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Preface

Thefirst InternationalConference onArtificial IntelligenceSecurity andPrivacy (AIS&P
2023) was held in Guangzhou, China during December 3–5, 2023. AIS&P serves as an
international conferences for researchers to exchange the latest research progress in all
areas such as artificial intelligence, security and privacy, and their applications. This
volume contains papers presented at AIS&P 2023.

The conference received 115 submissions. The committee accepted 40 regular papers
and 23 workshop papers to be included in the conference program. Every paper received
2 or 3 Single-blind reviews. These proceedings contain revised versions of the accepted
papers. While revisions were expected to take the referees’ comments into account, this
was not enforced and the authors bear full responsibility for the content of their papers.

AIS&P 2023 was organized by Huangpu Research School of Guangzhou Univer-
sity. The conference would not have been such a success without the support of these
organizations, and we sincerely thank them for their continued assistance and support.

We would also like to thank the authors who submitted their papers to AIS&P 2023,
and the conference attendees for their interest and support. We thank the Organizing
Committee for their time and effort dedicated to arranging the conference. This allowed
us to focus on the paper selection and deal with the scientific program. We thank the
Program Committee members and the external reviewers for their hard work in review-
ing the submissions; the conference would not have been possible without their expert
reviews. Finally, we thank the EasyChair system and its operators, for making the entire
process of managing the conference convenient.

November 2023 Chunsheng Yang
Haibo Hu

Changyu Dong
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Fine-Grained Searchable Encryption
Scheme Against Keyword Brute-Force

Attacks

Yawen Feng , Shengke Zeng(B) , Jixiang Xiao, Shuai Cheng,
and Fengchun Zhang

School of Computer Science and Technology, Xihua University, Chengdu, China
{feisongan,zengsk,xiaojixiang,chengshuai}@stu.xhu.edu.cn

Abstract. The inherent security threat of public key encryption with
keyword search (PEKS) is the inside guessing attack since the cipher-
text of keyword is generated publicly. Sever-aided schemes and keyword
search with authenticated encryption schemes are proposed to resist
inside keyword guessing attack in PEKS. Unfortunately, these solutions
have limitations due to the security and privacy. To overcome these weak-
ness, we propose an encrypted keyword search with fine-grained access
control. The access policy of our scheme is semi-hidden in order to pre-
vent the behavior of online keyword guessing attacks. At the same time,
our scheme achieves offline keyword guessing attacks resistant by the pri-
vate generation of ciphertext (without using the private key). Security
proofs and experiment results show that our solution is feasible in terms
of security and performance.

Keywords: privacy protection · fine-grained access control ·
semi-hidden access policy · public encryption with keyword search ·
keyword guessing attack

1 Introduction

Data sharing and outsourcing are popular with the development of cloud com-
puting. However, data leakage threats the user security and privacy. Traditional
encryption is a direct approach to ensure the data confidentiality. However, it
limits the data usage. Song et al. [1] proposed searchable encryption to make
the encrypted data searchable without decryption. Song’s searchable encryption
is based on symmetric encryption thus it cannot be applied to the scenario that
the data receiver wants to share confidential data with owner. Boneh et al. [2]
proposed a public key encryption with keyword search (PEKS) scheme to handle
this problem. Nevertheless, it incurs insider guessing attacks due to the limited
keyword space and public encryption.

On the other hand, attribute-based encryption (ABE) [3] brings fine-grained
access control to encrypted data. Combining ABE with PEKS allows to search
encrypted data with fine-grained access control. The attribute-based keyword
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14509, pp. 1–15, 2024.
https://doi.org/10.1007/978-981-99-9785-5_1
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http://orcid.org/0000-0003-0064-5987
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search (ABKS) [4–12] access policies based on the attributes of the data user,
The data owner uploads the access policy and keyword index ciphertext to the
server. Because the attribute matrix of the access policy is exposed to the server,
the server can choose its own secret values for key distribution. This results
in generating a valid keyword index ciphertext with the received trapdoor for
keyword testing. The above operation will cause keyword leakage.

It is found that the reason for the existence of keyword guessing attacks
in the ABKS scheme is the leakage of access policy, so the privacy of access
policy in the scheme must be protected. We think about the following two ways:
the first method is full-hidden access policy, but most of the full-hidden access
policy schemes are based on the “AND” gate to realize the resistance to keyword
guessing attacks, which has the problem of restricted attribute expression and
large computation; the second method is semi-hidden access policy to realize
the resistance to keyword guessing attacks, which separates the attribute value
and the attribute name. The data owner sends the ciphertext to the server after
hiding the attribute value, and any third party such as the server cannot forge
the keyword ciphertext index and ciphertext components based on the exposed
access policy, in which the semi-hidden access policy has the advantage of richer
attribute expression and higher computation rate than the fully hidden access
policy. The scheme is based on the idea of a semi-hidden access policy, which
uses the data owner’s secret value to protect the attribute value. Meanwhile,
the authorization center assists the keyword trap to hide the attribute values to
achieve the secure delivery of the trap over the public channel.

1.1 Related Works

Since PEKS schemes are faced with guessing attacks, then some scholars pro-
posed dual-server [13] and authenticated encryption [14] to resist keyword online
guessing attacks. However, the dual-server-based solution may meet two servers
colluding, which can expose data privacy. The authentication-based solution uses
the data owner’s own private key in constructing the keyword index ciphertext,
which can lead to the exposure of the privacy of the data owner’s identity. This
is a serious violation of user privacy in special application scenarios such as
e-healthcare.

In order to adapt to a wider range of application scenarios, ABKS schemes
such as distributed, malicious user traceability, and multi-data owners are pro-
posed. Scheme [4] considered multiple data owner authentication of files as the
research background, which not only realized hidden access policy, but also
allowed tracking of malicious users. Scheme [5] proposed attribute-based key-
word search encryption for secure multi-authority, which prevented single points
of failure and protected data privacy. Scheme [7] achieved verifiable query results
while protecting the privacy of access policies. However, the above schemes are
also suffer from keyword guessing attacks as its limited keyword space. In order
to solve such attacks, the indistinguishability of ciphertexts and the indistin-
guishability of trapdoors are proposed. However, scheme [8,11] can only ensure
the privacy of the keyword index ciphertext while exposing the privacy of the
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keywords in the trapdoor. An attacker can execute a bilinear pair operation by
exhausting keywords based on the system public key and the trapdoor com-
ponent generated by the data user itself, and this operation leads to keyword
leakage. Some schemes [5,6,12] can only guarantee the privacy of the trapdoor
but expose the keywords in the keyword-indexed ciphertext. The attacker can
also get the keyword information by running a bilinear pair operation based on
the system public key and the ciphertext components generated by the data
owner itself to extract the keywords. The threat of any of the above attacks
remains unsafe for the entire scheme. The scheme [9] proves the privacy of the
ciphertext and the privacy of the trapdoor. The scheme is guaranteed to be
secure from guessing attacks by offline attackers. However, the scheme suffers
from online keyword-guessing attacks. Since M is visible to the server, which
can generate its own random secret value and distribute the key based on M ,
then generate a valid keyword indexed ciphertext to match with the received
keyword trapdoor. This operation results in keyword leakage.

After research, it is found that the following two methods are realized to resist
keyword attack. First, using the private key of the data owner, the authentication
method is used to resist the keyword guessing attack. Second, correlate keywords
with attributes and full hidden access policy.

In 2021, Miao et al. [4] achieved to resist online keyword guessing attacks.
The scheme is based on an authentication method that requires authorization
from the data owner for data access interactions. And if the data user sends
authorization information to other people, those people will know the identity
of the data owner (knowing only the authorization information is not enough
to match the keyword index and decrypt the ciphertext). Chaudhari et al. [15]
proposed an access policy full hiding approach to prevent the server from forging
a valid keyword-indexed ciphertext based on the privacy of the ciphertext and
the privacy of the trapdoor achieved. However, the access policy of this scheme is
based on the “AND” calculation of multiple attributes at the same time, and the
secret value obtained from the polynomial calculation of multiple attribute values
for each attribute, and the attribute expression is limited [16,17]. In addition, the
data owner needs to interact with the authorized authority when constructing
the keyword index ciphertext to secure the keywords based on the master key.
In 2022, chaudhar et al. [18] proposed an attribute-based keyword search scheme
for hiding attribute values. Although the scheme hides the access structure and
effectively improves the computational efficiency compared to the scheme [15],
the keywords and attributes are separated. It is not possible to protect the
privacy of keywords in trapdoors. Liu et al. [19] proposed a multi-valued attribute
structure and multi-keyword access control scheme based on “AND” gate, which
achieves the privacy of trapdoors, but the existing ciphertexts lead to the leakage
of keywords in the keyword-indexed ciphertexts. The scheme [7] proposed by
Niu is based on an attribute tree construction, which enriches the expression
of attributes in the access policy. Although the scheme states hidden access
structure, it exists attribute value guessing attack and also suffers from the
same problem of keyword leakage due to existing ciphertexts.
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1.2 Contributions

To overcome these limitations, we propose a fine-grained searchable encryption
scheme with a semi-hidden access policy, which not only supports fine-grained
access control in PEKS but also prevents the keyword guessing by the semi-
hidden access policy. Specifically, the access policy in the ciphertext component
is divided into an attribute name part and an attribute value part. To prevent
keyword online guessing attacks, the attribute value components are unknown to
third parties such as servers. It is impossible for a server to forge a valid keyword
ciphertext index without knowing the full access policy. Thus, it is guaranteed
that the authenticity of the keyword index ciphertext origin is not forged by any
other attacker. Our contributions are shown as follows:

– Prevent keyword guessing attacks. In this paper, we construct a semi-hidden
access policy to solve the keyword online guessing attack in fine-grained
searchable encryption. Moreover, keyword offline guessing attack is prevented
by using the secret value of the access policy.

– Allow the trapdoors passed publicky. The keyword trapdoor is generated
based on the key returned to the data user by the authorized authority,
ensuring the privacy of the keyword. It enables trapdoors to can be passed
over a public channel without exposing any bottom plaintext information.

– A security model of fine-grained searchable encryption with semi-hidden
access policies is proposed. It not only proves the privacy of the ciphertext
and the privacy of the trapdoor, but also proves that the server cannot forge
a valid keyword-indexed ciphertext for matching.

1.3 Organization of the Paper

The organization of this paper is as follows: Sect. 2 is the basic techniques;
Sect. 3 proposes the definition of scheme and security model; Sect. 4 describes
our scheme and security proof; Sect. 5 presents the performance analysis; Sect. 6
is conclusion.

2 Preliminaries

2.1 Bilinear Mapping

Let G,GT be multiplicative cyclic groups of prime order q; g is a generator of G,
and g1, g2 ∈ G. Let ê : G × G → GT be defined as follow [15]:

• Bilinear: ∀a, b ∈ Zq, ê(ga
1 , gb

2) = e(g1, g2)ab.
• Non degeneracy: ê(g1, g2) �= 1.
• Computability: ê(g1, g2) can be computed efficiently.



Hamiltonian Mechanics 5

2.2 Access Structure

Let A = {A1, A2, · · · An} be a set of attributes [20]. A ⊆ 2{A1,A2,···An} is mono-
tone for any subset B,C: if B ∈ A and B ⊆ C, then C ∈ A, and A is called
access structure. If the set D ∈ A, D is called authorized set; otherwise it is
called a non-authorized set.

2.3 Complexity Assumption

Definition 1. (Bilinear Decisional Diffie-Hellman Problem): Given a, b, c, d ∈
Z∗

q and
(
g, ga, gb, gc, gd

)
, there is no probabilistic polynomial time (PPT)

algorithm B can distinguish the tuple
(
g, ga, gb, gc, gabc

)
and the tuple(

g, ga, gb, gc, gd
)

by a non-negligible advantage ε.
∣
∣Pr

[
g, ga, gb, gc, gabc

]
− Pr

[
g, ga, gb, gc, gd

]∣∣ < ε

Definition 2. (Decision Bilinear Diffie-Hellman Problem) [21]: Given a, b, c ∈
Z∗

q and (g, ê, ga, gb, gc, Z), where Z ∈ GT . There is no PPT algorithm B can

distinguish the tuple
(
g, ga, gb, gc, ê (g, g)abc

)
and the tuple

(
g, ga, gb, gc, Z

)
by

a non-negligible advantage ε.
∣
∣
∣Pr

[
g, ga, gb, gc, ê (g, g)abc

]
− Pr

[
g, ga, gb, gc, Z

]∣∣
∣ < ε

3 System Solutions

3.1 System Model

The system architecture of this paper is shown in Fig. 1, in which the solid line
represents the secure channel and the dotted line represents the open channel. In
our scenario, even if the trapdoor is passed over the open channel, no keyword
information is given away to the adversary. The solution consists of 4 main
entities: the Authorised Centre (AC), the Cloud Server (CS), the Data Owner
(DO), and the Data Users (DU). The main responsibilities of each entity are as
follows:

• AC is considered to be a trusted entity, it is mainly responsible for initializing
the system machinery;

• DO encrypts the file and keywords using the designated access policy to
generate the cipher component and uploads the cipher to the CS;

• DU interacts with the AC to obtain the authorization key, when the DU
wants to access the file, the trapdoor generated by the authorization key is
presented to the CS;

• The main task of CS is to store the cipher of DO and match the keyword-
indexed ciphertext with the trapdoor.
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Fig. 1. System Model

3.2 Definition of Scheme

We describe the notations used in scheme construction in Table 1. The scheme
consists of 6 algorithms named Setup, KeyGen, Enc, Trap, Search and Dec,
which are defined as the following.

(1) Setup(κ) → (PP,MSK): AC executes the algorithm. Given a security
parameter κ, this will generate the public parameters PP and the master
secret key MSK, where MSK is owned by AC.

(2) KeyGen(PP,MSK,U) → (SKu): DU sends a request to the AC, and AC
executes the algorithm. Take the public parameters PP, the master secret
key MSK and DU’s attribute set U as input, AC computes a decryption key
SKu and sends it to the corresponding DU over a secret channel.

(3) Enc(PP,F,L,w) → (C, Iw): DO executes the algorithm. The public param-
eters PP, the data file F, the keyword w, and the access structure L as input,
the ciphertext components C and index components Iw are output.

(4) Trap(PP,w
′
,SKu) → (T ): DU executes the algorithm. Output the search

token T by taking the private key SKu of DU and the search keyword set
w

′
as input, then send it to CS.

(5) Search (PP, T, C, Iw) → (C
′
): CS executes the algorithm. After obtaining

the token T , CS first matches it with the index Iw. If the token T is valid,
then the relevant search results C

′
is returned to DU, otherwise, “Invalid”

is returned.
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Table 1. Notation Definitions

Notions Descriptions

PP System param

MSK Master key

L Access structure

U = {IU , U} Attribute set of DU

U = {Att1, Att2, . . . Attn} Attribute values of DU

SKu Decryption key of DU

F File

C Ciphertext Components

w Keyword

Iw Index for keyword w

T Trapdoor for queried keyword w
′

(6) Dec(PP, C
′
,SKu) → (F ): DU executes the algorithm. The search results C

′

and the decryption key SKu as input, the plaintext file F is output.

3.3 Security Model

The security of this scheme is based on the privacy of the ciphertext and the
privacy of the trapdoor to resist keyword guessing attacks.

Trapdoor Privacy. The privacy of trapdoors in the scheme is described by
a game between an attacker A and a challenger C. Privacy of the trapdoor is
proved if the algorithm without PPT has a non-negligible advantage in winning
the following game. It is described as follows.

• Setup: The attacker A chooses an access policy L and the security parameter
κ itself and sends them to the challenge C. The C for system initialization,
then generates the system public key PP and the system master key MSK,
where PP is sent to A and C stores MSK itself.

• Phase1: Allow the A to send queries to the following oracles for polynomially
multiple times adaptively.

– Trapdoor Oracle OT : The C creates an empty keyword list Ltw. A sends
keyword w and the set of attribute values Att to C for query. The C

computes the keyword trapdoor Tw based on Trap(PP,w,SKu), where
SKu is generated by KeyGen(PP,MSK,U). Then C records it in the Ltw

and returns Tw to A.
• Challenge: The A sends two keywords w∗

0 and w∗
1 with equal length to the C,

where they are not queried before. After the C randomly chooses a keyword
w∗

b to compute, which b ∈ {0, 1}. And return the encrypted keyword trapdoor
Tw∗

b
to A.
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• Phase2: This phase is a repeat of the Phase1. Among (w∗
0 , w

∗
1) cannot be

asked.
• Guess: The A outputs a guess b

′
. If b

′
= b, the A wins the game. Otherwise

the A fails. The A advantage of the winning game is defined as follows:

Adv (1κ) =
∣
∣
∣
∣Pr

[
b

′
= b

]
− 1

2

∣
∣
∣
∣

Ciphertext Privacy. The privacy of the ciphertext in the scheme is described
by a game between an attacker A and a challenger C. The privacy of the cipher-
text is proved if the algorithm without PPT has a non-negligible advantage in
winning the following game. It is described as follows.

• Setup: The operation executed in this phase is the same as Setup in Trap-
door Privacy.

• Phase1: Allow the A to send queries to the following oracles for polynomially
multiple times adaptively.

– Ciphertext Oracle OC : The C creates an empty keyword list Lcw. A sends
keyword w to C for query. The C computes the keyword indexing cipher-
text Iw based on Enc(PP,L,w), then records it in the Lcw and returns
Iw to A.

• Challenge: The A sends two keywords w∗
0 and w∗

1 with equal length to the C,
where they are not queried before. After the C randomly chooses a keyword
w∗

b to compute, which b ∈ {0, 1}. And return the encrypted keyword indexing
ciphertext Iw to A.

• Phase2: This phase is a repeat of the Phase1. Among (w∗
0 , w

∗
1) cannot be

asked.
• Guess: The A outputs a guess b

′
. If b

′
= b, the A wins the game. Otherwise

the A fails. The A advantage of the winning game is defined as follows:

Adv (1κ) =
∣
∣
∣
∣Pr

[
b

′
= b

]
− 1

2

∣
∣
∣
∣

4 Detailed Construction of the Scheme

4.1 Algorithm Description

This section describes the steps of the scheme implementation in detail. We
introduce the partial hidden access policy of LSSS in generating the ciphertext
component to prevent keyword online guessing attacks and implement ciphertext
privacy and trapdoor privacy to prevent keyword offline guessing attacks. Due
to the privacy of the trapdoor and attribute value hiding effects, the trapdoor
cannot reveal any underlying plaintext information even when passed over a
public channel.
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Setup (κ): Authorised Centre chooses two multiplicative cyclic groups G and
GT separately. Let G,GT be a bilinear group of order prime q, where the length
of q is determined by the security parameter κ. g is the generator of group G.

– Define one bilinear mapping ê : G × G → GT .
– Randomly pick α, β, δ ∈ Zq and h, u ∈ G, then calculate relevant parameters

ê(g, g), ê(h, g)α, ê(u, g)β , hδ, uδ.
– Select a cryptographic hash function H : {0, 1}∗ → G.

Authorised Centre returns the master key MSK = (α, β, δ) and the system
param PP = (q,G,GT , ê, g, h, u,H, ê(g, g), ê(h, g)α, ê(u, g)β , hδ, uδ).

KeyGen (PP,MSK,U): The data user’s attribute is U = {IU , U}, where IU

denotes the attribute name and U denotes the attribute value.

– The data user randomly selects an γ ∈ Z∗
q , then sends u

1
γ and attribute U to

the authorisation centre over a secure channel.
– The authorisation centre randomly selects r ∈ Z∗

q , generates a corresponding

attribute key D = u
β
γ hα,D1 = g

α−r
δ ,D2i = grAttiur−α,D3 = hr for each

attribute value Atti ∈ U(i ∈ [1, 2, ..., n]) of the data user, and returns SKu =
(D,D1,D2,D3) to the data user over the secure channel.

Enc (PP,F,L,w): The data owner selects a symmetric key k ∈ Z∗
q to encrypt

the file F with the symmetric encryption algorithm (Enc,Dec) to generate the
ciphertext E = Enc(k, F ).

– The data owner designates the access policy L = (M,ρ, T ), where M is a
matrix of l × n, ρ maps each row of the matrix to an attribute name and
T = {tρi

}i∈1,2...,l to be the attribute value related with (M,ρ). A secret value
s is randomly selected as the first value of vector ν, and then n − 1 values
ν2, ..., νn are randomly selected to be added to vector ν, where s, ν2, ..., νn ∈
Zq,. Then λi = Mi · ν is calculated and the secret value s is shared to the
attribute name Mi.

– The symmetric key k and the keyword w extracted from the F are encrypted
using L to generate the ciphertext component C = (C1, C2, Ci,1, Ci,2, Ci,3)
and the keyword indexed ciphertext component Iw, where the attribute name
Mi and the attribute value tρi

in the access policy generate separate cipher-
text components, then the attribute value is hidden using the key-blinding
technique.

– For each attribute i ∈ [1, 2, ..., n] in the access policy L, the data owner ran-
domly selects the parameter ti ∈ Z∗

q and computes the ciphertext component
C1 = k · ê(g, g)sα, C2 = gs, Ci,1 = hδλiuδti , Ci,2 = g−titρi

+λi , Ci,3 = gti and
the keyword-indexed ciphertext component Iw =

(
ê(g, g)H(w)ê(u, g)β

)s
.

Finally, the data owner uploads the ciphertext (E,C, Iw, L̄) to the server,
where L̄ = (M,ρ) denotes an access policy without attribute values.

Trap (PP,w
′
,SKu): The data user enters the random number γ, the key-

word w
′

and their own attribute key SKu to calculate the trapdoor T , where
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T =
(
Tw = gH(w

′
)Dγ , T1 = Dγ

1 , {T2i = Dγ
2i}i∈[1,2,...,n] , T3 = Dγ

3

)
. Then T is

sent to the cloud server.
Search (PP, T, C, Iw): After CS receives the search trapdoor T from DU. Let

I = {i : ρ(i) ∈ U} (i ⊆ 1, 2, ..., l), where U ∈ A. There are coefficients {ci | i ∈ I}
so that

∑
i∈IciMi = (1, 0, 0, ..., 0). Then we have

∑
i∈Iciλi = s.

– CS checks if the attributes in the trapdoor T satisfy the access
policy in the ciphertext uploaded by DO by computing Ri =
ê(T1, Ci,1)ê(T3, Ci,2)ê(T2i, Ci,3) = ê(g, h)αγλi and R =

∑
i∈IR

ci
i = ê(g, h)αγs.

– If the attributes do not satisfy the access policy, the search is stopped; oth-
erwise, the following equation Iw = ê(Tw,C2)

R is executed.

The server checks the keywords in the indexed cipher Iw for consistency with
the keywords in the trapdoor Tw, if the match is successful, the server returns 1
and returns C

′
= (E,C1, R) to the data user, otherwise 0.

Dec (PP, C
′
,SKu): The DU based on the results returned by the CS, com-

putes k = C1

R
1
γ

, thus decrypting the file F = Dec(k,E).

4.2 Correctness

In this section, we will show the correctness of the formulas above. We can verify
that the keywords are the same and that the attributes satisfy the access policy
by using the following formula.

Ri = ê(T1, Ci,1)ê(T3, Ci,2)ê(T2i, Ci,3)

= ê(Dγ
1 , hδλiuδti)ê(Dγ

3 , g−titρi
+λi)ê(Dγ

2i, g
ti)

= ê(g, h)αγλi

Next, the algorithm computes:

ê(Tw, C2)
R

=
ê(gH(w

′
)Dγ , gs)

ê(g, h)αγs

=
ê(gH(w

′
)uβhαγ , gs)

ê(g, h)αγs

= ê(gH(w
′
)uβ , gs)

= Iw

4.3 Security Proof

Due to the space limitation, we give the sketch of the security proofs only here.
The readers can refer to our full version for the concrete proof steps.

Theorem 1. The trapdoor privacy is preserved under BDDH assumption.
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Proof. Assume A is an attacker to break the keyword privacy with non-negligible
advantage. We construct a challenger C to break the BDDH assumption. Tech-
nically, C is given a challenge

(
g, ga, gb, gc, gd

)
where a, b, c, d ∈ Z∗

q , its goal is
to distinguish gabc = gd or gd is random in G. In our simulation, C should
return the corresponding keyword trapdoor about the queries on some key-
word kw (issued by A). Then, A sends two keywords kw0, kw1 to C as chal-
lenge. C randomly chooses τ ∈ {0, 1} and returns the target keyword trap-
door Tkwτ

= gH(w)(uβgd), T1 = gγ α−r
δ , T2i = gγrAttiga(r−α), T3 = hγr, where

h
1
γ = g

1
a , gα = gb and uβ = gc. Certainly, A can continue quering the encryp-

tion of kw
′

except kw
′

= kwτ . Finally, A guesses the value of τ . We can see
that A’s output helps C to break BDDH assumption indeed. If gd is a random
value in G, Tkwτ

is random regardless of kwτ . In this case, A has no advantage
to guess bit τ in kwτ . If gd = gabc, it is the real environment of our scheme.
Therefore, if A has non-negligible advantage to guess the right τ , it implies that
gd = gabc which violates the BDDH assumption.

Theorem 2. The ciphertext privacy is preserved under DBDH assumption.

Proof. Let us assume A is an attacker who can break the ciphertext privacy
with non-negligible advantage. We construct a challenger C to break the DBDH
assumption. Technically, C is given a challenge

(
g, ga, gb, gc, Z

)
where Z ∈ GT ,

its goal is to distinguish Z = ê(gac, gb) or Z is random in GT . In our simulation,
C should return the corresponding keyword ciphertext about the queries on
some keyword kw (issued by A). A sends the keyword kw as a challenge to
C. C randomly chooses τ ∈ {0, 1} and returns the keyword ciphertext Ikwτ

=
ê(g, g)cH(kwτ )ê(gac, gb), where uβ = gab and gs = gc. Certainly, A can continue
quering the encryption of kw

′
except the challenge. Finally, A guesses the value

of τ . C can solve the DBDH problem with the help of A output. If Z is a random
value in GT , Ikwτ

is random regardless of kwτ . Therefore A has no advantage
in guessing the bit τ in Ikwτ

in this instance. If Z = ê(gac, gb), it means that A

can guess the value of τ with non-negligible probability. This is contrary to the
DBDH assumption.

Table 2. Computation Cost Comparison

Schemes IndexGen Trapdoor Search

Miao et al. [4] (2n + 2)tE + tM (2U + 1)tE (2U + 1)tP + tE

Chaudhari et al. [15] (n ∗ m + m + 1)tE + tM (n ∗ m + 2)tE (n ∗ m + 1)(tP + tM )

Chaudhari et al. [18] 2tP + (4 + n)tE + ntM 4tE 4tP + 2tM

Liu et al. [19] tP + (n + 2)tE + ntM (n + 2)tE + tM (n + 1)(tP + tM )

Ours (4n + 3)tE + (n + 1)tM (3 + U)tE (1 + 3U)tP + UtE + (1 + 2U)tM
1 Note.tP , tM , tE denotes the time of pairing operation; multiplication and exponentia-
tion operation in group G; U: Number of possible values of DUs; n: Number of attributes
in system; m = max(|Vi|)1≤i≤n, where Vi = valueset for attribute i; |G| , |GT | represent
the lengths of the elements in G and GT respectively.
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Table 3. Communication Cost Comparison

Schemes Encrypted Index size Trapdoor size

Miao et al. [4] (2n + 1) |G| + |GT | (2n + 1) |G|
Chaudhari et al. [15] (n ∗ m + 1) |G| (n ∗ m + 2) |G|
Chaudhari et al. [18] 3 |G| + |GT | 4 |G|
Liu et al. [19] 2 |G| + |GT | (n + 2) |G|
Ours (3n + 1) |G| + |GT | (3 + n) |G|

2 Note. |G| , |GT | represent the lengths of the elements in G and GT

respectively.

5 Performance Analysis

In this section, we compare the performance of our scheme with existing schemes
(including [4,15,18,19]) according to the computational cost and size of the
different phases. The performance evaluation of the scheme thought experiment.

5.1 Computation and Communication Analysis

The data for the computational cost analysis are shown in Table 2. In the key-
word index ciphertext generation phase, our scheme uses 4n + 3 exponential
calculations and n + 1 multiplication operations. Compare the scheme [18] with
2tP + (4 + n)tE + ntM and the scheme [19] with tP + (n + 2)tE + ntM . Our
scheme is more efficient than scheme [18] and [19]. And it slightly higher than
scheme [15] with (n ∗ m + m + 1)tE + tM while satisfying the privacy of the
index and resisting keyword online attacks. In the trapdoor generation phase,
our scheme uses exponential operations at the data user attribute level to com-
pare scheme [4] with (2U + 1)tE , scheme [15] with (n ∗ m + 2)tE and scheme
[19] with (n+2)tE + tM . There are advantages in this paper. The scheme [18] is
efficient, but does not ensure the privacy of the trapdoor and there is a keyword
guessing attack. In the keyword search phase, the computation of our scheme is
(1+3U)tP +UtE +(1+2U)tM , which is a bit more efficient than the scheme [15]
that satisfies both keyword offline guessing attack and keyword online guessing
attack.

The data for the communication cost analysis are shown in Table 3. In stor-
age consumption, our index cipher size is (3n + 1) |G| + |GT | and the trapdoor
size is (3 + n) |G|. In general, our scheme has obvious advantages compared to
scheme [4,15]. The scheme [19] takes up less storage space, there is a keyword
guessing attack of the scheme [19] on keyword indexed ciphertexts. The scheme
[18] also takes up less storage space, but the scheme uses multi-valued “AND”
gate expressions with a restricted access structure. In addition, there are offline
keyword guessing attacks. In our scheme, the access policy includes “AND” gate
and “OR” gate, and the attributes are more richly expressed, and the key is to
realize offline keyword guessing attack and online keyword guessing attack.
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(a) Time cost for index (b) Time cost for trapdoor

Fig. 2. Actual performance

5.2 Experimental Analysis

To prove the effectiveness of our proposed scheme, we performed a data eval-
uation by using a real data set. We implemented the experiment using JAVA
language on a Lenovo AMD A8-6410 APU using AMD Radeon R5 Graphics
2.00 GHz and 8 GB RAM with Windows 10. The JPBC-based cryptographic
library was simulated and tested in terms of index encryption time, trapdoor
time, search time, decryption time. The results of the experiments are the aver-
age of five operations. We set the number of attributes in the access policy to be
in the range of 5 to 25. As shown in Fig. 2(a), generation time of keyword index
ciphertext tends to increase linearly with the attribute values. We set the number
of attribute values for the user in the range of 3 to 15. As shown in Fig. 2(b), the
generation time of the trapdoor tends to increase linearly with the increase of the
attribute values. Experimental results show that our scheme achieves resistance
to keyword guessing attacks while The computational efficiency and storage
space are slightly better than other schemes. And the computation results are
in the acceptable range.

6 Conclusion

In this paper, we propose a fine-grained searchable encryption scheme with semi-
hidden access policy to resist keyword guessing attacks around the security of
data. The data owner of this paper can generate the ciphertext component using
the parameters generated by himself and the system public key. Moreover, the
access policy includes “AND” gate and “OR” gate, and the attribute expression
is richer. It better achieves the requirement of resisting online keyword guessing
attack and offline keyword guessing attack. Performance and experimental anal-
ysis show that there are computational and storage advantages with the keyword
security achieved.
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Abstract. Attribute-based encryption (ABE) is a promising technology
to provide fine-grained access control for the encrypted data and hence
is widely used in the outsourced storage. However, it can not support
the secure deduplication for its encryption feature. In order to handle
this problem that users with different access policy to the ciphertext of
the same plaintext should retrieve this ciphertext normally, we propose a
novel ABE scheme supporting fine-grained authorized secure deduplica-
tion. Compared with the related works, we consider the dynamic policy
update which adapts to the real-world environment more.

Keywords: Attribute-based Encryption · Policy Updating ·
Deduplication · Hidden Policy

1 Introduction

Cloud computing provides the feasibility of sharing data for users. Considering
the sensitive data, encryption is the indispensable measure to support secure
cloud storage. However, it raises challenges such as access control and duplicates
check for encrypted data.

Attribute-based encryption (ABE) [18] is a special encryption to support
fine-grained access control for the encrypted data according to key-policy (KP-
ABE) [8] or ciphertext-policy (CP-ABE) [3]. If and only if certain identities of
receivers meet the access policy, the plaintext can be successfully decrypted.
Since ABE implements more flexible and fine-grained access control policies,
many ABE schemes [9,16,20] have been proposed for more robust security, more
functionality, and higher efficiency.

Secure deduplication technology [14] can check duplicates for the encrypted
data existing in cross users. It hence improves the storage space greatly even for
the encrypted data. However, when extending the deduplication functionality of
ABE fine-grained access control, it shows some difficulties for data consumers
to retrieve data after deduplication. For example, we consider the following sit-
uation: Alice and Bob have the same message M that needs to be uploaded to
the cloud, however Alice encrypts message M under an access policy A. Bob
encrypts message M under access policy A

′
. Assuming that the cloud removes

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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https://doi.org/10.1007/978-981-99-9785-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9785-5_2&domain=pdf
https://doi.org/10.1007/978-981-99-9785-5_2


Fine-Grained Authorized Secure Deduplication with Dynamic Policy 17

Bob’s duplicate message M , then legitimate users under access policy A
′

lose
the right to access message M . It is also based on considering this problem that
many existing deduplication schemes [1,2,5,12] are based on something other
than ABE.

1.1 Related Work

In order to provide a more flexible access control mechanism and meet fine-
grained data sharing requirements, Sahai and Waters first proposed a concept
of attribute-based encryption (ABE) [18]. Then, they implemented the ABE
scheme [8] with access control policies support, which is also the first KP-ABE
scheme. Compared with KP-ABE, the CP-ABE [3] scheme in which the user’s
authority depends on its own attributes is more flexible and applicable in practi-
cal applications. Given that a clear form of access policy may expose some sensi-
tive information, Song et al. [19] proposed an ABE scheme that hides access poli-
cies and verifies user attributes instead. However, this scheme has security risks
since attackers may obtain decrypted content directly. Lai et al. [10] proposed
a novel ABE model that partially hides the access strategy through attribute
key-value pairs to achieve user privacy protection.

The data provider may require changing the authorized user in the ciphertext
access policy in the application environment. Goyal et al. [8] and Sahai et al.
[17] first discussed the policy update structure. Subsequently, Yang et al. [20]
gave specific policy update algorithms under three ABE structures: Boolean
expression, access tree and access matrix. The schemes proposed by Liu [13]
and Fugkeaw [7] et al. combined multi-authorization agencies and access policy
update, and they respectively adopted the structure of LSSS matrix and access
tree to implement policy update. However, these solutions are all applied to the
scenario of a single data provider.

The main difficulty encountered in the application of ABE in data dedupli-
cation technology is how to securely deduplicate the same data with different
access policies under the premise of retaining permissions. Lai et al. [11] first
proposed the adaptive CP-ABE as a cryptographic primitive. It brings a solu-
tion to the problem of applying ABE in data deduplication. On the premise
of authorized data deduplication, Cui et al. [6] used the idea of Lai scheme
[11] to implement a fine-grained access control scheme that supports deduplica-
tion. However, their scheme does not support policy updates. The deduplication
scheme that supports fine-grained access control proposed by Premkamal et al.
[15] also addresses the problem of different access policies formulated by different
data providers. Unfortunately, it still does not deal with the possible follow-up
policy update requirements of the data provider.

1.2 Our Contribution

In this paper, we introduce a CP-ABE scheme for fine-grained data deduplication
with enhanced user privacy. Our scheme allows dynamic access policy updates,
making it a practical choice for data deduplication. Key contributions include:
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1. Partially Hidden Policy: Inspired by [10] scheme, we implemented a partially
hidden access policy to prevent disclosure of sensitive information. Moreover,
our scheme adopts a more flexible (t, n) threshold gate access control structure
instead of an AND-OR gate.

2. Dynamic Policy Update: Our scheme achieves correct and efficient dynamic
policy updates in the context of deduplication without re-encryption. In
Sect. 6, we verify the efficiency of our dynamic policy update in various sce-
narios through experimental simulations.

3. Data Deduplication: For eliminating duplicate copies of confidential data,
we implement an attribute-based secure deduplication. Our scheme supports
that the legitimate users covered by different access policies on the same data
can retrieve the deleted data.

1.3 Paper Organization

The remaining of the paper is organized as follows. Some preliminaries are intro-
duced in the Sect. 2. In Sect. 3, we provide definitions for our scheme and its
security models. We propose a concrete construction of FASD-DP-CPABE in
Sect. 4. Section 5 and Sect. 6 respectively provides the security analysis and the
experimental results of the proposed scheme. Finally, we summarize our result
in Sect. 7.

2 Preliminaries

2.1 Notions

Let G and GT be two multiplicative cyclic groups of prime order p, and g be a
generator of G. A bilinear map ê is a map ê : G × G −→ GT with the following
properties:

– Bilinearity: for ∀g1, g2 ∈ G, and a, b ∈ Zp, we have ê
(
ga
1 , gb

2

)
= ê (g1, g2)

ab.
– Non-degeneracy: ê (g, g) �= 1, where g ∈ G.
– Computability: For ∀g1, g2 ∈ G, there is an efficient algorithm to calculate

ê (g1, g2).

Definition 1. (Discrete Logarithm(DL) Problem) : The Discrete Logarithm
Hardness Assumption is described as follows: For g ∈ G, a ∈ Zp, Given a tuple
(g, ga), there is no PPT algorithm B with a non-negligible advantage ε that can
calculate a.

