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Abstract. With the rapid growth of edge devices such as smartphones,
wearables, and mobile networks, how to effectively utilize a large amount
of private data stored on these devices has become a challenging issue. To
address this issue, federated learning has emerged as a promising solu-
tion. Federated learning allows multiple devices to train machine learning
models collaboratively while keeping the data decentralized and follow-
ing local privacy policies. However, the heterogeneous differences in data
distributions, model structures, network environments, and devices pose
challenges in realizing collaboration. In this paper, we reviewed the het-
erogeneous federated learning (HFL) approaches and classified them into
data heterogeneity, device heterogeneity, communication heterogeneity,
and model heterogeneity. Also, we concluded their advantages and disad-
vantages and gave the solutions to the limitations in detail. Meanwhile,
this paper introduces the commonly used methods for evaluating the
performance of federated learning and suggests the future directions of
the HFL framework.

Keywords: Heterogeneous Federated Learning · Trustworthy AI ·
Federated Learning

1 Introduction

In today’s technologically advanced society, edge devices such as smartphones,
wearable devices, and mobile networks are widely used in real-world applica-
tions. However, it is challenging to use the large amount of personal data stored
on these devices without compromising privacy. To address this challenge, fed-
erated learning has emerged as a promising solution. Federated learning allows
multiple devices to train machine learning models collaboratively while keeping

This work is supported in part by the National Natural Science Foundation of China
under Grant 62372125, in part by the Guangdong Natural Science Funds for Distin-
guished Young Scholar under Grant 2023B1515020041.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14509, pp. 172–189, 2024.
https://doi.org/10.1007/978-981-99-9785-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9785-5_13&domain=pdf
http://orcid.org/0009-0000-1464-0090
http://orcid.org/0009-0006-8402-0974
http://orcid.org/0000-0002-5641-7169
http://orcid.org/0000-0002-6483-8326
http://orcid.org/0000-0003-3043-5622
https://doi.org/10.1007/978-981-99-9785-5_13


Towards Heterogeneous Federated Learning 173

the data decentralized, adhering to the data locality principle. In this paradigm,
the devices participating in the federated learning system are called clients. Fed-
erated learning is a secure and distributed machine learning framework based on
encryption techniques, enabling organizations to engage in collaborative model
training while safeguarding data privacy. Federated learning(FL) [1,2], a collabo-
rative learning model paradigm, has attracted increasing attention from industry
and academia. Extensive research on this approach has been conducted in various
real scenarios, including healthcare [3], recommendation systems [4], anti-money
laundering [5], and data security [6].

Federated learning has achieved significant success. However, since most
existing research in federated learning is based on the assumption of homo-
geneous data that can be easily aggregated. there are numerous challenges [7],
including variations in data distributions, model structures, network environ-
ments, and edge devices, making federated collaboration hard to implement.
The heterogeneity issues have existed in various aspects of the learning process,
including data heterogeneity, device heterogeneity, communication heterogeneity,
and model heterogeneity. As shown in Fig. 1, the specific challenges are summa-
rized as follows.

(1) Data heterogeneity: Due to the Non-Independent Identical Distribution
(Non-IID) problem of the client’s local data, the results obtained from model
training on one client may not be able to be generalized to other client’s
data, resulting in a decline in the overall performance of the model.

(2) Device heterogeneity: Due to the differences in client’s storage, computation,
and communication capabilities, the computational power of some clients is
weak, and they cannot perform complex model training or gradient calcu-
lation, resulting in an imbalance between the devices involved in federated
learning, affecting the overall training effect.

(3) Communication heterogeneity: Due to the differences in the network envi-
ronment in which the client is located, there may be communication delays
and bandwidth constraints, resulting in a blockage of the aggregation pro-
cess of the model parameters, which affects the model’s updating and con-
vergence speed.

(4) Model heterogeneity: In various application scenarios, different tasks require
different models, so customers need to effectively integrate different types of
models. However, this is a challenging task that requires solving the problem
of model fusion and integration.

