryption. Int. J. Intell. Syst. 37(9), 5880–5901 (2022)

18. Matsumoto, M., Oguchi, M.: IoT device friendly leveled homomorphic encryption
protocols. In: IEEE International Conferences on Internet of Things (iThings) and
IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physi-
cal & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE
Congress on Cybermatics (Cybermatics), pp. 525–532. IEEE (2022)

19. McMahan, B., et al.: Communication-efficient learning of deep networks from
decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR
(2017)

20. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous
resources in mobile edge. In: ICC 2019–2019 IEEE International Conference on
Communications (ICC), pp. 1–7. IEEE (2019)

21. Stripelis, D., et al.: Secure federated learning for neuroimaging. arXiv preprint
arXiv:2205.05249 (2022)

22. Tan, A.Z., et al.: Towards personalized federated learning. IEEE Trans. Neural
Networks Learn. Syst. 32, 9587–9603 (2022)

23. Yuan, B., Ge, S., Xing, W.: A federated learning framework for healthcare IoT
devices. arXiv preprint arXiv:2005.05083 (2020)

24. Zhang, C., et al.: Batchcrypt: efficient homomorphic encryption for cross-silo fed-
erated learning. In: Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC 2020) (2020)

25. Zhang, J., et al.: PEFL: a privacy-enhanced federated learning scheme for big data
analytics. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6.
IEEE (2019)

26. Zhang, X., et al.: A privacy-preserving and verifiable federated learning scheme.
In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp.
1–6. IEEE (2020)

http://arxiv.org/abs/2003.02133
http://arxiv.org/abs/2205.05249
http://arxiv.org/abs/2005.05083

	FedCMK: An Efficient Privacy-Preserving Federated Learning Framework
	1 Introduction
	2 Related Work
	2.1 Homomorphic Encryption Based FL
	2.2 Multi-key Homomorphic Encryption Based FL

	3 Preliminaries
	3.1 Federated Learning
	3.2 Client Selection
	3.3 MK-CKKS Scheme

	4 FedCMK
	4.1 Problem Statement
	4.2 Threat Model
	4.3 Our Client Selection Design
	4.4 Our MK-CKKS Scheme Design
	4.5 FedCMK Design

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Security and Functionality Analysis
	6.1 Analysis of vMK-CKKS
	6.2 Security Analysis of FedCMK
	6.3 The Security of FedCMK

	7 Conclusion
	References