Pr [B (g, ga) = a] ≤ ε

Definition 2. (Decisional Bilinear Diffie-Hellman (DBDH) Assumption) :
a, b, c, z ∈ Zp are randomly chosen and g is a generator of G.The decision
BDH assumes that there is no polynomial-time algorithm B capable of distin-
guishing the given tuples

〈
ga, gb, gc, ê (g, g)abc

〉
from

〈
ga, gb, gc, ê (g, g)z

〉
with

non-negligible advantage ε.
∣
∣
∣Pr

[
ga, gb, gc, e (g, g)abc

]
− Pr

[
ga, gb, gc, ê (g, g)z

]∣∣
∣ ≤ ε
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2.2 Definitions

Access Structure. Let P = {P1, P2, . . . , Pn} be a set of parties, a collection
A ⊆ 2P is monotone for ∀B,C: if B ∈ A and B ⊆ C then C ∈ A. A monotone
access structure [38] is a monotone collection A of non-empty subsets of P , i.e.,
A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called authorized sets; otherwise, the
sets are called unauthorized sets.

Access trees T . Let T be a tree representing an access structure. Each non-leaf
node in the tree represents a threshold gate, which is used to describe its child
nodes and a threshold, and the root node also includes a uid to identify the user.
For convenience, we define parent (x) to represent the parent node of node x,
att (x) to represent the attribute name of leaf node x, and index (x) to represent
the unique index of node x.

3 System and Security Models

In this section, we introduce the formal definition of authorized secure dedupli-
cation with dynamic policy.

3.1 System Model

System model such as Fig. 1 mainly includes 4 entities: Attribute Center (AC),
Cloud Service Provider (CSP ), Data Owner (DO) and Data User (DU).

– Attribute Center (AC). AC is also the authorization center which is fully
trusted third party and is responsible for generating system public parameters
PP and master private key MSK, and generating decryption keys for users.

– Cloud Service Provider (CSP ). CSP provides storage and computing services
for entities in the system. It is mainly responsible for storing encrypted data
uploaded by users, updating access policies, and updating ciphertext opera-
tions after receiving the user’s updated key. CSP are considered semi-trusted.

– Data Owner (DO). DO specifies the access policy, encrypts the message
according to the access policy, and then sends the ciphertext to the cloud
storage. When the access policy needs to be updated, the DO generates an
update key and sends it to the CSP for ciphertext update.

– Data User (DU). DU can access the ciphertext on the cloud, and correctly
recover the plaintext through the key if and only if its properties satisfy the
access policy.

3.2 Formal Definition of Scheme

In order to implement attribute-based encryption with access policy updates in
data deduplication, our scheme includes the following 6 algorithms, which are
formally defined as follows:
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Fig. 1. System Model

– Setup (λ) −→ (PP,MSK): AC runs this algorithm and takes the security
parameter λ as input to initialize the system. It outputs the public parameter
PP and the master private key MSK kept by AC.

– Encrypt (PP, T ,m) −→ CT : DO runs this algorithm, with taking public
parameter PP , access policy T and message m as input. It generates cipher-
text CT encrypted under access policy T .

– KeyGen (MSK,S) −→ sk: AC runs this algorithm, taking the master private
key MSK and the user’s attribute key-value pair set S = (Auid, Vuid) as input.
It outputs the decryption key sk and returns it to the user.

– UKeyGen
(
uid, Y

′
, Y, UType, Tuid

)
−→ UK: DO runs the update key gener-

ation algorithm, with taking user identity uid, new leaf node Y
′
, currently

leaf node Y , update type UType and access tree Tuid as input. It outputs the
update key UK and sends it to the CSP .

– CTUpdate (uid, UK,CT ) −→ CT
′
: CSP runs the ciphertext update algorithm,

with taking user identity uid, updated key UK and ciphertext CT as input.
It outputs the updated ciphertext CT

′
.

– Decrypt (sk,S, CT ) −→ m: DU runs the decryption algorithm, with taking
the decryption key sk, the user’s attribute key-value pair S, and ciphertext
CT as input. If and only if the user attributes satisfy the access policy T , the
algorithm outputs the message plaintext m.

3.3 IND-CPA Security Model

Our scheme should be secure against the indistinguishability of the ciphertext
policy through a security game between a challenger C and an adversary A. The
challenge-adversary model is as follows:
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– Init. A chooses a challenge access strategy W ∗ = (T , VA), where T is the
access tree under the attribute name set γ, and VA is the specific attribute
value associated with the attribute name.

– Setup. Give the security parameter λ. C runs the Setup (λ) algorithm to
output the public parameter PP and returns it to adversary A.

– Phase 1. A requests multiple decryption keys to access policy Wj from C,
where γ /∈ Wj for all j.

– Challenge. A sends two messages m0 and m1 of equal length to C. C ran-
domly selects a message mb (b ∈ {0, 1}) and encrypts it under the access policy
W ∗. The ciphertext CTb is returned to adversary A.

– Phase 2. Phase2 is a repeat of Phase1.
– Guess. A outputs a guess b

′
of b. If b = b

′
, the adversary A wins the game.

The advantage of A in this game is defined as ε = Pr
[
b = b

′
]

− 1
2 .

Definition 3. The FASD-DP-CPABE scheme is secure in IND-CPA if no
polynomial-time adversary has a non-negligible advantage in the game.

4 Fine-Grained Authorized Secure Deduplication
with Dynamic Policy

4.1 Setup

This algorithm is initialized by AC call, and generates public parameters and
the system master key. The AC selects a security parameter λ, and generates the
public parameter and the master secret key by performing the following steps:

– Choose two multiplicative cyclic groups G and GT of prime order p, where p
is determined by a security parameter λ.

– Choose g as the generator of the group G, and define a bilinear pairing ê :
G × G −→ GT .

– Define the Lagrangian coefficients 	i,S for i ∈ Zp and a set,S , of elements
in Zp : 	i,S(x) =

∏
j∈S,j �=i

x−j
i−j .

– Let there be n attributes in the universe and the attribute names are denoted
using the notation A = {A1, A2, . . . , An}.The attribute value corresponding
to each attribute is represented by the notation Vi = {vi,1, vi,2, . . . , vi,mi

},
where i represents the attribute Ai.

– Randomly pick a, α ∈ Zp, h, u ∈ G.
– Choose two collision-resistant cryptographic hash functions H1 : {0, 1}∗ −→

Zp and H2 : {0, 1}∗ −→ Zp.
– Let UID represent the set of identities of all users in the system.

Publish public parameters as PP = 〈p,G,GT , e, g, h, u, ê (g, g)α , ga,
UID,H1,H2〉, and the master key as MSK = 〈a, α〉.

4.2 Data Upload

In this section, we describe the details of the data encryption and deduplication
part of our scheme. Data upload includes two stages: encrypted data upload by
DO and duplicates check by CSP . The details are as follows.
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Encrypt. The data owner executes the encryption algorithm, and the output
message is the ciphertext under the attribute set γ ⊆ A. Input public parameters
PP , message m, and access tree T described in Sect. 2.4, each leaf node in T
corresponds to an attribute name in set A. DO does the following.

1. The data owner randomly selects k ∈ Zp and calculates the g
a
k

uid to identify
the root node of the access tree and keeps the access policy update key k.

2. From the file hash, calculate the secret value s = H1 (m). The DO choose
a polynomial qx for each node x in the tree T . These polynomials qx are
chosen from top to bottom, starting from the root node r.For each node, x
in the tree, set the degree dx of the polynomial qx to be one less than the
threshold value kx of that node, that is dx = kx − 1. For the root node r,
set qr (0) = s and dr other points of the polynomial qr randomly to define
it completely. For any other node x, set qx (0) = qparent(x) (index (x)) and
choose dx other points randomly to completely define qx. Then computes
some of the ciphertext components associated with the access policy:

C = mê (g, g)αs
, C0 = gas

{
Ci,uid,1 = hqx(0)uH1(i), Ci,3 = gH1(i)

}
i∈γ,uid∈UID

(1)

3. The data owner realizes the association between the attribute name and the
attribute value by calculating the encryption component

{
Ci,uid,2 = g−H1(i)H2(vi,j)

}

i∈γ,1≤j≤mi

4. The final ciphertext CT will be sent to the CSP . The attribute value is trans-
parent to both CSP and DO, thus a partially hidden access strategy is realized.

CT =
〈
C,C0, {Ci,uid,1, Ci,uid,2}i∈γ , {Ci,3}i∈γ , g

a
k

uid, T
〉

Deduplication. After the CSP receives the ciphertext uploaded by the user,
the scheme is similar to Cheng et al. [5], which judges whether it is duplicate
data through the label. There are two cases:

Case 1: If there is no same label, it means that the data is uploaded for the
first time, and the CSP directly stores the ciphertext without any operation.

Case 2: If the same label exists, the CSP performs access policy fusion and
ciphertext update to ensure that legitimate users satisfying two different access
policies can decrypt data normally. Supposed CT1 is the ciphertext already
stored in the CSP , CT2 is the ciphertext of the same data uploaded by the
user, then the cloud executes as follows.

1. For trees T1 and T2, CSP adds a new OR node as the root node, T1 and T2 as
the left subtree and right subtree of this newly added node, to combine the
access trees in the two ciphertexts to generate a new tree Tnew. The new tree
generated is the access policy as the ciphertext.
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2. In the two ciphertexts of CT1 and CT2 , C, C0 and {Ci,3}i∈γ1∩γ2
are common

encryption components, thus CSP combines Ci,uid,1, Ci,uid,2 and Ci,3 in CT2

to generate the ciphertext CTnew under the encryption of the access tree
Tnew.

CTnew =
〈

C,C0, {Ci,u1,1, Ci,u1,2}i∈γ1
,

{Ci,u2,1, Ci,u2,2}i∈γ2
, {Ci,3}i∈γ2∪γ2

, Tnew

〉

4.3 KeyGen

The AC invokes the algorithm to generate a decryption key for it through the
attributes related to the data user. Specific steps are as follows:

1. The algorithm takes master private key MSK and user attribute S = (IS , S)
as input, where IS ⊆ A is the set of user attribute names, and S = {sτ}τ∈IS

is the set of attribute values. It picks r ∈ Zp at random and for ∀τ ∈ IS

computes
〈
K1 = g

α
a hr,K2 = gr,K3 = gar,

{
Kτ = gsτ ru−ar

}
τ∈IS

〉

2. It outputs an attribute-based decryption key sk with respect to a set S of
user attributes and returns it to the user.

sk =
〈
K1,K2,K3, {Kτ}τ∈IS

〉

4.4 Access Policy Update

In our scheme, the access policy in the ciphertext can be updated dynamically.
Each data owner can add, delete and modify the attributes in its encrypted
access policy without affecting the normal access of legitimate users of other data
owners’ access policies. For this purpose, it contains two algorithms: UKeyGen
and CTUpdate. First, the data owner runs the algorithm UKeyGen to generate
an update key and sends it to the CSP . Then the CSP runs the algorithm
CTUpdate and uses the received update key to update the ciphertext.

1. The UKeyGen algorithm takesuser identity uid, new leaf node Y
′
, currently

leaf node Y , update type UType and access tree Tuid as input. Let i = att (Y )
and i

′
= att

(
Y

′
)

, there are three types of policy updates:
Type1 means the update type is modification. Since the (t, n) threshold value
has not been changed, as well as the access tree structure. Then it calculates
the update key as

UKY,Y ′ ,uid =

〈
gk

uid, UK1
Y,Y ′ ,uid

= u
H1

(
i
′ )−H1(i), g

H1

(
i
′ )

, UK2
Y,Y ′ ,uid

= g
H1(i)H2(vi,j)−H1

(
i
′ )

H2

(
v

i
′
,j

′
)

〉

where 1 ≤ j ≤ mi and 1 ≤ j
′ ≤ mi′ .
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Type2 means the update type is add. When new leaf node Y
′
is added, the

threshold gate of Y
′

parent node changes from (t, n) to (t, n + 1). Similar
to Type1, the user obtains the encrypted component of the attribute value
associated with new leaf node Y from the CSP and then calculates the update
key

UKY,Y ′ ,uid =

〈
gk

uid, UK1
Y,Y ′ ,uid

= hq
Y

′ (0)u
H1

(
i
′ )

,

g
H1

(
i
′ )

, UK2
Y,Y ′ ,uid

= g
−H1

(
i
′ )

H2

(
v

i
′
,j

′
)

〉

where 1 ≤ j
′ ≤ mi′ .

Type3 means the update type is deleted. For the threshold gate (t, n) of the
parent node of currently leaf node Y , three cases are respectively handled
when deleting node Y :
(a) When t < n and n > 2, the currently leaf node Y is directly deleted,

and the threshold gate of its parent node is changed from (t, n) to (t, n −
1).Then DO generates update key

UKY,uid =
〈
gk

uid

〉

(b) When t = n and n > 2, After deleting currently leaf node Y , the threshold
gate of its parent node is changed from (t, n) to (t − 1, n − 1), then DO
selects the polynomial q

′
of parent(Y ) to redistribute the secret values of

all affected leaf nodes. Let Sx be the set of all affected leaf nodes of node
parent(Y ) except node Y , then computes the update key

UKY,uid =
〈{

UK1
x,uid = hq

′
x(0)−qx(0)

}

x∈Sx

, gk
uid

〉

(c) When n = 2, the difference from case (ii) is that the sibling node Ybro

of currently leaf node Y replaces parent(Y ) and redistributes the secret
values of all affected leaf nodes under the subtree rooted at node Ybro.
The update key is

UKY,uid =
〈{

UK1
x,uid = hq

′
x(0)−qx(0)

}

x∈Sx

, gk
uid

〉

In particular, when the node parent(Y ) is an OR gate, that is, the thresh-
old gate is (1, 2), Ybro inherits the secret value of parent(Y ) without redis-
tribution.

Finally, the DO sends UK =
〈
UKY,uid, Y, Y

′
, UType

〉
to CSP , where Y

′
is

the sibling node of Y when the update type is Type3.
2. The CTUpdate algorithm takes uid, UK and CT as input, and the CSP

update ciphertext CT
′
is as follows.

First, the CSP verifies the user identity by calculating e
(
g

a
k , gk

)
= e (g, ga) �=

1, if the verification fails, the algorithm terminates, otherwise proceed to the
next step.
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(a) For Type1, the ciphertext component C
′
Y is computed as:

C
′
Y,uid,1 = CY,uid,1 · UK1

Y,Y ′ ,uid
= hq

Y
′ (0)uH1(i)

C
′
Y,uid,2 = CY,uid,2 · UK2

Y,Y ′ ,uid
= g−H1(i)H2(vi,j)

CY,3 = g
H1

(
i
′ )

(b) For Type2, the ciphertext component C
′
Y is computed as:

C
′
Y,uid,1 = UK1

Y,Y ′ ,uid
= hq

Y
′ (0)uH1(i)

C
′
Y,uid,2 = UK2

Y,Y ′ ,uid
= g−H1(i)H2(vi,j)

CY,3 = g
H1

(
i
′ )

(c) For Type3, CSP delete CY,uid,1 and CY,uid,2, then the ciphertext compo-
nent C

′
Y is computed as:

i. When t < n and n > 2, CSP only needs to remove the encryption
component CY,uid,1 = hqY (0)uH1(i) corresponding to attribute Y and
the leaf nodes in the access tree.

ii. When t = n and n > 2,

C
′
x,uid,1 = Cx,uid,1 · UK1

x,uid = hq
′
x(0)uH1(ix)

where x ∈ Sx.
iii. When n = 2 and t = 2,

C
′
x,uid,1 = Cx,uid,1 · UK1

x,uid = hq
′
x(0)uH1(ix).

where x ∈ Sx.
In updating the ciphertext, CSP only re-encrypts the modified part of the
ciphertext. The update key UK only expresses the change caused by the
access policy update and cannot reveal any information about the encrypted
message. Therefore, CSP cannot further snoop on encrypted data.

4.5 Decrypt

The user runs the decryption algorithm DecryptNode with sk, S and CT as
input, which performs the following two steps:

1. First, the algorithm traverses each subtree Tuid with uid as the root node of
the access tree T from top to bottom and judges whether the user attributes
satisfy the access policy formulated by a certain DO.

– When ADO ∈ S |= Tuid, and the attribute value matches the detection:

ê
(
gH1(iDO)H2(vi,j,DO), Ci,uid,2

)
= 1,

the algorithm performs decryption calculation.
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– Otherwise, the algorithm continues to traverse the next subtree Tuid′

until the access policy is met for decryption calculation or the algorithm
terminates and outputs ⊥.

2. The algorithm performs decryption calculation if and only when the attribute
satisfies the access policy formulated by a data owner. The plaintext can be
decrypted correctly and recovered.
Let i = att (x), if x is a leaf node, then do the following calculation:

E = ê (K3, Ci,uid,1) ê (K2, Ci,uid,2) ê (KVi
, Ci,3)

= ê
(
gar, hqx(0)uH1(i)

)
· ê

(
gr, g−H1(i)H2(vi,j)

)
· ê

(
gsτ ru−ar, gH1(i)

)

= ê (g, h)arqx(0)

When x is not a leaf node, we consider the case of recursion. The
DecryptNode (CT, sk, x) algorithm works as follows: For all nodes z of node
x, it calls DecryptNode and stores the output as Fz. Let Sx be an arbitrary
set of size kx of children z such that Fz �=⊥. If no such set exists, then this
node does not satisfy the access policy, and the algorithm returns ⊥.
Otherwise, we compute:

Fx =
∏

z∈Sx

F
	

i,S
′
x(0)

z , where
i = index (z) ,

S
′
x (0) = {index (z) : z ∈ Sx}

=
∏

z∈Sx

(
ê (g, h)arqz(0)

)	
i,S

′
x(0)

=
∏

z∈Sx

(
ê (g, h)arqparent(z)(index(z))

)	
i,S

′
x(0)

=
∏

z∈Sx

(
ê (g, h)arqx(i)

)	
i,S

′
x(0)

= ê (g, h)arqx(0)

and return the result.
The decryption algorithm starts from the root node of the access tree and
is called from top to bottom. We note that DecryptNode (CT, sk, x) =
ê (g, h)ars when user attributes satisfy the access tree T . The algorithm recov-
ers the plaintext of the message by calculating as follows:

D = ê (K1, C0) = ê
(
g

α
a hr, gas

)

= ê (g, g)αs · ê (g, h)ars

Finally, the plain text of the message is m = C·E
D .

5 IND-CPA Security Analysis

Theorem 1. In the following, we prove that our scheme is IND-CP-CKA secure
in the random oracle model under the DBDH assumption.
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We follow the scheme of Sahai and Waters [18] as our basic framework. The
security model in Sect. 3.4 is also similar to theirs. Compared to their security
model, our model adds the ability to allow an adversary to issue queries to
UKeyGen.

Proof. Suppose that there exists a PPT adversary A with a non-negligible advan-
tage ε capable of breaking our scheme. Then, we build a simulator B that can
break the DBDH assumption with advantage ε

2 . The execution process of B is
as follows:

Let G and GT be two multiplicative cyclic groups of prime order p, g be a
generator of G, and map ê : G × G −→ GT be a bilinear map. The challenger C
flips a fair binary coin μ = {0, 1}. For random a, b, c, z ∈ Zp, if μ = 0, C sets the
tuple

〈
ga, gb, gc, ê (g, g)abc

〉
; if μ = 1, it sets the tuple to

〈
ga, gb, gc, ê (g, g)z

〉
.

Init. A chooses a challenge access strategy W ∗ = (T , VA), where T is the
access tree under the attribute name set γ, and VA is the specific attribute value
associated with the attribute name.

Setup. The simulator sets the parameter ê (g, g)α = ê (g, g)ab. The challenger C
generates the public parameter PP under the security parameter λ and returns
it to the adversary A. Two random oracles OH1 : {0, 1}∗ → Zp and OH2 :
{0, 1}∗ → Zp are defined to simulate hash functions.

Phase 1. Adversary A requests any user attribute set S = (IS , S) that does
not satisfy W ∗ to obtain the relevant decryption key, where IS ⊆ A is the set of
attribute names, and S = {sτ}τ∈IS

is the set of corresponding attribute values.
C runs the KeyGen algorithm. There are two situations:

1. For sτ ∈ W ∗, C queries OH2 for H2 (sτ ). Let sτ = H2 (sτ ), calculate

{Kτ = gsτ ru−ar}τ∈IS ,sτ ∈W ∗

2. For the remaining sτ /∈ W ∗, C randomly chooses s
′ ∈ Zp. Let sτ = s

′
,

calculate

{
Kτ = gsτ ru−ar

}
τ∈IS ,sτ /∈W ∗

where r ∈ Zp is chosen randomly. Output the private key sk and return it to A.

sk =
〈
K1 = g

α
a hr,K2 = gr,K3 = gar,Kτ

〉

Challenge. A submits two messages, m0, and m1, of the same length to C, and
A does not obtain any key that satisfies the access policy W ∗ in Phase 1. Let
s ∈ Zp be the secret value of the encrypted message. Using the results of oracles
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OH1 and OH2, C flips a fair binary coin b ∈ {0, 1} and outputs the challenge
ciphertext as:

CT =
〈
C = mbZ,C0, {Ci,uid,1, Ci,uid,2, Ci,3}i∈γ , T

〉

If μ = 0, then Z = ê (g, g)abc. We let s = c, then we can get Z = ê (g, g)abs =
ê (g, g)abc and C0 = gac. Therefore it can represent that the ciphertext is a valid
DBDH tuple.

Otherwise μ = 1, then Z = ê (g, g)z. Since z is a random element, it can
represent that the adversary A cannot obtain any information about b from the
ciphertext mb.

Phase 2. Phase2 is a repeat of Phase1.

Guess. Adversary A outputs a guess b
′

of b. When μ = 1, since the
adversary cannot obtain any information about the message mb, we can get
Pr

[
b �= b

′ |μ = 1
]
= 1

2 . When b �= b
′
, the simulator guesses μ

′
= 1 and we have

Pr
[
μ

′
= μ|μ = 1

]
= 1

2 . When μ = 0, the adversary A has the advantage ε of

being able to see the ciphertext mb. Similarly, Pr
[
b = b

′ |μ = 0
]
= 1

2 + ε. When

b = b
′
, the simulator guesses that μ

′
= 0 and we have Pr

[
μ

′
= μ|μ = 0

]
= 1

2 +ε.

Then the overall advantage in DBDH game simulation is 1
2Pr

[
μ

′
= μ|μ = 0

]
+

1
2Pr

[
μ

′
= μ|μ = 1

]
− 1

2 = 1
2

(
1
2 + ε

)
+ 1

2
1
2 − 1

2 = 1
2ε. That is, if the adversary has

an advantage of ε, we can construct a simulator B that can break the DBDH
assumption with only a negligible advantage of 1

2ε.

Table 1. Comparison of characteristics with previous works.

Scheme Access Structure Hidden Policy Policy Update Deduplication

Bethencourt et al. [3] Tree ✘ ✘ ✘

Liu et al. [13] LSSS ✘ ✔ ✘

Fugkeaw et al. [7] Tree ✘ ✔ ✘

Cui et al. [6] LSSS ✘ ✘ ✔

Premkamal et al. [15] LSSS ✘ ✘ ✔

Ours Tree ✔ ✔ ✔
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Table 2. The summary of some notations.

Notation Description

|p| Size of elements in the Zp group
|g| Size of elements in the G group
|gT | Size of elements in the GT group
|T | Size of access policy
|uk| Update key size
N The number of users in the merged access policy
nu The number of attributes that identify the user
nc Number of attributes in access policy when encrypted
nd The number of attributes involved in decryption
ns The number of nodes involved in the policy update
E One exponentiation operation
P One paring operation

6 Performance Evaluations

In this section, we theoretically analyze the storage overhead, computation over-
head, and performance of the FD-MU-CPABE scheme. Finally, we conduct
experiments to evaluate the practicality and show simulation results.

6.1 Theoretical Analysis

As shown in Table 1, we compare the functionality of our scheme with other
schemes. In addition, we summarize some notations in terms of storage and
computation overhead in Table 2. Table 3 describes the storage overhead of each
entity in our scheme. We can see that the primary storage overhead of AC comes
from the master private key MSK. The size of the ciphertext components and
the access tree is the primary storage overhead of CSP . The storage cost of
the data owner comes from the private key sk related to its attributes and the
access strategy formulated by it. The user’s storage cost mainly comes from
the public parameter PP and update key UK. In addition, we also describe the
computational overhead in the ABE encryption and decryption process of our
scheme. The time complexity of the algorithm Setup run by AC is constant.
The calculation overhead of the user’s private key sk is related to its associated
attributes, and the relationship is linear. Encryption and decryption algorithms
scale linearly with the size of the access tree.

6.2 Experimental Evaluation

To evaluate the expressive performance of our scheme, we implemented it using
the Stanford pairing-based cryptographic library [4]. A bilinear pairing is con-
structed on the curve y2 = x3+x on the field Fq of the prime number q = 3mod4,
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Table 3. Storage overhead and ABE scheme calculation overhead

Storage AC CSP DO DU

2 |p|
(
2 |nc|N + 2 + n

′
c

)
|g|+ |gT |+ |T | |p|+ |T |+ 5 |g|+ |gT |+ |uk| (|nu|+ 3) |g|

Computation Setup Encryption KeyGen Decryption
O (1) (P + E) O (nc)E O (nu)E (O (nd) +O (N))P

where the order of the groups G and GT is a prime number of 160 bits, and the
length of q is 512 bits. We performed experiments on a laptop running 64-bit
Windows equipped with an Intel(R) Core(TM) i7-12700H 2.70GHz and 40.00
GB of RAM.
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Fig. 2. Policy Update

Limited by the length of the paper, we focus on the policy update process.
Fig. 2(a) and Fig. 2(b) show the time overhead of the update key generation
algorithm and the ciphertext update algorithm under the influence of the number
of affected nodes in the access tree during an update. For Type1 and Type2, since
the affected nodes are only update nodes, the time overhead is constant. We took
the average of twenty experimental results to get the time overhead of Type 1
and Type 2. For the three threshold gate situations of Type 3, the time overheads
show linear growth with the number of affected nodes.

The time cost of access tree merging is affected by the experimental code lan-
guage and the data structure of the access tree in the code. Our implementation
uses the Java coding language and the list structure to express the access tree.
Its time overhead is shown in Fig. 2(c), and the number of attributes included
in the access strategy has little impact on merging the access trees.

7 Conclusion

In this paper, we introduce a CP-ABE scheme for enhancing access control in
cloud storage through data deduplication. Our scheme is proven secure under
the IND-CPA model with a random oracle. Simulation experiments validate its
effectiveness, especially for multiple data owners. Our future work aims to further
explore extended attribute-based encryption’s functionality and security.
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Abstract. Multi-image hiding is the technique of hiding multiple secret
images within one cover image. In most existing methods, it is possible
for one receiver to reveal other receivers’ secret images. To improve the
privacy and secrecy among different receivers, one possible solution is
to introduce the key mechanism, wherein only the receiver with private
key has the permission to reveal the corresponding secret image. In this
paper, a multiple image hiding method called DEMIHAK (Deep Multiple
Image Hiding with Random Key) is proposed, which utilizes deep neural
networks to implement a secure key verification. From the side of the
sender, each secret image is assigned with a random key, according to
which can sample a key map. Then, BindNet is utilized to incorporate a
secret image and its key map into a processed secret image, and HideNet
is adopted to conceal multiple processed secret images within cover image
and generate a stego image. From the side of the receiver, according
to a transmitted private key, RevealNet can be applied to reveal the
corresponding secret image from the stego image. Experimental results
show that DEMIHAK outperforms existing method from the perspective
of visual quality, security, and secrecy.

Keywords: Image hiding · Steganography · Multi-channel
communication · Private key

1 Introduction

Information hiding techniques, including steganography and watermarking, is
the study of secretly hiding secret information into multimedia carriers. Con-
ventional steganographic methods were mainly carried under minimal-distortion
framework. Their distortion functions were calculated according to heuristic
principles [1,2], statistical models [3,4], or deep learning techniques [5,6]. With
near-optimal steganographic codes, message embedding and extraction can be
fulfilled according to pre-defined distortion functions. However, due to the
restriction of the form of distortion, their embedding capacities were still to
be improved. Therefore, to achieve higher capacities, recent methods [7,8] aban-
doned the settings of minimal-distortion framework, and directly employed neu-
ral networks to implement message embedding and extraction.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Besides hiding message bits, information hiding technique can also be applied
to hide secret image. Baluja [9] proposed to hide secret image within cover image
with encoder-decoder structure. Rehman et al. [10] introduced loss function that
ensured joint end-to-end training of encoder-decoder networks. Yu [11] utilized
the attention mechanism to find spotlights and inconspicuous areas of cover
images. Zhang et al. [12] proposed UDH to disentangle the encoding of secret
image from cover image, and implement image hiding in a cover-agnostic manner.
Guan et al. [13] and Lu et al. [14] respectively applied INN to implement image
embedding and extraction.

Note that multi-channel steganography [15] can transmit different secret data
to multiple receivers via one cover image, which can avoid unnecessary data
communication on public channel and enhance the transmission secrecy. There-
fore, it is desired to apply multi-channel steganography in deep image hiding,
and implement multi-image hiding [12,13]. However, these methods have not
fully considered the privacy and secrecy among different receivers, i.e., there
is no mechanism to guarantee that one particular receiver cannot reveal other
receiver’s secret images. Kweon made an early attempt to solve the issue [16],
which utilized the feature maps of secret image as its key. However, it has two
limitations. Firstly, it has severe security loophole. Such method utilizes high-
level feature of secret image as its corresponding key. Therefore, it is possible to
directly reveal the secret image from the key. Secondly, the length of its key is
rather long. In the case of hiding secret image with size of 256× 256, the length
of key becomes 4 × 4 × 512. As a result, it is inconvenient to privately transmit
such key.

In this paper, to overcome the above issue, a secure multiple image hiding
method called DEMIHAK (Deep Multiple Image Hiding with Random Key) is
proposed. On the side of hiding, the sender assigns each secret image with a spe-
cific key, according to which can sample a key map. Then, BindNet is utilized to
tie the secret image with key map and generate a processed secret image. After-
wards, HideNet is adopted to conceal multiple processed secret images within
cover image as stego image. Such stego image and key can be transmitted to
the receiver through a public and private channel. On the side of revealing, the
receiver utilizes RevealNet to extract the secret image from the stego image
according to the given key, wherein such secret image and key are previously
tied by BindNet. By this means, the randomly generated private key can be uti-
lized to control the access right to secret image. Results show that our proposed
DEMIHAK outperforms existing method in terms of visual quality, security, and
secrecy.

2 Proposed Method

2.1 Overview

As shown in Fig. 1, the proposed DEMIHAK is composed of a binding network
(BindNet), a hiding network (HideNet), and a revealing network (RevealNet). In
order to protect the privacy and secrecy of different receivers in multi-channel
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Fig. 1. Overall framework of our proposed DEMIHAK.

communication of deep image hiding, the sender and receiver utilize BindNet
and RevealNet to implement image hiding and revealing with shared key, respec-
tively.

The working flow of DEMIHAK is as follows. The sender executes three
steps. Firstly, each secret image is assigned with a key, which is represented
as an integer. Such key is further applied as a triggered seed to generate a
key map with the same size of cover and secret image, wherein each element
is a floating-point value sampled from the normal distribution. Note that the
same key corresponds to the same key map. Secondly, the BindNet is utilized
to tie each secret image with a specific key map. It takes in a pair of secret
image and key map, and binding them into a processed secret image. Thirdly, to
perform information hiding, HideNet is adopted to conceal multiple processed
secret images within a cover image, and generates a stego image. Afterwards, the
stego image can be transmitted on public channel, and the keys are transmitted
on a secure private channel. On another side, the receiver receives the stego
image and a specific key. Such key is served as a triggered seed to generate a key
map, as it did by the sender. Finally, the RevealNet is applied to reveal secret
image which is bound with such key by BindNet.

Note that in DEMIHAK, the BindNet, HideNet, and RevealNet are trained
in an end-to-end manner. Therefore, a specific key can be bound with a secret
image, and only the receiver with the shared key has the access right to reveal
the corresponding secret image. By this means, privacy can be protected in
multi-image hiding within different receivers.

2.2 Network Architecture

In our proposed DEMIHAK, BindNet, HideNet, and RevealNet share the same
architecture of UNet, which is based on the encoder-decoder structure with skip
connections between mirrored layers, as shown in Table 1.
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Specifically, BindNet takes a pair of secret image and key map as input,
and outputs a processed secret image. To achieve multi-image hiding, HideNet
takes in a cover image and multiple processed secret image, and generates a stego
image. RevealNet receives the stego image and a specific key map, and reveals the
secret image which is bound with such key map by the BindNet. By this means,
the shared key can provide access control to a specific hidden secret image. In
HideNet and RevealNet, the skip connections facilitate the image reconstruction
of fine-grained textures by directly passing features to the decoder, which com-
pensates the information loss during encoding. Therefore, the stego images and
revealed secret images can be visually indistinguishable from their original cover
images and secret images, respectively.

Table 1. Architecture of BindNet, HideNet and RevealNet. The kernel configurations
of each layer are given in the following format: (kernel size, stride, padding)

Index Type Kernel Input Out Concat

1 Conv2d+BN+ReLU 4, 2, 1 In 64 N/A

2 Conv2d+BN+ReLU 4, 2, 1 64 128 N/A

3 Conv2d+BN+ReLU 4, 2, 1 128 256 N/A

4 Conv2d+BN+ReLU 4, 2, 1 256 512 N/A

5 Conv2d+BN+ReLU 4, 2, 1 512 512 N/A

6 DeConv2d+BN+ReLU 4, 2, 1 512 512 N/A

7 DeConv2d+BN+ReLU 4, 2, 1 1024 256 #4

8 DeConv2d+BN+ReLU 4, 2, 1 512 128 #3

9 DeConv2d+BN+ReLU 4, 2, 1 256 64 #2

10 DeConv2d+Sigmoid 4, 2, 1 128 out #1

2.3 Loss Function

In this paper, the cover and stego image are denoted as C and C ′, respectively.
The n-th secret and revealed secret image are denoted as Sn and S′

n, respectively.
And N is the number of hidden secret images. The DEMIHAK is trained by
minimizing the multi-loss function as

L = LMIX (C ′, C) + α ·
N∑

n=1

LMIX (S′
n, Sn) , (1)

LMIX(x, y) = β · LMS-SSIM(x, y) + (1 − β) · G · L1(x, y), (2)

LMS-SSIM(x, y) = 1 − MS-SSIM(x, y), (3)



Deep Multi-image Hiding with Random Key 37

where LMIX is the weighted sum of multi-scale structural similarity (MS-SSIM)
loss and L1 loss. Specifically, LMS-SSIM is employed to preserve the contrast in
high-frequency textural regions, while L1 loss is utilized to preserve the color
and brightness. α and β control the balance between different losses, and G are
the values for computing multi-scale SSIM.

3 Experimental Results

3.1 Experiment Setups

To the best of our knowledge, [16] is the only method which applies private keys
for multi-image hiding. Therefore, it was applied as the comparative method.
The MS-COCO dataset with 164,000 images was applied, which were divided
into a training set, validation set, and testing set. All the images were resized
into 256 × 256. As for DEMIHAK, the model was trained for 264 epochs, and
the batch size was set to 32. AdamW optimization and cosine annealing learning
rate strategy was applied, wherein the maximum learning rate was set to 0.001.
Hyper-parameter α and β were set to 1 and 0.025 respectively, and G was [0.5,
1.0, 2.0, 4.0, 8.0]. As for [16], its settings followed the released official code. The
experiments were conducted on PyTorch with an NVIDIA Tesla V100S GPU.

Table 2. APE, PSNR, and SSIM of different methods.

N Pair Method APE ↓ PSNR ↑ SSIM ↑
2 (C,C′) [16] 3.608 34.83 0.932

DEMIHAK 1.991 39.00 0.972

(S, S′) [16] 4.363 33.01 0.939

DEMIHAK 3.516 33.98 0.950

3 (C,C′) [16] 5.086 31.82 0.886

DEMIHAK 2.245 38.07 0.968

(S, S′) [16] 6.947 28.69 0.861

DEMIHAK 5.298 30.32 0.895

4 (C,C′) [16] 5.449 31.41 0.879

DEMIHAK 2.541 37.08 0.961

(S, S′) [16] 6.898 28.49 0.841

DEMIHAK 6.108 29.01 0.866

3.2 Visual Quality

In this part, the visual quality of stego and revealed secret image are investi-
gated. From the aspect of objective evaluation, the visual quality is evaluated by
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APE (average pixel error), PSNR (peak-signal-to-noise-ratio), and SSIM (struc-
tural similarity). These metrics are calculated by a pair of C and C ′, and a
pair of S and S′. The results are shown in Table 2. It can be observed that our
proposed DEMIHAK significantly outperforms [16] on all metrics. For example,
in the case of hiding 3 images and evaluating for a pair of C and C ′, the per-
formance gap is 2.841, 6.25 and 0.082 for APE, PSNR and SSIM, respectively.
Similar phenomenon can be observed when hiding different numbers of images
and evaluating for a pair of S and S′.

Fig. 2. Visualization of cover image (C), stego image (C′), secret image (S), revealed
secret image (S′), and their differences |C − C′| and |S − S′|.

From the aspect of subjective evaluation, the texture details of a pair of C
and C ′, and a pair of S and S′ are compared. Local regions are zoomed in for
more clear presentation. The results are shown in Fig. 2. It can be seen that the
differences between C and C ′, and the differences between S and S′ in DEMI-
HAK are much smaller than those in [16], indicating that DEMIHAK achieves
better visual quality. Besides, it can be observed that the images generated by
[16] have severe visible defects. Firstly, its stego image has stripe artifacts. Sec-
ondly, its certain revealed secret image may carry the information of other secret
image, which discloses the privacy of different receivers. For example, the upper
part of the red circle signpost in the third secret image can be seen in the first
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revealed secret image, as shown in the zoomed in area. These visual artifacts do
not appear in our DEMIHAK.

3.3 Security Performance Against Steganalyzer

In this part, the security performance of different image hiding methods are
evaluated by StegExpose [17], which is a traditional steganalyzer combined with
several steganalytic methods including Chi-squared attack, RS analysis, and
sample pair analysis.

Fig. 3. The ROC curves of StegExpose for detecting DEMIHAK and [16].