To address the above heterogeneity problems, we provide a comprehensive sur-
vey of research work on HFL in this paper. We conduct a comprehensive inves-
tigation into the fundamental causes of heterogeneity in federated learning and
subsequently classify HFL approaches into four categories: data heterogeneity,
device heterogeneity, communication heterogeneity, and model heterogeneity.
This study sufficiently analyzes the solutions to address these challenges. Addi-
tionally, it employs commonly employed performance evaluation methodologies
to evaluate the performances of existing HFL approaches and also gives four
potential research directions of the HFL framework.
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Fig. 1. Schematic of heterogeneous federated learning

1.1 Related Surveys

A survey conducted by Yang et al. [2] was quite influential in establishing the
fundamental principles and concepts of Federated Learning. It also proposed an
extensive and robust FL framework. Kairouz et al. [8] expanded the applications
of FL to various scenarios. Wahab et al. [9] conducted a thorough investigation
and synthesis, presenting a multi-level classification methodology and evaluation
criteria, and exploring the prospects of federated learning within communication
and network systems. In a more recent survey [10], the domain of Personalized
Federated Learning (PFL) was introduced, accompanied by an exploration of the
fundamental challenges of privacy-preserved machine learning on heterogeneous
data. The survey described PFL techniques, pivotal concepts, and future research
directions.

However, it is worth noting that several surveys focus on HFL. The study [11]
offered an all-encompassing assessment of the profound impact of heterogeneity
on quality and fairness in federated learning, highlighting significant effects on
model performance and fairness in mixed heterogeneity scenarios. The concept
of HFL was initially introduced by Gao et al. [12], who endeavored to tackle the
intricate challenges posed by heterogeneity in federated learning through the
comprehensive investigation of various aspects, including data space, statistics,
systems, and model heterogeneity. In a recent survey, Ye et al. [13] provided a
systematic examination and comprehensive review of the practical challenges and
innovative solutions of HFL. The survey research challenges in HFL, a thorough
review of recent advancements, analysis of existing approaches, and an insightful
on future research directions.



Towards Heterogeneous Federated Learning 175

2 A Taxonomy of Heterogeneous Federated Learning

2.1 Definition

The concept of HFL aims to address the inherent heterogeneity among par-
ticipants in terms of data, devices, communication, and models. The primary
objective of HFL is to facilitate the integration of knowledge across diverse par-
ticipants, thereby enhancing model performance and generalization capabilities.

2.2 Analysis

Data Heterogeneity. Data Heterogeneity is often regarded as statistical het-
erogeneity, where the data deviates from complete independence and identical
distribution, commonly known as non-independent and identically distributed
(non-i.i.d.).

Model Heterogeneity. Model heterogeneity presents numerous technological
and algorithmic challenges in the field of federated learning. Primarily, models
with different architectures may have different quantities of parameters and fol-
low distinct update rules. Consequently, this makes the aggregation of model
parameters notably complex during the federated learning process. Moreover,
model heterogeneity gives rise to disparities in model performance, as divergent
model types may exhibit variances in data processing and learning tasks.

Device Heterogeneity. In a pristine federation environment, clients demon-
strate a diverse range of device configurations, including variations in GPU,
CPU, software, and network conditions. This heterogeneity leads to significant
discrepancies in device overhead, such as compute time and resource utilization,
when striving to accomplish the same task. Consequently, this exacerbates the
performance degradation of a global model.

Communication Heterogeneity. In real-world implementations of the Inter-
net of Things (IoT), devices are commonly deployed in diverse network envi-
ronments, each characterized by distinct network connectivity settings. Conse-
quently, that leads to variations in communication attributes such as bandwidth,
latency, and reliability, resulting in what is widely known as communication het-
erogeneity.

3 Heterogeneous Federated Learning Taxonomy

3.1 Federal Learning Strategies with Heterogeneous Data

The presence of non-i.i.d. data among clients poses a challenge known as data
heterogeneity. Addressing the detrimental effects of non-i.i.d. data remains an
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ongoing research endeavor. Non-i.i.d. data exhibits distributional skews, often
observed as label distribution skew, feature distribution skew, and quantity skew.

Label Distribution Skew: In the context of label distribution skew [14], the
heterogeneous distribution of target labels (or classes) can lead to significant
disparities among diverse clients.