8000 pairs of cover and stego images from the testing set are utilized to plot
the receiver operating characteristic (ROC) curves, wherein stegos are regarded
as positive samples and covers are regarded as negative samples. The results
are given in Fig. 3. It can be observed that the ROC curves of DEMIHAK are
closer to the random guessing line compared with those of [16]. Moreover, the
area under the curve (AUC) values of DEMIHAK are much smaller than those
of [16]. Such results demonstrate that our DEMIHAK is harder to detect and
achieves better security performance.

3.4 Effectiveness of Key Mechanism

The goal of applying key mechanism in multi-image hiding is to protect the
privacy among different receivers from two aspects. On one hand, the receiver
with the transmitted correct key can reveal the corresponding secret image. On
the other hand, the malicious receiver with the mismatched key cannot disclose
the image content. In this part, to verify the effectiveness of key mechanism, we
make further study of the mismatched key scenario under two settings.

In the first setting, the mismatched keys are randomly sampled from the
normal distribution, and the results are given in Fig. 4(a). It can be observed
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that for [16], the local semantics of secret image are exposed within specific image
blocks. In the second setting, all values of mismatched keys are fixed to −1, and
the results are given in Fig. 4(b). It can be seen that for [16], specific regions of the
revealed secret images are highly similar with the original secret images, leading
to more severe information leakage issues. By contrast, DEMIHAK generates
rather blurred revealed secret images in both settings, and thus the content
of secret images can be kept hidden. As unauthorized individuals without the
correct keys cannot obtain any portion of secret images, the key mechanism in
DEMIHAK can well protect the privacy and secrecy.

(a) The elements of mismatched keys
are sampled from normal distribution.

(b) The elements of mismatched keys
are fixed to -1.

Fig. 4. Revealing images with mismatched keys. The first row indicates the original
secret image, the second row indicates the revealed image of [16], and the third row
indicates the revealed image of DEMIHAK.

4 Conclusion

In this paper, a secure multiple image hiding method called DEMIHAK is pro-
posed, which combines the learning ability of deep neural networks and the
security of key mechanism. Specifically, a private key is bound with a secret
image by BindNet in multi-image hiding, and is regarded as a verification code
by RevealNet in secret image revealing. Extensive experiments have been con-
ducted to verify its effectiveness from the aspect of image visual quality and
security against steganalyzer. Further studies have been given to analyze the
effectiveness of key mechanism. In the future, we would consider the robustness
of DEMIHAK against different noisy channels, and try to extend it for hiding
secret images within JPEG image.
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Abstract. In the past, the research community has studied privacy
issues in federated learning, self-supervised learning, and deep models.
However, privacy investigations into the domain of federated contrast
learning are rarely exploited. Consequently, our research endeavours to
unveil the potential privacy risks intrinsic to federated contrast learning.
In this paper, we introduce four types of membership inference attacks to
probe into and analyse the privacy protection performance of federated
contrast learning models. To gain a more holistic understanding of the
privacy concerns in federated contrast learning, we systematically assess
the efficacy of various membership inference attacks within this realm.
Simultaneously, we scrutinise the potential risks posed by these attack
methods from multiple perspectives and examine their applicability in
real-world settings. Through these evaluations, our objective is to furnish
the academic community with a more lucid viewpoint, thereby fostering
a comprehensive appreciation of the privacy safeguarding capabilities of
federated contrast learning models.

Keywords: Contrastive Learning · Federated Learning · Membership
Inference Attack

1 Introduction

Investigations into the privacy of deep neural networks commenced early and
have significantly matured, with the membership inference attack as a classic
methodology for scrutinising the privacy implications of such network models.
The exploration into the privacy risks associated with federated learning was
thoroughly examined. However, with the recent burgeoning of contrastive learn-
ing methods, and the incremental adoption of contrast learning, the exploration
into contrast learning approaches based on contrastive learning remains rela-
tively sparse. Recent work utilized cosine similarity within contrastive learning
to implement membership inference attacks, thereby unmasking the inherent
privacy risks in contrast learning based on contrastive learning. This suggests
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that federated contrast learning architectures may harbour similar privacy risks,
an area which has hitherto remained largely unexplored. Therefore, our research
confirms these privacy risks and addresses this knowledge gap by employing
distinct membership inference attack methodologies and perspectives.

Our contributions include employing membership inference attacks to eval-
uate the privacy risks in federated contrast learning. First, we utilise the simi-
larity value from cosine similarity for membership inference attacks. Second, we
apply gradient ascent to overfitted models, observing that member data exhibit
a slower rise in data loss following gradient ascent compared to non-member
data, enabling member/non-member discrimination. Third, we concatenate the
cosine similarity and the one value with the highest confidence in the data loss
and model encoder predictions into a three-dimensional array and subsequently
train a linear classifier for membership/non-membership prediction. Lastly, we
expose the internal privacy risks inherent in contrastive learning models. Given
that the internal encoder of such models is typically a deep neural network such
as ResNet, we extract the encoder and subject it to traditional membership
inference attacks.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. Section 3 presents our method. Section 4 shows the experiment
results. Finally, Sect. 5 concludes this paper.

2 Related Work

Researchers have explored distributed contrastive learning methods and pro-
posed privacy-preserving federated contrastive learning (FCL) strategies [4].
These strategies keep raw data local and train a global encoder by integrating
local encoders. Recent studies primarily focus on the non-independent identi-
cally distributed (Non-IID) issue in FCL. For instance, Zhang et al. [9] designed
a dictionary module and an alignment module for acquiring superior feature rep-
resentation in Non-IID data. Zhuang et al. proposed a divergence-aware module
to mitigate the weight divergence issue in Non-IID data. Zhuang et al. utilized
local knowledge to alleviate the Non-IID problem. Other contemporary solutions
have explored the application of FCL in various application domains.

Recently, to integrate distributed unlabeled data while keeping the raw data
local, researchers have been focusing on applying contrastive learning in the
context of federated learning. One of the primary challenges that FCL faces
is the Non-IID data across distributed clients. Zhang et al. [9] introduced a
method called FedCA, which includes a dictionary module to maintain the con-
sistency of the representation space and an alignment module for aligning fea-
ture representations. FedCA manages to extract superior feature representations
from Non-IID data. Zhuang et al. [11] revealed that Non-IID data could cause
weight divergence and introduced a divergence-aware module to tackle this issue.
Zhuang et al. discovered that retaining local knowledge is beneficial for Non-IID
data. Based on this finding, they proposed a FedEMA method to tackle the
Non-IID data issue. Other concurrent studies mainly focus on applying FCL to
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specific domains. Also, there are similar solutions to infer the security [3,8] and
privacy [10] issues. For example, Pan et al. [5] presented the membership infer-
ence attacks and backdoor attacks for model architectures. Chen et al. exploited
the membership inference attacks for model unlearning [1,2].

As far as we are aware, we are the first to study member inference attacks
in the context of federated contrastive learning. Our work builds on existing
research into member inference attacks in federated learning and contrastive
learning. For instance, Shokri et al. [7] provided a comprehensive evaluation of
active and passive member inference attacks on federated supervised learning
models. Liu et al. [6] uncovered that self-supervised learning models, like con-
trastive learning models, also pose privacy risks, by leveraging the distinct cosine
similarity features in contrastive learning for member inference attacks. Their
research thus indicates that federated contrastive learning could also be suscep-
tible to privacy leaks, laying the groundwork for member inference attacks in a
distributed context.

3 Our Method

In this section, we first review the paradigm of federated contrastive learning
and briefly analyze the privacy risks in the federated contrastive model.

3.1 General Framework of Federated Contrastive Learning

Server Parameter Aggregation: Federated Contrastive Learning (FCL) is a
label-free distributed learning system. Traditional supervised learning requires
manual annotation of a large number of labels, which can lead to high human
resource costs. Compared to labeled data, unlabeled data are easier to collect
and can be obtained in greater quantities. In the process of federated contrastive
learning, each client first receives the model structure and parameters issued by
the server, and then trains with their own unlabeled data Di locally. Assuming
the number of clients is N, these N clients collaboratively train an encoder under
the coordination of the server. The goal of federated contrastive learning is to
minimize the average loss of each client’s model. The loss function is as follows:

arg min
w∈Rd

f(w) =
1
N

N∑

i=1

fi(w) (1)

where fi is the loss function of the ith client. Specifically, in the t-th round,
the server sends the current server’s encoder Gi to n and designated clients.
Each designated client independently trains the server’s Gi encoder on its local
unlabeled data Di, resulting in the locally trained encoder Li(t+1). Then, the
client sends the encoder update, Li(t+1)-Gt, to the server. The server averages
the collected model parameters to obtain a new server-side encoder Gi+1, as
shown below:

Gt+1 = Gt +
η

n

n∑

i=1

(Li
t+1 − Gt) (2)
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The training process will iterate until the server’s encoder converges. Obviously,
Federated Contrastive Learning (FCL) is significantly different from Federated
Learning (FL). Firstly, FL aims to learn a model for a specific task, while FCL
aims to learn an encoder that can be used for multiple downstream tasks. Sec-
ondly, FL’s local training algorithm is supervised, while FCL’s local training
algorithm is unsupervised.

Local Contrastive Learning: The goal of contrastive learning is to make
the similarity of the same data’s augmented data as high as possible, and the
similarity of different data outputs as low as possible. Most existing contrastive
learning models use InfoNCE as the training loss function. We use MoCo in
our experiments for unsupervised learning. The objective of MoCo is to learn
features in the representation space that clearly distinguish between positive and
negative examples. The main idea of MoCo is to introduce a momentum encoder
and a larger memory queue to construct the contrastive loss.

The MoCo architecture includes two encoders, a query encoder and a key
encoder with momentum. The query encoder is used to extract feature rep-
resentations �q from the original data. The key encoder is an encoder with a
momentum update strategy, it extracts feature representations �k from the orig-
inal data. The parameters of the query encoder are updated at each training step,
while the parameters of the key encoder are updated based on the parameters
of the query encoder with a certain momentum coefficient.

MoCo uses data augmentation techniques to generate two views (i.e., two
samples). Views from the same sample form a positive pair, while views from
different samples form a negative pair. The memory queue stores past keys, allow-
ing for consideration of more negative samples when calculating the contrastive
loss. Each element in the queue is a feature vector that has been extracted and
encoded from the original data.

For the positive pair (i, j), MoCo’s loss function is defined as follows:

L(i, j) = − log

(
exp (f(qi) · f(kj)/τ)

∑N
n=1 exp (f(qi) · f(kn)/τ)

)
(3)

In which, f(qi) and f(kj) represent the feature representations of the query and
key respectively, N is the number of negative samples, and τ is the tempera-
ture parameter, which acts as a smoothing factor in the loss function. The loss
function aims to maximize the similarity between positive samples while mini-
mizing the similarity between negative samples. Compared with SimCLR, MoCo
introduces more negative samples into the loss function through the momentum
encoder and memory queue. This method shows good performance in unsuper-
vised learning tasks and can effectively extract meaningful feature representa-
tions.
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3.2 Security Issues in Federated Contrastive Learning

Due to its distributed nature, Federated Contrastive Learning (FCL) may also
encounter similar security issues as those in Federated Learning (FL). In FCL,
membership inference attacks are also a potential security risk. The aim of a
membership inference attack is to determine whether a specific data sample
has participated in the model’s training. In a membership inference attack, the
attacker tries to analyze the global model to identify which data samples are part
of the training data. This attack can lead to data leaks and privacy violations,
especially when the data involved in the training contains sensitive information.
However, membership inference attacks against FCL are significantly different
from those against FL. Firstly, in FL, the training of the model usually relies on
labeled data. Attackers can leverage this label information to launch membership
inference attacks. In contrast, in FCL, each participant learns an encoder in an
unsupervised way, meaning all local data are unlabeled. This makes executing
membership inference attacks in FCL more difficult. Secondly, the distributed
nature and learning objectives of FCL are different from those of FL. While FL
aims to learn a model for a specific task, FCL aims to learn a general encoder
that can be applied to multiple downstream tasks. Since the data distribution
may differ from the downstream tasks, this makes strategies for membership
inference attacks based on data distribution less feasible.

3.3 Membership Inference Attacks Against Federated Contrastive
Learning

Due to the distributed nature of federated contrastive learning, an attacker can
potentially come from a client. The goal of the attacker is to infer whether
the data is training member data by obtaining the output of model inference.
Assuming the attacker comes from the client, they have two ways to carry out
membership inference attacks, which we refer to as passive and active member-
ship inference attacks. Passive attackers do not participate in training or interfere
with it, but only obtain the model parameters after training is completed, and
then launch membership inference attacks. Active attackers will perform gra-
dient ascent on their local model, execute gradient ascent on the data to be
inferred, upload it to the server and other aggregated model parameters, and
then compute the loss for the data that just underwent gradient ascent.

4 Experiments

4.1 Experimental Settings

Datasets: We conducted experiments on the SVHN, CIFAR10, CIFAR100 data
sets, as illustrated in Table 1.



Member Inference Attacks in Federated Contrastive Learning 47

Table 1. Datasets description

Datasets Shape Classes Number of training data Number of testing data

CIFAR-10 32× 32× 3 10 50,000 10,000
CIFAR-100 32× 32× 3 100 50,000 10,000
SVHN 32× 32× 3 10 73,257 26,032

Experimental Details: We implemented a series of attacks mentioned above
using PyTorch in Python 3.7. Our computational resources included 4 NVIDIA
V100 GPUs. For each experiment, although it was successfully implemented
on each dataset, some attack diagrams were not significantly different, so some
attack diagrams are represented by CIFAR10. During the experiment, we set the
number of clients to 4, which allowed federated learning of the model and made
the model more likely to overfit, thus reducing the consumption of computational
resources. All of our experiments were conducted using Non-IID distributions,
because IID distribution is a better way to defend against overfitting, but in
real life, most federated learning scenario data distributions are Non-IID. In
the passive membership inference attack, we record the model parameters every
hundred rounds of aggregation and then perform a membership inference attack
on it. To allow the model to overfit faster, we pre-trained the model parame-
ters initially issued by the server for 500 rounds. To control variables, we used
a combination of 10,000 training data and 10,000 test data on all datasets as
the experiment, and in general, member data and non-member data were used
for the experiment operation during membership inference. In the active mem-
bership inference attack, we recorded the loss of member and non-member data
at each aggregation round, and saved the parameters of the aggregated model
every hundred rounds for static active membership inference attack. The num-
ber of local training rounds was 10. The learning rate parameters of SGD during
gradient ascent and training were both 0.1, but the learning rate of SGD during
gradient ascent could be appropriately reduced to prevent large fluctuations in
the loss record and make the whole curve smoother.

To evaluate the performance of the encoder, common methods include linear
evaluation and weighted KNN evaluation. Linear evaluation measures the feature
representation extracted by the encoder by training a linear model. Weighted
KNN evaluation classifies by comparing the cosine similarity of feature represen-
tations and using a weighted voting k-nearest neighbor method. During training,
we used weighted KNN evaluation for monitoring, and used linear evaluation to
test the final performance.

Evaluation Metrics: The membership inference attacks mainly evaluate the
classifier, so our evaluation metrics are accuracy, precision, and recall. Accuracy
is the ratio of the number of correctly classified samples to the total number of
samples.

Precision represents the proportion of samples that actually belong to the
positive class in the samples predicted as the positive class by the classifier.
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Precision is concerned with the accuracy of the samples predicted as positive by
the classifier. Recall represents the proportion of samples that actually belong to
the positive class and are correctly predicted as the positive class by the classifier.
Recall is concerned with the classifier’s ability to identify positive samples.

4.2 Experimental Results

During the membership inference attack, we first used the method based on
cosine similarity for the experiment. This method is mainly used to detect the
overfitting characteristics of federated self-supervised learning. The experimen-
tal results prove that the federated self-supervised learning framework indeed
has privacy risks caused by overfitting, as shown in Fig. 1. Although the feder-
ated learning framework has stronger overfitting resistance compared to single
training learning, there is still a risk of overfitting. The following Table 2 shows
the performance data of membership inference attacks based on cosine similarity
performed on the model obtained after multiple rounds of federated aggregation.

Fig. 1. The overfitting characteristics for different datasets.
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Table 2. Datasets description of membership inference attacks.

Datasets Accuracy Precision Recall

CIFAR-10 0.914 0.897 0.943
CIFAR-100 0.932 0.911 0.964
SVHN 0.905 0.901 0.924

We collected the model parameters after every hundred rounds of aggregation
during model training, and used the model to calculate the cosine similarity and
loss for member and non-member data as shown in Fig. 2. It can be found that the
model’s generalization ability declines after overfitting. Although the contrast
learning model itself has a good ability to resist overfitting, the generalization of
the model is slowly declining as the number of training epochs increases. After
the model is overfitted, the loss of non-member data is slowly rising, indicating
that the generalization ability of the model is gradually declining. Similarly, as
the overfitting of the model becomes more and more serious, the cosine similarity
of non-member data is also slowly decreasing.

These results provide valuable insights into the privacy risks associated with
federated self-supervised learning due to overfitting. They highlight the need for
further research into strategies for mitigating these risks while maintaining the
effectiveness of the learning process.

Next, we focus on the generic membership inference attack based on the
internals of the model. In our experiments, we found that if the contrast learn-
ing model is overfitted, then the encoder extracted from it is even more severely
overfitted. And because in most cases this encoder is a deep neural network
model, like ResNet, VGG, we can directly conduct the traditional membership
inference attack on it. This entails having it predict the probabilities of classes,
and using the highest probabilities as input training data for the classifier. For
this, we only need to inform the model how many classes there are, without pro-
viding definite labels, and the model will give out prediction probabilities. There
will be a high degree of confidence in these prediction probabilities, meaning the
values of the top few predictions will be very high. Therefore, we believe that
this method can be used to further investigate the privacy risks of the model.

We extracted the output of each layer within the encoder for the membership
inference attack and found that the output of the last few layers within the model
can yield a fairly high accuracy when used as a binary classifier. Figure 3 shows
the success rate of the membership inference attack obtained for each layer of
the neural network within the encoder of the extracted model for each dataset
compared to the accuracy of the first membership inference attack as illustrated
in Table 3.
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Fig. 2. The overfitting characteristics for different datasets.

Table 3. The Top3 confidence scores for member and non-member data across different
layers in CIFAR10.

Member Non-member

Encoder [68.1, 14.8, 5.9] [18.1, 7.7, 5.1]
Avgpool [1.5, 1.0, 0.7] [0.3, 0.3, 0.2]
Layer4 [36.7, 11.1, 5.4] [4.4, 1.2, 0.5]
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Fig. 3. The cosine similarity comparison of each layer inside the model’s encoder and
the membership inference attack.

5 Conclusion

Our study confirms the risks of federated self-supervised learning. When the
overall model is overfitted due to improper parameter selection or extremely
uneven data distribution across clients, the model will have more serious privacy
risks. The privacy issue of federal self-supervised learning also needs to be taken
seriously. However, when the number of clients increases, the amount of data
increases, and the data distribution of clients is close to iid are better able
to resist overfitting, and then adding some defenses such as differential privacy,
early stop, etc., can make the federal self-supervised learning model obtain better
generalization ability to resist membership inference attacks and privacy leaks.
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Abstract. Network traffic anomaly detection is the foundation for dis-
covering malicious attacks and securing network security. With the emer-
gence of new technologies such as port masquerading and traffic encryp-
tion, traditional traffic anomaly detection methods face many difficulties
in dealing with large-scale, high-dimensional, and diverse network traf-
fic data, such as traffic features needing to be more abstract and the
model being uninterpretable. In this paper, we construct a network traf-
fic anomaly detection model based on shapelet and KNN (K-Nearest
Neighbor). First, the backpropagation and k-shape algorithm are used
to learn the set of shapelet instances; second, the DTW of the shapelet
and the original sequence is calculated as attribute values to generate
the transformed dataset of test set and shapelet; finally, combine with
KNN classifier for network traffic anomaly detection. In this paper, multi-
classification experiments are conducted on one available dataset, NSL-
KDD with 99.18% accuracy, and the experimental results are analyzed
for model solvability.

Keywords: shapelet · interpretability · traffic anomaly detection

1 Introduction

The explosive growth of network traffic makes it increasingly tricky to ratio-
nally allocate bandwidth resources, prevent network congestion, and ensure the
regular operation of critical services [1]. Therefore, making fast and accurate
identification of abnormal traffic can provide knowledge support for network
security posture assessment and immunization decisions and improve the overall
response capability of network security emergency organizations [2]. Advances in
network technology have driven improvements in network traffic anomaly detec-
tion methods to adapt to Internet changes.

The traditional network traffic anomaly detection methods are mainly port-
based and Deep Packet Inspection (DPI). The former is suitable for the case of
a few types of network traffic, and network applications generally correspond to
fixed port numbers [3]. But the classification accuracy obtained by relying only
on the port number for traffic classification is low. The DPI-based approach, on
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the other hand, achieves a more accurate classification of network traffic by ana-
lyzing the content of the packets. Sen et al. [4] accurately identified point-to-point
(P2P) traffic by parsing the load content of the traffic packets and determining
the application signature embedded inside them. With the widespread use of
technologies such as port masquerading and traffic encryption, these methods
have many limitations [5].

To address the limitations of traditional methods, machine learning meth-
ods have been introduced into the traffic classification field. The researchers
extracted network traffic features, including statistical descriptive features and
self-learning high-dimensional features. Then they trained machine learning
models to classify different traffic feature patterns [6]. Among them, KNN [7]
and k-means [8] are clustering-based detection methods that achieve anomaly
detection by finding dense regions in the data and defining anomalies as val-
ues far from these dense regions. The above methods depend highly on feature
selection, so selecting features significantly impacts classification accuracy.

Unlike machine learning methods, deep learning methods do not rely on artifi-
cially designed features but learn the high-dimensional features of the input data
autonomously through multilayer networks. For example, the anomaly detection
method based on a recurrent neural network [9] which uses Long Short-term
Memory (LSTM) model to preserve time series information, has a robust tem-
poral feature learning capability. The above methods often take raw traffic data
as input for building end-to-end deep learning models and learn high-dimensional
features from the raw traffic autonomously through deep learning methods, i.e.,
raw input data and output anomaly detection results. The whole anomaly detec-
tion process then becomes a black box and completely agnostic, leading to many
safety accidents [10]. Consequently, interpretability will become an inevitable
choice for the development of AI.

In recent years in the field of time series classification, shapelet-based time
series classification techniques have been widely used with high interpretability
and high accuracy and can be used for high-dimensional data. Hence, this paper
constructs a network traffic anomaly detection model based on shapelet and
KNN that can both automatically learn to generate network traffic features and
have interpretability. The main work is as follows:

(1) The backpropagation and k-shape algorithm are used to learn the set of
shapelet instances;

(2) Construct a transformed dataset of the test set and shapelet instances to
convert the original time series set into a feature vector set that can be input
to most machine learning algorithms;

(3) And combine transformed dataset with the KNN classifier to realize the
anomaly judgment of network traffic data, and the experimental results are
analyzed interpretably in conjunction with professional knowledge.
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2 Related Work

2.1 Shapelet Basic Knowledge

A shapelet exists as a subseries of a time series, which can appear at any position
of the time series data and can characterize a category of data to the maximum
extent. The concept of shapelet was first proposed in the literature [11], and
it was used to classify nettle leaves and verbena, and the classification effect
is shown in Fig. 1, where verbena is on the left and nettle leaves on the right.
From Fig. 1, it can be seen that the two leaves show different pinch angles at
the corresponding positions of the shapelet. In the subsequent classification, it
is only necessary to compare whether the corresponding shapelet is present in
the one-dimensional time series transformed from the leaf contour to classify the
two leaves.

Fig. 1. Classification of nettle and verbena based on shapelet. [11]

2.2 K-Nearest Neighbor Algorithm

The KNN algorithm [12] is a simple and intuitive supervised learning algorithm
for classification and regression proposed by Cover and Hart, i.e., making deci-
sions concerning only these K nearest neighbor samples. The principle is shown
in Fig. 2:

The three most essential elements of the KNN algorithm are calculating the
distance, determining the k-value, and the classification decision. The distance
measure measures the correlation between the test data and the known data set.
The choice of k-value is critical and will directly influence the prediction results.
When the K value is small, the model will depend on nearby neighboring samples
and has better sensitivity. The stability will be weaker, quickly leading to over-
fitting. When the K value is small, the model will depend on nearby neighboring
samples and has better sensitivity, but the stability will be weaker, which will
quickly lead to overfitting. When the K value is larger, the stability increases,
but the sensitivity will weaken, soon leading to underfitting. The decision is
divided into voting and weighted voting. Voting is minority-majority, and the
category with the highest number of points among each neighbor of the input
test data K is classified as that point. Weighted voting weighs each of K’s imme-
diate neighbors according to the distance; the closer the distance, the greater
the weight.
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Fig. 2. KNN algorithm principle diagram.

3 Propose Methods

The traffic anomaly detection model based on shapelet and KNN proposed in
this article is shown in Fig. 3.

Fig. 3. Traffic anomaly detection model based on shapelet and KNN.

3.1 Generating Shapelet Instances

First, define the set of traffic data time series:

T = {T1, . . . , Tn}. (1)

Assume that the length of all traffic data time series in T is Q, the ith traffic
data time series Ti consists of Q elements:

Ti = {Ti,1, . . . ,Ti,Q} (2)
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where Ti,Q denotes the Qth element of the ith traffic data time series.Ti,j:L

denotes the jth segment of length L in the ith traffic data time series:

Ti,j:L = {Ti,j, . . . , Ti,j+L−1} (3)

Next, define a subset of the shapelet sequence:

S = {S1, ...,Sk} (4)

Assume that the length of all shapelets in S is L, the kth shapelet sequence
consists of L values:

Sk = { Sk,1, . . . , Sk,L} (5)

Sk,L is the Lth element of the kth shapelet sequence. The Euclidean distance
between the kth shaplet sequence Sk and Ti,j:L is represented as:

Di,k,j =
1
L

L∑

l=1

(Ti,j+l−1 − Sk,l)
2 (6)

where Ti,j+L−1 denotes the (j+L-1)th element of the ith traffic data time
series.Sk,l is the first element of the kth shaplet sequence, l = 1, 2, ...L, the
shapelet transformation between the kth shapelet sequence Sk and the ith traf-
fic data time series Ti is represented as:

Ci,k = min
j∈{1,...,Q−L+1}

Di,k,j (7)

Given a subset of shapelet sequences S, Ci is the shapelet transform of the
ith traffic data time series Ti,and the component of Ci is {Ci,k}1≤k≤K .

Let Ti and Ti+1 be two adjacent time series in the traffic data time series set
T, the shapelet transformations of Ti and Ti+1 are denoted as Ci and Ci+1, and
record the DTW between Ti and Ti+1 as: DTW (Ti, Ti+1), the loss L (Ti, Ti+1)
is defined as:

L (Ti, Ti+1) =
1
2
(DTW (Ti, Ti+1) − β ‖ Ci − Ci+1‖2)2 (8)

where β is the scale parameter and the total loss of the N traffic data time series
T is:

L(T ) =
2

N(N − 1)

N−1∑

i1=1

N∑

i2=i1+1

L (Ti, Ti+1) (9)

The backpropagation algorithm is used to learn the subset S of shapelet
sequences corresponding to the traffic data time series T and the scale parameter
β to minimize the overall loss.
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3.2 K-Shape Algorithm

The center of mass of the set of shapelet instances is calculated using k-shape
clustering [13] and used as the final shapelet instance. First, the similitude
between the group of traffic data time series T and the subset of shapelet
sequences S is expressed utilizing the intercorrelation a, defined as:

CCw(S, T ) = (c1, . . . , cw) (10)

where CCw is a sequence of correlations of length n+k-1, cw denoting the wth
mutuality value, w ∈ {1, 2, ..., n+k−1}. The coefficient normalization of CCw is
performed to remove the amplitude and phase effects. Coefficient normalization
is the geometric mean of the intercorrelation series divided by the autocorrelation
of the individual series, and here in this paper, a biased estimator NCCb is used,
defined as follows:

NCCb =
CCw(S, T )

k
(11)

The center of mass is the data point with the smallest sum of square dis-
tances from all other data points. Assume that a shapelet sequence exists with
n observation points and define it as:

Sk = {x1, x2, ..., xi, ..., xn} (12)

Clustering is the partitioning of a sequence of k shapelets into M pairwise
disjoint clusters, defining the set of clusters as:

P = {p1, ..., pm, ..., pM} (13)

where pm represents the mth cluster, M < k, m ∈ {1, 2, ...M}, then xi ∈ pm.
To avoid the problem that the center of mass does not make effective use of
category features, the k-shape converts the center of mass computation to find
the minimum value of the sum of the squares of the distances of the center of
mass from all other time series ui:

ui = argmin
∑

xi∈Pm

dist(w, xi)
2 (14)

where w is a representative symbol for a virtual center of mass, which can be
interpreted as many points of mass to be selected. Since the interrelationship
number measures the similarity of the time series rather than the dissimilarity,
converting ui to ascertain the maximum value of the observation point and the
center of mass NCCb.

ui = argmax
∑

xi∈pm

NCCb(xi, w)2 (15)

ui = argmax
∑

xi∈pm

(
maxwCCw (xi, w)

k

)2

(16)

The final k-shape clustering method is implemented by recalculating the
center of mass, reassigning each sequence to a different cluster established on
their distance from the new center of mass, and iterating in a loop until it no
longer changes.
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4 Experiment

4.1 Experimental Setup

Experimental Environment. All experiments were run on a CentOS machine
with Intel(R) Xeon(R) Gold 6126 CPU @2.60 GHz configuration. The Pytorch
framework was used for generating shapelet instances, and the knn classification
was done using the Keras framework. The programming language and framework
versions used for the experiments were: python3.8.8, pytorch1.10.0, TensorFlow-
gpu2.10.0, and keras2.10.0.

Evaluation Metrics. In this experiment, Accuracy, Precision, Recall, and F1
values are used to evaluate the performance of the model, and the relevant
definitions are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 =
2 × Pr ecision × Recall

Pr ecision + Recall
(20)

In the above equation (17)(18)(19), TP indicates that the true positive cate-
gory is judged as positive; FN indicates that the true positive category is misclas-
sified as negative; FP indicates that the true negative category is misclassified
as positive; and TN indicates that the true negative category is judged as nega-
tive at the same time. In the multiclassification model, the experiment used the
weighted average method to assign weights based on the proportion of different
class. [13].

4.2 Dataset and Preprocessing

NSL-KDD. Each record in the NSL-KDD dataset contains 43 dimensions of
features. The types of attacks in the training and test datasets of NSL-KDD
are classified into DoS, U2R, and Probe. The training and test data category
features were classified into five classes according to the characteristics of network
attacks. Then the category labels of string type were converted into numerical
labels, and the correspondence of the converted labels is shown in Table 1:

Dataset Preprocessing. Data pre-processing is separated into two parts; the
first part is data cleaning: processing character type features and converting
character type features in the original dataset into numerical features; the second
part is data transformation: processing numerical type features, normalizing and
normalizing the data input to the model according to the model settings.
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Table 1. NSL-KDD dataset labels

Original category labels Category labels after tagging Number

Normal 0 77054
DoS 1 53363
Probe 2 14230
R2L 3 3418
U2R 4 252

4.3 Experimental Results and Analysis

Experiment 1: Selection of KNN Hyperparameters. KNN algorithm
determines the category of new samples according to the nearest k training
samples by the classification decision rule, so this paper conducted experiments
on the selection of k value, and the results are shown in Table 2:

Table 2. Results for different values of k

k neighbors NSL-KDD Acc

1 0.9918
2 0.9901
3 0.9898
4 0.9881
5 0.9871

Obviously when k=1, both datasets have the highest accuracy, which is
0.9918.

Experiment 2: Multi-classification Anomaly Detection Results. The
value of k was set to 1, and traffic multiclassification experiments were conducted.
The results of the NSL-KDD dataset are shown in Table 3:

Table 3. NSL-KDD multi-classification results

k neighbors Accuracy Classification precision recall F1

1 0.9918 normal 0.99 1.00 1.00
DoS 0.99 1.00 0.99
probe 0.98 0.97 0.98
r2l 0.96 0.96 0.96
u2r 0.82 0.62 0.71
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Experiment 3: Comparison with Existing Methods. For the datasets, five
methods with better classification effects in the past five years were selected for
comparison to verify the anomaly detection effect of this model. The comparison
results for the NSL-KDD are shown in Table 4:

Table 4. Compare accuracy with other methods.

NSL-KDD Methods Accuracy

Shapelets-Based [14] 95
DFEL-KNN [15] 98.82
IDS-KNN [16] 98.64
CFS-RF [17] 98.60
BWO-CONV-LSTM [18] 98.67
Ours 99.18

Experiment 4: Ablation Experiment. To verify the usefulness of the Gen-
erate shapelet instances module, this experiment uses the KNN algorithm to
detect anomalies in the raw data of dataset, and the results obtained are com-
pared with the best values in Table 1. The results are shown in Table 5:

Table 5. Ablation experiment results.

Dataset Generate shapelet KNN Accuracy

- � 74.13
NSL-KDD � � 99.18

From the data analysis in the table, there is a substantial improvement in the
multiclassification accuracy of the NSL-KDD dataset. It can be proved that the
Generate shapelet instance module can enhance the accuracy of traffic anomaly
detection.

Experiment 5: Interpretability Experiments. Compared with other meth-
ods, the shapelet-based classification method has some interpretability. However,
these interpretations usually require some expertise. Take the normal and DoS
abnormal traffic of NSL-KDD as an example: there are significant differences in
src_bytes, dst_bytes, count, and dst_host_counts values between the two. For
this reason, we design experiments to visualize the results of these two types
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Fig. 4. Visualization of the generated shapelet instances for normal and DoS traffic.

of traffic Generate shapelet instance, as shown in Fig. 4, Figure (a) is normal
traffic, and Figure (b) is DoS abnormal traffic.

The specific meanings of these four columns are described below.
“src_bytes”: number of data bytes transferred from the source to the target

in a single connection; “dst_bytes”: number of data bytes transferred from the
target to the original in a single bond; “count”: number of connections to the same
target host as the current connection in the last two seconds; “dst_host_count”:
number of contacts with the same target host IP address.

By comparing figures (a) and (b), we can find that the values of “src_bytes”
and “dst_bytes” in normal traffic are significantly higher than those of DoS
abnormal traffic. In comparison, the values of count and “dst_host_counts” in
normal traffic are significantly lower than those of DoS abnormal traffic. This
is because DOS attacks are denial-of-service attacks that exploit program vul-
nerabilities to execute resource exhaustion on a one-to-one basis [19]. Creating
large amounts of useless data causes congestion in the network leading to the
attacked host, preventing the host from communicating with the outside world
properly. From this analysis, this paper’s proposed shaplet-based anomaly detec-
tion method has a certain extent of interpretability.

5 Conclusion

We propose a traffic anomaly detection model based on shapelet and KNN, which
uses a backpropagation and k-shape algorithm to learn shapelets, constructing its
transformed dataset with the original time series, changing the initial set of time
series into a set of feature vectors that can be input to most machine learning
algorithms, and finally combining with KNN classifier for anomaly detection of
traffic.
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Experiments on NSL-KDD datasets demonstrate that the model proposed in
this paper can achieve better accuracy than existing deep learning-based shapelet
methods and combine expertise to analyze the solvability of the shapelet visu-
alization part.
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Abstract. With the continuous development of network communication
and the application of many specific scenarios, the dynamics of network
traffic continues to increase, making the optimization of routing prob-
lems an NP-hard problem. When using traditional routing algorithms,
accuracy and efficiency cannot be balanced. Recently, Deep Q-Network
(DQN) has shown great potential for solving dynamic network problems.
However, existing DQN-based routing solutions often overlook network
environment issues related to packet level, packet size, expected trans-
mission time, and do not generalize well when the network changes. In
this paper, we present a new carrier sense multiple access (CSMA) proto-
col called MC-DQN CSMA, which employs Deep Q-Network to improve
the performance of the network. First, we propose a distance constraint
under the signal-to-interference-to-noise ratio (SINR) model, which effec-
tively avoids interference and improves the probability of success. Based
on the dynamic and unpredictable needs of Ad Hoc networks, we try to
use DQN strategy to train the network’s agents without expert knowl-
edge. Furthermore, we demonstrate the performance of the proposed
algorithm by comparing it with other methods and describing it graphi-
cally, which focus on transmitting packets in multi-channel Ad hoc net-
works.

Keywords: SINR model · Multi-channel · Ad Hoc networks ·
Reinforcement learning · Deep Q-network

1 Introduction

In our paper, we study the communication in Ad Hoc networks, and propose
a improved Carrier Sense Multiple Access (CSMA) mechanism, i.e. MC-DQN
CSMA. Consistent with the traditional CSMA, in MC-DQN CSMA, a node has
the ability to sense signals on the channel and has to sense the channel before
transmitting a message. We use Request To Send/Clear To Send (RTS/CTS)
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message to achieve the handshake between senders and receivers, thereby deliv-
ering the information about the channel, sub-slot and so on.

The main contributions of the paper can be summarized as follows.

– In order to solve the interference in Ad Hoc networks, we propose the distance
constraint for the algorithm under Signal to Interference plus Noise Ratio
(SINR) model.

– We divide the slot into control slot and the data slot which consists of multiple
sub-slots. Besides, multiple channels are adopted for transmitting the packet.

– We use the Deep Q-network algorithm, treat each sender as an Agent, and
train the Agent by building a simulated Ad hoc environment. Finally, the
Agent will interact with and analyze the network environment, and then
choose the best action.

2 Related Works

The Ad Hoc network is one of the mainstream networks and the hop topic of
research. Aiming to improve the performance of the network, there exists a lot of
research that has made the contribution for achieving high throughout in Ad Hoc
networks [1–4]. In fact, many factors can make a influence to the throughput,
such as the property of hardware, the traffic load. It has been discussed that the
transmission probability can also affect the throughput. [5] uses energy harvest-
ing to power a mobile Ad Hoc network by a stochastic-geometry model, in which
each sender has a transmission probability. And the authors prove that the max-
imum network throughput increases with the optimal transmission probability.
Moreover, some studies investigate other methods to achieve high throughput in
Ad Hoc networks.