Feature Distribution Skew: Feature distribution skew refers to discrepancies
in the distributions of input features among clients [15]. The variation in feature
distributions could increase due to divergent data collection processes employed
by different clients.

Quantity Skew: Quantity skew refers to disparities in the available data vol-
ume among clients. Certain clients may possess a substantial amount of data [16],
while others may have a limited number of data samples. Consequently, clients
with abundant data can exert undue influence on the training process. Effec-
tively managing quantity skew requires techniques to mitigate the impact of
data imbalance and prevent clients with limited data from being overshadowed.

Based on the classification of data heterogeneity problems, there are several
potential solutions to consider. One such solution is data augmentation, which
involves enriching or amplifying data by incorporating supplementary informa-
tion or features. Fedmix [17] aims to integrate Mixup techniques into federated
learning to enhance the mean-based federated learning paradigm. This inno-
vative approach introduces mean-enhancement techniques within the federated
learning framework, approximating the benefits of Mixup. As a result, Fedmix
effectively addresses challenges such as overfitting, enhances model generaliza-
tion, and mitigates issues associated with imbalanced data distribution. However,
it is important to note that Fedmix has its limitations. The collection of local
data distributions may introduce potential information leakages, raising concerns
about privacy and security. Astraea [18] tackles the challenges of data imbalance
and model bias through adaptive sample selection and uncertainty-driven model
updating strategies. The efficacy of these approaches is rigorously demonstrated
across various datasets encompassing mobile deep-learning applications. How-
ever, it is worth noting that some researchers have expressed concerns about
Astraea’s method, suggesting that the disclosure of local data distributions dur-
ing upload could inadvertently expose vulnerabilities and make it susceptible to
malicious intrusion.

This section delves into the data heterogeneity issues encountered in fed-
erated learning, encompassing label distribution skewness, feature distribution
skewness, and quantity skewness. To address these challenges, the section exam-
ines potential solutions, including data augmentation and the Fedmix method.
In future research, it would be valuable to explore approaches that effectively
mitigate the limitations of these methods and further enhance their efficacy and
security.

3.2 Federal Learning Strategies with Heterogeneous Model

Model heterogeneity presents a challenge when attempting to transfer knowledge
between the clients that employ different models with a model-independent app-
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roach. To tackle this issue, we classify model heterogeneity into two categories:
partial heterogeneity and full heterogeneity.

Partial Heterogeneity. Partial heterogeneity refers to the differences in the
model architectures adopted by various clients, while certain components or lay-
ers of the models remain consistent across clients. In other words, there exists
a partial overlap in the model architectures. This variability may arise due to
hardware limitations, individual requirements, or variations in the task proper-
ties that clients aim to address.

Complete Heterogeneity. Complete heterogeneity in federated learning
occurs when different clients use model architectures that have significant dif-
ferences, leading to a wide variety of models. To effectively tackle this challenge,
sophisticated strategies like meta-learning [19] or model-agnostic mechanisms are
necessary. These strategies facilitate the generalization and transfer of knowledge
while accommodating the diverse model structures.

Several solutions are proposed based on the above categorization of model
heterogeneity into partial and complete heterogeneity. One of these solutions
is knowledge distillation, which relaxes the stringent requirements for homoge-
neous local models by using logarithms as a representation of knowledge trans-
fer. This approach allows for the creation of federated learning systems that can
accommodate different model architectures [19]. Wang introduced the VFed-
Trans framework for facilitating privacy-preserving data sharing and knowledge
transfer among healthcare organizations [20]. This framework utilizes a joint
modeling approach to extract a federated representation of shared samples by
combining their features. However, researchers have expressed concerns regard-
ing the effectiveness, scalability, and applicability of this approach in different
scenarios of vertical federated learning. In the field of federated learning, Le et
al. proposed FedLKD, an approach that utilizes layer-wise knowledge distilla-
tion [21]. The goal of FedLKD is to enhance the local training process by apply-
ing knowledge distillation between global and local models, using a small proxy
dataset. However, it is important to carefully consider the potential impact of
this method on privacy preservation, as emphasized by several researchers. Yu
et al. proposed an innovative approach to address the inherent heterogeneity
in joint learning through local adaptation [22]. This technique aims to enhance
model efficiency and convergence by incorporating local model adaptation and
parameter tuning. It enables each client to personalize model training based on
its local data characteristics and device capabilities. However, it is important to
consider the potential limitations of this method when utilizing logits, as it may
result in insufficient integration of local information.

In summary, dealing with model heterogeneity presents a significant challenge
in the field of federated learning, which can be categorized as partial hetero-
geneity and complete heterogeneity. To tackle this challenge, researchers have
proposed several effective solutions, such as knowledge distillation, federated
inter-layer distillation, local model adaptation, and parameter tuning. However,
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it is crucial to conduct further research and practical validation to improve the
efficiency and feasibility of these approaches. Moreover, it is important to care-
fully consider essential aspects like privacy protection and potential limitations
when implementing these methods.

3.3 Federal Learning Strategies with Heterogeneous Communication

Within the intricate landscape of the Internet of Things, the prevalence of com-
munication heterogeneity poses significant challenges, characterized by high com-
munication costs and suboptimal efficiency [23], thereby diminishing the efficacy
of federated learning. Several methodologies have emerged as joint strategies to
address the pervasive challenge of communication heterogeneity. These encom-
pass the optimization of compression parameters and gradients, the reduction of
communication rounds, and the implementation of asynchronous training tech-
niques.

Compression Parameters and Gradients. Model parameter compression is
an effective strategy for dealing with variations in communication during feder-
ated learning. It reduces the amount of data transmitted by compressing model
parameters and can be personalized based on the characteristics and limitations
of individual devices. By selectively transmitting gradient updates according to
device characteristics and communication conditions, we can minimize commu-
nication overhead and improve efficiency.

From the perspective of Compression Parameters and Gradients, there are
several methods to address the communication heterogeneity in federated learn-
ing. For example, Communication-Mitigated Federated Learning [24] addresses
the transmission of inconsequential updates to the central server by evaluating
the compliance of local updates with global updates. This method is effective
in reducing the workload of communication transmission. However, it is crucial
to take into account the limitations of this approach when dealing with net-
works that are highly diverse or unreliable. The Federated Deep Neural Networks
Framework [25]introduces a transformative approach by substituting every fully
connected (FC) layer with a pair of low-rank projection matrices, thereby achiev-
ing model compression within the DNNs architecture. The framework establishes
a comprehensive global error function to reconstruct the output of the com-
pressed DNNs model, ensuring fidelity in the compression process. In addition,
FedSkel [26] enhances federated learning by improving computational efficiency
and optimizing communication on edge devices. This is achieved through selec-
tive model updates that solely target the essential components, thereby reducing
resource requirements. However, it is important to note that the scalability of
the system, particularly concerning privacy and security concerns, has not been
extensively analyzed.

Reducing Communication Rounds. Reducing the number of communica-
tion rounds is an effective strategy to handle communication heterogeneity. It
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helps to minimize the overall communication overhead between participants. In
the context of federated learning, FedMMD [27] improves the optimization pro-
cess by introducing the Maximum Mean Discrepancy constraint into the loss
function. This integration leads to a reduction in the required communication
rounds. Another approach, FedSeq [28] enhances the algorithm’s performance
and convergence rate by setting a predefined communication round budget. This
approach effectively manages resource allocation and streamlines the learning
process.

Reducing the number of communication rounds is an effective approach to
address communication differences in federated learning. FedMMD integrates the
Maximum Mean Discrepancy constraint into the loss function, aiming to mini-
mize communication rounds. Meanwhile, FedSeq enhances performance and con-
vergence by setting a predetermined limit on the communication rounds allowed.

Asynchronous Training. In asynchronous training, participants have the free-
dom to update model parameters independently without waiting for others to fin-
ish their updates. This concurrent process has the potential to improve commu-
nication efficiency, especially in situations with high communication latency [7].
In the context of asynchronous training, several methods have been proposed
to handle communication differences in federated learning. For example, Fed-
SeC [29] introduces a framework for differential privacy that incorporates an
optimization technique based on updates. On the other hand, FedSA [30] uses
a semi-asynchronous mechanism that relies on the sequential order of model
updates. Additionally, FedHe [31] applies a knowledge distillation-like approach
to reduce communication overhead.