A noticeable issue is how to solve the interference in Ad Hoc networks. In
recent years, researchers tend to use SINR model to deal with the inherent
problem. Compared with other interference models, SINR model is more realistic
and has been applied for various scenarios, such as link scheduling [6–9], spanner
[10,11], dominating set [12], broadcasting [13]. In SINR model, a transmission is
considered successful if and only if the SINR value of the link is greater than a
given threshold. Thus, a link needs to take the interference caused by its neighbor
nodes into account. However, the interference will be decreased along with the
improvement of distance between two nodes due to the pass loss.

Although multiple-channel situation is more complicated than single-channel
situation, it can greatly increase the throughput of the network [14], and many
works have been devoted to utilize the multiple channels in communication proto-
cols [15–17]. In multiple-channel situation, the most important issue is the assign-
ment of the channels. At the early stage, [18] proposes a new multi-channel MAC
protocol for wireless mobile Ad Hoc networks, which follows an “on-demand”
style to assign channels to the nodes. In this method, the number of required
channel is independent of the size or topology of the network. [19] proposes a
channel-switching scheme to deal with channel congestion, thereby achieving the
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throughput improvement. In our work, channel congestion is solved under SINR
model, and nodes select the channel randomly, which can ensure the uniformly
distribution. But the RTS message is transmitted with a probability.

Labeled datasets are rare in the field of communication networks, as a result,
people have tried reinforcement learning (RL) that can directly generate an
action forwarding behavior, which does not require other auxiliary algorithms
for routing strategies. For example, Hu et al. [20] have used Q-learning to manage
the routing based on the energy in the nodes of a wireless sensor network (WSN).
Such Q-learning-based methods can only calculate simple input information, as
the Q values are stored using value tables. Sun et al. [21,22] have proposed
the use of DRL to adjust the link weights in a communication network, based
on which the global routing of the network is adjusted. Xu [23]has used Multi-
agents deep deterministic policy gradient (MADDPG) to solve routing problems
in a distributed manner. In our work, we treat the sender as an Agent and
train it using the DQN algorithm. At the same time, we fully consider the state
of the dynamic network environment, and choose to incorporate the distance
constraint with the receiver in the current channel, the current packet level, the
current packet size, and the expected transmission time into the state space.
This allows the Agent to accurately grasp environmental information and make
the best decision.

3 Models and Definitions

In this section, we will introduce the SINR model and the multi-channel model
in the following subsections.

3.1 SINR Model

As an inherent problem in wireless networks, nodes transmitting simultaneously
on the same channel can interfere with each other, which can lead to collisions
and retransmission costs. To describe the interference in Ad Hoc networks, we
use the SINR model, which is more practical than other interference models and
more in line with practical applications.

Assume that there exist n nodes in the Ad Hoc network. At the initialization
stage, arbitrary node i should send a probe message to its neighbors, aiming to
calculate the distance between itself and neighbors. The distance is recorded as
a sequence, such as diu, div, diw, which represents the distance to node u, v, w
and so on. As for the interference in the network, we use SINR model to evaluate
the tolerant interference of links, which is more practical and more realistic than
other interference protocols. Now consider a link luv, for which the sender is node
u and the receiver is node v. According to SINR model, link luv can transmit
successfully if and only if it satisfies the function as follows:

SINR =
Pd−α

uv

Isum + N
=

Pd−α
uv∑

w∈Ψu,v Pd−α
wv + N

≥ β. (1)
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where P is the transmission power; α is the path-loss exponent, whose value
is normally between 2 and 6; N indicates the noise of the background; and
Isum represents the interference experienced by the receiver v caused by all the
simultaneously transmitting nodes, which are involved in set Ψ , on the same
channel with node u and v. In particularly, link luv can transmit successfully if
and only if its SINR value is above or equal to the value of the threshold β.

It can be known that the noise of the background exists in the normal sit-
uation, and the interference will be generated once the neighbor nodes start to
transmit a packet. Then N > 0 and Isum ≥ 0 can be assured. Therefore, the
tolerant sum of the distance (i.e. Φ) can be induced by the inequality in formula
1 as follows:

Pd−α
uv∑

w∈Ψu,v Pd−α
wv + N

≥ β ⇒ Dsum =
∑

w∈Ψ{u, v}
d−α

wv ≤ Pd−α
uv − βN

P · β = Φ.

(2)
A transmission can be successful if and only if the sum of the distance is

lower than the tolerant sum of the distance, i.e. Dsum ≤ Φ, and we define Dsum

as the distance constraint. Since the distance constraint can be traced back to
SINR model definition, a transmission can be considered to meet the SINR
requirement when it satisfies the distance constraint. As mentioned in the basic
model, nodes calculate the distance to neighbors at the initialization stage. Thus
Φ can be determined at once when duv has been known or, in other words, when
receiver v has confirmed that node u is its sender.

3.2 Multi-channel Model

As for the channel mode, we study the transmission in a multi-channel commu-
nication with Γ ≥ 2 available channels. And slots can be divided into control
time slots and data time slots. Figure 1 shows the illustration of the channels and
slots. In particularly,there exists a special channel, i.e. the public channel, which
aims for transmitting RTS/CTS messages and is marked as c0. Other Γ − 1
channels c ∈ {c1, c2, · · · , cj , · · · , cΓ−1} are selected by nodes for transmitting
packets. As shown in Fig. 1, the public channel is only used in the control slot,
while other channels are used in the data slot.

We assume that the number of nodes, which tend to transmit a packet in the
data slot, is greater than Γ log n, thus multiple nodes will operate on different
channels with high probability when nodes uniformly select the channels.

Since each node may start to transmit its packet at various time points, we
further divide the data slot into multiple sub-slots t ∈ {t1, t2, · · · , tk, · · · , tσ},
in which σ is the scale of the data slot and satisfies that σ > log n

Γ . Therefore,
the sender and the receiver can confirm the specific time point by transmitting
RTS/CTS messages with each other.

As a kind of handshake protocol, RTS/CTS messages are the classic method
in CSMA mechanism, which is adopted to confirm the related information of the
transmission, thereby reducing the potential problems, such as hidden terminal.
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Fig. 1. The illustration of channels and slots

In our algorithms, RTS/CTS messages are transmitted on channel c0 in the
control slot. The process of receiving RTS message is illustrated in Fig. 2.

Fig. 2. RTS messages received by node

As shown in Fig. 2, the number sequence represents the sequence that node
v receives the RTS messages. Receiver v has received the RTS messages respec-
tively from node a, b,c and d before receiving the RTS message from its sender
u. By decoding the RTS message from sender u, receiver v confirms that it is the
destination of the RTS message, and obtains the information of predetermined
channel and sub-slot, which are channel c1 and t1, respectively. Then receiver
v can calculate its Dsum = dav + ddv. Now, the value of Dsum can be verified
whether it satisfies the distance constraint: if Dsum ≤ Φ, receiver v will send
a CTS message back to sender u with the sub-slot unchanged; if Dsum > Φ,
receiver v will adjust the sub-slot, and send a CTS message back to sender u
with the information of the adjusted sub-slot.

4 Algorithm Description

Based on the models in Sect. 3, the algorithm of MC-DQN CSMA is described
in this section. As mentioned above, the slot consists of the control slot (i.e. CT )
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and the data slot (i.e. DT ). Furthermore, we divide the slot into the multiple sub-
slots. Figure 3 shows the transmission process of MC-DQN CSMA mechanism.

Fig. 3. The transmission process of MC-DQN CSMA

As shown in Fig. 3, it can be seen that nodes transmit the RTS message,
calculate the value of Dsum and transmit CTS message in control slot, and
nodes transmit packets in data slot. The transmission round starts from the
control slot, and launches the data slot when the control slot is finished. Then
a new round of the loop starts over, and the information is delivered along with
the loop. For further explanation, the proposed MC-DQN CSMA algorithm is
described in the following subsections, which are receiver mode and sender mode
respectively.

4.1 Receiver Mode

If a node has no packet to be transmitted in a round, it is a potential receiver.
It is required to listen on the public channel in a CT.

The potential receiver may receive one or multiple RTS messages. We define
the “target RTS” to indicate the RTS message whose destination is the poten-
tial receiver. Then potential receiver decodes the message and confirm whether
the RTS message is its target RTS. If the message is not the target RTS, the
information of the message will only be recorded in the RTS list of the receiver.
Otherwise, according to the distance constraint, the receiver calculates the value
of Dsum based on the information in the target RTS. When the distance con-
straint is satisfied, the receiver can send a CTS message back to its sender, and
adjusts the selected sub-slot if necessary.

The implementation details for adjusting sub-slots are as follows: If the sub-
slot reserved by the sending end conflicts with sub-slots reserved by other nodes
in previous control time slots, the receiving end will adjust the proposed sub-slot
from the sending end. It will find the nearest sub-slot in the data time slot of
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this transmission round that avoids conflicts and include the adjusted sub-slot
in the CTS message.

The receiver, which has not received the target RTS, keeps listening on the
public channel. However, the receiver will turn to the selected channel in the DT
after it sends a CTS message successfully.

Algorithm 1 below describes the relevant actions of receiver in MC-DQN
CSMA.

Algorithm 1. MC-DQN CSMA(Receiver).
Require: flag = 1 → listening on public channel c0;

flag = 0 → otherwise
Ensure: CT - control slot; DT - data slot
1: while slot = CT && flag do
2: listen on the channel;
3: if receive a RTS message then
4: decode the message and confirm the address
5: if the address is not correct then
6: record the information about sender si, channel cj , sub-slot tk, etc.;
7: else
8: confirm the information about channel cj , sub-slot tk, etc.;
9: calculate Dsum and check the distance constraint;

10: adjust sub-slot to t
′
k;

11: Let t
′
k =current scheduled sub-slot;

12: if t
′
k has caused a conflict then

13: Let M = all of the sub-slots;
14: for iteration i = t

′
k to M :

15: if i is not occupied then
16: t

′
k = i;

17: Break;
18: end if
19: end for
20: end if
21: send a CTS message back to the sender;
22: turn to channel cj ;
23: flag = 0
24: end if
25: end if
26: end while
27: while slot = DT do
28: if flag == 0 then
29: wait for the packet on channel cj in sub-slot t

′
k;

30: turn to public channel c0;
31: flag = 1;
32: end if
33: end while
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4.2 Sender Mode

The CT can be regarded as the period for preparing a transmission. A sender,
which has a packet to be transmitted, should pick up a channel cj from γ − 1
channels and randomly select a sub-slot tk of data slot in the period. After
determining the information about the channel, sub-slot, etc., the sender sends
a RTS message with probability Pi (0 <Pi< 1) to its receiver.

After the corresponding receiver calculates the value of Dsum and check the
distance constraint, the selected sub-slot may be adjusted to avoid the collision
with other transmission. Therefore, the determined sub-slot can be known by
decoding the CTS message, which is sent from the receiver. If the sender has not
received the CTS message from its corresponding receiver when the control slot
is finished, the transmission between itself and the receiver cannot be operated
in the data slot.

Algorithm 2 below describes the relevant actions of sender in MC-DQN
CSMA.

Algorithm 2. MC-DQN CSMA(Sender).
Require: flag = 1 → listening on public channel c0;

flag = 0 → otherwise
Ensure: CT - control slot; DT - data slot
1: while slot = CT && flag do
2: listen on the channel;
3: if have a message to transmit then
4: randomly select channel cj for transmitting the packet;
5: randomly select a sub-slot tk;
6: while the current channel is occupied do
7: randomly select a time period to wait;
8: end while
9: send a RTS message to receiver with probability Pi;

10: listen on the channel;
11: if receive a CTS message then
12: adjust the sub-slot to t

′
k;

13: turn to channel cj ;
14: else
15: try to send the RTS again;
16: end if
17: end if
18: end while
19: while slot = DT do
20: if flag == 0 then
21: transmit the packet on channel cj in sub-slot t

′
k;

22: turn to public channel c0;
23: flag = 1;
24: end if
25: end while
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Transmitting a message with a certain probability is a classic method in
CSMA mechanism, which can improve the success probability and reduce the
collision in a transmission. Regarding the probability of transmitting the RTS
message, since all senders desire to reserve the initial time slot for delivering
messages promptly, conflicts are likely to arise. Therefore, it is essential to min-
imize the potential collision that can occur when multiple RTS/CTS messages
are sent concurrently.

5 CSMA Based on DQN

In this section, we will introduce the key elements of CSMA in DQN algorithm,
including state, action, and reward function. The following is a summary of these
elements, combined with the nature of CSMA algorithm.

5.1 State Space

There are four network parameters in the state space, which are distance con-
straints, priority of data packets to be transmitted, current data packet size and
expected transmission time.

Distance constraint: According to the definition in the SINR model described
above, when the link L meets the formula 2, the current link is considered to be
able to transmit successfully, otherwise, it cannot be successful, and the model
does not consider the transmission in the link L, which means that the link does
not participate in the game.

Priority of Packets to be Transmitted: Each sender plays a game without
knowing the probability selection of other nodes, and sets the gain value of the
packet according to the importance of the information. Due to the different con-
tributions of data packets to the network, some data packets have higher priority.
This article defines five message levels for distinguishing the importance of the data
packet currently being sent, so the message level is a discrete value from 1 to 5.

Current Data Packet Size: The size of data packets affects the transmission
time, the success rate during transmission, and the degree of network congestion.
This is crucial for determining when the sender should send RTS messages and how
to allocate communication resources. When there are many large data packets in
the network, communication resources may become scarce, potentially resulting in
a higher probability of collisions and delays. In this situation, intelligently adjust-
ing the probability of sending RTS messages helps improve network performance.

Expected Transmission Time: Expected transmission time is an important
indicator for measuring link transmission performance. A shorter expected trans-
mission time usually implies better link quality, while a longer expected trans-
mission time may indicate poorer link quality or higher network congestion.



74 X. Pi and J. Qiu

The expected transmission time will be calculated in real-time based on the
following introduction: To calculate the expected transmission time, the data
packet size (DPS), the channel transmission rate (CTR), and the channel reli-
ability (CR) are required. Specifically, formula 3 can be used to calculate the
expected transmission time:

ETT = DPS/ (CTR × CR) . (3)

In this case, the DPS represents the size of the data packet, and the unit
can be bytes or bits. The CTR represents the time required for the data packet
to travel from the sender to the receiver, and its unit is usually bits per second
(bit/s). CR refers to the probability of errors occurring in the network during
the data transmission process.

5.2 Action Definition

The output of the DQN neural network simulates the Q-values of the Q-function.
In this case, the dimension of the action space should be discrete, representing
different probability levels for sending RTS messages. For example, we can divide
the probabilities into 10 levels(0%,10%,20%,...,100%). After the output layer, the
Q-value corresponding to each probability level is calculated separately, and the
agent will ultimately choose the action with the highest Q-value.

5.3 Reward Function

Since our primary goal is to improve network throughput while minimizing the
conflicts caused by simultaneous message transmissions, ensuring the optimal
benefit of the entire network. To achieve this, we choose the link benefit value
between the agent (i.e., the sender) and the receiver as the reward function’s
measurement metric. The formula for calculating the link benefit value is as
follows:

λu(T ) = SuguPu − c

ζTu
+ lnPu − Pu. (4)

Specifically, Gu (T ) = guPu is the gain value of the data packet, where gu

is the unit gain when the data packet is successfully transmitted; Cu (T ) =
c

ζTu
+ lnPu − Pu is the cost required to transmit the data packet, where is the

unit cost required for data packet transmission, and ζ is a factor to ensure that
the cost is reduced when the transmission time ends.

In this case, the calculation of gu is related to the expected transmission
time and the level of the data packet. Specifically, first divide the data packet
size (DPS) by the expected transmission time (ETT) to calculate the amount of
data that can be transmitted per unit of time. Multiply this by the corresponding
weight (W), where different levels of data packets have different weights. The
final result is the unit gain brought by the successful transmission of the current
data packet. The calculation formula is as follows:

gu = W × (DPS / ETT ). (5)
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The unit cost of data packet transmission (c) can be calculated by com-
prehensively evaluating three key factors: energy consumption, processing time,
and channel quality. For example, let the average distance a data packet can
be transmitted be L, the average energy consumption required for a node to
transmit a single data packet be E, the average time for processing, sending,
and transmitting a data packet be T, the current channel quality be Q, and ε
represents a very small number to prevent the denominator from being zero. The
calculation formula for the unit cost of data packet transmission is as follows:

c =
E × L + T × Q

1 − Q + ε
. (6)

The value of the reward function is related to the change of linked benefit
value in formula 6. When the benefit value of the link increases, reward Agent,
rt+1 = 1. When the benefit value of the link decreases, the agent will be pun-
ished, rt+1 = 0.

r (s, a) =
{

0 λu � λ
′
u

1 λu � λ
′
u

(7)

5.4 Loss Function

In the DQN algorithm, the loss function is mainly used to measure the difference
between the Q-values predicted by the neural network and the actual target Q-
values. Typically, DQN uses the Mean Squared Error (MSE) as the loss function,
as shown in formula 8.

Loss =
1
n

n∑

i=0

(
Qi (s, a; θ) − Qi

target (s, a)
)2

(8)

In formula 8, n represents the number of data samples extracted from the
experience replay buffer in this training round, Qi (s, a; θ) is the Q-value output
by the main neural network for the ith data sample, and Qi

target (s, a) is the
Q-value output by the target neural network for the ith data sample.

6 Simulation

In this section, we prove the performance of proposed algorithm by comparing
with other methods, which focus on transmitting packet in multi-channel Ad
Hoc networks.

In this section, a simulation environment was implemented using the Python
programming language. In the simulation, the experimental environment is sta-
ble, and the background noise remains constant. Nodes are randomly distributed
in the network and can use multiple channels for data packet transmission. The
range of the number of nodes considered in this section is from 0 to 100, and
the average energy consumption required for a single data packet transmission



76 X. Pi and J. Qiu

by a node is 50J. The performance measured in the experiment includes unit
cost, gain value, and benefit value, which will vary with the number of nodes
participating in the transmission.

Next, we present the training curve of our model. We trained the agent for
40,000 iterations. As shown in Fig. 4, the value of the loss function in each episode
decreased significantly as the number of iterations increased. Moreover, similar
to most existing DQN schemes, the agent learned more rapidly in the beginning,
and the increase in performance tended to slow down during the training process.
For this figure, the unit of measurement on the x-axis is in thousands, revealing
that the loss remained relatively stable after approximately 19,000 iterations.

Fig. 4. The training curve.

The methods compared with the algorithm in this chapter are the random
(Random) algorithm and the first-in-first-out (FIFO) algorithm. Both of these
algorithms are classic transmission strategies in wireless networks. In the random
algorithm, nodes are randomly selected to transmit data, while other nodes need
to maintain a listening state and wait for the next opportunity to transmit. The
FIFO algorithm follows the principle that nodes that collect data first should be
prioritized for transmission. Although this method can reduce the probability of
conflicts, it may also cause unnecessary delays.

As mentioned earlier, the performance studied in the experiment includes
unit cost, gain value, and benefit. The average values of these performance met-
rics are shown in Figs. 5, 6, and 7 respectively.

Figure 5 shows the changes in unit cost values with the increase in the number
of nodes for three methods. The calculation formula for unit cost is as per formula
6. As can be seen, the unit cost of all three methods rises with the increase in
the number of nodes, but the MC-DQN CSMA mechanism can achieve a higher
unit cost than the other two methods.
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Fig. 5. The unit costs increase with the total number of the network nodes.

Figure 6 shows the changes in gain values with the increase in the number
of nodes for three methods. The calculation formula for gain values is as per
formula 5. In Fig. 6, the gain values of all three methods decrease rapidly at first
and then gradually stabilize with the growth in the number of nodes. However,
the gain value of the MC-DQN CSMA mechanism is always higher than that of
the other methods.

Fig. 6. The overall gain decreases with the total number of the network nodes.

The results in Fig. 7 show that the benefits of the three methods decrease with
the increase in the number of nodes. Also, the benefit value is calculated from
the unit cost and gain values, as shown in formula 4. According to the simulation
results of unit cost and gain values, as well as the theoretical analysis, it can be
inferred that the MC-DQN CSMA algorithm can achieve higher benefit values.
This is also evidenced by the experimental results, as shown in Fig. 7.
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Fig. 7. The overall payoff decreases with the total number of the network nodes.

In summary, according to the performance analysis of unit cost, gain value, and
benefit value, the MC-DQN CSMA algorithm proposed in this chapter can achieve
better performance in multi-channel Ad hoc networks than other algorithms.

7 Conclusions

This paper proposes the MC-DQN CSMA algorithm, which controls the proba-
bility of the sender sending RTS messages to the receiver in an Ad hoc network,
thereby driving the increase in network throughput and achieving maximum
network benefits. First, we regard the entire transmission process as a trans-
mission round, which is divided into a control slot and a data slot composed
of multiple sub-slots. In the control slot, the sender selects a channel and a
sub-slot to transmit data packets, and then communicates with the receiver via
RTS/CTS messages to reserve the sending time; in the data slot, the sender
sends data packets with a certain set of settings. We proposed a SINR model for
judging whether the transmission of data packets under the currently selected
link can be successful, and for ease of calculation, we derived the SINR model
and finally judged whether the current link can be successfully transmitted by
calculating the Dsum value. In the Ad hoc network, the network environment
status changes frequently. The sender needs to adjust the sending probability
of the RTS message in real time according to the environment status. For this,
we proposed a Deep Q-learning strategy, and proposed the state space, action
space, and reward function of the sender as an Agent. The sender interacts with
the environment to choose the best RTS message sending probability, to increase
the overall network throughput and maximize network benefits. Finally, we com-
pared the proposed algorithm with other algorithms that focus on transmitting
data packets in multi-channel Ad hoc networks, and graphically described the
gap between them.
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Abstract. The rapid development of deep learning has led to a dramatic
increase in user demand for training data. As a result, users are often
compelled to acquire data from unsecured external sources through auto-
mated methods or outsourcing. Therefore, severe backdoor attacks occur
during the training data collection phase of the DNNs pipeline, where
adversaries can stealthily control DNNs to make expected or unintended
outputs by contaminating the training data. In this paper, we propose a
novel backdoor defense framework called DFaP (Data Filter and Purify).
DFaP can make backdoor samples with local-patch or full-image triggers
added harmless without needing additional clean samples. With DFaP,
users can safely train clean DNN models with unsecured data. We have
conducted experiments on two networks (AlexNet, ResNet-34) and two
datasets (CIFAR10, GTSRB). The experimental results show that DFaP
can defend against six state-of-the-art backdoor attacks. In comparison
to the other four defense methods, DFaP demonstrates superior perfor-
mance with an average reduction in attack success rate of 98.01%.

Keywords: artificial intelligence · deep learning · AI security ·
backdoor defense · data filtering · data purification

1 Introduction

Deep Neural Networks (DNNs) have found extensive applications in various
fields, including self-driving [1–3], object detection [4,5], and natural language
processing [6,7]. However, as a data-starved model, DNNs require a large amount
of training data. To achieve optimal performance, users have to obtain training
data from unverified external data sources through automated methods or out-
sourcing.

As shown in Fig. 1(A), it is a common strategy to obtain training data from
the public. However, it is hard to guarantee whether an unverified external data
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source is trustworthy. This makes backdoor attacks a severe threat to the data
collection phase of the DNNs pipeline [8], where adversaries can implant back-
doors into the model by contaminating the training data, causing severe damage
in various situations.

Fig. 1. (A) The DNNs pipeline suffers severe backdoor attacks during the data collec-
tion phase. (B) To ensure the dataset is non-threatening before the training phase, we
propose DFaP implement unsupervised filtering and purification of the training data.

Specifically, the adversary stealthily implants backdoors into DNNs; in the
inference phase, the infected model can behave like a clean model for clean
samples, but predict malicious, adversaries expected target labels for backdoor
samples with triggers. For example, backdoor attacks can easily fool DNNs to
recognize a “stop” sign with a small, even invisible trigger as a “pass” sign,
thus causing a catastrophic traffic accident. Therefore, various backdoor defense
methods are proposed to meet the expectation that the dataset is clean before
the training phase.

However, existing countermeasures based on data filtering are facing the fol-
lowing challenges.

Specifically, the adversary stealthily implants backdoors into DNNs. During
the inference phase, the infected model can mimic a clean model for regular
samples but will predict malicious, adversary-expected target labels for back-
door samples with triggers. For instance, a backdoor attack could deceive a
DNN into perceiving a “stop” sign as a “pass” sign with a small, even invisible
trigger, potentially leading to a catastrophic traffic accident. Consequently, var-
ious backdoor defense methods have been proposed to ensure the cleanliness of
the dataset prior to the training phase.

Nevertheless, existing countermeasures based on data filtering encounter the
following challenges.
(1) Require additional clean samples. Most backdoor defense methods
require a certain percentage of clean samples. Realistic scenarios where the victim
collects extra clean samples and ensures the samples are i.i.d with the dataset
to be detected are difficult.
(2) Challenging to suppress multiple types of attacks. The triggers
of backdoor samples may be a tiny local-patch block [9,10] or hidden full-image



DFaP: Data Filtering and Purification Against Backdoor Attacks 83

perturbation [11,12]. It is challenging to filter multiple types of backdoor samples
with high performance for existing defense methods.
(3) False positive results. Current filtering-based methods are difficult to
avoid false positive results (i.e., filtering out clean samples), which reduces the
model performance [13].

In this paper, we propose a backdoor defense framework referred to as DFaP
(Data Filter and Purify) to address the above challenges and ensure that the
dataset is clean. To address challenges (1) and (2), DFaP employs CAM Filter
for data filtering. This enables DFaP to identify and filter local-patch back-
door samples without requiring additional clean samples. Expressly, the decision
features of the backdoor samples are limited to the trigger features [14], while
the decision features of the clean samples contain multiple semantic features of
the corresponding classes. Therefore, CAM Filter performs erasure repair on the
critical decision features of the samples and compares the predicted labels before
and after the erasure. The prediction labels change before and after erasure for
local-patch backdoor samples, and the rest of the samples remain consistent. To
address challenges (2) and (3), DFaP performs data purification via ED Puri-
fier. ED Purifier enables DFaP to purify backdoor samples from local-patch or
full-image triggers. The purified samples are still used to train the model, avoid-
ing information loss due to false positive results. Specifically, this component
exploits the data-dependent feature of the Encoder-Decoder structure (i.e., it
can only compress and recover features similar to the training data) and the
self-supervised technique to corrupt triggers while preserving the main semantic
features. This makes the backdoor samples non-threatening, while the purified
samples can still contribute to the model training phase.

As a result, DFaP enables unsupervised filtering and purification of unsecured
DNNs training data.

We summarize our contributions below:

– We propose an unsupervised sample filtering technique called CAM Filter.
DFaP can filter backdoor samples without additional clean samples.

– We propose a sample purification technique called ED Purifier. DFaP can
purify backdoor samples from local-patch or full-image triggers rather than
discard them, thus avoiding information loss due to filtering out clean samples.

– We illustrate the effectiveness and versatility of DFaP through comprehensive
experiments involving various backdoor attacks across different datasets.

2 Related Work

2.1 Backdoor Attack

BadNets [9] is the first proposed backdoor attack method against DNNs. The
adversary adds backdoor samples with attached triggers to the dataset, thus
implanting the backdoor into DNNs. By this method, the prediction results of
the model can be manipulated, such as identifying the “stop” sign as a “pass”
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sign. In order to increase the concealment of triggers, [11,15] proposed to con-
struct invisible triggers based on perturbation. A more attractive attack is the
Clean-Label Attack [16,17]. The Clean-Label Attack preserves the label of the
backdoor samples and makes the backdoor samples look like benign samples. In
the Clean-Label Attack, the source image of the backdoor data may come from
different classes. [18,19] proved that adding triggers only to the target class data
is also feasible. [10] adds a perturbation to the image based on GAN [20] or
FGSM [21], then attaches triggers to build a poisoned dataset. [22,23] propose
attacks against federated learning. [24] propose attacks based on image scaling.
Trojan Attack [25] demonstrates the generation of triggers to implant backdoors
by reverse engineering. [11,26] proposed to construct triggers based on norm
constraints. [11] also used Steganography to embed full-image triggers stealthily.
[27] proposes frequency domain attack can be realized. FTrojan [12] adds trig-
gers in the frequency domain that behave as a full-image perturbation in RGB
space.

2.2 Backdoor Defense

Backdoor defense consists of model inspection and data inspection. Neural
Cleanse [28] is a typical model inspection method. It calculates the perturbation
that changes the data label, and the slightest perturbation is called a trigger.
Fine-Pruning [29] provides defense by pruning model neurons of low relevance
for clean samples. NAD [30] proposes a distillation method to reverse the elimi-
nation of the trigger. I-BAU [31] propose a minimax formulation and a solver for
backdoor removal. The following methods are data inspection methods. [32] pro-
posed to extract the spectral features of the potential representation and filter
the backdoor samples based on the outliers. SPECTRE [33] further proposed
to amplify the spectral features by whitening the data and using QUantum
Entropy as the outlier score. STRIP [34] proposed filtering backdoor data by
overlaying multiple samples and computing entropy. [35] proposes a federated
learning defense based on secure aggregation strategy. Februus [36] proposed a
data purification method based on an interpretable method and the GAN model.
SCAn [37] decomposes latent features into a class-specificity identity and a vari-
ation component. Thus, the backdoor data is filtered by statistical analysis of the
decomposition component. The above defense methods are enlightening. How-
ever, addressing the following challenges remains a difficulty, including requiring
additional clean samples, not being able to suppress multiple types of attack,
and false positive results. This inspires us to build a backdoor defense framework
that addresses the above challenges.

3 Methodology

3.1 Threat Model

Adversaries’ Abilities: We assume that the attack occurs during the data
collection phase, and the victim needs to train the classifier f(Θ, x) using an
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unverified external dataset. The adversaries have access to the victim’s data,
network, and training algorithm. Instead of training the model, the adversaries
construct the backdoor sample xb with the trigger Δ. Then, xb is added to the
victim’s dataset.

Adversaries’ Goal: The adversaries expect the victim to train with the poi-
soned dataset Db and thus the victim unknowingly acquires the infected model
f b(Θ, x). Specifically, the adversaries have two goals. First, f b(Θ, x) still classi-
fies correctly for x without Δ. Second, when xb with Δ is fed into f b(Θ, x), the
prediction will always be the target class yt set by the adversaries.

3.2 DFaP Framework Overview

We consider a realistic threat scenario in the DNNs pipeline as in Fig. 1(A).
To ensure the dataset is clean before the training phase, we propose the DFaP
framework to achieve unsupervised filtering and purification of the DNNs train-
ing data. An overview of DFaP is shown in Fig. 2.

Data Filtering. DFaP includes the data filtering component: CAM Filter,
which filters out local-patch backdoor samples without additional clean sam-
ples. CAM Filter first extracts key decision features for sample classification
and performs erasure repair. For backdoor samples with tiny local-patch trig-
gers added, the remaining semantic features after erasing the backdoor patches
cause their predicted labels to change. Therefore, the local-patch backdoor sam-
ples are erasure-prone samples. For the samples without local-patch triggers, the
remaining semantic features ensure the consistency of the prediction labels before
and after erasure. In the second step, CAM Filter predicts the samples before
and after erasure, and the erasure-prone samples are judged as the local-patch
backdoor samples.

Data Purification. DFaP includes the data purification component: ED Puri-
fier. With the data-dependent feature of the Encoder-Decoder structure and the
self-supervised technique, ED Purifier can discard the non-existent backdoor
features (i.e., local-patch or full-image trigger) and retain the main semantic
features of the samples. Therefore, ED Purifier achieves data purification. As
shown in Fig. 2(B-1), the ED Purifier is trained with the filtered dataset. As
shown in Fig. 2(B-2), the samples are then purified to continue contributing to
model training instead of being discarded.

3.3 Data Filtering

We propose CAM Filter to implement erasure repair of decision features and
filter local-patch backdoor samples.
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Erase Phase. This stage is to extract the critical decision features of the
sample for erasure and repair.

Grad-CAM [38] is a method designed to interpret DNNs decisions, and we
utilize it to locate pixels with high weight for model decisions. First, the highest
convolutional layer feature map A of the model is extracted. Second, the weight
of the kth feature map on class c is defined as αc

k, which is represented as Eq.
(1). Here, Z is the number of feature map pixels, yc is the score of class c (i.e.,
the predicted score of class c in logits), and Ak

ij is the pixel value at position
(i, j) in the kth feature map.

Fig. 2. The overview of DFaP. (A) CAM Filter: This component performs data
filtering. (B) ED Purifier: (B-1) shows the Train Phase. (B-2) shows the Purify
Phase. Eventually, the purified dataset can be used safely train DNNs models.

ac
k =

1
Z

∑

i

∑

j

∂yc

∂Ak
ij

(1)

Then, the class activation mapping can be obtained by using the weighted
sum of weight αc

k and feature graph A with an additional ReLU operation. The
significance of ReLU is that we only care about pixels that positively impact
class c. The activation diagram Lc for class c is shown in Eq. (2).

Lc = ReLU(
∑

k

αc
kAk) (2)

The value range of Lc is standardized to [0, 1], the size of Lc is changed to the
same as the input sample by interpolation, and thus we can get the activation
value of any pixel in the input sample. The pixels with activation values higher
than the threshold T will be erased.

Since the erased samples need to be reclassified, they should more closely
resemble the original samples. So we use a fast image restoration method (i.e.,
TELEA [39]) for restoration. Unlike the GAN used by Februus, we do not need
additional clean samples for training.
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Filter Phase. This stage is predicted for the samples before and after erasure
separately. As shown in Fig. 3, the samples with changed labels (i.e., erasure-
prone samples) are identified as local-patch backdoor samples, thus achieving
data filtering.

3.4 Data Purification

The ED Purifier implements purification to render the backdoor samples harm-
less, while the clean samples retain the semantic features.

Train Phase. In this stage, we trained ED Purifier as shown in Algorithm 1.
In terms of training data, we consider that preparing an additional clean

dataset is a demanding requirement. In the DFaP framework, the ED Purifier is
trained with the filtered dataset (i.e., erasure-insensitive samples) without the
need of additional clean samples.

Fig. 3. The samples before and after erasure repair are predicted, respectively. The
label of the erasure-insensitive sample in the first row remains unchanged, and the
label of the erasure-prone sample in the second row is changed.

The ED Purifier consists of two independent Encoder-Decoder structures,
including a traditional AutoEncoder A(Θa, x) and UNet U(Θu, x).

A(Θa, x) aims to remove local-patch trigger features and retain the main
semantic features for erasure-prone samples. DFaP selects the AutoEncoder
structure as A(Θa, x). Besides, the characteristic of �mse (denoted as Eq. (3)) is
that it only considers the average size of all pixel errors, which means it tends
to produce an output closer to the overall average and is more likely to destroy
trigger features. Therefore, �mse is chosen as the loss function for A(Θa, x).

�mse =
1
n

n∑

i=1

(x′
i − xi)2 (3)

U(Θu, x) aims to recover the original semantic features of erasure-prone sam-
ples while purifying the possible hidden full-image triggers in erasure-insensitive
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samples. Therefore, we adopted a self-supervised training based on the J -
invariant function [40].

The J -invariant function f(.) is defined as: when J = {J1, J2, ...} is a par-
tition of the sample (where J is a disjoint subset of the sample and the con-
catenation of all j is the sample x), f(.) is J -invariant if for any J ∈ J the
function value f(xJ) is independent of the value of xJ (where xJ is an element
of x restricted to the coordinates in J).

The full-image backdoor sample x is constructed as in Eq. (4), where y is the
original sample and t is the full-image trigger perturbation value.

x = y + t (4)

The self-supervised optimization is to minimize the �f as in Eq. (5).

�f =
∑

J∈J
Ex ‖f(xJc)J − xJ‖2 (5)

Algorithm 1. Training the ED Purifier
Input: Filtered dataset D; AE model A(Θa, x); UNet model U(Θu, x);
Output: ED Purifier P (Θp, x);
1: Initialize A(Θa, x), U(Θu, x)
2: for number of training iterations do
3: B ← GetImagesBatch(D)
4: for (xi, yi) in B do
5: x′

i = A(Θa, xi))
6: x′′

i , x′′′
i = U(Θu, x′

iJ), U(Θu′ , xiJ)
7: Lmse += �mse(xi, x

′
i)

8: Ls += �f (xiJ , x′′
iJ) + λ�ms(xi, x

′′
i )

9: Ls′ += �f (xiJ , x′′′
iJ) + λ�ms(xi, x

′′′
i )

10: end for
11: Update Θa ← AdamOptimizer(Θa, Lmse)
12: Update Θu ← AdamOptimizer(Θu, Ls)
13: Update Θu′ ← AdamOptimizer(Θu′ , Ls′)
14: end for
15: P (Θp, x) ← Concatenate(A, U)
16: return P (Θp, x)

Here, f is a J -invariant function(i.e. the U(Θu, x)), in which ‖·‖ denotes the
l2 norm, the partition J of x is a set of disjoint subsets of x whose union is all
x, and the Jc is the complement of J .

We use the masking procedure (denoted as Eq. (6)) to modify the x to xJ .

xJ = 1J · s(x) + 1Jc · x (6)
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Here Jc is the complement of J , 1J is the indicator function, the value of
elements whose coordinates belong to J is 1, and the value of elements whose
coordinates belong to Jc is 0; and s(·) is a convolution operation.

In addition, to preserve the semantic information of the erase-insensitive sam-
ples and to further recover the semantic information of the erase-prone samples,
we add the MS-SSIM constraint term to the self-supervised loss.

MS-SSIM is a multi-scale structural similarity that can measure the repair
quality of samples, referred to as MS.

�ms = 1 −
M∏

m=1

(
2μxμx′′ + c1

μ2
x + μ2

x′′ + c1
)βm(

2σxx′′ + c2
σ2

x + σ2
x′′ + c2

)γm (7)

Here, M denotes different scales, μx and μx′′ represent the mean of the
original and purified samples, σx and σx′′ represent the variance of the original
and purified samples, σxx′′ represents the covariance, βm and γm represent the
relative importance, c1 and c2 represent the constant terms.