Communication heterogeneity in federated learning poses significant chal-
lenges, including high communication costs and suboptimal efficiency. To address
this issue, researchers have developed several methodologies, including com-
pression parameters and gradients, reducing communication rounds, and asyn-
chronous training techniques. Methods such as Communication-Mitigated Fed-
erated Learning, Federated Deep Neural Networks Framework, and FedSkel
optimize compression and computational efficiency, while FedMMD and FedSeq
reduce communication rounds. Asynchronous training methods such as FedSeC,
FedSA, and FedHe also address communication heterogeneity.

3.4 Federal Learning Strategies with Heterogeneous Devices

Device heterogeneity in federated learning arises due to disparities in device con-
figurations, including hardware, software, and network conditions [7]. To address
this challenge, methodologies such as fine-tuning training tasks and client selec-
tion are utilized to allocate suitable tasks to edge devices, aiming to optimize
overall efficiency.

Training Tasks Adjustment. To optimize global efficiency in federated learn-
ing, it is essential to allocate appropriate tasks based on the computational
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capabilities of each device, while also considering factors like fairness, privacy,
and data diversity. Intelligent algorithms play a crucial role in navigating device
heterogeneity and enabling effective collaboration. For instance, Abdellatif et
al. [32] propose an efficient user and resource allocation scheme for horizontal
federated learning. This system leverages the vast volumes of data generated
by Internet of Things (IoT) devices to train deep learning models, addressing
the challenges and requirements posed by data privacy and resource-constrained
environments.FedSAE [33] tackles the issue of performance degradation in fed-
erated learning through two key mechanisms: automatic adjustment of device
training task capabilities and participant selection. This approach utilizes com-
prehensive information about a device’s history of training tasks to predict its
training load capacity, enabling adaptive participant selection. However, it is
important to note that refining workload allocation based on client training his-
tory may introduce temporal delays.

Client Selection. Client selection is a critical aspect of federated learning, aim-
ing to identify suitable clients for each iteration based on their constraints, such
as network bandwidth, computation capability, and local resources. Selection
strategy plays a crucial role in accelerating convergence and improving model
accuracy. Wang et al. [34] have made significant contributions in this field. Their
research tackles the challenges posed by non-IID data in federated learning.
They propose a reinforcement learning framework specifically designed for this
scenario, including an effective data representation method, an optimized task
allocation strategy, and a model aggregation mechanism. It is important to note
that reinforcement learning models require a substantial amount of data for effec-
tive training. Furthermore, in addressing the challenges arising from device het-
erogeneity, client selection is often combined with task adjustment. Researchers
have developed methodologies like CFL-HC [35]and HeteroSAg [36]to handle the
varying computational capabilities of edge devices. These approaches effectively
mitigate the impact of device heterogeneity, ensuring optimal performance and
efficiency in federated learning settings.

In federated learning, addressing device heterogeneity requires the allocation
of suitable tasks to edge devices and the selection of appropriate clients based on
their constraints. Fine-tuning training tasks and client selection strategies are
crucial for maximizing overall efficiency while considering factors like fairness,
privacy, and data diversity. To tackle the challenges posed by device heterogene-
ity and ensure optimal performance and efficiency in federated learning settings,
researchers have developed methods such as FedSAE, CFL-HC, and HeteroSAg.
These methodologies effectively handle the varying computational capabilities
of edge devices. Additionally, reinforcement learning models show promise in
addressing the issue of non-IID data.

More details of the contributions and limitations of the existing
Heterogeneous FL method can be found in the supplemental mate-
rial. Given the evolving nature of this field, it is essential to establish widely



Towards Heterogeneous Federated Learning 181

ac-knowledged benchmarking and evaluation frameworks for heterogeneous sce-
narios with different complexities.

4 Heterogeneous Federal Learning Evaluation Methods

The concept of collaborative learning was first introduced by McMahan et al. [1].
In this rapidly evolving field, it is crucial to establish widely recognized bench-
marking and evaluation frameworks for different scenarios with varying complex-
ities. Empirical evaluation plays a vital role in examining a verifiable federated
learning approach in simulated or real-world error-prone environments. It allows
for a comprehensive exploration of its effectiveness in complex computational
landscapes while ensuring the reliability of the findings.

Model Performance and Communication Overhead. The evaluation of
federated learning methods takes into account precision, convergence velocity,
and factors such as client heterogeneity and disparate data distributions [37].
It is crucial to strike a balance among precision, communication overhead, and
model performance when assessing these methods. Researchers commonly use
metrics such as accuracy, precision, recall, F1 score, and convergence velocity to
measure the effectiveness of federated learning approaches. By analyzing both
model performance and communication overhead, potential areas for optimiza-
tion can be identified.

Robustness. Robustness is an essential metric for assessing the resilience of
federated learning methods against adversarial scenarios [38,39]. It ensures that
the model maintains its performance and accuracy in the federated learning
environment. Evaluation techniques commonly include adversarial attacks such
as model inversion, membership inference, and data contamination. Metrics such
as accuracy degradation, model divergence, and anomaly detection are used to
quantify robustness.

Privacy Protection. Privacy protection is an important consideration when
evaluating the effectiveness of HFL methods. In federated learning, participants
often have sensitive data, so ensuring the security of this data is paramount.
Researchers evaluate the effectiveness of methods in preserving individual pri-
vacy using metrics such as differential privacy [40], information entropy, and data
aggregation. These metrics allow for quantifying the level of privacy protection
provided. By enhancing privacy protection measures, researchers aim to ensure
data security and privacy during the federated learning process.

Customer Contribution. Analyzing client contributions is a crucial aspect
of federated learning. It involves quantifying individual contributions by con-
sidering factors such as the quality and quantity of data, computational capa-
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bilities, and reliability. Metrics like data quality, data quantity, and computa-
tional resources are used to assess client contributions. Understanding the vary-
ing degrees of contribution is important for optimizing the federated learning
process, improving model performance, and addressing data heterogeneity. For
instance, FedCav [41]introduces an algorithm for model aggregation that takes
into account client contributions in the presence of heterogeneous data.

5 Future Directions

Our empirical investigation unequivocally demonstrates the burgeoning promi-
nence of HFL research. Nonetheless, many difficulties persist, necessitating their
resolution to empower this technology to confront the difficulties encountered in
real-world applications. We will look over the next steps for future inquiry to
enhance the efficacy of addressing heterogeneous predicaments within forthcom-
ing Federated Learning systems.

5.1 Privacy Protection

In HFL, participants often have sensitive personal data, so privacy protection
measures are necessary. Future research should prioritize the development of effi-
cient and secure privacy-preserving mechanisms to ensure participants have con-
trol over their privacy while sharing data. Differential privacy offers a mathemat-
ical guarantee that statistical results can be publicly released while safeguarding
individual privacy [46]. By combining differential privacy with federated learn-
ing, it becomes possible to prevent the disclosure of sensitive information during
model training and aggregation. Future research should focus on improving dif-
ferential privacy algorithms and mechanisms that can accommodate diverse data
types and privacy requirements in HFL. Another important research direction is
investigating the use of Secure Multi-Party Computation in the context of fed-
erated learning [47]. However, it is important to note that these solutions may
need to be adapted to account for system heterogeneity.

5.2 Improving Communication Efficiency

Communication plays a pivotal role in coordinating the collaborative learning
process among heterogeneous participants, but it often incurs substantial costs
in terms of bandwidth, latency, and energy consumption [42,43,45]. To enhance
communication efficiency in HFL, researchers can explore the following aspects.
(1)Integration of differential privacy techniques: By incorporating differential
privacy techniques, the amount of information exchanged during the federated
learning process can be effectively reduced. (2)Gradient compression techniques:
These techniques aim to minimize the size of gradients communicated during
federated learning, thereby reducing the communication overhead. (3)Leverag-
ing edge computing capabilities and enabling local model updates: By utiliz-
ing the computational capabilities of edge devices and facilitating local model
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updates, the dependency on frequent communication with the central server
can be decreased, leading to improved communication efficiency. (4)Knowledge
transfer techniques: Exploring techniques that enable knowledge transfer among
clients can significantly reduce the extensive communication requirements. Meth-
ods such as transfer learning, model personalization, and parameter sharing facil-
itate the transfer of learned knowledge from high-resource clients to low-resource
clients, thereby mitigating overall communication needs.