The self-supervised loss �s is shown in Eq. (8). Therefore, U(Θu, x) achieves
a balance between purifying full-image triggers and retaining semantic features.

�s = �f + λ�ms (8)

Then, the ED Purifier P (Θa, x) is obtained by training and concatenating
according to Algorithm 1.

Purify Phase. In this stage, the ED Purifier performs two rounds of data
purification. For the filtered erasure-prone sample x, after feeding into P (Θp, x),
x′ that remove the local-patch trigger features but retain the main semantic
features can be obtained by A(Θa, x) part. Then, the x′′ that further restores
the semantic features can be obtained by the U(Θu, x′) part. For the remaining
erasure-sensitive sample x, feeding U(Θu′ , x) eliminates the potential full-image
trigger while retaining almost complete semantic features by constraining MS-
SSIM. The purification effect for the triggers is shown in Fig. 4.

Fig. 4. The purification process of the backdoor sample with local-patch trigger is
shown in (a). The purification process of the backdoor sample with full-image trigger
is shown in (b).
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4 Experiments

4.1 Experimental Setting

Datasets and Models. To evaluate the performance of DFaP, we conducted
experiments on the GTSRB [41], and CIFAR-10 [42] datasets. GTSRB (German
Traffic Sign Benchmark dataset) is a widely used traffic sign dataset. GTSRB
contains 43 classes of traffic sign images of different sizes that can be used to
simulate autonomous driving scenarios. For model training, we resize the data
size to 32 × 32. CIFAR-10 is a widely used visual object classification dataset.
CIFAR-10 consists of 32 × 32 size images with 10 classes. Besides, we choose
AlexNet [44] as the base model for GTSRB-based experiments and ResNet-34
[45] as the base model for CIFAR-10 and ImageNet-based experiments.

Backdoor Attacks Configurations. In this paper, we have selected six state-
of-the-art attacks, including four local-patch backdoor attacks and two full-image
backdoor attacks, respectively: (1) BadNet Attack [9], (2) CL Attack [10], (3)
Trojan Attack (Trojan SQ) [46] (4) �0 norm constraint invisible trigger Attack
(�0 inv) [11] (5) Steganography Attack [11], (6) FTrojan Attack [12]. The effect
of adding triggers is shown in Fig. 5. More details about the attack configuration
are summarized in Appendix A.

Defense Configurations. We compare DFaP with four backdoor defense
methods, respectively:(1) Fine-Pruning [29], (2) STRIP [34], (3) Februus [36],
and (4) I-BAU [31]. Fine-Pruning achieves backdoor defense by pruning neurons.
STRIP filters backdoor samples by overlaying multiple samples and computing
entropy. Februus proposes a backdoor erasure method based on GAN. I-BAU
proposes a minimax formulation for removing backdoors from the infected model.
For a fair comparison, we follow the defense configuration in the original paper.

Fig. 5. Comparison between clean and backdoor samples.
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Table 1. The performance of the five defense methods is evaluated based on six attacks.
Deviation indicates the change in BA/ASR of the defense method compared to before
the defense. BA/ASR pairs with poor defense (i.e., ASR above 10%) are marked by a
red background. The best performance is highlighted. For Steganography, the experi-
ments are based on GTSRB, and others are based on CIFAR-10.

Before Fine-Pruning STRIP Februus I-BAU DFaP(ours)
Backdoor Attack

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets 88.40% 100% 67.46% 36.11% 87.27% 0.79% 84.14% 6.54% 87.28% 15.79% 87.43% 0.40%

CL 84.77% 100% 76.56% 88.63% 86.17% 1.50% 81.64% 6.82% 81.82% 2.27% 86.11% 2.34%

Trojan SQ 86.36% 100% 71.80% 1.58% 80.23% 2.97% 79.72% 36.70% 86.56% 14.14% 85.47% 1.05%

FTrojan 87.52% 100% 74.89% 1.17% 86.72% 100% 84.77% 99.44% 86.52% 97.87% 82.83% 7.73%

�0 inv 96.76% 100% 78.15% 0.80% 96.10% 1.19% 94.35% 5.50% 97.76% 0.60% 96.30% 0.40%

Steganography 96.46% 100% 69.16% 0.20% 96.23% 98% 93.31% 87.00% 96.20% 0.20% 96.26% 0%

Deviation - - 17.04% ↓ 78.59%↓ 1.26%↓ 65.93%↓ 3.72%↓ 59.67%↓ 0.69%↓ 78.19%↓ 0.98%↓ 98.01%↓

For DFaP, to ensure the practicality of the framework under different classifi-
cation tasks, we set the erasure repair threshold for multiple classification tasks
uniformly to 0.5 and the label consistency rate threshold for the reselection
mechanism to 0.03.

Evaluation Metrics. To evaluate the performance of defense methods on the
poisoned dataset, we consider two aspects: whether the defense method avoids
the activation of backdoor behavior by triggers and whether it maintains a high
accuracy rate of benign sample classification. Therefore, we evaluate the attack
success rate(ASR) and benign sample accuracy(BA). ASR represents the per-
centage of backdoor samples that successfully activate backdoor behavior. BA
represents the classification accuracy of benign test samples. The more the ASR
drops and the less the BA drops, the stronger the defense method is.

4.2 Defense Performance

To evaluate the defense performance of our proposed DFaP framework, we use
two metrics (i.e., ASR and BA) to evaluate its performance against six backdoor
attacks. We also compare the performance of DFaP with the other three defense
methods as shown in Table 1. The more the ASR drops and the less the BA
drops, the stronger the defense method is. In addition, we consider cases where
the ASR is still above 10% to represent the defense method’s poor effectiveness,
and such cases are marked with a red background.

STRIP achieves good defense results on four local-patch backdoor attacks
(i.e., BadNets and CL), comparable to DFaP. However, STRIP needs to prepare
additional clean samples, making it less practical than DFaP. Also, STRIP can-
not defend against full-image backdoor attacks (i.e., Steganography and FTro-
jan). Our analysis that STRIP achieves defense only if the triggers in the overlay
samples are still valid. However, the full-image triggers tend to behave as minor
perturbations that cannot be triggered in the overlay samples, making STRIP
unable to filter.
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Februus takes a similar idea to CAM Filter but with image restoration via
GAN, and requires additional clean samples. Compared to DFaP, Februus fails
to defend against 6.14% of attacks at BadNets, 4.48% at CL, 5.1% at �0 inv,
and 35.65% at Trojan SQ. Also, since Februus focus on local-patch backdoor
attacks, it has almost no defense effect for Steganography and FTrojan.

Fine-Pruning effectively reduces the ASR of �0 inv, Trojan SQ, Steganogra-
phy, and FTrojan. However, Fine-Pruning achieves poor effectiveness for Bad-
Nets and CL. The reason for this in our analysis is that under attacks such as
BadNets, backdoor neurons associated with triggers overlap with benign neu-
rons, resulting in Fine-Pruning unable to achieve backdoor defense by pruning.
Meanwhile, Fine-Pruning has a significant decrease in BA.

I-BAU achieved significant defensive results against all five attacks except
FTrojan, and had the least impact on BA, with an average drop of 0.69%.
However, I-BAU required additional clean samples to retrain the infected model.
The ASR of BadNets and Trojan SQ remained above 10% after the defense, and
FTrojan escaped the defense.

DFaP achieved the highest ASR reduction (i.e., 98.01%) for the six attacks,
while the reduction in BA was insignificant (i.e., 0.98%) and only higher than
I-BAU. In summary, DFaP achieved effective backdoor defense against the six
attacks and the best defense effect compared to the other four defense meth-
ods. Furthermore, we compare our approach with recently four state-of-the-art
defense methods as summarized in Table 2.

Table 2. Comparison between DFaP and other backdoor defense methods.

Work Domain Run-time No additional
clean samples
required

Against all
employed
local-patch
backdoor attacks

Against all
employed
full-image
backdoor attacks

Fine-Pruning Network × � × �
STRIP Input � × � ×
Februus Input � × × ×
I-BAU Network × × × �
DFaP(ours) Input � � � �

5 Conclusion

To eliminate backdoor threats in the data collection phase, we propose a back-
door defense framework called DFaP. DFaP enables unsupervised filtering and
purification of DNNs training data from unverified external data sources. Exper-
iments show that DFaP can effectively defend against six state-of-the-art local-
patch and full-image backdoor attacks. DFaP achieves superior performance
compared to four other defense methods and is robust under more advanced
attack configurations. In summary, our work explores an approach based on
data filtering and purification to implement backdoor defense. This provides a
feasible solution for training a clean DNN model with unsecured data.
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Appendix

A. Backdoor Attacks Configurations

The six state-of-the-art backdoor attacks detailed in Table 3 employ various
methodologies. BadNet achieves backdoor implantation by introducing a local-
patch trigger into the model. In contrast, CL employs the FGSM [21] technique
to add perturbations to samples, effectively implanting the backdoor without
altering the labels. Trojan WM takes a reverse engineering approach to generate
triggers. On the other hand, �0 inv formulates trigger generation as a regulariza-
tion optimization problem. Utilizing steganography, a covert full-image trigger
is incorporated by modifying the least significant bits of images. Lastly, FTrojan
introduces a frequency domain-based backdoor attack, discreetly embedding a
full-image trigger in the RGB space.

Table 3. A configuration summary for the backdoor attacks.

Backdoor Attack BadNets CL Trojan SQ FTrojan �0 inv Steganography

Dataset CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 GTSRB GTSRB

Model ResNet-34 ResNet-34 ResNet-34 ResNet-34 AlexNet AlexNet

Injection Rate 0.1 0.2 0.1 0.2 0.1 0.2

Target Size 3 × 3 3 × 3 5 × 5 Full Image 1 × 7 Full Image

Target Label 1 1 1 1 40 40

ASR 100% 100% 100% 100% 100% 100%

BA 88.40% 84.77% 86.36% 87.52% 96.76% 96.46%

B. Defend Against Different Injection Rate Attacks

Adversaries may increase the backdoor sample injection rate to increase the
difficulty of data filtering. Therefore, we test DFaP by implementing BadNets
and Steganography attacks with different injection rates (i.e., 10% to 50%). We
compare the best defense methods under each attack as a reference. Specifically,
STRIP, Frbruus, and DFaP were tested under BadNets attack with different
injection rates, and Fine-Pruning, I-BAU, and DFaP were tested under Steganog-
raphy attack with different injection rates. The ASRs for different injection rates
attacks under various defense methods are shown in Fig. 6(a). Fine-Pruning and
Februus failed to defend after the injection rates reached 30% and 40%. The
rest of the defense methods have consistent defense performance under differ-
ent injection rates. The BAs (based on CIFAR-10) for different injection rates of
BadNets under various defense methods are shown in Fig. 6(b). DFaP and STRIP
achieved comparable results, higher than Februus. The BAs (based on GTSRB)
for different injection rates of Steganography under various defense methods are
shown in Fig. 6(c). DFaP and I-BAU achieved comparable results above Fine-
Pruning. The experimental results show that the ASR of the retrained model
after DFaP dropped from 100% to nearly 0%, and there was no gap between
the BA of the retrained model and the BA of the infected model. Therefore,
the performance of DFaP is robust to backdoor attacks with different injection
rates, despite higher injection rates being more challenging to defend.
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Fig. 6. The performance of DFaP is evaluated based on different injection rates. We
show the ASRs for different injection rates attacks under various defense methods in
(a), the BAs (based on CIFAR-10) for different injection rates of BadNets under various
defense methods in (b), and the BAs(based on GTSRB) for different injection rates of
Steganography under various defense methods in (c).

C. Sensitivity Study

In this section, we evaluate the sensitivity of the CAM Filter to the erasure
repair threshold through a sensitivity study. We calculate the True Acceptance
Rate (TAR) and the False Acceptance Rate (FAR) to measure the data filtering
capability of DFaP. TAR and FAR represent the percentage of local-patch and
clean samples judged as erasure-prone samples.

In Fig. 7, we demonstrate the data filtering effect of DFaP based on different
erasure repair thresholds (from 0.3 to 0.6) for three datasets based on a 10%
injection rate of BadNets. The experimental results reveal that when the thresh-
old is dropped from 0.6 to 0.3, the TAR still reaches about 80%, indicating that
DFaP at lower threshold can still ensure the dataset’s usefulness. Meanwhile,
even with a higher threshold, such as CIFAR-10 under the erasure repair thresh-
old of 0.6, the FAR reaches 6.74% (i.e., an injection rate of 0.006), which is still
far below the injection rate required for a successful backdoor attack. Therefore,
DFaP does not necessitate complex hyperparameter selection.

Fig. 7. The performance of DFaP with different erasure repair thresholds.
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Abstract. Due to the widespread of large-scale graph data and the
increasing popularity of cloud computation, more and more graph pro-
cessing tasks are outsourced to the cloud. Since graph data has rich infor-
mation such as node information and edge information, a fundamental
challenge is to minimize the overhead of subgraph matching without leak-
age of the sensitive information of graphs. This paper presents a survey of
recent methods for privacy-preserving subgraph matching. Finally, this
paper provides valuable insights and possible future directions.

Keywords: Privacy computing · Subgraph matching · Outsourced
graph data

1 Introduction

Since graphs contain rich semantic and structural information, graphs are widely
used in fields such as social networks, biological networks, and transportation
networks. In many popular applications, such as Google’s knowledge graph and
Facebook’s graph search, graphs are used to meet query needs, so graph data
management has become a research topic of great concern. This paper focuses
on subgraph matching queries [12,18,39], which is a key component and a fun-
damental query in many applications.

At the same time, more and more enterprises are choosing to migrate their
IT infrastructure to cloud platforms. Some graph database systems (such as
TuGraph [8] and Neo4j [1]) also provide cloud-based software as a service (SaaS),
allowing users to upload graph data to the cloud platform and obtain cloud
computing services by outsourcing graph data. This kind of outsourcing service
is suitable for subgraph query services. However, this also brings up an important
issue, namely the risk of privacy leakage, because SPs are not always trustworthy.

One of the significant privacy leakage problems is the “identity leakage”
[13,20], where an adversary can locate the target entity t in a social network
graph G with a high probability. This is caused by structural attacks such as
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Degree Attack, Sub-graph Attack, 1-Neighbor-Graph Attack, and Hub Finger-
print Attack [10,13,24]. Various privacy-preserving graph publishing techniques
[28,29] have been proposed to address these threats, with the k-automorphism
model being a typical solution that will be discussed in detail later. Another
concern is “content disclosure” [9,10], which compromises sensitive label infor-
mation like a user’s name or salary. To prevent content leakage, three classic
privacy protection techniques have been proposed: k-anonymity, �-diversity, and
t-closeness. These techniques aim to generalize multiple labels into equivalence
classes, hiding the sensitive information of individual labels and only revealing
the generalized label information to attackers.

In order to address the problems of subgraph matching efficient and secure on
the cloud, many researchers have proposed various methods. This survey focuses
on privacy-preserving subgraph matching in cloud, aiming to minimize the com-
putational overhead of subgraph matching both on the cloud and the client side,
while ensuring the confidentiality of users’ sensitive information. In this paper,
we present the development trajectory and important techniques in the field,
discussing the key challenges and advancements in privacy-preserving subgraph
matching. By exploring the evolving landscape of privacy-preserving techniques
in the context of cloud-based graph processing, this survey provides valuable
insights into state-of-the-art solutions. To summarize, our main contributions
are as follows:

1. This paper comprehensively summarizes the research progress of privacy-
preserving subgraph matching in cloud, including the development status,
key issues, and technical progress, and provides readers with a comprehensive
overview.

2. This paper focuses on the key technologies and frameworks of privacy-
preserving subgraph matching in cloud, such as GPG algorithm, star decom-
position algorithm, and provides valuable insights and possible future direc-
tions.

The rest of this paper is organized as follows. Section 2 presents the background
and problem statement. Section 3 overviews privacy-preserving graph publish-
ing and anonymization technologies. Section 4 provides an overview of various
frameworks for graph outsourcing and subgraph matching. Section 5 concludes
this paper.

2 Background and Problem Statement

2.1 Graph Query

A graph is denoted as G = (V (G), E(G), L), where V (G) is a set of vertices;
E(G) is a set of undirected edges; L is a set of vertex labels. This graph modeling
has only one label per vertex, but this model is not suitable for linking complex
graph data, such as social networks. The following is the definition of attributed
graph modeling:
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Definition 1. Attributed Graph [16]. An attributed graph is defined as G =
(V (G), E(G), T, Γ, L), T is a set of vertex types, where each vertex has and only
has one vertex type; Γ is a set of vertex attributes.

Compared with ordinary graphs, attributed graphs have multiple vertex types,
and each type has one or more attribute values. The vertex type, vertex
attributes, and vertex labels of vertex v are denoted as T (v), Γ (v), L(v), respec-
tively.

Definition 2. Subgraph Matching [16]. Given a graph G = V (G), E(G), T, Γ, L
and a query graph Q = V (Q), E(Q), T, Γ, L, Q is subgraph isomorphic to G, if
and only if there exists at least one injective function g : V (Q) → V (G)such that

i) ∀qi ∈ V (Q), g (qi) ∈ V (G) ⇒ L (qi) ⊆ L (g (qi)); and
ii) ∀qi, qj ∈ V (Q), edge qiqj ∈ E(Q) ⇒ edge g (qi) g (qj) ∈ E(G).

Note that the definition of subgraph matching here is for a data graph, and
changing it to a database (many graphs) is also universally established. The set
of subgraph matches of Q on G is denoted as R(Q,G). Table 1 lists the symbols
that will be used later.

Table 1. Notations [16]

G The original data graph

Gk The data graph after k-automorphism algorithm
Go The outsourced data graph
Q The original query graph
Qo The outsourced query graph
R(Q,G) The set of subgraph matches of Q on G

2.2 Problem Statement

In the system model, the data owner (DO) outsources the encrypted data graph
to the cloud server (provided by the service provider (SP)), the user (client)
submits a query request (encrypted query) to the SP, and the SP returns the
final matching result. We assume that the server is “semi-honest”, which is widely
used in many papers [32–34]. The server will execute the query honestly but will
try to infer private information about the data graph and the query graph.
However the cloud server cannot learn any label and edge structure information
about the data graph and query graph, and the user does not know the relevant
information about the data graph. Our problem can now be formalized as follows:

Problem 1. Our problem is finding all subgraph matches of a query graph Q on
graph G in cloud, denoted as R(Q,G), while preserving the privacy of both the
data graph G and the query graph Q.
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2.3 Secure Multi-party Computation

Secure Multi-party Computation (MPC) [36] is a calculation between multiple
participants to ensure that the input data of each participant remains private,
and the calculation results can be obtained correctly without revealing any pri-
vate information. Under the system architecture of this technology, the power
of the cloud server is divided into multiple parties, such as three parties, which
called CS1, CS2, and CS3 respectively. The following two definitions were pro-
posed by [19].

Replicated Secret Sharing. Given a secret bit x ∈ Z2, replicated secret
sharing (RSS) [37] splits it into three shares 〈x〉1, 〈x〉2 and 〈x〉3 ∈ [Z]2, where x =
〈x〉1 ⊕〈x〉2 ⊕〈x〉3. Three pairs of shares (〈x〉1, 〈x〉2) , (〈x〉2, 〈x〉3) and (〈x〉3, 〈x〉1)
are held respectively by three parties P1, P2 and P3, where Pi holds the i-th pair.
With this, we use (〈x〉i, 〈x〉i+1) to represent the shares held by Pi(i ∈ {1, 2, 3})
and denote such a sharing of x as �x�.

Function Secret Sharing. Function Secret Sharing (FSS) [38] allows partition-
ing of a private function f into compact function keys. These keys are designed
in such a way that each individual key does not disclose any private information
about the original function f . Each key can be evaluated at a given point x, pro-
ducing an output. By combining the evaluation results of these function keys,
the original function f(x) can be computed without revealing sensitive details
of f .

3 Privacy-Preserving Graph Publishing

Many previous works focus on privacy-preserving graph publishing [2,28,29,45],
these works focus on protecting graph privacy from structural attacks, but
assume that the attacker only launches one form of structural attack. Actu-
ally, the attacker has strong background knowledge to launch multiple types of
structural attacks to identify targets. We mainly introduce the k-automorphism
method proposed by zou [2], which claims to be able to resist all structural
attacks. When considering the protection of label information, we mainly intro-
duce generalization techniques.

3.1 K-Automorphism

k-automorphism [2] is a privacy-preserving model that claims to defend all exist-
ing structural attacks, including degree attack, 1 neighbor-graph attack, sub-
graph attack, and hub-fingerprint attack [10,13,24]. It is a method proposed
based on the symmetry of the graph. The basic idea is as follows: given a graph
G, by introducing noise edges, transform G into a k-automorphic graph Gk (Def-
inition 3), where each vertex has at least k - 1 symmetric vertices identical to
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it. This means that there is no structural difference between v and the other k -
1 symmetric vertices, so the probability of an attacker identifying v is no more
than 1

k . Note that this approach assumes that the graph is unlabeled. Figure 1
shows an example of the algorithm in [2].

Fig. 1. An example of the k-automorphism algorithm [16]

Definition 3. K-Automorphic Graph [2]. A k-automorphic graph Gk is defined
as Gk =

(
V (Gk), E(Gk)

)
, where V

(
Gk

)
can be divided into k blocks and each

block has
⌈ |V (Gk)|

k

⌉
vertices. Any vertex v has k - 1 symmetric vertices v

′
in the

other k - 1 blocks.

The k-automorphic graph is generated by the k-automorphic function defined
as follows. These two definitions were proposed by [16].

Definition 4. K-Automorphic Function [2]. Given a vertex v in a k-automor-
phic graph Gk, v and its corresponding k - 1 symmetric vertices form an align-
ment vertex instance (AVI).

All aligned vertex instances make up the aligned vertex table (AVT). Each
row of the AVT table is an AVI, expressed as a circular linked list. For each vertex
v in an AVI, we can define k-automorphic functions Fi(i = 0, . . . , k − 1) in Gk

based on the AVI, Fig. 2 shows the AVT and automorphic function corresponding
to Fig. 1(a) in the algorithm.

Combining the above-mentioned content, converting an original graph G into
a k-automorphic graph mainly consists of three steps: graph partitioning, graph
alignment, and edge - copy [21]. First, we adopt the METIS algorithm [31] to
divide the vertices in G into k blocks. Second, in the process of graph alignment,
the vertices with the highest degrees in each block are selected and aligned.
Subsequently, the remaining vertices within the same block are aligned with
vertices from other blocks, following a breadth - first search (BFS) traversal
order. The result is an alignment vertex table (AVT). Third and finally, based
on AVT, symmetry edges are inserted in other (k - 1) blocks for each edge in
one block. Crossing edges between two blocks are also copied accordingly.
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Fig. 2. AVT and automorphic functions [16]

3.2 Generalization

As we mentioned in the k-automorphism model, the assumption of k-
automorphism is a graph without labels, but most graphs in real life contain
vertex labels, such as a social network, each vertex contains personal information,
so the protection of label information is also essential. In order to protect label
information from leakage, k-anonymity [3], �-diversity [4], and t-closeness [5] has
been proposed. Generalization is the combination of multiple values into a single
value (also known as an equivalence class) and is a popular label anonymization
technique. Specifically, each vertex label in the graph is represented by a com-
mon set of labels. The output of the label generalization algorithm is a label
correspondence table (LCT) that maps this correspondence.

k-anonymity is a privacy protection technique that ensures each equivalence
class contains a minimum of k records. This requirement guarantees that each
record within the class is indistinguishable from at least k - 1 other records,
thereby reducing the risk of re-identification. � -diversity, on the other hand,
focuses on the distribution of a sensitive attribute within each equivalence
class. It requires that each class exhibits at least � “well-represented” values
of the sensitive attribute. This criterion enhances privacy by preventing the
over-generalization of sensitive information and providing a more diverse rep-
resentation within each class. Lastly, t-closeness addresses the distribution of
labels within equivalence classes. It ensures that the label distribution in each
class is no more than a predefined distance, t, away from the distribution in the
entire set of labels. This approach aims to maintain a balanced representation of
labels, reducing the risk of statistical inference attacks and preserving privacy.

References [6,16,21] adopt the concepts of k-anonymity, �-diversity, and t-
closeness respectively, to enhance privacy preservation in their respective studies.
The Fig. 3 below is an example:

4 Privacy-Preserving Subgraph Matching

In this section, we introduce several representative privacy-preserving subgraph
matching frameworks, which use different techniques to balance accuracy and
efficiency. We introduce [11] first because he first posed the problem we needed
to solve and established a strict set of privacy requirements to keep data safe.
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Fig. 3. Label Correspondence Table [21]

4.1 Privacy-Preserving Graph Query in Cloud

In [11], the authors define and solve the problem of privacy-preserving query
over encrypted graph-structured data in cloud computing (PPGQ) for the first
time. To minimize the number of subgraph isomorphic queries, the principle of
“filter-validation” is employed to efficiently prune negative data graphs prior to
validation. It is important to note that the framework proposed in this paper
primarily focuses on the query process using indexes outsourced to cloud servers,
rather than addressing the encryption, outsourcing, or access of the data itself.
The framework of PPGQ is shown in Fig. 4.

Fig. 4. Encrypted Cloud Data Graph Query Architecture [11]

The main idea is as follows: First, we build a feature-based index to provide
feature-related information for each encrypted data graph. Next, select Efficient
Inner Product as the pruning tool to perform the filtering process. Both the data
graph and the query graph are described as binary vectors, each bit of the former
indicates whether the corresponding feature is a subgraph isomorphic to the data
graph, and each bit of the latter indicates whether the corresponding feature is
included in the query graph. The inner product of query vector and data vector
can accurately measure the number of query features contained in the data and
is used to filter negative graphs that do not contain query graphs. To preserve
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privacy, a secure inner product calculation method is proposed, which is adapted
from the k-nearest neighbor (KNN) technique [15].

The data owner converts his own data graph into a searchable index accord-
ing to the BuildIndex(G,K) algorithm, and the query algorithm runs on the
cloud server as part of the cloud service storage service. The data user runs the
trapdoor generation algorithm TDGen(Q,K) according to various search control
mechanisms. The cloud finally according to the Query algorithm Query(TQ, I)
return all candidate hypergraphs.

This paper defines for the first time the problem query over encrypted graph-
structured cloud data [11]. It provides a new direction for future research, but it
does not involve the encryption, outsourcing, and access technology of the graph
itself, and the data graph is a small graph, which may not be suitable for large
and complex graphs in practical applications.

4.2 Structural Protection Scheme Based on Cyclic Group

In [7], a method was proposed to protect the edge structure subgraph isomor-
phism (SPsubIso). This method aims to safeguard the adjacency matrix of both
the query graph and the data graph, as well as ensure the privacy of the query
process against violations by SP. The approach, based on Ullmann’s algorithm,
converts the subgraph isomorphism problem into a series of matrix operations
denoted as TsubIso. TsubIso consists of three parts:

1. TEnum enumerates all Mi;
2. TMatch verifies the validity of Mi through addition and multiplication

between adjacency matrices MQ and MG;
3. TRefine reduces the search space of Mi, where SIQ (SIG) is the set of h−hop

information for each vertex of Q (SIG) represented by the bit vector.

Then, based on TsubIso, an edge structure protected subIso (SPsubIso) is pro-
posed:

1. First, the paper proposes a CGBE key encryption scheme (cyclic group based
encryption scheme) to encrypt the adjacency matrices MQ and MG.

2. SPMatch, performs addition and multiplication under CGBE to check the
validity of each mapping Mi with negligible false positives.

3. SPEnum, which optimizes mapping enumerations Mi by introducing a pro-
tocol involving client participation that filters useless enumerations for SP s.

4. SPRefine, which exploits the privacy inner product of static indexes for opti-
mizations that reduce the number of possible mappings.

The disadvantage of the structure-preserving subgraph matching scheme pro-
posed in this paper is that this algorithm is only suitable for small graphs because
Ullmann’s algorithm itself has high time complexity when dealing with large-
scale graphs. In this case, the time complexity of the algorithm is exponential,
so it may not be suitable for the isomorphism judgment of large and complex
graphs in practical applications. In addition, the algorithm needs to maintain
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the state of the node mapping, so it requires a large storage overhead. In terms
of security, although the scheme protects the edge structure of the data graph
and the query graph, the node labels are still not protected.

4.3 Outsourced Subgraph Matching Based on Star Decomposition

In [16], the author first proposed a simple solution to this problem. First, we
use label generalization on the original data graph G to obtain a graph G

′
,

whose vertices hide the vertex labels through the label group, and then use the
k-automorphism algorithm [2], to obtain the k-automorphic graph Gk and the
corresponding vertex symmetry table, and then directly upload Gk to the cloud.
Given a query graph Q, each vertex label is represented by the corresponding
label group to anonymize Q, and the anonymized graph is denoted as Qo and
submitted to the cloud. The cloud server answers the subgraph query Qo through
the k-automorphic graph Gk. Obviously, R(Q,G) ⊆ R(Qo, Gk). We introduce
more edges and vertices in G to form Gk, and Gk and Qo use the same LCT to
anonymize labels. The formal definition is as follows [16]:

Theorem 1. For data graph G and query graph Q, R(Q,G) ⊆ R(Qo, Gk).

Finally, the server sends R(Qo, Gk) to the client, and the client filters out false
positives in R(Qo, Gk) according to G, and obtains R(Q,G).

This simple approach is limited by the following [16]: First, we need to upload
the k-automorphic graph Gk to the cloud. Due to the addition of edges and ver-
tices, the size of Gk will be significantly larger than G, which will bring commu-
nication overhead and higher storage costs. Secondly, it is worth noting that a
larger Gk inherently results in a larger search space for subgraph matching. This
expanded search space leads to higher query costs, particularly as the value of k
increases. Finally, the query graph only generalizes the labels without protecting
the edge structure, which will leak the structural information of the graph.

Based on this, the author proposes the following optimization method: The
graph Gk uploaded to the cloud is a k-automorphic graph containing k blocks.
Only one block of Gk and k-automorphic functions Fi need to be uploaded to
the cloud and the cloud can be reconstructed according to Go and functions Fi.
This is also the motivation for defining the outsourced graph Go.

Definition 5. Outsourced Graph [16]. For a graph G(V (G), E(G), T, Γ, L) and
its k-automorphic graph Gk(V (Gk), E(Gk), T, Γ, L), an outsourced graph of G is
defined as Go (V (Go), E(Go), T, Γ, L), where

1. V (Go) is formed by taking the union of the vertices in the first block of
Gk, denoted as V (B1), along with their one-hop neighbors in Gk denoted
as V (N1); and

2. E(Go) consists of a subset of undirected edges from E(Gk) that connect ver-
tices within V (B1) as well as vertices between V (B1) and V (N1).

According to definition 5, we can get utsourced graph Go from Gk and upload
it to the cloud. Go contains the vertices in the first block of Gk (the vertices of
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the first column of AVT) and their 1-hop neighbors and corresponding edges in
Gk. Notably, Go is much smaller than Gk.

Using the label generalization algorithm on Gk to get the outsourced graph
Go, this paper uses a cost model to find a good generalization strategy. Then,
subgraph matching is performed on the outsourced graph Go. Since there is only
a concise graph Go on the cloud, a special star-based matching algorithm is
proposed. In the cloud, the algorithm is divided into the following three steps
[21]:

step1 Query decomposition. The cloud first decomposes query Q into a set of
star shapes {Si}. Each star shape consists of a root vertex along with its
adjacent edges and neighboring vertices.

step2 Star matching. The cloud then retrieves matchings for each decomposed
star {Si} from the succinct graph Go, denoted as R(Si, G

o). Leveraging
the symmetry of Gk, the cloud futher obtains the matchings for Si in Gk,
denoted as R(Si, G

k).
step3 Result join. The cloud starts with a R(Si, G

k) and iteratively performs
a natural join operation with R(Sj , G

k) for all j 
= i until all relevant
stars are joined. This process continues until the final results, denoted as
R(Qo, Gk), are obtained, representing the matchings for Qo over Gk.

Finally, on the client side, the algorithm uses the original graph G and the query
graph Q to filter false positives in R(Qo, Gk) and get the final subgraph matching
R(Q,G).

The framework proposed in this paper is mainly for privacy-preserving
matching on large graphs in the cloud. These designs significantly reduce the
size of the graph uploaded to the cloud. The disadvantage is that the edge struc-
ture of the query graph is not preserved, and since treat data owners and users
as one in the setting, there may be limitations in practicality. Second, star-based
subgraph matching is also inefficient because [21] (1): it cannot narrow down the
search scope of the query to local regions in the graph due to query decomposi-
tion, and (2) natural joins are computationally expensive.

4.4 Partial Graph-Based Outsourced Subgraph Matching

In [21], consistent with most papers [16], the k-automorphism algorithm is used
to protect the edge structure, and the generalization method is used to protect
the label information of the vertices. The author proposes the (k, t)-privacy of
the outsourced graph and claims that this is the strictest generalization-based
privacy model for graph structure and label generalization. Additionally, the
author proposes a t-closeness label generalization algorithm TOGGLE to opti-
mize the cost of subgraph matching. Furthermore, the author also proposes a
partial graph-based subgraph processing algorithm PGP , which does not require
query decomposition and utilizes the symmetry of the outsourcing graph to limit
the search scope to a local area. It should be noted that this paper regards the
data owner and the data queryer (user) as one party, both as clients. The work-
flow of the whole process is shown in Fig. 5.
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Fig. 5. Workflow of subgraph matching on outsourced graph [21]

To solve the problem that the time complexity of generalization in [16] is
exponentially related to the number of labels, this paper proposes the TOGGLE
algorithm (T-closeness-Optimized Graph Generalization on Label Extension),
which aims to summarize labels into groups to minimize the search space. Search
space refers to the total number of vertices to explore the query.

Considering that the TOGGLE algorithm wants to minimize the search
space, the author expresses TOGGLE as a combinatorial optimization prob-
lem with constraints and then reduces the optimization problem to a General
Set Partition Problem (GSPP ) [14]. Because the asymptotic size of GSPP is
still an exponent of n, finding the optimal partition is only applicable for small
n. Next, the authors propose Algorithm 2 [21], a sub-optimal solution with the-
oretical guarantees.

Although there has been a lot of research on subgraph matching algorithms
[17,19,22,23], only the star-base algorithm proposed by [16] works on outsourced
succinct graphs. However, the star decomposition algorithm needs to decompose
the original query into multiple subqueries, and the efficiency is low. This paper
proposes a partial-graph-based subgraph processing algorithm PGP that does
not require query decomposition.

The authors of this paper propose a graph label generalization algorithm and
an efficient subgraph matching algorithm in the cloud with t-closeness and k-
automorphism privacy. However, there are also the following limitations: 1. The
data owner and the data user are regarded as one in the setting. Although this is
simple, it has relatively large limitations in actual application. 2. Although the
privacy protection method of the data graph has been optimized, the structure
of the query graph has not been protected yet. 3. Mainly work on most of the
small graphs, and the actual efficiency on large graphs may be relatively low.

4.5 Oblivious Attributed Subgraph Matching as a Cloud Service

With the continuous development of technology, there have been many works
using cryptography and multi-party secure computing technology to realize
privacy-preserving subgraph queries. The model architecture is the same as the
previous type, except that there are multiple servers on the cloud server side
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(these servers can be hosted by different cloud providers). In recent years, these
multi-server models have grown in popularity in academia and industry to build
practical security systems [21,25–27,40].

OblivGM [19] is a system that outsources the oblivious attribute subgraph
matching service to the cloud and protects the confidentiality of data content
related to attribute graphs and queries. In addition, safe and rich matching
functions are supported, where subgraph queries can contain equality predicates
and/or range predicates. OblivGM is built with attribute graph modeling and
advanced lightweight cryptography such as replicated secret sharing (RSS) [37],
functional secret sharing (RSS) [38], and secure shuffling. Figure 6 shows the
system architecture of OblivGM.

Fig. 6. OblivGM’s system architecture [19]

OblivGM has the following four stages: 1. graph and subgraph query mod-
eling, properly modeling the attribute graph and subgraph query to facilitate
subsequent oblivious subgraph matching services, 2. attributed graph encryp-
tion, fully encrypt the attributed graph, and then send the generated ciphertext
to the cloud server, 3. Secure query token generation, SF parses each subgraph
query and generates a corresponding secure query token, which is then sent to
the cloud server, and 4. Security attribute subgraph matching. The cloud server
retrieves an encrypted subgraph isomorphic to the query from the encrypted
attribute graph.

Security analysis: In the semi-honest and non-colluding adversary model,
OblivGM guarantees that the cloud server will not learn 1) the attribute value
and degree of each vertex in the attribute graph, and the connection between
these vertices, 2) The subgraph matches the target attribute value associated
with each vertex in the query, 3) Search access patterns [43].

This paper implements OblivGM, a new system that outsources oblivious
subgraph matching services to the cloud with stronger security and richer fea-
tures than existing techniques. Although OblivGM supports privacy-preserving
subgraph matching processing on a large graph, it does not preserve the structure
of the query graph.
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4.6 Privacy-Preserving Localized Graph Pattern Query Processing

In [9], subgraph homomorphic query and strong simulation query are imple-
mented, because the performance of subgraph homomorphic query is similar to
subgraph homomorphic query. The output of the LGPQ (Localized Graph Pat-
tern Query) algorithm is: the ball defined by the center (node) and the radius
(path length) is used as the basic unit of the query result. Among them, the
center node of the ball is the node of the same label value in G mapped to the
node in Q, and the radius of the ball is equal to the diameter of Q.

The framework Prilo proposed in this paper to provide private query LGPQ
services consists of three steps:

step1 Candidate enumeration: Candidate Enumeration Algorithm (hom) finally
returns R1 that contains a matrix CMM or an empty set. If it is an empty
set, it means that the ball is a false ball. Among them, if the u-node label
of Q is equal to the v-node label of G, then C[u][v] = 1, otherwise C[u][v]
= 0. Balls can be calculated in advance, encrypted, and stored on the
server. Algorithm 1 [9] is also “query-oblivious” because it only relies on
the node label set of the query graph, independent of the edge information
of the query graph.

step2 Query verification: Sphere semantic violations are detected in a “query-
oblivious” way using CGBE, which encrypts sphere data and detects using
known LGPQ semantic constraints. Only after the ball data has passed
this step of detection and is decrypted, will the next step of plaintext
query matching be performed.

step3 Query matching: The final verified ball will be returned to the client in
ciphertext, and the user will perform a query on the plaintext after decryp-
tion.