In conclusion, enhancing communication efficiency is a critical area for future
research in HFL. By employing techniques such as differential privacy, gradient
compression, edge computing, and federated learning with knowledge transfer,
we can effectively reduce communication overhead and enhance the scalability
and efficiency of federated learning in heterogeneous settings.

5.3 Federated Fairness

Federal equity is a crucial consideration in the design and implementation of
federated learning systems.The presence of diverse and distributed data sources
among heterogeneous participants introduces biases and inequalities, and thus
effective mitigation is required urgently [6]. Future research should prioritize the
development of strong frameworks and algorithms that actively promote fair-
ness, equality, and nondiscrimination in federated learning. One way to enhance
fairness in federated learning is to focus on privacy-preserving methods that safe-
guard sensitive data and prevent unauthorized access or misuse [44]. By explor-
ing privacy-enhancing technologies, we can facilitate collaborative learning while
respecting individual privacy rights. This not only mitigates the risk of biased
model updates but also fosters fairness in the process of aggregating data. Addi-
tionally, it is crucial to design federated learning algorithms explicitly to tackle
the challenges posed by data heterogeneity and fairness requirements [45]. Tra-
ditional federated learning methods may unintentionally favor participants with
more extensive or representative data, resulting in biased models and persistent
inequality. To address this, future research should concentrate on innovative tech-
niques such as sample weighting, domain adaptation, and model regularization.
These approaches effectively account for data heterogeneity and ensure fairness
throughout the model training and aggregation processes.

In conclusion, it is crucial to prioritize addressing equity at the federal level
in federated learning. Researchers can promote fairness, equality, and nondis-
crimination in federated learning systems by developing methods that protect
privacy, exploring technologies that enhance privacy, and designing algorithms
that explicitly address the diversity of data and fairness.

5.4 Uniform Benchmarks

The growing fascination with HFL is evident based on the results of our recent
survey. However, as we delve further into this domain, numerous challenges arise
that require immediate attention to make this technology suitable for practi-
cal applications. A crucial aspect for future research directions in addressing
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heterogeneity in FL systems revolves around the establishment of standardized
benchmarks.

Improved Datasets. To accurately represent the diverse nature of real-world
federated learning scenarios, it is crucial to develop comprehensive and realis-
tic datasets. Improving datasets is a key area for future advancements in the
field of heterogeneous federated learning. Researchers should focus on different
aspects of dataset construction, including being aware of heterogeneity, using
representative data sampling techniques, assessing and enhancing data quality,
generating privacy-preserving datasets, creating benchmark datasets, and incor-
porating real-world data. By addressing the challenges associated with data het-
erogeneity using these strategies, researchers can enhance the performance and
effectiveness of federated learning models in diverse settings. The availability of
these improved datasets will enable more realistic and impactful research in the
field of HFL.

Enhanced Evaluation Metrics. Establishing clear and consistent evaluation
metrics is crucial for effectively measuring the performance of Horizontal Feder-
ated Learning. It is essential to advance the field by developing enhanced evalu-
ation metrics that can provide a comprehensive understanding of the strengths
and limitations of federated learning systems. A key focus of future research
should be on expanding existing models such as FedEval [48]. The objective
should be to create metrics that consider heterogeneity awareness, privacy preser-
vation, fairness orientation, robustness emphasis, resource efficiency, and real-
world performance. These enhanced evaluation metrics will drive progress in the
field and contribute to the development of more effective and equitable federated
learning systems.

6 Conclusion

This paper aims to provide a comprehensive definition and analysis of HFL.
It categorizes HFL into four types of heterogeneity: data, model, device, and
communication, based on the underlying causes of heterogeneity in federated
learning. The study offers a meticulous examination of potential solutions to
address these challenges, ultimately enhancing the reader’s comprehension of
the impact of heterogeneity on federated learning. Furthermore, it succinctly
summarizes commonly employed performance evaluation methods and proposes
future directions for the development of the HFL framework. These insight-
ful discussions hold significant value in contributing to the advancement of the
HFL community. HFL presents itself as an engaging research avenue, necessitat-
ing collaborative efforts from the machine learning, systems, and data privacy
communities (Tables 1, 2, 3 and 4).
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Appendix

Table 1. Heterogeneous data methods

Methods Key Contributions Limitations

Zhang et al. [14] FedlC solves the problem of skewed
label distribution in federated
learning by calibrating logits and
introducing label boundaries

The effectiveness in dealing with
extreme labeling distribution
skewness still needs further research
and improvement.

Luo et al. [15] DFL solves the problem of uneven
attribute distribution on the
performance and convergence
stability of federated learning

Challenges remain in dealing with
complex relationships between
domain-specific and cross-invariant
attributes.

Yoon et al. [17] FedMix for improving the
performance of federated learning
with non-independent Identically
distributed Data and Addressing
Privacy Preservation

Collecting local data distributions
may bring potential information
leakage.

Duan et al. [18] Astraea for Improving Classification
Accuracy in Mobile Deep Learning
Applications

Disclosure of local data distribution
during upload may inadvertently
expose vulnerabilities and make it
susceptible to malicious intrusion

Table 2. Heterogeneous model methods

Methods Key Contributions Limitations

Fallah et al. [19] MAML uses a personalized version
of joint averaging algorithm and
evaluates its performance against
gradient specification of the
non-convexloss function

verlooking other potential
approaches or techniques that could
enhance personalization in federated
learning.

Wang et al. [20] VFKF proposes a vertical federated
knowledge transfer mechanism for
feature enrichment in cross-party
machine learning systems

The scalability and applicability of
vertical federated learning in
different scenarlos are not apparent.

Le et al. [21] FedLKD effectively addresses the
statistical heterogeneity challenge by
leveraging knowledge istillation
between global and local models

Its effectiveness and privacy
preservation may vary depending on
the specific characteristics of the
dataset and the selection of proxy
data.

Yu et al. [22] They alleviate the issue of overfitting
in personalized updates by
augmenting the coherence of logits
between the global and local models

The exploitation of logits may
engender inadequate assimilation of
local information
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Table 3. Heterogeneous communication methods

Methods Key Contributions Limitations

Hou et al. [23] FedChain combines the advantages
of local and global update methods
infederated learning,achieving fast
convergence while leveraging data
similarity

Devices may connect slowly,
rendering them expensive and
unreliable communicate.

Lu et al. [24] CMFL avoids transmitting irrelevant
updates to the server by measuring
the consistency of local updates with
global updates

Difficult to handle highly
heterogeneous or unreliable network
environments.

Li et al. [25] They presents a concise and efficient
federated learning framework
fortraining deep neural networks on
resource-constrained mobile device

Lack of in-depth analysis of
potential privacy or security
implications of proposed frameworks.

Luo et al. [26] Fedskel enables federated learning
for efficient computation and
efficient communication on edge
devices by updating the essential
parts of the mode

Limited scalability analysis of the
system with privacy or security
concerns

Table 4. Heterogeneous device methods

Methods Key Contributions Limitations

Abdellatif et al. [32] Allow massive amounts of data
generated by IoT devices to train
deep learning models

Failure to minimize communication
overhead in hierarchical joint
learning.

Li et al. [33] FedSAE effectively addresses
systems heterogeneity by adjusting
the training tasks of devices and
actively selecting participants

Refining the allocation of workloads
in accordance with the client
straining history may encounter
temporal delays.

Wang et al. [34] Favor dynamically curates the
optimal cohort of clients to engage
in iterations of federated learning

Raining reinforcement learning
models necessitates a substantial
volume of data

The four tables above summarize the solutions to federated learning data het-
erogeneity, model heterogeneity, communication heterogeneity, and device het-
erogeneity, and analyze the main contributions and limitations of each approach.
These valuable discussions can contribute to the high-quality development of the
heterogeneous federated learning community.
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