The advantage of this paper is that it effectively protects the privacy of user
queries by encrypting queries, using Trusted Execution Environment (TEE)
[41,44] for pruning, and using secure retrieval schemes. The disadvantage is that
the framework may involve complex operations such as encryption, pruning,
and secure retrieval. These operations may introduce significant computing and
storage overhead when processing large-scale query graphs. This can result in
performance degradation of the framework and may necessitate additional com-
puting resources and storage space.

5 Conclusion

This paper surveys research on privacy-preserving subgraph matching in cloud.
The results show that privacy-preserving subgraph matching becomes increas-
ingly important when facing the challenges of large-scale graph data and cloud
storage. In order to protect the sensitive information of users, researchers
have proposed various privacy protection technologies, including anonymization,
encryption algorithms, and secure multi-party computation. The application of
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these technologies makes it possible to perform graph query processing in the
cloud.

Existing works cannot simultaneously protect the edge structure and label
information privacy of data graphs and query graphs, and only protect some
sensitive information. Therefore, how to efficiently protect the privacy informa-
tion of the data graph and query graph at the same time in future work is a
research direction and a challenge.
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Abstract. Artificial intelligence (AI) is having a profound impact on
our daily lives. We suggest using digital signatures to protect the user’s
identity and achieve data accountability. To address high-risk applica-
tions, multi-signatures are expected to play an important role in AI.
MuSig2 by Nick et al. is an efficient and secure Schnorr multi-signature
scheme. MuSig2 implements signature aggregation and key aggregation,
and MuSig2 is reduced to the One-More Discrete Logarithms (OMDL)
problem in the random oracle model. This comes at the cost that the
signer needs four nonces instead of one nonce for each signature. How-
ever, MuSig2 ignores the change of nonces in the forking lemma, which
leads to the signer signature requiring too many nonces, and makes the
proof of the scheme complicated. In this paper, we reduce the number of
nonces from 4 to 2 and simplify the security proof of the MuSig2 scheme
in the random oracle model. Then by reducing the security requirement
slightly, we achieve the MuSig2 scheme’s security when the nonces are
reused. Finally, we utilize the proof technology of MuSig2 to reduce the
MSDL (Discrete-Logarithm based Multi-Signature) scheme by Boneh et
al. to the OMDL assumption.

Keywords: Artificial intelligence · Schnorr multi-signature scheme ·
One-more discrete logarithm · Random oracle model

1 Introduction

1.1 AI and Multi-Signatures

AI is a field that deals with making machines think. Legg and Hutter [10] define
AI as a process of imitating human behavior and decision-making capabilities.
So, AI is a way to train machines to perform tasks that require intelligence. With
the increase in the use of artificial intelligence, it becomes essential to make them
reliable and trustworthy. Several requirements, such as fairness, explainability,
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accountability, privacy, reliability, and acceptance, have been proposed in AI to
make these systems trustworthy. A multi-signature scheme [7] is a protocol that
enables the n signers to jointly generate a short signature σ on m so that σ
convinces a verifier that all n signers signed m. This paper proposes using mult-
signatures to ensure accountability, integrity and authenticity of high-value data
in AI.

The use of multi-signatures can directly enhance the security of artificial
intelligence systems. AI and algorithmic decision-making significantly influence
various aspects of our lives, including healthcare, business, government, edu-
cation, and justice [8]. These applications heavily depend on data for making
informed decisions. By utilizing digital signatures, the integrity and authentic-
ity of data can be ensured. The implementation of multi-signatures can further
protect high-value data. Moreover, one of the difficulties with AI is to identify
who is responsible for the AI, the designer, the user, or the supervisor. Digital
signature is to ensure that no good person can be wronged (traceability), nor
will any adversaries get into the gap (unforgerability).

Multi-signatures can also indirectly improve the security of AI. Blockchain is
being integrated with AI technology, such as through electronic contract multi-
documentation and full evidence chain traceability, to protect customer data
security and privacy, and make contracts more secure and credible. Digital sig-
natures play a crucial role in transactions on blockchain platforms, particularly in
enterprise platforms where multi-signatures are required from a group of peers to
endorse a transaction. However, this process is complex and time-consuming. The
use of multi-signatures, which allows a group of signers to collaborate and pro-
duce a joint signature, has gained significant attention for its ability to improve
transaction efficiency [22]. Additionally, The use of multi-signatures can enhance
the security of certificate authorities which plays an important role in digital sig-
natures.

1.2 Related Work

MULTI-SIGNATURE BASED ON SCHNORR SIGNATURE. Multi-signature
schemes based on Schnorr signatures [2,4,6,11–15,18,20] are becoming increas-
ingly popular and practical. Following is a naive way to design a multi-signature
scheme that is fully compatible with Schnorr signatures [17]. Say a group of n
signers want to sign a message m, and let L = {X1 = gx1 , . . . , Xn = gxn} be
the multiset of all their public keys. The adversary can choose corrupted public
keys arbitrarily and duplicate public keys can appear in L. Each signer generates
and communicates at random to others a nonce Ri = gri . Each of them then
computes R =

∏n
i=1 Ri, c = H(X̃, R,m) where X̃ =

∏n
i=1 Xi is the product of

individual public keys, and a partial signature si = ri + cxi. Partial signatures
are then combined into a single signature (R, s) where s =

∏n
i=1 si. The validity

of a signature (R, s) on message m for public keys X1, . . . , Xn is equivalent to
gs = RX̃c where X̃ =

∏n
i=1 Xi and c = H(X̃, R,m). Note that this is exactly

the verification equation for an ordinary key-prefixed Schnorr signature with
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respect to the aggregate public key X̃. However this simplistic protocol is vul-
nerable to a rogue-key attack. A corrupted signer is able to set its public key to
X1 = gx1(

∏n
i=2 Xi)−1, which allows him to produce signatures for public keys

X1, . . . , Xn by himself.
THE MUSIG SCHEME. An efficient direct defense against rogue-key attacks

proposed by Bellare and Neven [4] is to work in the plain public-key model.
Public keys can be aggregated without the need to check their validity in this
model. The canonical multi-signature scheme provably secure in this model and
fully compatible with Schnorr signatures is MuSig (and the variant MuSig-DN
[14]) by Maxwell et al. [6], independently proven secure by Boneh, Drijvers, and
Neven [5].

To overcome rogue-key attacks in the plain public-key model, we let X̃ is
the aggregate public key corresponding to the multiset of public keys L =
{X1, . . . , Xn}. It is defined as X̃ =

∏n
i=1 Xai

i where ai = Hagg(L,Xi) (note
that the ai’s only depend on the public keys of the signers). To sign some
message m, MuSig computes partial signatures si = ri + cixi with respect
to “signer-dependent” challenges ci = Hagg(L,Xi) · Hsig(X̃, R,m). As a result,
the verification equation of a signature (R, s) on message m for public keys
L = {X1, . . . , Xn} becomes gs = RX̃ = R

∏n
i=1 Xaic

i = RX̃c, where c =
Hsig(X̃, R,m). This recovers the key aggregation property enjoyed by the naive
scheme, albeit with respect to a more complex aggregate key X̃ =

∏n
i=1 Xai

i .
However the above scheme is still not secure. The problem can date to the

Bellare and Neven’s scheme [4]. When we design provably secure Schnorr-based
multi-signature schemes one of the main problems exists in the simulation of the
honest signer. To simulate the honest signer, the reduction cannot simply use
the zero-knowledge property and program the random oracle. The reason is that
the random oracle entry that must be programmed depends on the output of the
adversarial signers. Bellare and Neven [4] got around this issue by introducing a
preliminary round in the signing protocol where signers exchange commitments
in their first rounds.

TWO-ROUND SCHEMES. Following the scheme by Bellare and Neven [4],
in which signing requires three rounds of interaction, multiple attempts to reduce
this number to two rounds [2,4,12,18] were foiled by Drijvers et al. [6]. More
precisely, they prove that if OMDL is hard, then there cannot exist an alge-
braic black-box reduction that proves the CoSi, MuSig, BCJ, or MWLD schemes
secure under the discrete logarithm DL or OMDL assumption. They provide
attacks that apply to all schemes based on Wagner’s algorithm for the gener-
alized birthday problem [21]. Note that the adversary is allowed to engage in
an arbitrary number of concurrent sessions (concurrent security), as required by
the standard definition of unforgeability.

MSDL with public-key aggregation has an initial commitment round (like
the scheme by Bellare and Neven [4]) to simulate an honest signer in a run of
the signing protocol via the standard way of programming the random oracle
Hsig. In this commitment, each signer commits to its share Ri before receiving
the shares of other signers. Altogether, the signing protocol of MSDL requires
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three communication rounds and only the initial commitment round can be
preprocessed without knowing the message to be signed.

It is important that each signer must ensure that their secret nonce ri changes
unpredictably whenever c = Hsig(X̃, R,m) changes. DWMS [1] and MuSig2
[13] use the idea of a linear combination of multiple nonces to obtain a two-
round multi-signature scheme. In terms of provable security, DWMS provides
a proof only in the combination of ROM+AGM, whereas MuSig2 additionally
provides a proof that only rely on the ROM. MuSig2 is the first multi-signature
scheme that simultaneously i) is secure under concurrent signing sessions, ii)
supports key aggregation, iii) outputs ordinary Schnorr signatures, iv) needs
only two communication rounds, and v) has similar signer complexity as ordinary
Schnorr signatures. Furthermore, it is the first scheme in the pure DL setting that
supports preprocessing of all but one rounds, effectively enabling non-interactive
signing without forgoing security under concurrent sessions. In order to further
improve the security of multi-signature, many schemes have been proposed [8,
11,16,17,19,20] (Table 1).

Table 1. Comparison of multi-signature schemes. We call that signing protocol sup-
ports preprocessing, i.e., the first round of the signing protocol is independent of the
message being signed. The first two columns show the total number of communication
rounds (“tot.”) in the signing algorithm and the number of communication rounds that
are preprocessed (“pp.”). G is the prime p order group that the schemes work. kexp
shows k-exponentiation in G. NIZK is non-interactive zero knowledge and NIZK proof
corresponds to the number of exp in order to execute the proof and verify algorithm.
PK is the aggregated public key. 2-ES is 2-entwined sum.

Scheme tot. pp. Sign Verify Sign size PK size Security (ROM, . . . )

mBCJ [2] 2 0 5exp 6exp |G| + 2|Zp| 2|G| + 3|Zp| DL
MSDL [5] 3 1 1exp 1exp |G| |G| + |Zp| co-CDH
MuSig-DN [14] 2 0 NIZK-proof 2exp |G| |G| + |Zp| DL, DDH
MuSig2(v=4) [13] 2 1 7exp 2exp |G| |G| + |Zp| 4qs-OMDL
MuSig2(v=2) [13] 2 1 3exp 2exp |G| |G| + |Zp| 2qs-OMDL, AGM
DWMS [1] 2 1 (2n+2)exp 2exp |G| |G| + |Zp| qs-OMDL, 2ES, AGM
HBMS [3] 2 0 2exp 3exp |G| |G| + 2|Zp| XIDL or DL, AGM
MS(Okamoto) [9] 2 1 4exp 6xp 2|G| 3|Zp| DL, AGM, NPROM
MuSig2-H [20] 2 1 3exp 2exp |G| |G| + |Zp| DL, RSA, AOMPR
MuSig2(v=2, ours) 2 1 3exp 2exp |G| |G| + |Zp| 2qs-OMDL

1.3 Our Contribution

To protect the application of AI in high-risk scenarios, this paper suggests using
multi-signature in AI. The contributions are summarized as follows:

1. We simplify the proof of the MuSig2 scheme in the ROM model and reduce
the nonces from 4 to 2. In this proof, we are keenly aware of the fact that the
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calculation of the aggregate private key does not increase the number of DL
oracles in the security proof.

2. We affirm that there is a potential attack that can compromise the security of
the MuSig2 scheme under the OMDL assumption if the nonce is repeatedly
used. To repeatedly use nonces, we require that it is feasible to forge multi-
signatures involving more than one honest signer.

3. We observe that the proof of the MSDL scheme is invalid. More specifically,
the commitment used in the scheme cannot guarantee that the adversary’s
nonce is revealed publicly before the simulator. We improve the proof of the
scheme using a method analogous to that of MuSig2.

2 Preliminaries

NOTATION. Let S be a finite set. We let s
$← S denote sampling an element

uniformly at random from S and assigning it to s. If A is a randomized algorithm,
then A(x1, . . . ; ρ) denotes its output on inputs x1, . . . and coins ρ, while y ←
A(x1, . . .) means that we choose ρ uniformly at random and let y := A(x1, . . . ; ρ).
We call the triplet (G, p, g) the group parameters. We let G be a cyclic group of
order p, where p is a k-bit integer, and g be a generator of G. The group G will
be denoted multiplicatively. We adopt the concrete security approach, i.e., we
view (G, p, g) as fixed. If necessary, the bit length k of p can be considered as a
security parameter. The advantage of A in GameA, which is parameterized by
the adversary A, can be defined as AdvGame

A (λ) := Pr[GameA(λ) = true].
Definition 1. Let (G, p, g) be group parameters. Let DLOGg(·) be an oracle
which takes as input an element X ∈ G and returns x ∈ {0, ..., p − 1} such that
gx = X. An algorithm A is considered to (q, t, ε)-solve the OMDL problem w.r.t.
(G, p, g) if on input q + 1 random group elements X1, . . . , Xq+1, it runs in time
at most t, makes at most q queries to DlOGg(·), and returns x1, . . . , xq+1 ∈
{0, . . . , p − 1} such that Xi = gxi for all 1 ≤ i ≤ q + 1 with probability at least
ε, where the probability is taken over the random draw of X1, . . . , Xq+1 and the
random coins of A.

Lemma 1. (A General Forking Lemma). Fix integers q and m. Let A be
a randomized algorithm taking as input a main input inp generated by some
probabilistic algorithm InpGen(), elements h1, . . . , hq from some sampleable set
H, elements v1, ..., vm from some sampleable set V , and random coins from
some sampleable set R, and returning either a distinguished failure symbol ⊥,
or a tuple (i, j, out), where i ∈ {1, . . . , q}, j ∈ {0, . . . , m}, and out is some
side output. The probability of accepting A, represented as acc(A), is defined as
the probability, over inp ← InpGen(), h1, . . . , hq ← H, v1, ..., vm ← V , and the
random coins of A, that A returns a non-⊥ output. Consider algorithm Fork A,
which takes inp and v1, v

′
1, . . . , vm, v′

m ∈ V as input. Let frk be the probability
(over inp ← InpGen(), v1, v

′
1, . . . , vm, v′

m ← V , and the random coins of ForkA)
that ForkA returns a non-⊥ output. Then

frk ≥ acc(A)(
acc(A)

q
− 1

|H| ). (1)
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Algorithm 1: The “forking” algorithm ForkA built from A.
ForkA(inp, v1, v

′
1, . . . , vm, v′

m)
ρ ← R // pick random coins for A
h1, . . . , hq ← H
α := A(inp, (h1, . . . , hq), (v1, . . . , vm); ρ)
if α = ⊥ then return ⊥
(i, j, out) := α
h′
1, . . . , h

′
q ← H

α′ := A(inp, (h1, . . . , hi−1, h
′
i, . . . , h

′
q), (v1, . . . , vj , v

′
j+1, . . . , vm); ρ)

if α′ = ⊥ then return ⊥
(i′, j′, out′) := α′

if i �= i′
∨

hi = h′
i then return ⊥

return (i, out, out′)

3 The Multi-Signature Scheme MuSig2

In this paper, the multi-signature scheme MuSig2 is established under the EU-
CMA model. A formal security model can be found in the [13]. MuSig2 is param-
eterized by a group generation algorithm GrGen and an integer v, which specifies
the number of nonces sent by each signer. The scheme is defined as follows.

Parameters setup (Setup). The system parameter generation algorithm takes
as input a security parameter λ. It runs (G, p, g) ← GrGen(1λ), selects three
hash functions Hagg,Hnon, and Hsig from {0, 1}∗ to Zp, and returns the system
parameters par = ((G, p, g),Hagg,Hnon,Hsig).

Key generation (KeyGen). Each signer generates a random secret key x ← Zp

and returns the corresponding public key X = gx.

Key aggregation (KeyAgg). The key aggregation algorithm takes as input the
system parameters par. Let L = {X1, . . . , Xn} be a multiset of public keys.
The key aggregation coefficient for L = {X1, . . . , Xn} and a public key X ∈ L
is defined as KeyAggCoef(L,X) = Hagg(L,X). Then the aggregate key corre-
sponding to L is X̃ :=

∏n
i=1 Xai

i , where ai := KeyAggCoef(L,Xi).

First signing round (Sign). Each signer can perform the Sign step before the
cosigners and the message to sign have been determined.

Sign: Let n be the number of signers, for each i ∈ {1, . . . , n}, j ∈ {1, . . . , v},
each signer generates random ri,j ← Zp and computes Ri,j = gri,j . It then
returns the v nonces (Ri,1, ..., Ri,v).

The aggregator receives outputs (R1,1, ..., R1,v), . . . , (Rn,1, ..., Rn,v) from all
signers. Then, it aggregates them by computing Rj =

∏n
i=1 Ri,j for each j ∈

{1, . . . , v} and outputting (R1, . . . , Rv).

Second signing round (Sign′). Let X1 and x1 be the public and secret key of
a specific signer. The Sign′ algorithm takes as inputs a message m, the public
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keys of the cosigners X2, . . . , Xn, and the multiset of all public keys involved in
signing L = {X1, . . . , Xn}.

Sign′: The signer uses the key aggregation algorithm to compute X̃ and
stores its own key aggregation coefficient a1 = KeyAggCoef(L,X1). When the
signer recepts the aggregate first-round output (R1, . . . , Rv), it computes b =
Hnon(X̃, (R1, . . . , Rv),m). Then it computes

R :=
v∏

j=1

Rbj−1

j ,

c := Hsig(X̃, R,m),

s1 :=
v∑

j=1

r1,jb
j−1 + ca1x1 mod p.

Upon the aggregator receives outputs (s1, . . . , sn) of all signers, it aggregates
them by outputting the sum s :=

∑n
i=1 si mod p.

Finally the signer receives s and returns the signature σ := (R, s).

Verification (Ver). The verification algorithm takes as input an aggregate pub-
lic key X̃, a message m, and a signature σ = (R, s). It accepts the signature
if

gs = RX̃c. (2)

Correctness is straightforward to verify. Additionaly, the verification is
exactly the same as for ordinary key-prefixed Schnorr signatures with respect
to the aggregate public key X̃.

3.1 Security of MuSig2 in the ROM

In this section, we establish the security of MuSig2 with v = 2 nonces in the
random oracle model. In the MuSig scheme, the adversary could see the different
hash value c∗ and c∗’ in the two excutions forkong lemma. We keenly observe
that this difference makes the R

(k)
2 turn into R

(k)
2 ’ (k is the kth multi-signature)

which results the reduction of the MuSig scheme to the OMDL problem is false.
While we can’t analyze the MuSig2 scheme as above. The reason is that c∗

depend on R
(k)
2j , j = {1, 2}.

The system parameter generation algorithm generates group parameters
(G, p, g) and the key generation algorithm generates a key pair (x∗,X∗) for
the honest signer. The target public key X∗ is given as input to the adver-
sary A. Then, the adversary can engage in protocol executions with the honest
signer. Precisely he provides a message m to sign and a multiset L of public
keys involved in the signing process where X∗ occurs at least once, and simu-
lates all signers except one instance of X∗. We set the random oracle model for
Hagg,Hnon,Hsig : {0, 1}∗ −→ Zp.
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THE DOUBLE-FORKING TECHNIQUE. We fork the execution of the adver-
sary twice. First, we retrieve the discrete logarithm of the aggregate public key
X̃ with respect to which the adversary returns a forgery by forking the answer
to the query Hsig(X̃, R,m). Second, we retrieve the discrete logarithm of X∗ by
forking the answer to Hagg(L,X∗).

Theorem 1. Let GrGen be a group generation algorithm. If the OMDL problem
is hard, the multi-signature scheme MuSig2 [GrGen, v = 2] is EUF-CMA in the
random oracle model for Hagg,Hnon,Hsig : {0, 1} → Zp. Precisely, for any
adversary A against MuSig2[GrGen, v = 2] running in time at most t, making
at most qs Sign queries and at most qh queries to each random oracle, and such
that the size of L in any signing session and in the forgery is at most N , there
exists an algorithm D taking as input group parameters (G, p, g) ← GrGen(1λ),
running in time at most

t′ = 2(t + Nq + 2q)texp + O(qN), (3)

where q = 2qh + qs + 1 and texp is the time of an exponentiation in G, making
at most qs DLOGg queries, and solving the OMDL problem with an advantage

AdvOMDL
D,GrGen ≥ (

AdvEU−CMA
A,MuSig2[GrGen,v=2](λ)

)4
/q3 − 22/2λ. (4)

PROOF OVERVIEW. To construct a simulated scheme, we construct a “wrap-
ping” algorithm B. It essentially runs the adversary A and returns a forgery
together with some information about the adversary execution, unless some bad
events happen. Algorithm B simulates the random oracles Hagg,Hnon, and Hsig

uniformly at random and the signing oracle by obtaining v DL challenges from
the OMDL challenge oracle for each Sign query and by making a single query
to the DL oracle for each Sign’ query.

Then, we use B to construct an algorithm C. The answer to the query
Hsig(X̃, R,m) allows us to retrieve the discrete logarithm of the aggregate public
key X̃ with respect to which the adversary returns a forgery

Finally, we use C to construct an algorithm D. The answer to Hagg(L,X∗)
allows us to retrieve the discrete logarithm of X∗.

NORMALIZING ASSUMPTION AND CONVENTIONS. Let a (t, qs, qh, N)-
adversary be an adversary running in time at most t, making at most qs Sign
queries, at most qh queries to each random oracle, and such that |L| in any
signing session and in the forgery is at most N .

In all the following, we assume that X∗ ∈ L and X ∈ L for any query
Hagg(L,X). Other queries that are irrelevant can simply be answered uniformly
at random in the simulation. Without loss of generality, we further assume that
the adversary makes exactly qh queries to each random oracle and exactly qs

queries to the Sign oracle, and that the adversary closes every signing session.

Lemma 2. Given some integer v, let A be a (t, qs, qh, N)-adversary in the
random oracle model against the multi-signature scheme MuSig2[GrGen, v],
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and let q = 2qh + qs + 1. Then there exists an algorithm B that
takes as input group parameters (G, p, g) ← GrGen(1λ), uniformly ran-
dom group elements X∗, U1, . . . , U2qs ∈ G, and uniformly random scalars
hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q, hsig,1, . . . , hsig,q ∈ Zp, makes at most qs

queries to a discrete logarithm oracle DLOGg, and with accepting probability

acc(B) ≥ AdvEUF−CMA
A,MuSig2[GrGen,v](λ) − 4q2

2λ
, (5)

outputs a tuple (iagg, jagg, isig, L,R, s,a), where iagg, isig ∈ {1, . . . , q}, jagg ∈
{0, . . . , q}, L = {X1, ...,Xn} is a multiset of public keys such that X∗ ∈ L,a =
(a1, . . . , an) ∈ Z

n
p is a tuple of scalars such that ai = hagg,iagg

for any i such that
Xi = X∗, and

gs = R

n∏

i=1

X
aihsig,isig

i . (6)

Proof. This proof is deferred to the [13] due to the space constaints.

Lemma 3. Given some integer v, let A be a (t, qs, qh, N)-adversary in the ran-
dom oracle model against the multi-signature scheme MuSig2[GrGen, v] and
let q = 2qh + qs + 1. Then there exists an algorithm C that takes as input
group parameters (G, p, g) ← GrGen(1λ), uniformly random group elements
X∗, U1, ..., Uqs ∈ G, and uniformly random scalars hagg,1, . . . , hagg,q, hnon,1, . . . ,
hnon,q ∈ Zp, makes at most qs queries to a discrete logarithm oracle DLOGg,
and with accepting probability

acc(C) ≥
(
AdvEUF−CMA

A,MuSig2[GrGen,v](λ)
)2

q
− 2(4q + 1)

2λ
, (7)

outputs a tuple (iagg, L,a, x̃) where iagg ∈ {1, . . . , q}, L = {X1, . . . , Xn} is a
multiset of public keys such that X∗ ∈ L,a = (a1, . . . , an) ∈ Z

n
p is a tuple of

scalars such that ai = hagg,iagg
for any i such that Xi = X∗, and x̃ is the

discrete logarithm of X̃ =
∏n

i=1 Xai
i in base g.

Proof. Algorithm C runs ForkB with B as defined in Lemma 2 and takes addi-
tional steps as described below. The mapping with notation of Forking Lemma
is as follows:

– (G, p, g),X∗, U1, . . . , Uqs and hagg,1, . . . , hagg,q play the role of inp,
– hsig,1, . . . , hsig,q play the role of h1, . . . , hq,
– isig plays the role of i,
– (iagg, L,R, s,a, x̃) play the role of out.

Concretely, C picks random coins ρB and uniformly random scalars hsig,1, . . . ,
hsig,q ∈ Zp , and runs algorithm B on coins ρB , group description (G, p, g), group
elements X∗, U1, ..., Uqs ∈ G, and scalars hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q,
hsig,1, . . . , hsig,q ∈ Zp . Recall that scalars hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q
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are part of the input of C and the former will be the same in both runs of
B. All DLOGg oracle queries made by B are relayed by C to its own DLOGg

oracle. If B returns ⊥, C returns ⊥ as well. Otherwise, if B returns a tuple
(iagg, isig, L,R, s,a, x̃) , where L = {X1, . . . , Xn} and a = (a1, . . . , an), C
picks uniformly random scalars h′

sig,isig
, . . . , h′

sig,q ∈ Zp and runs B again with
the same random coins ρB on input (G, p, g),X∗, U1, . . . , Uqs , hagg,1, . . . , hagg,q ,
hsig,1, . . . , hsig,isig−1 , h

′
sig,isig

, . . . , h′
sig,q .

Again, all DLOGg oracle queries made by B are relayed by C to its own
DLOGg oracle. If B returns ⊥ in this second run, C returns ⊥ as well. If B
returns a second tuple (i′agg, L

′, R′, s′,a′), where L′ = {X ′
1, ...,X

′
n′} and a′ =

(a′
1, . . . , a

′
n′), C proceeds as follows. Let X̃ =

∏n
i=1 Xai

i and X̃ ′ =
∏n′

i=1(X
′
i)

a′
i

denote the aggregate public keys from the two forgeries. If isig �= i′sig, or isig =
i′sig and hsig,isig = h′

sig,isig
, C returns ⊥. Otherwise, if isig = i′sig and hsig,isig �=

h′
sig,isig

. we will prove shortly that

iagg = i′agg, L = L′, R = R′ and a = a′ (8)

which implies in particular that X̃ = X̃ ′. By lemma 2, the two outputs returned
by B are such that

gs = RX̃hsig,isig and gs′
= R′(X̃ ′)h

′
sig,isig = RX̃

h′
sig,isig , (9)

which allows C to compute the discrete logarithm of X̃ as

x̃ := (s − s′)(hsig,isig − h′
sig,isig )

−1 mod p. (10)

Then C returns (iagg, L,a, x̃).
It remains to prove the equalities of Eq. 8. We set Tsig(X̃, R,m) = hsig,isig

in B’s first execution and Tsig(X̃ ′, R′,m′) = h′
sig,isig

in B’s second execution.
Since the c∗ changes lastly and the adversary’s view is consistent up to the c∗

changes, we have R = R′ and X̃ = X̃ ′. According to the KeyColl and BadOrder
is not ture, X̃ = X̃ ′ implies L = L′, iagg = i′agg and a = a′.

C returns a non-⊥ output if ForkB does, so that by lemmas 2 and 3, and
letting ε = AdvEUF−CMA

A,MuSig2[GrGen,v](λ), C′ accepting probability satisfies

acc(C) ≥ acc(B)(acc(B)
q

− 1
p
)

≥ (ε − 4q2/2λ)2

q
− ε − 4q2/2λ

2λ−1

≥ ε2

q
− 2ε(4q + 1)

2λ
+

8q2(2q + 1)
22λ

≥ ε2

q
− 2(4q + 1)

2λ
.

(11)

We are ready to prove Theorem 1 as follows, which we restate below for
convenience, by constructing from C an algorithm D solving the OMDL problem.
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Proof of Theorem 1. Fix some integer v ≥ 2. Algorithm D runs ForkC with
C as defined in lemma 3 and takes additional steps as described below. The
mapping with the notation in our Forking Lemma (lemma 2) is as follows:

– (G, p, g),X∗, U1, . . . , U2qs play the role of inp,
– hnon,1, h

′
non,1, . . . , hnon,q, h

′
non,q play the role of v1, v

′
1, . . . , vm, v′

m,
– hagg,1, . . . , hagg,q play the role of h1, . . . , hq,
– (iagg, jagg) play the role of (i, j),
– (L,a, x̃) play the role of out.

In more details, algorithm D makes 2qs + 1 queries to its challenge oracle
X∗, U1, . . . , U2qs ← CH(), picks random coins ρC and scalars hagg,1, . . . , hagg,q,
hnon,1, . . . , hnon,q ∈ Zp, and runs C on coins ρC , group description (G, p, g), group
elements X∗, U1, . . . , U2qs ∈ Zp, and scalars hagg,1, ..., hagg,q, hnon,1, . . . , hnon,q ∈
Zp. It relays all DLOGg oracle queries made by C to its own DLOGg oracle.
It use DLOGg oracle to cache pairs of group elements and responses to avoid
making multiple queries for the same group element. If C returns ⊥, D returns ⊥
as well. Otherwise, if C returns a tuple (iagg, jagg, L,a, x̃), D picks uniformly ran-
dom scalars h′

agg,iagg
, . . . , h′

agg,q ∈ Zp , and runs C again with the same random
coins ρC on input X∗, U1, . . . , U2qs ,

hagg,1, . . . , hagg,iagg−1, h
′
agg,iagg

, . . . , h′
agg,q,

hnon,1, . . . , hnon,jagg
, h′

non,jagg+1, . . . , h
′
non,q.

It relays all DLOGg oracle queries made by C to its own DLOGg oracle
after looking them up in its cache. This avoids making duplicate queries. If
C returns ⊥ in this second run, D returns ⊥ as well. If C returns a second
tuple (i′agg, j

′
agg, L

′,a′, x̃′), D proceeds as follows. Let L = {X1, . . . , Xn}, a =
(a1, . . . , an), L′ = {X ′

1, . . . , X
′
n′}, and a′ = (a′

1, . . . , a
′
n). Let n∗ be the number

of times X∗ appears in L. If iagg �= i′agg, or iagg = i′agg and hagg,iagg
= h′

agg,iagg
,

D returns ⊥. Otherwise, if iagg = i′agg and hagg,iagg
�= h′

agg,iagg
. Then according

to the forking lemma, we will have that

L = L′ and ai = a′
i for each i such that Xi �= X∗. (12)

By lemma 3, we have that

gx̃ =
n∏

i=1

Xai
i = (X∗)n

∗hagg,iagg

∏

i∈{1,...,n}
Xi �=X∗

Xai
i ,

gx̃′
=

n∏

i=1

X
a′
i

i = (X∗)n
∗h′

agg,iagg

∏

i∈{1,...,n}
Xi �=X∗

Xai
i ,

(13)

Thus, D is able to compute the discrete logarithm of X∗ as

x∗ := (x̃ − x̃′)(n∗)−1(hagg,iagg
− h′

agg,iagg
)−1 mod p. (14)
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According to r = s−cx, we can obtain the discrete logarithm R
(k)
1j , j = {1, 2}, k =

{1, . . . , qs}. This is cantradict with 2qsOMDL problem.
Neglecting the time needed to compute discrete logarithms , the running time

t′ of D is twice the running time of C, which itself is the same as the running
time of B. The running time of B is the running time t of A plus the time needed
to maintain tables Tagg, Tnon, and Tsig (we assume each assignment takes unit
time) and answer signing and hash queries. The sizes of Tagg, Tnon, and Tsig

are at most qN, q, and q respectively. Answering signing queries is dominated
by the time needed to compute the aggregate key as well as the honest signer’s
effective nonce, which is at most Ntexp and (v − 1)texp respectively. Answering
hash queries is dominated by the time to compute the aggregate nonce which is
at most (v − 1)texp. Therefore, t′ = 2

(
t + q(N + 2v − 2)

)
texp + O(qN).

Let ε = AdvEUF−CMA
A,MuSig2[GrGen,v](λ). By Lemmas 1 and 3, the success probability

of ForkC is at least

acc(ForkC) ≥ acc(C)(acc(C)
q

− 1
p
)

≥ (ε2/q − 2(4q + 1)/2λ)2

q
− ε2/q − 2(4q + 1)/2λ

2λ−1

≥ ε4

q3
− 16 + 4/q − 2

q · 2λ

≥ ε4

q3
− 22

2λ
.

(15)

The advantage of D is

AdvOMDL
D,GrGen(λ) ≥ acc(ForkC) ≥ ε4

q3
− 22

2λ
. (16)

3.2 Practical Considerations

THE CHOICE OF THE NUMBER v OF NONCES. We provide a security proof
in the ROM for MuSig2[v = 2]. When compared to MuSig2[v = 4], the signing
algorithm of MuSig2[v = 2] saves a multi-exponentiation of size three plus a
single exponentiation as well as three group elements of communication in the
first round (all per signer).

STATEFULNESS. The issue of ensuring correct state transitions can be chal-
lenging in practice if the state is written to persistent storage. In particular, the
state may be reused by accident when restoring a backup or through a deliberate
attack on the physical storage. After executing Sign’ with some state the signer
must make sure to never run Sign’ again with the same state. Otherwise, the
signer will reuse the nonce, allowing trivial extraction of the secret key. Again,
similar attacks apply to essentially all Schnorr multi-signature schemes, except
for the fully deterministic MuSig-DN. In the MuSig2 scheme, the same state is
also not secure. On the one hand, the same state will cause the private key to be
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leaked, and on the other hand, the same state will make it easy for adversaries
to forge new multisignatures from existing multisignatures through the Wagner
algorithm.

We reduce the security requirement slightly to achieve the MuSig2 scheme’s
security even if the nonces are reused. In the MuSig2 scheme’s security model,
they assume that there is a single honest signer and that the adversary has
corrupted all other signers. While we assume there are two or more honest signers
in the secure model. This change achieves the MuSig2 scheme’s security even if
the nonces are reused.

Consider a concrete situation, there are 1000 signers and at least 2 honest
signers. Every signer needs two nonce when signing multi-signatures. The proba-
bility of nonces being reused is (1/2)60. Assume the adversary forges a signature
if the number of the same nonces that are repeatedly used are 240 times in the
MuSig2 scheme. Altogether the probability that the adversaries will successfully
forge the signature is (1/2)60×2×2 × (1/2)40 = (1/2)280. Furthermore, we assume
that ri = ri1bi + ri2b, bi = Hnon(Ri1, (R1, . . . , Rv)). Then the above probabili-
ties become (1/2)60×2×2×2 × (1/2)40 = (1/2)520. This is negligible. In addition,
repeating a random number three times will cause the private key to leak. We
note that the probability of repeating a random number three times is negligible,
with a probability of (1/2)60×2×2 = (1/2)240.

4 MSOMDL

Maxell et al. [12] proposes a multi-signature scheme based on Schnorr signatures
to realize the aggregate key, and reduces the number of rounds of the multi-
signature scheme in Bellare and Neven [4] from 3 to 2. However, this reduction
has defects [6]. Boneh et al. [5] proposes MSDL by adding commitments to avoid
this defect. Unfortunately, their proof exists an issue related to the commitment.
Therefore, MSOMDL is proposed in this paper, and this multi-signature scheme
is reduced to the OMDL problem. The MSOMDL scheme is the same as the
MSDL scheme [13].

We point out that the MSDL scheme is not reduced to the DL problem.
Additionally, we briefly outline the main idea of the proof for Theorem 2, with
a detailed demonstration deferred to Appendix A.

We review the commitment in the proof of the MSDL scheme as follows.
After receiving values tj from all other signers, it looks up the corresponding
values Rj such that Hcon(Rj) = tj . If not all such values can be found, then
A sends Ri ← G to all signers; unless collision happens, the signing protocol
finishes in the next round. If all values Rj are found, then A chooses si, c ← Zq,
simulates an internal query ai ← Hagg(pki, PK), computes Ri ← gsipk−aic

i and
R ← ∏n

j=1 Rj , assigns Hcon(Ri) ← ti and Hsig(R, X̃,m) ← c, and sends Ri to
all signers.

Note that if not all such values can be found, then A sends Ri ← G to
all signers; unless collision happens, the signing protocol finishes in the next
round. We affirm that the simulator can’t use this Ri to simulate the signature
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successfully. Specifically, the adversary’s Rj is public before the simulator’s is
unreasonable in their proof. When the simulator doesn’t know one Rj , the sim-
ulator can use commitments to distinguish between true Rj and false Rj (true
means the adversary uses Rj in the real scheme). Concretely, the simulator can
calculate the adversary’s Rj = R/

∏
i�=j Ri when the adversaty query Hsig with

R. Then we have “Rj is true” iff Hcon(Rj) = tj . Unfortunately, if the simulator
is unaware of more than two Ri, it would be unable to simulate as demonstrated
above except the commitment is a homomorphism.

To demonstrate the validity of MSOMDL, we can adopt the same proof
methodology used in MuSig2. The key step is to prove that R = R′. Since the
simulator finally changes c∗, the adversary is unable to modify {R

(k)
i } in the two

executions of the forking lemma. Thus, we have R = R′. Additionally, we can
easily use Boneh et al’s proof to prove the MSDL scheme when the number of
signers is 2.

5 Conclusion

In order to maintain the security of AI, especially achieve the accountabil-
ity, integrity and authenticity of important data, this paper introduces mult-
signatures in AI. For more efficient use of multi-signatures, we simplify MuSig2’s
proof under the OMDL assumption in the random oracle model, along with
reducing the number of nonces from 4 to 2. Moreover, we achieve the MuSig2
scheme’s security when the nonces are reused. and we utilize the proof technology
of MuSig2 to reduce the security of the MSDL scheme to the OMDL assump-
tion. We will work on implementing a method with tighter reduction that can
withstand concurrent attacks and rogue key attacks.

A Proof of the MSOMDL

Theorem 2. MSOMDL is EUF-CMA in the random oracle model for
Hagg,Hcon, Hsig : {0, 1}∗ −→ Zp, if the OMDL problem is hard. More precisely,
for any adversary A against MSOMDL running in time at most t, making at
most qs Sign queries and at most qh queries to each random oracle, and such
that the size of L in any signing session and in the forgery is at most N , there
exists an algorithm D taking as input group parameters (G, p, g) ← GrGen(1λ),
running in time at most

t′ = 2(t + Nq)texp + O(qN), (17)

where q = 2qh + qs + 1 and texp is the time of an exponentiation in G, making
at most 2qsDLOGg queries, and solving the OMDL problem with an advantage

AdvOMDL
D,GrGen(λ) ≥ (AdvEUF−CMA

A,MSOMDL(λ))4/q3 − 22/2λ. (18)
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Proof. We construct algorithm B, algorithm C and algorithm D. They work the
same as described in the proof of Musig2. We first construct a “wrapping” algo-
rithm B which essentially runs the algorithm A and returns a forgery together
with some information about the adversary execution, unless some bad events
happen. For the specific structure of algorithm B, see [13].

Following we construct C to calculate aggregated secret key x̃. The conditions
for the forking lemma are the same as for MuSig2. We have R = R′, X̃ = X̃ ′

since the forger c∗ = Hsig(X̃, R,m) change lastly. According to the KeyColl and
BadOrder is not ture, X̃ = X̃ ′ implies L = L′, iagg = i′agg and a = a′.

Therefore, we have that

iagg = i′agg, L = L′, R = R′ and a = a′ (19)

which implies in particular that X̃ = X̃ ′. By lemma 3, the two outputs returned
by B are such that

gs = RX̃hsig,isig and gs′
= R′(X̃ ′)h

′
sig,isig = RX̃

h′
sig,isig , (20)

which allows C to compute the discrete logarithm of X̃ as

x̃ := (s − s′)(hsig,isig − h′
sig,isig )

−1 mod p. (21)

Then C returns (iagg, L,a, x̃).
letting ε = AdvEUF−CMA

A,MSOMDL(λ), C′ accepting probability satisfies

acc(C) ≥ acc(B)(acc(B)
q

− 1
p
) ≥ ε2

q
− 2(4q + 1)

2λ
. (22)

Following we constuct D to calculate secret key x∗. The conditions for the
forking lemma are the same as for MuSig2 except requires to replace the query
Hnon(X̃, (R1, . . . , Rv),m) to the query Hcon(Ri). Since the two executions of B
are identical up to the assignments Tagg(L,X∗) := hagg,iagg

and Tagg(L′,X∗) :=
h′

agg,iagg
, the arguments of the two assignments Tagg(L,Xi) and Tagg(L′,X ′

i)
must be the same, which implies that L = L′, ai = a′

i for each i such that
Xi �= X∗.

The adversaty behaves differently in these two excutions. Concretely, the
simulator should use different Ri for different ai in these two excutions. Thus
the simulator requires 2qsDLOGg oracles.

Therefore, we have that

L = L′ and ai = a′
i for each i such that Xi �= X∗. (23)

By lemma 3, we have that

gx̃ =
n∏

i=1

Xai
i = (X∗)n

∗hagg,iagg

∏

i∈{1,...,n}
Xi �=X∗

Xai
i ,

gx̃′
=

n∏

i=1

X
a′
i

i = (X∗)n
∗h′

agg,iagg

∏

i∈{1,...,n}
Xi �=X∗

Xai
i ,

(24)
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Thus, D is able to compute the discrete logarithm of X∗ as

x∗ := (x̃ − x̃′)(n∗)−1(hagg,iagg
− h′

agg,iagg
)−1 mod p. (25)

We have r = s − cx. This is contradict with OMDL problem.
According to r = s − cx, we can obtain the discrete logarithm R

(k)
1j , j =

{1, 2}, k = {1, . . . , qs}. Noted that j = {1, 2} represents that the simulator uses
different nonces in the different excutions of the foking lemma. This is cantradict
with 2qsOMDL problem.

Let ε = AdvEUF−CMA
A,MSOMDL(λ). By Lemmas 1 and 3, the success probability of

ForkC is at least

acc(ForkC) ≥ acc(C)(acc(C)
q

− 1
p
) ≥ ε4

q3
− 22

2λ
. (26)

The advantage of D is

AdvOMDL
D,GrGen(λ) ≥ acc(ForkC) ≥ ε4

q3
− 22

2λ
. (27)

Time’s analyze is the same as described in lemma2 except the time needed to
compute the honest signer’s effective nonce. Thus the running time t′ of D is
t′ = 2(t + qN)texp + O(qN).
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Abstract. Image steganalysis is the art and science of detecting whether
an image contains secrete messages or not, which can prevent malicious
usage of steganography. However, steganalysis belongs to passive defense,
in the sense that it can only be applied after the stego image is generated.
Therefore, there still exists loophole that secrete messages communica-
tion could already been accomplished when the stego image is detected.
To eliminate malicious steganography from the source, in this paper, an
active defensive framework for deep image steganography called ADPI
(Active Defense based on Perturbation Injection) is proposed, wherein a
defender competes against a steganographer to learn the active defensive
strategy. Specifically, on the side of the defender, a generator is adopted
to take the original cover image as input, and learn the imperceptible per-
turbation map. Such perturbation map is added with the original cover
image as the enhanced cover image. On the side of the steganographer,
a steganographic network is applied to perform message embedding and
extraction on the enhanced cover image. The key of ADPI is that the
perturbation map is optimized with the goal of reducing the accuracy of
the message recovery while maintaining its invisibility. By this means,
the active defense can be launched in an effective and imperceptible man-
ner. Experimental results show that the proposed ADPI can be applied
to defend against various steganographic methods.

Keywords: Image Steganography · Image Steganalysis · Active
Defense · Generative Adversarial Network

1 Introduction

Image steganography is a technology of information hiding, which conceals
secrete messages within cover images. Traditional steganographic methods are
designed under distortion minimization framework, which can be formulated as
minimizing the distortion function under the payload constraint. Such distortion
function is calculated according to the embedding costs of modified pixels, which
is the key component of this type of steganographic methods. With the defined
embedding costs, practical steganographic codes, such as STC, can be applied for
message embedding and extraction. In the past decades, lots of steganographic
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methods under distortion minimization function have been proposed, including
[1–4].

However, limited by the strict constraint of distortion minimization frame-
work, the payload of the above methods are relatively low. To obtain higher
embedding capacities, deep steganographic methods are proposed, wherein neu-
ral networks are utilized to implement message embedding and extraction, rather
than practical steganographic codes.

Hayes et al. [5] first proposed to utilize the encoder-decoder structure within
the GAN (Generative Adversarial Network) [6] framework to achieve image
steganography. To further improve robustness, Zhu et al. [7] introduced vari-
ous types of noise layers for model training, which simulate real-world noise
attacks and compression artifacts, thereby achieving an end-to-end robust frame-
work. To further increase hiding capacity, Zhang et al. [8] which replaced the
discriminator with a critic network to assess image authenticity, and modified
the encoder architecture to enable high-capacity hiding. Recently, Tan et al. [9]
which incorporates channel-wise attention to enhance security and visual qual-
ity. Lu et al. [10] proposed a large capacity image steganography network based
on INN (Invertible Neural Network), which uses forward and back propagation
operations to realize image hiding and revealing.

Note that steganography is a double-edged technology. It can be utilized
by common users to protect their privacy in a good way, but also utilized by
criminals to spread malicious and illegal information in a bad way. Specifically,
the illegal and malicious use of steganography can cause significant social harm.
Therefore, it is essential to develop the technology of image steganalysis from a
national security perspective, which aims to detect whether an image contains
secrete messages or not. Traditional steganalyzer applies ensemble classifier [11]
to classify hand-crafted high dimensional statistical features [12–14]. With the
rapid development of deep learning techniques, steganalyzers based on CNN
(Convolutional Neural Network) have achieved outstanding performance [15–
19]. Note that the technology of steganalysis is the passive defense against image
steganography, in the sense that steganalysis can only be applied after the stego
image is generated. In the case that the stego image is successfully detected by
the steganalyzer, such stego image may already been sent to the receiver and
the secrete message communication could be accomplished. Therefore, passive
defense could not stop malicious usage of steganography from the source.

To address the above issues, in this paper, we propose active defensive strat-
egy for image steganography, which aims to take action before the behavior of
secrete message communication happens. Under the guidance of such strategy,
we propose an active defensive framework for deep image steganography called
ADPI (Active Defense based on Perturbation Injection). ADPI consists of a
defender and a steganographer. From the side of the defender, given an original
cover image, a generator is applied to learn a perturbation map, which is added
with the original cover image as the enhanced cover image. From the side of the
steganographer, such enhanced cover image is fed into the deep image stegano-
graphic network for message embedding and extraction. The key idea of ADPI is
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that the perturbation map is optimized with the goal of reducing the accuracy
of the message recovery while maintaining its invisibility. By this means, the
active defense can be launched in an effective and imperceptible manner. As the
training process terminates, these enhanced cover images are uploaded on the
Internet. Once the criminals acquires these images for secrete message commu-
nication, it is unable for them to implement successful message embedding and
extraction. Therefore, our proposed ADPI can eliminate malicious steganogra-
phy from the source. The contributions of this paper are as follows.

– The distinctions between active defense and passive defense against image
steganography have been analyzed. To the best of our knowledge, this work
is the first attempt to apply active defense against image steganography.

– An active defensive framework for deep image steganography called ADPI
has been proposed, which can generate the enhanced cover image disabling
the steganographic system and undistinguished from its original counterpart.

– Experiments have been conducted to evaluate the performance of the pro-
posed ADPI. Experimental results show that the proposed active defense can
be launched in an effective and imperceptible manner.

2 Method

In this section, we propose an active defensive framework for deep image
steganography called ADPI (Active Defense based on Perturbation Injection).
First, we outline the general framework of ADPI. Then, we introduce the design
of the loss function. Finally, we present the network architecture of the generator.

2.1 Notations

In this paper, matrices are denoted by capital bold letters, and elements
within matrices are denoted by the corresponding lowercase letters. Specifically,
original cover image, enhanced cover image, and stego image are denoted as
X = (xi,j,c)H×W×3, ˜X = (x̃i,j,c)H×W×3, and X′ = (xi,j,c)H×W×3, respectively.
Target messages and revealed messages are denoted as M = (mi,j,c)H×W×C and
M′ = (m′

i,j,c)
H×W×C , respectively.

2.2 Overall Framework

In this paper, we propose the active defensive strategy against image steganog-
raphy for the first time. Its key idea is to proactively process the original cover
images such that secrete messages cannot be communicated via regarding these
processed images as carriers. By this means, the active defensive strategy can
proactively disable the steganographic system. Note that the active defense strat-
egy works in a forward-looking manner, in the sense that it takes action before
the behavior of secrete message communication happens. Therefore, it can elim-
inate malicious steganography from the source.
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Fig. 1. Illustration of the proposed ADPI.

Following the active defensive strategy, we propose the ADPI framework
against image steganography, as shown in Fig. 1. In a nutshell, ADPI consists of a
defender and a steganographer. On the side of the defender, the generator G takes
original cover image X = (xi,j,c)H×W×3 as input, and outputs imperceptible
perturbations P = (pi,j,c)H×W×3, which can be formulated as

P = G(X). (1)

The perturbations are element-wisely added with the original cover image as the
enhanced cover image as

˜X = X + λP, (2)

where λ represents the intensity of the perturbation, and ˜X = (x̃i,j,c)H×W×3

is the enhanced cover image. On the other side of the game, the steganogra-
pher adopts deep steganographic method to implement message embedding and
message extraction entirely based on deep neural networks, which consists of
an encoder E and a decoder D. Specifically, the enhanced cover image ˜X =
(x̃i,j,c)H×W×3 is concatenated with the secrete message M = (mi,j,c)H×W×C

along the channel axis as T = (ti,j,c)H×W×(C+3). And then, to implement mes-
sage embedding, the encoder E takes in the concatenated tensor T, and outputs
the stego image X′ = (x′

i,j,c)
H×W×3. Afterwards, to implement message extrac-

tion, the decoder D receives the stego image X′ = (x′
i,j,c)

H×W×3, and outputs
the revealed secrete message M′ = (m′

i,j,c)
H×W×C . In general, the message

embedding and extraction process can be formulated as

M′ = D(E(˜X,M)). (3)
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Note that E and D are jointly optimized to ensure that the revealed messages M′

are close enough to the target messages M for accurate message communication.
Finally, we can calculate the messages’ recovered accuracy by comparing each bit
in M and M′. The goal of the defender is to generate perturbation P such that
the recovered accuracy is around 50%. By this means, the ability of transmitting
message bits is close to random guessing, indicating that the steganographic
system is disabled.

2.3 Loss Functions

In ADPI, we aim to train a generator to produce the enhanced cover image
which can simultaneously reduce the recovered accuracy of secrete messages
while maintaining satisfied image quality of cover image. Correspondingly, we
delicately design the loss function for the generator, which consists of a recovered
accuracy loss Lr and a visual quality loss Lv.

As for the recovered accuracy loss Lr, we aim to obtain perturbations which
can cause severe decoding error by the deep steganographic method. Consid-
ering that this paper makes an early attempt to investigate active defense
against image steganography, we make a naive assumption and suppose that
the deep neural networks applied for message communication are accessible to
the defender. Based on such assumption, Lr is constructed as the negative cross-
entropy loss of the message bits between the revealed messages M′ and the target
messages M, which can be formulated as

Lr = −EX∼PC
CrossEntropy(D(E(X + λG(X),M)),M). (4)

As for the visual quality loss Lv, we aim to preserve high visual quality for the
enhanced cover image, and try to make the enhanced cover image indistinguished
from their original counterparts by human eyes. Therefore, Lv is constructed as
the mean square error between the original cover image and the enhanced cover
image, which can be formulated as

Lv = EX∼PC

1
3 × W × H

‖X,X + λG(X)‖22. (5)

Finally, the overall loss L is calculated as the weighted sum of Lr and Lv as

L = αLr + βLv, (6)

where α and β are the hyperparameters balancing the tradeoff between message
recovery and visual quality.

2.4 Network Architecture

ADPI consists of a generator and a steganographic network. Specifically, U-Net
[20] structure is adopted as the generator. It consists of two main components
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including an encoder and a decoder, wherein the encoder is responsible for cap-
turing contextual information from the input image, while the decoder part aims
to recover the spatial resolution of the segmentation map.

Specifically, the encoder consists of four downsampling blocks, wherein each
block is composed of a max pooling layer, two consecutive convolutional layers,
a batch normalization layer and a ReLU (Rectified Linear Unit) activation func-
tion. As for the decoder, it consists of four upsampling blocks. In each block,
a deconvolutional layer is first applied to increase the spatial resolution. The
upsampled feature maps are then concatenated with the corresponding feature
maps from the encoder for shortcut connection. Afterwards, two consecutive con-
volutional layers, batch normalization layer, and a ReLU activation function are
subsequently applied for further feature extraction. Except for the last convo-
lutional layer which has a kernel size of 1× 1, all the other convolutional layers
have a kernel size of 3 × 3 and a padding of 1. All deconvolutional layers have a
kernel size of 2 × 2 and a stride of 2. Tanh activation function is applied in the
last layer in UNet.

3 Experiments

In this section, implementation details are described in Sect. 3.1. Evaluation
metrics are given in Sect. 3.2. Defensive performance is shown in Sect. 3.3.

3.1 Experimental Setups

Datasets. The experiments are conducted on two datasets, wherein 256 × 256
ImageNet is applied to train and test the steganographic network, and 256× 256
COCO is applied to train and test the generator in the proposed ADPI. Specifi-
cally, as for the 256 × 256 ImageNet, 100,000 images are selected as the training
set and 3,000 images are selected as the testing set. As for the 256 × 256 COCO,
3,000 images are selected as the training set and 1,500 images are selected as the
testing set. All images are resized as 256 × 256.

Steganographic Methods. On the side of the steganographer, three stegano-
graphic methods are tested in the experiments, including SteganoGAN, CHAT-
GAN and UDH [21]. Each steganographic method embeds messages with 1bpp.
Note that UDH is originally applied for hiding secrete images. We properly mod-
ify it for hiding secrete messages.

Generators. In the training stage of the generator, the hyperparameter settings
for different steganographic methods are different. As for SteganoGAN, α and β
are set to 3e−4 and 1. As for CHAT-GAN, α and β are set to 1 and 2e−3. As for
UDH, α and β are set to 6e−3 and 1. The perturbation intensity λ is set to 0.5.
Adam optimizer with learning rate 1e−4 is used for optimization. The generator
is trained for 15 epochs.
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3.2 Evaluation Metrics

We evaluate our active defense framework ADPI from the perspective of image
quality of the enhanced cover image by PSNR (Peak Signal to Noise Ratio) and
SSIM (Structural Similarity), and the defense performance by RAC (Recovered
Accuracy). The definitions of PSNR and SSIM can be referred to [22] and [23],
respectively. And RAC is defined as

RAC = 1 −
∑H

i=1

∑W
j=1

∑C
c=1 |mi,j,c − m′

i,j,c|
H × W × C

, (7)

where M = (mi,j,c)H×W×C is the target secrete messages and M′ =
(m′

i,j,c)
H×W×C is the revealed secrete messages.

3.3 Performance of ADPI Against Different Methods

In this part, the proposed ADPI is applied to defend against three different
steganographic methods. The results are shown in Table 1 and Fig. 2, and the
following observations can be obtained.

– The proposed ADPI can significantly reduce the accuracy of steganographic
methods in recovering secret messages. For all three different steganographic
methods, the RAC can be decreased below 55%, which is close to random
guessing. Such results indicate that the steganographic system is disabled by
our proposed defense framework.

– As for objective evaluation in Table 1, the enhanced cover images can still
obtain satisfied PSNR and SSIM of 34.29 and 0.8742. As for subjective eval-
uation in Fig. 2, the enhanced cover images are indistinguishable from the
original counterparts. These results indicate that ADPI would not lead to
severe visual artifacts on the enhanced cover images, and can be launched in
an imperceptible manner.

Table 1. Evaluation of ADPI against different steganographic methods. As for the
RAC, the values on the left denote the recovered accuracy when the original cover
image is applied, while the values on the right denote the recovered accuracy when the
enhanced cover image is applied. As for the PSNR and SSIM, the values on the left
denote the metrics for the original cover images, while the values on the right denote
the metrics for the enhanced cover images.

Steganographic method RAC PSNR SSIM

SteganoGAN 99.43%/54.29% 38.63/32.13 0.9582/0.8218

CHAT-GAN 99.33%/53.64% 45.62/36.97 0.9931/0.9254

UDH 99.74%/53.89% 41.15/33.79 0.9752/0.8756
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original
cover image

enhanced
cover image

difference

Fig. 2. Visualization of the original cover images, enhanced cover images, and their
differences multiplied by 10.

3.4 Generalization Performance of ADPI

In this part, the generalization ability of ADPI is investigated. Specifically, ADPI
optimized over specific steganographic method is applied to defend against other
steganographic methods. The results are shown in Table 2. It can be observed
that the images optimized over SteganoGAN can be well generalized to defense
against the other two steganographic methods, which can achieve RAC lower
than 60%. By contrast, the generalization performance of the images optimized
over CHAT-GAN and UDH is inferior to that optimized over SteganoGAN. Their
distinction may due to the differences in network architecture.

3.5 Targeted Defense

In Sect. 3.3 and 3.4, the goal of the defender is to disable the steganographic
system, such that the steganographer cannot accurately extract the secrete mes-
sages. In this part, we investigate the scenario of targeted defense, i.e., mislead

Table 2. Investigating the transferability of generators trained with different stegano-
graphic models.

Training Testing

SteganoGAN CHAT-GAN UDH

SteganoGAN 54.29% 55.24% 56.28%

CHAT-GAN 89.49% 53.64% 79.45%

UDH 80.24% 73.83% 53.89%
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the steganographer to extract the messages specified by the defender. In this
case, the loss function in Eq. (4) is modified as

Lr = EX∼PC
CrossEntropy(D(E(X + λG(X, ˜M),M)), ˜M). (8)

The loss function Eq.(5) is modified as

Lv = EX∼PC

1
3 × W × H

∥

∥

∥X,X + λG(X, ˜M)
∥

∥

∥

2

2
, (9)

where ˜M is the messages appointed by the defender. In other words, the defender
aims to mislead the steganographer extracts the appointed messages ˜M.

The results are shown in Table 3. It can be observed that the proposed ADPI
can still achieve satisfied performance in targeted defense. Specifically, the RAC
is higher than 95% in all cases, indicating that ADPI can successfully mislead
the steganographic system.

Table 3. Accuracy results of recovering the appointed message during steganography.
The RAC is calculated by the revealed messages and appointed messages specified by
the defender. As for the PSNR and SSIM, the values on the left denote the metrics
for the original cover images, while the values on the right denote the metrics for the
enhanced cover images.

Steganographic method RAC PSNR SSIM

SteganoGAN 50.00%/96.80% 38.63/30.65 0.9582/0.8038

CHAT-GAN 50.00%/96.79% 45.62/34.36 0.9931/0.9044

UDH 50.00%/95.25% 41.15/35.74 0.9752/0.9142

4 Conclusion

In this paper, we propose an active defensive framework against image steganog-
raphy called ADPI, which can take action before the behaviour of secrete message
communication happens. Experimental results show that under ADPI, active
defense can be launched in an effective and imperceptible manner. Compared
with passive steganalysis technique, our proposed active defense is a preventive
technique, which can eliminate malicious steganography from the source. In the
future, the following aspects may worth further investigations. Firstly, the gener-
alization ability of active defense among different steganographic methods should
be improved. Secondly, the scenario of applying active defense against black-box
steganographic models should be investigated. Thirdly, more advanced network
architecture could be introduced to generate the perturbations.
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Abstract. With the widespread data collection and processing, privacy-
preserving machine learning has become increasingly important in
addressing privacy risks related to individuals. Support vector machine
(SVM) is one of the most elementary learning models of machine learn-
ing. Privacy issues surrounding SVM training classifiers have attracted
increasing attention. In this paper, we propose DPDR-DPSVM which is
a strict differentially private support vector machine algorithm with high
data utility. Aiming at high-dimensional data, we adopt differential pri-
vacy in both the dimensionality reduction phase and SVM classifier train-
ing phase, which improves model accuracy while achieving strong privacy
guarantees. Besides, we train DP-compliant SVM classifiers by adding
noise to the objective function itself, thus leading to better data utility.
Extensive experiments on three high-dimensional datasets demonstrate
that DPDR-DPSVM can achieve high accuracy while ensuring strong
privacy protection.

Keywords: Differential privacy · Support vector machine · Data
utility

1 Introduction

The rapid development of generative artificial intelligence (Generative AI) and
large language models (LLMs) is accelerating changes in our production and
living habits [15,19]. As a subfield of (AI), machine learning (ML) has also
attracted increasing attention. ML algorithms such as support vector machines
and logistic regression can play important roles in text classification, sentiment
analysis, information extraction, etc. However, with the proliferation of data
collection and processing, privacy concerns have become increasingly important
[2,18], especially when dealing with personal or sensitive information. The train-
ing process will severely leak the privacy of training data. The adversary may
snoop on users’ sensitive information through membership inference attacks,
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attribute inference attacks, or model inversion attacks [9,22], which leads to
privacy breaches, identity theft, or other malicious activities.

Privacy-preserving machine learning (PPML) [2] addresses these concerns by
allowing the training and inference processes to be performed without exposing
the raw data. Support vector machine (SVM) is one of the most elementary
learning models of ML. Therefore, there is a huge demand for studying privacy-
preserving SVM algorithms. Differential privacy (DP) [5,7] is a rigorous privacy
paradigm nowadays and is widely adopted in AI and ML. Concretely, DP has
a formal mathematical foundation and therefore prevents the disclosure of any
information about the presence or absence of any individual from any statistical
operations.

Several approaches have been proposed to train SVM models with differential
privacy. These methods typically add noise or perturbation to the training data
or model parameters to limit the amount of information that can be learned
about any individual data point. Dwork et al. [8] firstly studied the problem of
privacy-preserving principal component analysis (PCA) and proved the optimal
bounds of DP-compliant PCA, which lays the foundation for applying PCA
in PPML. Hereafter, Huang et al. [10] leveraged the Laplace mechanism into
PCA-SVM algorithms to achieve differential privacy protection. Sun et al. [17]
proposed a differentially private singular value decomposition (SVD) algorithm
to provide privacy guarantees for SVM training. To sum end, these methods all
consider achieving dimensionality reduction by using PCA, so the algorithms are
usually divided into two stages: PCA and SVM. However, the DPPCA-SVM,
PCA-DPSVM, and DPSVD mechanisms in [10,17] all only apply differential
privacy at one stage in PCA or SVM, resulting in an insufficient degree of privacy
protection.

A strict differential privacy protection mechanism should satisfy that DP
must be applied whenever the train data is accessed in the algorithm [7]. There-
fore, a strict differential privacy SVM mechanism with dimensionality reduction
should be further studied. To this end, this paper studies a strict differentially
private SVM algorithm with dimensionality reduction, which aims to maintain
high data utility while providing strong privacy protection. Our main contribu-
tions are summarized as follows.

– We propose a strict privacy-preserving SVM mechanism DPDR-DPSVM
which adopts differential privacy in both the dimensionality reduction phase
and SVM training phase to provide strong privacy guarantees.

– To overcome the high-dimensional features of data, we introduce a differen-
tial privacy-based principal component analysis method to improve model
accuracy.

– By leveraging the empirical risk minimization approximations, we train DP-
compliant SVM classifiers by adding noise to the objective function itself,
leading to better data utility.

– We conduct extensive experiments on three datasets with high-dimensional
features. The results demonstrate that our mechanism can achieve high accu-
racy while ensuring strong privacy protection.



144 T. Wang et al.

The remainder of the paper is organized as follows. Section 2 provides a lit-
erature review. Section 3 introduces the system model, differential privacy, and
problem formulation. Section 4 presents our proposed DPDR-DPSVM mecha-
nism. Section 5 shows the experimental results. Section 6 concludes the paper.

2 Related Work

Privacy-preserving machine learning (PPML) [2,16,23] is widely applicable in
various domains, including artificial intelligence, large language models, health-
care, finance, and telecommunications. They enable data-driven decision-making
and the development of intelligent systems while protecting individuals’ sensitive
information. Since the introduction of differential privacy (DP) [5,7], DP-based
PPML [11] has gained significant attention as a means to ensure privacy while
training models on sensitive data.

SVMs are a popular class of machine learning algorithms used for binary clas-
sification, regression, and outlier detection tasks. The goal of differential privacy
in SVMs is to enable the training process while providing privacy guarantees for
the sensitive data used in the training. Moreover, it’s important to note that
achieving differential privacy in SVMs involves a trade-off between privacy and
utility. Chaudhuri et al. [4] proposed to produce privacy-preserving approxima-
tions of classifiers learned via (regularized) empirical risk minimization (ERM).
They also analyzed the accuracy of proposed mechanisms and the upper bound
of the number of training samples, laying the foundation for subsequent research.

Principal component analysis (PCA) is an effective tool to improve the classi-
fication accuracy of SVM. Dwork et al. [8] firstly studied the problem of differen-
tial privacy-based principal component analysis (PCA) and proved the optimal
bounds of DP-compliant PCA, which lays the foundation for applying PCA in
PPML. They proposed to perturb the matrix of covariance with Gaussian noise.
In contrast, Jiang et al. [12] perturbed the matrix of covariance with Wishart
noise, which was able to output a perturbed positive semidefinite matrix. After-
ward, Xu et al. [21] applied the Laplace mechanism to introduce perturbation
and proposed the Laplace input perturbation and Laplace output perturbation.

What’s more, Huang et al. [10] proposed DPPCA-SVM and PCA-DPSVM for
privacy-preserving SVM, which perturbed the matrix of covariance with symmet-
ric Laplace noise. However, the DPPCA-SVM and PCA-DPSVM mechanisms
only apply differential privacy at one stage in PCA or SVM, resulting in an insuf-
ficient degree of privacy protection. It should be claimed that a strict differential
privacy protection mechanism should satisfy that DP must be applied whenever
the train data is accessed in the algorithm. Besides, Sun et al. [17] proposed
DPSVD which uses singular value decomposition (SVD) to project the train-
ing instances into the low-dimensional singular subspace. They first added the
noise to the raw data D and then obtained the singular values by applying SVD
on the perturb data D′. However, the original training dataset is accessed again
when computing low-dimensional singular subspace, thus resulting in insufficient
privacy protection.
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3 Preliminaries

3.1 Safety Model

This paper considers that the server obeys the semi-honest (honest but curious)
adversary model. That is, the server adheres to the agreement but also tries to
learn more from the received information than the output was unexpected.

3.2 Differential Privacy

Differential privacy (DP) [5,7] is a strict privacy protection model that gives a
rigorous and quantified proof of privacy disclosure risk. Thus, DP can provide a
probability guarantee for the privacy of any individual’s query response and is
independent of the prior knowledge of the attacker. Since differential privacy was
proposed ten years ago, hundreds of papers based on differential privacy technol-
ogy have been proposed in security, database, machine learning, and statistical
computing applications.

Definition 1 ((ε, δ)-Differential Privacy ((ε, δ)-DP)). A randomized mech-
anism M satisfies (ε, δ)-DP if and only if for any neighboring datasets D and
D′, and for any possible output O ⊆ Range(M), it holds

P[M(D) ∈ O] ≤ eε · P[M(D′) ∈ O] + δ, (1)

where P denotes probability.

(ε, δ)-DP also called approximated differential privacy. When δ = 0, (ε, δ)-DP
becomes ε-DP, that is, pure differential privacy.

Differential privacy provides a mathematical guarantee of privacy by intro-
ducing controlled randomness (i.e., noise) into the data or results of computa-
tions. Laplace mechanism [6], exponential mechanism [14], and Gaussian mech-
anism [7] all can be used to achieve differential privacy. This paper adopts the
Gaussian mechanism, which is defined as follows.

Theorem 1 (Gaussian Mechanism). The Guassian mechanism achieve

(ε, δ)-DP by adding Gaussian noise with standard deviation σ =
√

2 ln 1.25
δ · Δ

ε ,
where Δ is �2-sensitivity and is computed as the maximal �2-norm difference of
two neighboring datasets D and D′.

3.3 Problem Formulation

This part introduces the data model, empirical risk minimization, and problem
statement.

Data Model. Given a dataset D = {(xi, yi) ∈ X × Y : i = {1, 2, · · · , n}} with n
samples, where xi and yi in each sample (xi, yi) denote the data space and label
set, respectively. As for binary classification in machine learning, the data space
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is X = R
d and the label set is Y = {−1, 1}. That is, each xi = [x1

i , x
2
i , · · · , xd

i ]
is a d-dimensional vector and each yi = −1 or yi = 1. Besides, it assumes that
‖xi‖2 ≤ 1. For convenience, let X = [x1;x2; · · · ;xn] denote the data space of
dataset D and let Y = [y1; y2; · · · ; yn] denote the label space of dataset D. That
is, D = (X,Y ).

Empirical Risk Minimization (ERM). In this paper, we build machine
learning models that are expressed as empirical risk minimization. We would
like to train a predictor β : x → y. As for machine learning algorithms with
empirical risk minimization, the predictor β minimizes the regularized empirical
loss. For dataset D, the ERM can be formulated as

F(β,D) =
1
n

n∑
i=1

� (β;xi, yi) +
λ

2
‖β‖22 (2)

where �(·) is the loss function, β is a d-dimensional parameter vector, λ > 0 is a
regularization parameter.

Based on Eq. (2), we aim to compute a d-dimensional parameter vector β∗

such that

β∗ = arg min
β

F(β,D)

= arg min
β

[
1
n

n∑
i=1

� (βi;xi, yi) +
λ

2
‖β‖22

]
(3)

Problem Statement. For input training dataset D, we aim to privately train
a machine learning model (i.e., private predictor β̂∗) based on ERM with strict
differential privacy protection. We will also integrate dimension reduction into
all training processes in order to improve model accuracy and reduce computing
costs.

4 Our Solution

Considering high dimensional features and insufficient privacy protection, this
paper proposes a strict differential privacy support vector machine framework
with dimensionality reduction. The framework DPDR-DPSVM mainly includes
two phases: the first phase aims to obtain the low-dimensional features with
(ε1, δ)-differential privacy, and the second phase aims to train the SVM model
with (ε2)-differential privacy.

We mainly use the following two strategies to provide sufficient data privacy
and improve the accuracy of SVM models. 1) To provide strict privacy guaran-
tees, we introduce differential privacy in both the dimensionality reduction phase
and the SVM training phase. 2) To overcome the high-dimensional features of
data, we conduct dimensionality reduction before training by using the principal
component analysis (PCA) method, which can improve model accuracy.

In the following, we will describe the main components of DPDR-DPSVM in
detail.
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Algorithm 1: DPDR: DP-compliant Dimensionality Reduction
Input: dataset D = (X, Y ), privacy parameter ε1, δ, expected dimension k.
Output: Private k-dimensional features Ûk.

1 Compute the covariance matrix M = X�X;

2 Generate Gaussian noise matrix R ← N
(

0,
2 ln(1.25/δ)Δ2

f

ε21

)
;

3 Process R to be a symmetric matrix by each lower triangle entry is copied from
its upper triangle counterpart;

4 Compute M̂ = M + R;

5 Compute Û ŜV̂ using eigenvalue decomposition of M̂ ;

6 Grab the first k values of Û as Ûk;

7 return Ûk

4.1 DP-Compliant Dimensionality Reduction

We utilize principal component analysis (PCA) to achieve dimensionality reduc-
tion under differential privacy. For d-dimensional dataset D = (X,Y ), the d × d
covariance matrix is defined as

M = X�X =
n∑

i=1

xi
�xi. (4)

Thus, we can achieve DP-compliant PCA by applying the Gaussian mechanism
first to Mi. Then, the k-principle features of the original dataset are computed
by choosing the top-k singular subspace of the noised covariance matrix based
on singular value decomposition (SVD).

Algorithm 1 shows the pseudo-code of PCA-based dimensionality reduc-
tion while satisfying differential privacy. We simply formalize Algorithm 1 as
DPDR(D, ε1, δ, k). Given dataset D = (X,Y ), we add Gaussian noise to the
covariance matrix to achieve differential privacy. For the function f(X) = X�X,
the �2-sensitivity of f(X) is Δf = 1, as shown in Lemma 1. Thus, the Gaussian

noise matrix R is generated from N
(
0,

2Δf ln(1.25/δ)

ε21

)
and is processed to be a

symmetric matrix by each lower triangle entry is copied from its upper triangle
counterpart. Next, we apply SVD to noisy covariance matrix M̂ and thereby
grab the top-k singular subspace of M̂ , as shown in Lines 5-6.

Lemma 1 In Algorithm 1 (i.e., DPDR), for all input dataset D = (X,Y ), the
sensitivity of function f(X) = X�X is at most one.

Proof. Let X ′ denote the neighboring dataset of X. We consider bounded differ-
ential privacy in this paper. That is, X ′ has the same size as X but only differs
in one record. Assuming X ′ and X differ in the t-th row. Then, the sensitivity
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can be computed as

‖M − M ′‖2
=

∥∥X�X − X ′�X ′∥∥
2

=

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

x1
t x

1
t x1

t x
2
t · · · x1

t x
d
t

x2
t x

1
t x2

t x
2
t · · · x2

t x
d
t

· · · · · · . . . · · ·
xd

t x
1
t xd

t x
2
t · · · xd

t x
d
t

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥
2

=
√

(x1
t )2

[
(x1

t )1 + (x2
t )2 + · · · + (xd

t )2
]
+ · · · + (xd

t )2
[
(x1

t )1 + (x2
t )2 + · · · + (xd

t )2
]

=
√[

(x1
t )1 + (x2

t )2 + · · · + (xd
t )2

]2

=
√

‖xt‖2
≤1 (5)

where the step of “≤” is achieved since ‖xi‖2 ≤ 1 (i ∈ {1, 2, · · · , n}).

4.2 DPDR-DPSVM: DP-Compliant SVM with Dimensionality
Reduction

This part presents the DP-compliant support vector machine (SVM) with dimen-
sion reduction. Specifically, we build SVM models based on empirical risk min-
imization. To improve model accuracy, we apply dimensionality reduction on
the original high-dimensional dataset. Besides, to achieve privacy protection, we
perturb the objective function to produce the minimizer of the noisy objective
function.

Algorithm 2 shows the pseudo-code of our proposed SVM training pro-
cess under differential privacy. Given the dataset D = (X,Y ), we first exe-
cute DPDR(D, ε1, δ, k) to obtain the private k-dimensional features Ûk based on
Algorithm 1. Then, we can project the data X into k-dimensional space based on
Ûk. Therefore, the input dataset for training SVM classifiers is D̂k =

(
X̂k, Y

)
.

Next, we compute the privacy parameter which will be used to generate noise
in objective function perturbation, as shown in Lines 4-9. Based on the privacy
parameter p, the noise vector R can be draw with probability density function
1
αe− p

2 ‖R‖. Then, we can perturb the objective function as

Fpriv(βi, D̂
k
i ) = F(β, D̂k

i ) +
1
n

R�βi . (6)

At last, we can produce the minimizer of noisy Fpriv(βi, D̂
k) by

β̂∗ = arg min
β

[
Fpriv(β, D̂k) +

Δ

2
‖β‖22

]
, (7)

where β̂∗ the optimal parameters of Fpriv(β, D̂k).
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Algorithm 2: DPDR-DPSVM: DP-compliant SVM Training with Dimen-
sionality Reduction
Input: dataset D = (X, Y ), privacy parameter ε1, ε2, δ, regularization

parameter λ, normalizing constant α.
Output: Differetially private predictor β̂∗.

1 Execute DPDR(D, ε1, δ, k) to obtain the private k-dimensional features Ûk;

2 Project data space into k dimensions by X̂k = X · Ûk;

3 D̂k =
(
X̂k, Y

)
;

4 Compute privacy parameter p = ε2 − 2 log(1 + c
nλ

);
5 if p > 0 then
6 Δ = 0;
7 else
8 Δ = c

n(ep/4)
− λ;

9 p = ε2
2

;

10 Draw noise vector R with probability density function 1
α

e− p
2 ‖R‖;

11 Compute Fpriv(β, D̂k) = F(β, D̂k) + 1
n
R�β;

12 Minimize β̂∗ = arg minβ

[
Fpriv(β, D̂k) + Δ

2
‖β‖2

2

]
;

13 return β̂∗

Based on Eq.(3) in Subsect. 3.3, the minimizer of Fpriv(β, D̂k) will be com-
puted as

β̂∗ = arg min
β

[
Fpriv(β, D̂k) +

Δ

2
‖β‖22

]

= arg min
β

[
F(β, D̂k) +

1
n

R�β +
Δ

2
‖β‖22

]

= arg min
β

[
1
n

n∑
i=1

�
(
βi; x̂k

i , yi

)
+

λ

2
‖β‖22 +

1
n

R�β +
Δ

2
‖β‖22

]
(8)

where x̂k
i denotes the private k-dimensional data space of x̂i.

This paper focuses on SVM classification. Thus, the loss function �(·) in
Eq. (8) is defined as

�SVM(β,x, y) = max
{
0, 1 − yx�β

}
(9)

Besides, in Algorithm 2, the parameter c is set as c = 1
2h for SVM, where h is

huber loss function parameter and picked as h = 0.5 for Huber SVM, a typical
value [3].

4.3 Privacy Analysis

This part shows the privacy guarantees of our proposed algorithms.
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Theorem 2 Algorithm 1 (i.e., DPDR) satisfies (ε1, δ)-differential privacy.

Proof. As shown in the 5th line of the Algorithm 1, the Gaussian noise R is
introduced into the covariance matrix to provide privacy protection. The noise

R is draw from N
(
0,

2 ln(1.25/δ)Δ2
f

ε21

)
, that is, the deviation σ =

√
2 ln 1.25

δ · Δf

ε2
.

Thus, based on Theorem 1, Algorithm 1 (i.e., DPDR) satisfies (ε1, δ)-differential
privacy.

Theorem 3 Algorithm 2 (i.e., DPDR-DPSVM) satisfies (ε, δ)-differential pri-
vacy, where ε = ε1 + ε2.

Proof. Based on Theorem 2, Algorithm 2 executes DPDR(D, ε1, δ, k) satisfies
(ε1, δ)-differential privacy. Moreover, the privacy guarantee of objective pertur-
bation is shown in lines 4-11, which uses privacy parameter ε2. This can be
proved to satisfy ε2-differential privacy by following Theorem 9 in [4]. We omit
the details due to space limitations. Therefore, based on the composition theo-
rems [7] of differential privacy, the Algorithm 2 (i.e., DPDR-DPSVM) satisfies
(ε1 + ε2, δ)-differential privacy.

5 Experiments

This section presents our experimental results of the proposed mechanisms on
three popular datasets (Table 1).

5.1 Experiment Setup

Datasets. We select three datasets with different data sizes and dimensions to
verify the performance of the mechanism proposed in this paper. MNIST and
Fashion-MNIST share the same external characteristics, namely data size and
dimension. But Fashion-MNIST is no longer the abstract number symbols, but
more concrete clothing images. In contrast, the size of CIFAR-10 is similar to
MNIST and Fashion-MNIST in magnitude, but the dimension of CIFAR-10 is
much larger than the other two. The details of the three

– MNIST dataset [13] consists of 60,000 training examples and 10,000 testing
examples. Each example is a handwritten gray image with 28 × 28 pixels,
associated with a label from 10 classes (i.e., numbers 0 to 9).

– Fashion-MNIST [20] a dataset of Zalando’s article images, which consists of
a training set of 60,000 examples and a test set of 10,000 examples. Each
example is a 28 × 28 gray-scale image, associated with a label from 10 classes
(e.g., coat, dress, bag, etc.).

– CIFAR-10 dataset [1] a computer vision dataset for universal object recogni-
tion, which consists of 50,000 training examples and 10,000 testing examples.
Each example is a 32×32 color image, associated with a label from 10 classes
(e.g., bird, cat, deer, etc.).
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Table 1. Datasets used in experiment

Dataset Data size Dimension Target dimension k

MNIST 70,000 784 (28×28 pixels) {5, 10, 20, 50, 100}
Fashion-MNIST 70,000 784 (28×28 pixels) {5, 10, 20, 50, 100}
CIFAR-10 60,000 3,072 (32×32×3 pixels) {5, 10, 20, 50, 100}

Competitors. We evaluate the performance of our proposed DPDR-DPSVM by
comparing it with Non-Priv and DPSVM. Non-Priv conducts machine learning
with dimensionality reduction but without privacy protection. DPSVM conducts
machine learning under differential privacy protection but without dimensional-
ity reduction. Other competitors [10,17] either have insufficient privacy protec-
tion or target low-dimensional data learning, thus not comparable.

We will show the accuracy and run time of different methods varying from
parameters ε, k, n.

5.2 Experimental Results

This section presents our experimental results, including evaluations of accuracy
and running time on SVM. By default, we set the parameters ε = 0.1, δ =
10−4, k = 20, and n = 104 in all experiments, where ε1 = ε2 = 0.5ε are used
for DP-compliant dimensionality reduction and DP-compliant machine learning,
respectively.

Evaluation of Accuracy. We first validate the performance of dimensionality
reduction on SVM classification varying from the target dimension k on three
high-dimensional datasets, as shown in Fig. 1. We can see that the SVM classi-
fication accuracy of all mechanisms continuously increases with the dimension k
increasing from 5 to 100 for all datasets. And, the accuracy does not change much
when k is greater than 20. Therefore, we choose the target dimension as k = 20
by default in the following experiments. Besides, it can be observed from three
datasets that the accuracy of our proposed DPDR-DPSVM is much better than
that of DPSVM and is close to Non-Priv when k is large. This demonstrates that
DPDR-DPSVM can improve accuracy when dealing with high-dimensional data
and can ensure superior data utility while providing strong privacy protection.

As for the CIFAR-10 dataset that has much higher dimensions (i.e., d =
3, 072), we also utilize the histogram of oriented gradient (HOG) in the experi-
ment to improve accuracy, where the HOG parameters are used as follows: cell
size is 4 pixels, number of bins is 9, block size is 2 cell, sliding step is 4 pixels.
Nonetheless, the accuracy is not very high compared to MNIST and Fashion-
MNIST. Because the SVM used in this paper is a linear model (using hinge loss
strategy), and no kernel function is introduced to build a nonlinear model, nor is
a convolutional network used. In the follow-up, we will further study the privacy-
preserving SVM under the nonlinear model and the convolutional network.
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Fig. 1. Accuracy vs. target dimension k on SVM classification (ε = 0.1, n = 104)

Moreover, Fig. 2 shows the high accuracy of our proposed DPDR-DPSVM on
three datasets with the privacy parameter ε varying from 0.01 to 2.0, where k =
20, n = 104, δ = 10−4. Specifically, we consider ε ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 2.0}.
It can be seen from three figures in Fig. 2 that the accuracy of DPDR-DPSVM
is much closer to Non-Priv which has no privacy protection. Thus, this demon-
strates again that our proposed DPDR-DPSVM can achieve better accuracy
while keeping strong privacy protection. What’s more, Fig. 2 shows that the
accuracy of DPDR-DPSVM is much superior to DPSVM when applying the
same level of privacy protection, which indicates DPDR-DPSVM holds better
data utility while keeping the same privacy guarantees.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Fig. 2. Accuracy vs. privacy parameter ε on SVM classification (k = 20, n = 104)

Furthermore, Fig. 3 shows the comparisons of the impact of data size n on
accuracy, where n is set as n = {100, 500, 1000, 5000, 10000}. It can be seen from
Fig. 3 that the accuracy of three mechanisms will increase with the increase of
data size n for three datasets. With different data sizes, our proposed DPDR-
DPSVM always outperforms DPSVM under the same privacy protection level.
This is because DPDR-DPSVM involves the DP-compliant dimensionality reduc-
tion to extract the key feature of high-dimensional data, thus leading to a
higher accuracy than DPSVM. This also demonstrates that DPDR-DPSVM can
improve the data utility in practice even when dealing with high-dimensional
data.
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Fig. 3. Accuracy vs. data size n on SVM classification (ε = 0.1, k = 20)

Evaluation of Running Time. We also compared the running time of different
mechanisms on SVM training, as shown in Table 2. Here, we set the data size as
104 and the target dimension as 20. It can be observed that the running time
of Non-Priv and DPDR-DPSVM are much lower than DPSVM, especially when
the dataset (i.e., CIFAR-10) is very large. This proves that privacy-preserving
dimensionality reduction can surely improve the efficiency of SVM trains while
providing privacy protection. Besides, compared with Non-Priv and DPSVM, our
proposed DPDR-DPSVM can maintain relatively excellent performance under
the premise of providing strong privacy protection.

Table 2. Running time of different mechanisms on different datasets

Dataset

Time(s) Mechanism
Non-Priv DPSVM DPDR-DPSVM

MNIST 3.68 7,873.23 111.70

Fashion-MNIST 5.02 7,988.60 112.70

CIFAR-10 63.45 36,960.70 147.96

6 Conclusion

Support Vector Machine (SVM) is a powerful machine learning algorithm that
has been successfully applied to various domains, including text classification,
image recognition, bioinformatics, and financial analysis. However, privacy con-
cerns may arise when dealing with sensitive or private data during the training
or implementation of SVM. Therefore, this paper proposes a strict differentially
private support vector machine algorithm called DPDR-DPSVM with high data
utility. We conduct extensive experiments on three high-dimensional data with
different characteristics. The experimental results show that our proposed algo-
rithm can maintain good data utility while providing strong privacy guarantees.
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Abstract. Unmanned Aerial Vehicles (UAVs) serve as highly versatile
and efficient tools utilized across diverse industries for data collection
purposes. However, they face vulnerabilities associated with wireless
communication and data exchange, such as unauthorized access, data
theft, and cyberattacks. These risks pose significant challenges to the
establishment of reliable UAV network services. This study introduces a
comprehensive blockchain-based architecture for UAV network services,
designed to address these challenges. The proposed architecture tack-
les concerns related to identity authentication and privacy protection
through the seamless integration of blockchain technology. Moreover, it
incorporates advanced deep learning techniques to enhance UAV safety
during operations and provide robust protection against cyber threats.
A series of experimental tests were conducted, simulating various UAV
network attack scenarios. The results of these experiments unequivocally
demonstrate the feasibility and effectiveness of the blockchain-driven
UAV network service architecture.

Keywords: Unmanned Aerial Vehicles · Blockchain · Deep Learning

1 Introduction

Unmanned Aerial Vehicles (UAVs) have made a transition from military to civil-
ian applications, showcasing rapid deployment capabilities and adaptability in
challenging terrains. Equipped with advanced sensors, these UAVs serve var-
ious purposes, including surveillance, environmental monitoring, and disaster
response [1–5]. They play a pivotal role in extending network coverage and
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enhancing functionality in remote areas, thus contributing to the Internet of
Things (IoT). While previous studies have often considered UAVs as supplemen-
tary tools to address networking challenges, such as extending vehicular network
connectivity [6], providing WiFi services in open spaces [7], and enabling mission-
critical IoT communication [8], this perspective has limited the full potential of
UAV flight automation. To expedite UAV flight automation, with a focus on
secure, real-time services, it is imperative to develop a comprehensive UAV net-
work architecture.

Traditional networks that rely on centralized cloud servers pose challenges
such as computational loads and latency, which are particularly unsuitable for
UAV networks, especially for tasks sensitive to latency. The importance of ensur-
ing UAV network service security cannot be overstated, given the extensive data
transactions involved in flight automation. Inadequate security measures risk
breaches and compromises in data integrity [9]. Furthermore, the integration
of edge services amplifies these concerns, necessitating the implementation of
robust privacy and integrity mechanisms. Promisingly, blockchain technology,
with its secure consensus mechanisms, offers potential solutions for addressing
these challenges [10–12].

1.1 Our Contributions

In summary, we presents a comprehensive framework for trusted UAV network
services, leveraging blockchain and deep learning technology to enhance identity
authentication, privacy, and security within the UAV operating environment.
Our key contributions can be outlined as follows:

Blockchain-Based Trusted UAV Network Service Architecture: We
introduce an innovative trusted UAV network (IoD) service architecture that
integrates blockchain, deep learning and edge cloud technologies. This integra-
tion ensures the provision of secure, reliable, and efficient network services for
UAVs, supporting the automation of UAV fractionalization tasks.

Addressing Trusted Identity Authentication for UAV Clusters: Our
proposal includes a blockchain-based identity management module for UAVs,
addressing identity authentication, authorization, and end-device management.
Utilizing blockchain distributed ledger technology, OpenSSL certificates, hash
encryption algorithms, and digital signature technology, this module ensures
robust identity management.

Mitigating Cybersecurity Risks for UAVs: We present a real-time UAV
cluster terminal device security situational awareness system based on WAF traf-
fic detection technology and malicious process detection technology. Addition-
ally, we introduce a UAV terminal reputation value. Combining these elements
with UAV terminal security situational awareness, automated security policies
are implemented for both the ground control station and the UAV cluster, ensur-
ing a secure operating environment for UAVs.
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Simulation and Validation Through Docker-Based Experiments: We
utilize Docker for simulating a UAV cluster and conducting a series of experi-
ments. These experiments not only completed the development of a trusted UAV
network service architecture platform but also include simulations of UAV net-
work attacks, validating the feasibility and effectiveness of our proposed scheme
and architecture.

2 Related Work

2.1 Emerging UAV Identity Authentication Mechanisms

Recent advancements in UAV technology have spurred the exploration of UAV
swarms in military research, garnering significant attention. However, traditional
UAV management techniques have raised security concerns, including the vul-
nerability of centralized systems to single-point failures and the lack of robust
authentication, making them susceptible to potential threats from malicious
actors [13,14]. Addressing these challenges, scholars have integrated blockchain
technology to facilitate UAV identity authentication and decentralized decision-
making processes [15]. Blockchain empowers UAVs to engage in encrypted iden-
tity validation, secure data sharing, and distributed voting, thereby enhancing
security and collaborative aspects in UAV swarm systems.

Additionally, another the reference [16] focuses on enhancing UAV secu-
rity by preserving the integrity of the UAV service environment. This research
introduces two crucial mechanisms: node authentication and credit evaluation.
The former validates incoming UAVs, while the latter assesses the credibility
of edge nodes and their services, recording evaluations on the blockchain. Neg-
ative evaluations can restrict user UAV access, introducing a form of public
oversight. Both mechanisms operate within the consensus-driven framework of
blockchain, eliminating the need for intermediaries. This democratic approach
significantly improves reliability, transparency, and mitigates vulnerabilities aris-
ing from third-party involvement. The research presents innovative mechanisms
that advance security and trust in the dynamic UAV service environment.

2.2 Blockchain-Driven Services for the Internet of UAVs

In the realm of network applications, a pivotal study conducted by [17] introduces
a tailored blockchain-based architecture for the Internet of Unmanned Aerial
Vehicles. This innovative framework integrates UAVs, edge servers, and a super-
ledger blockchain network, transcending the limitations of conventional UAV
systems. Consequently, blockchain technology emerges as a potent solution for
addressing the intricate security needs associated with UAV data collection [18].

However, the expansion of UAV networks brings forth communication chal-
lenges and complex security issues. To mitigate these challenges, researchers
advocate for the integration of blockchain into peer-to-peer UAV networks,
thereby enhancing communication security and scalability. This novel app-
roach fosters collective communication integrity among diverse entities. While
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blockchain was initially designed to tackle double-spending in cryptocurrency,
a more nuanced exploration is imperative for ensuring robust UAV network
security [19]. Concurrently, in wireless sensor networks (WSNs) within moni-
toring paradigms, the work by Li et al. [20] stands out. This research proposes
a blockchain-enhanced data aggregation strategy harnessing the capabilities of
UAVs in WSNs to minimize data redundancy. This cutting-edge solution sig-
nificantly enhances data security and the trustworthiness of UAVs in assisted
WSNs.

2.3 UAV Attack and Defense Strategies

Various configurations of UAV-based networks are gaining prominence in criti-
cal domains, including emergency response, environmental monitoring, defense,
security, and commercial endeavors [22]. However, these UAVs are susceptible
to network-based intrusions due to their involvement in transporting sensitive
real-time data. Moreover, the wireless communication infrastructure supporting
UAV networks remains vulnerable to a range of network attacks [21].

In the realm of real-time UAV systems, Chen et al. [23] present an inno-
vative concept. Their solution introduces a software framework named “Con-
tainerDrone,” meticulously designed to enhance the system’s resilience against
Denial of Service (DoS) attacks. This framework encompasses three pivotal sys-
tem resources: CPU, memory, and communication channels, each fortified with
tailored defense mechanisms. This strategic approach not only bolsters the sta-
bility of real-time UAV systems but also enhances their security, rendering them
more resistant to disruptive attacks.

3 System Model

3.1 System Architecture

This section outlines the architecture of an Unmanned Aerial Vehicle Network
(IoD) service system, emphasizing security, reliability, and efficiency, achieved
through the integration of blockchain, deep learning and edge cloud technologies.
The proposed system architecture, depicted in Fig. 1, consists of five essential
components, each fulfilling a crucial role in ensuring the seamless operation of
the system.

Unmanned Aerial Vehicle Cluster: This vital component comprises
unmanned aerial vehicles equipped with various Internet of Things (IoT) devices,
including cameras, infrared sensors, and more. Guided by instructions from the
ground control station, these UAVs meticulously collect a range of data, encom-
passing UAV parameters such as speed and battery levels, flight altitude, RGB
and thermal images, and other relevant metrics. The collaborative sharing of
these data within the UAV cluster facilitates efficient task execution in accor-
dance with predefined directives.
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Fig. 1. Overview of System Architecture.

Blockchain Network: At the core of the architecture’s security and commu-
nication framework lies the blockchain network, enabling seamless interactions
among the UAV cluster, ground control station, and users. This blockchain net-
work is meticulously tailored to accommodate the unique characteristics of UAV
network data. Notably, two distinct blockchain networks are instantiated to cater
to the needs of the UAV cluster and the control station.

– UAV Cluster Blockchain Network: Grounded in a distributed,
immutable database, this network orchestrates fluid data exchange within
the UAV cluster, ensuring both security and reliability. Each UAV serves as
a node, inherently linking its UAV UUID to the blockchain’s identity authen-
tication framework. When a new UAV node desires to join this blockchain
network, a trusted third-party agent administers an admission certificate.
Subsequently, the legitimacy of this certificate undergoes scrutiny within the
identity authentication system. Ultimately, a collective consensus within the
UAV cluster determines the UAV’s inclusion in the blockchain network.

– Control Station Blockchain Network: This facet manages a secure and
dependable distributed immutable database, designated for user operations
and interactions between ground control stations and UAVs.

Trusted Third-Party Agent: This essential component plays a pivotal role
in facilitating the identity authentication mechanism of UAVs. By providing ser-
vices related to reliable certificate authorization and proficient certificate man-
agement, the trusted third-party agent significantly enhances the security frame-
work of the system.

Ground Control Station: Serving as the hub for data reception and process-
ing, the ground control station fulfills critical functions during task execution.
Dynamic adjustments to the UAV cluster’s task instructions are made based
on executed tasks, involving the dissemination of fresh task directives and the
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updating of control parameters. To support these functions, the ground control
station utilizes both MySQL and MongoDB distributed databases as off-chain
repositories. These repositories store structured and unstructured data collected
from the UAV cluster. Importantly, essential attributes of off-chain data are
recorded within the blockchain network to mitigate data storage overhead on
the blockchain.

Edge Cloud Servers: This component is positioned to address the computa-
tional limitations inherent in UAVs by offloading computational tasks. The edge
cloud servers optimize task execution by conducting data preprocessing either on
the UAVs themselves or upon receiving transmitted data. The availability of sub-
stantial computational resources within the edge cloud servers enables judicious
task offloading, guided by factors such as data volume and UAV computational
capacity.

3.2 Threat Model: Security Challenges in UAV Network Services

The current architecture of UAV network services emphasizes the critical need
to address security and vulnerability concerns, especially within UAV clusters.
Collaborative task execution among UAV clusters, ground control stations, and
edge cloud servers requires nearly real-time data interactions for efficient task
fulfillment. However, the presence of unreliable wireless network communications
and data exchanges introduces a range of risks. These risks include malevolent
actors pilfering private data, unauthorized UAVs infiltrating the network, and
the potential for malicious attacks targeting the UAV clusters. In the context
of these challenges, a comprehensive threat model is outlined below, delineating
the security threats and challenges inherent in the system.

UAV Attacks: Within the UAV system, a variety of attacks pose significant
threats, including:

– UAV Identity Spoofing: This refers to attackers evading identity authenti-
cation mechanisms or masquerading as legitimate UAVs, deceiving the system
into granting unauthorized access. The consequences of such attacks can be
severe, ranging from interference with other UAVs’ flights to tampering with
mission instructions or data theft. Strategies for these attacks may involve
identity forgery, password cracking, or the exploitation of stolen credentials.

– UAV Hijacking Attacks: Attackers target UAVs lacking adequate safe-
guards or communication security, gaining control of legitimate UAVs to
manipulate their flight paths and operations. This control manipulation can
lead to dire outcomes, such as data leaks or mission failures, significantly
jeopardizing the overall system security.

– Denial of Service (DoS/DDoS) Attacks: Adversaries inundate the sys-
tem with malicious requests or exhaust UAV resources to incapacitate a UAV,
disrupting tasks or communication. This can lead to loss of control, severed
communication links, or system crashes.
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– Port Scanning Attacks: Attackers utilize tools to scan the system’s ports,
searching for open network access points for potential exploitation. Knowledge
of these open ports can facilitate subsequent malicious activities.

– Incorrect Position Updates: Attackers manipulate UAV position calcu-
lations through erroneous GPS signals or communication disruption, affect-
ing navigation, potentially causing deviation from intended trajectories, and
undermining mission success.

Ground Control Station Attacks: Adversaries exploit vulnerabilities in
ground control stations to inject malicious inputs, launching injection attacks:

– SQL Injection Attack: Malicious SQL statements are inserted via user
inputs, tricking the system into executing unauthorized database queries,
potentially leading to data leaks or manipulation.

– NoSQL Injection Attack: Attackers inject malicious code into NoSQL
databases, jeopardizing data integrity, causing information leaks, and dis-
rupting control station operations.

In light of these multifaceted threats, a comprehensive security strategy is
necessary to strengthen the architecture and mitigate risks in UAV network
services.

3.3 System Objectives: A Comprehensive Overview

The system’s primary objectives encompass both functional and security require-
ments, resulting in a meticulously designed framework that addresses the mul-
tifaceted demands of UAV network services.

Functional Requirements

– Blockchain-based UAV Identity Management Module: This module
demonstrates the system’s commitment to establishing secure and trustwor-
thy identity mechanisms. Through the integration of blockchain distributed
ledger technology, PKI public-private key technology, digital certificates, and
digital signatures, the module achieves the task of authenticating, authoriz-
ing, and meticulously managing terminal device identities, spanning UAV
clusters and ground control stations.

– Security Situational Awareness Defense Module: The system proac-
tively fosters real-time security situational awareness within terminal devices
of UAV clusters and ground control stations. Employing advanced WAF traf-
fic detection technology and malicious process detection technology, this mod-
ule safeguards the system against potential threats. Additionally, the mod-
ule utilizes smart contracts to continually track the reputation value of ter-
minal devices, facilitating the deployment of automated security strategies,
strengthening both ground control stations and UAV clusters.
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– Blockchain-based Trusted Data Interconnection Module: Ensuring
the integrity of data transmission and interaction is fundamental to this
module’s function. By harnessing blockchain technology and cryptographic
algorithms, the module enables data encryption, transmission, and storage
across various interactions—ranging from UAV cluster interactions, interac-
tions between UAV clusters and edge cloud servers, to interactions between
ground control stations and UAV clusters. This reinforces the principles of
data verifiability, traceability, and accountability within the system.

Security Requirements

– Confidentiality and Privacy: The system rigorously upholds the confiden-
tiality and privacy of transmitted data. Through the meticulous application
of encryption algorithms, data exchanges—such as those occurring between
UAV clusters, interactions between UAV clusters and edge cloud servers,
and command data between ground control stations and UAV clusters—are
securely encrypted, accessible only to duly authorized users validated by the
system.

– System Availability: The system’s unwavering commitment to high avail-
ability enables it to persistently function, even in the face of adversarial
attacks, technical glitches, or network disruptions. The system remains oper-
ational, responsive, and adept at executing tasks, embodying uninterrupted
service.

– Data Integrity: The system stands as an indomitable bulwark against
data tampering. It diligently safeguards data integrity during transmission
and storage, thwarting malevolent efforts to manipulate or compromise the
authenticity of the data.

– Identity Authentication Mechanism: The system enforces a rigorous
identity authentication mechanism that scrutinizes UAVs seeking to join the
UAV cluster meticulously. Moreover, identity verification for user access to
UAVs and the issuance of control commands through ground control stations
are fortified by blockchain and digital signature encryption technologies.

4 System Design

4.1 Blockchain-Based UAV Identity Management: Design
and Implementation

The system architecture design of blockchain-based UAV identity authentica-
tion is depicted in Fig. 2. This framework is built upon three fundamental
components: UAV identity certificate construction, UAV identity privacy pro-
tection, and UAV identity authentication. These components synergistically
work together to establish a comprehensive and robust identity management
ecosystem.



164 Z. Li et al.

Fig. 2. UAV Identity Authentication.

UAV Identity Certificate Construction: The construction of UAV identity
certificates involves a two-fold process: permission division and identity valid-
ity proof. The system leverages FiscoBcos-based permission division to allocate
UAV permissions judiciously, overcoming challenges associated with permission
delineation. OpenSSL, a versatile tool, is utilized for creating UAV identity cer-
tificates. Identity validity proof challenges are effectively addressed through this
OpenSSL-based technology.

The operational sequence begins with the generation of a private key denoted
as node.key using OpenSSL technology. This private key forms the foundational
basis for creating a certificate request file, denoted as node.csr. The private
key, along with relevant information, is used to construct the certificate request
file. This file undergoes thorough scrutiny by the institution administrator, who
conducts a meticulous verification process encompassing both legitimacy and
the corresponding key. Upon successful validation, the institution administrator
utilizes the institution’s private key, denoted as agency.key, to issue a certificate
to the respective node.

UAV Identity Privacy Protection: The decentralized nature of the
blockchain ledger, while transformative, raises significant concerns about iden-
tity privacy among the participating nodes. The distributed consensus paradigm
introduces apprehensions about privacy exposure, potentially leading to vulnera-
bilities like tracking and malevolent actions orchestrated by unscrupulous nodes.
Within the context of blockchain-infused UAV clusters, safeguarding identity
privacy becomes of paramount importance. This project aims to employ sophis-
ticated technologies such as ring signatures and zero-knowledge proofs to proac-
tively achieve UAV identity privacy protection. The application process involves
concealing the sender’s address and public key through the ingenious orchestra-
tion of ring signatures. The mechanics are outlined as follows:
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The aspiring node generates an array of public keys, being aware of the
private key corresponding to one public key in the array (possession of just one is
sufficient). Using this set of public keys alongside the corresponding private key,
the node creates a ring signature. Validators can verify that the ring signature
originates from the possessor of the private key aligned with one of the public
keys in the array. However, the identity of the specific public key linked to the
private key remains concealed.

UAV Identity Authentication: The core of identity authentication lies in val-
idating the authenticity of communication counterparts, fortified against adver-
sarial exploits such as forgery and impersonation. The architecture’s foundation
for identity authentication is supported by cryptographic methodologies, includ-
ing symmetric encryption algorithms, public-key cryptography algorithms, and
digital signature algorithms.

The aspiring applicant employs a digital signature algorithm to encrypt iden-
tity information, resulting in the generation of an identity information hash
digest. Subsequently, the applicant utilizes the AES encryption algorithm to
create an AES key, named Key, to encrypt identity information. This process
produces ciphertext, referred to as CipherData. The AES key, meticulously
encrypted through the RSA private key (designated as PrivateKey), forms a
key block known as CipherKey. Both CipherData and CipherKey are transmit-
ted to the verifier. The verifier, utilizing the RSA public key (denoted as Pub-
licKey), decrypts the RSA-encrypted CipherKey, acquiring the AES key, Key.
Using Key, the verifier decrypts CipherData, completing the process of identity
authentication.

4.2 Security Situational Awareness Defense Module

The system’s security situational awareness defense module architecture is
depicted in Fig. 3. At the core of the system’s reinforcement lies the Security Sit-
uational Awareness Defense Module, a vital structure comprising three essential
components: Security Situational Awareness, Malicious UAV Identification based
on Reputation, and Automated Security Policies. Together, these elements estab-
lish a dynamic and robust defense mechanism, meticulously crafted to counter
emerging security challenges.

Security Situational Awareness: At the core of this module lies the seamless
integration of behavioral sensing and anomaly reporting, forming a multifaceted
mechanism for real-time security awareness and responsiveness. This integration
creates a robust and versatile framework, enabling real-time security awareness
and effective responses to emerging threats.

Behavioral Perception, utilizing advanced traffic capture technology and
machine learning-based traffic detection methods, meticulously analyzes malev-
olent traffic attributes and extracts significant features from UAVs’ behavioral
data. This component facilitates meticulous monitoring, analysis, and prediction
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Fig. 3. Security Situational Awareness Defense.

processes covering UAV cluster and ground control station terminal traffic. By
discerning patterns of malicious behavior, this layer enhances early detection of
potential threats.

Anomaly Reporting, leveraging insights from Behavioral Perception, iden-
tifies UAVs exhibiting malicious behavior. This information is relayed to the
UAV cluster using blockchain technology, ensuring immutable recording of such
malevolent activities. The collective decision-making process facilitated by the
blockchain’s consensus algorithm allows the expulsion of malicious UAVs from
the cluster, fostering a secure and dependable environment.

Additionally, the module incorporates a reputation-based scoring mechanism
for precise identification of malicious UAVs. Initial scores assigned to terminal
devices dynamically adjust based on instances of anomalous conduct, forming
a layered defense against threats. Through these efforts, Security Situational
Awareness adopts a holistic approach, safeguarding UAV clusters, promoting
real-time security vigilance, and enabling swift responses to potential risks. Key
guidelines for score deduction include:

– High-confidence classification of attack traffic (confidence >60%) originating
from a cluster UAV results in immediate labeling of the UAV as malicious,
while confidence levels below 50% trigger reputation deductions.

– Vigilant monitoring of outbound traffic from UAVs, combined with the identi-
fication of malevolent software patterns, classifies UAVs as malicious if detec-
tion confidence surpasses 60%. Confidence levels below 50% trigger reputation
deductions.

– During UAV cluster identity verification and consensus, detection of counter-
feit identities promptly categorizes the node as malicious.
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– In the context of blockchain data validation, discovery of errors, including
verification failures and missing data, leads to corresponding deductions in
the trustworthiness score.

Automated Security Policies: Upon the identification of malicious
Unmanned Aerial Vehicles (UAVs), the Automated Security Policies compo-
nent triggers a swift and coordinated response. This response mechanism oper-
ates through blockchain-embedded smart contracts and consensus procedures.
Detection outcomes are seamlessly broadcasted via smart contracts, initiating
an automated cascade that ultimately severs connections with malevolent UAVs.
The synergy of blockchain-backed mechanisms and consensus protocols empow-
ers the UAV cluster with the ability to independently verify messages and reach
a consensus, thereby orchestrating automated measures to mitigate anomalies.

4.3 Data Trustworthy Interconnection Module Based on Blockchain
Technology

The module for data trust interconnection, utilizing blockchain technology, plays
a pivotal role in establishing secure and reliable interconnections within the sys-
tem, as depicted in Fig. 4. This module encompasses two fundamental aspects:
the sharing of data within the UAV cluster and the verification of the shared
UAV data. Each unmanned aerial vehicle (UAV) terminal, conceptualized as an
autonomous blockchain node, undergoes rigorous identity verification through
blockchain protocols upon joining the cluster. During task execution, UAVs
equipped with IoT devices engage in data exchange to enhance collaborative
efficiency. The UAV cluster receives shared data, and a consensus algorithm,
employing blockchain, smart contracts, and cryptography, ensures the integrity
and consistency of this data.

In the pursuit of establishing a reliable interconnection module for UAV
data, it is crucial to account for the diverse performance attributes inherent
in different UAV models and the varied operational requirements they fulfill.
Consequently, the data requiring blockchain-based verification within the UAV
cluster system is classified into two distinct categories: essential and non-essential
data. Essential data comprises information of paramount importance for task
execution, necessitating immediate blockchain verification. On the other hand,
non-essential data includes information with minimal impact on tasks, allowing
for deferred blockchain integration.

To address the varying levels of criticality associated with shared verification
data, a robust middleware system is developed to oversee attestation for UAV
cluster data sharing and validation for shared UAV data. This system relies
on two fundamental functionalities: data sharing attestation facilitated by the
middleware system and the validation of shared UAV data, ensuring an audit
trail.
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Fig. 4. UAV Uplinking.

As illustrated in Fig. 5, for pivotal key data, the application system proac-
tively submits data to the middleware system through a RESTful API. Upon
data submission, the middleware system processes and validates the received
data through standardized procedures and signature authentication. This pro-
cess concludes with the invocation of the blockchain system’s API, seamlessly
integrating the data into the blockchain. Non-essential data is managed using
a passive message queue mechanism. When new data arrives in the message
queue, the middleware system autonomously retrieves and processes the data,
enabling its seamless incorporation into the blockchain. This approach signif-
icantly enhances operational efficiency, promoting an elevated level of system
performance.

Fig. 5. Middleware System.
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5 Experiments and Analyses

5.1 Experimental Design

Unmanned Aerial Vehicle (UAV) Network Service System: In our
study, we implemented the blockchain platform using the FISCO BCOS frame-
work and constructed the UAV network service framework system with the
Spring Boot framework. The UAV network service system was deployed using
Docker Compose and Kubernetes. Each UAV was configured as a blockchain
node associated with a unique UUID. Docker containers were utilized to emu-
late third-party trusted agencies, providing reliable certificate authorization and
management services for UAV identity authentication.

Unmanned Aerial Vehicle (UAV) Node Simulation: To simulate ground
control stations sending task commands to UAV clusters, we developed code
using Spring Boot. Docker containers were employed to simulate UAV clusters
and capture flight status data, including speed, battery level, flight altitude, RGB
images, and thermal images. Data exchange among UAV clusters was governed
by smart contracts on the blockchain platform. Additionally, edge cloud servers
managed UAV computation offloading and storage, storing both raw UAV data
and computed results in a distributed database.

Unmanned Aerial Vehicle (UAV) Attack Simulation: We constructed a
series of adversarial scenarios using Docker Compose to simulate attacks on our
system. These scenarios included UAV identity spoofing, UAV hijacking, denial-
of-service attacks, and port scanning attacks. The security performance of the
system was evaluated by analyzing the frequency of successfully detected attacks
and the detection success rate.

5.2 Experimental Analyses

Figure 6 illustrates the network latency of the unmanned aerial vehicle (UAV)
network system. We employed a stress-testing tool to invoke interfaces, simulat-
ing data transmission between the UAV cluster and the ground control station.
Timestamps for data transmission and reception were recorded to calculate net-
work latency. Experimental results indicate that the average network latency of
the UAV network system is less than 106.75 milliseconds, demonstrating favor-
able latency performance in real-time communication.

Figure 7 demonstrates the effectiveness of the unmanned aerial vehicle net-
work service system against malicious attacks. Various types of attacks were
simulated, including UAV identity spoofing, hijacking attacks, and denial of ser-
vice attacks. During the evaluation process, Docker was used to simulate 100
UAVs and 20 malicious UAVs. The results reveal that the security posture-
based defense module detected approximately 92% of malicious UAV identity
spoofing attacks, around 67% of malicious UAV hijacking attacks, about 82%
of denial of service attacks, approximately 87% of SQL injection attacks, and
roughly 86% of NoSQL injection attacks. The system demonstrates a high level
of security performance.
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Fig. 6. Network Latency Fig. 7. Attack Detection Rate

6 Conclusion

In this paper, we presented a robust UAV network service architecture built
on blockchain technology, seamlessly integrating blockchain, edge cloud com-
puting, and UAV networks. This integration establishes a strong foundation for
customized, secure, reliable, and efficient network services for UAVs. By incor-
porating innovative mechanisms such as blockchain-based identity management,
real-time security situation awareness, and the introduction of reputation values
for UAV terminals, we effectively mitigate cyber-attack vulnerabilities faced by
UAVs. This results in a trusted interconnection of data within UAV clusters. We
extensively validated our system through simulations and experiments utilizing
Docker container technology, confirming its high level of security, effectiveness,
and usability.
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Abstract. With the rapid growth of edge devices such as smartphones,
wearables, and mobile networks, how to effectively utilize a large amount
of private data stored on these devices has become a challenging issue. To
address this issue, federated learning has emerged as a promising solu-
tion. Federated learning allows multiple devices to train machine learning
models collaboratively while keeping the data decentralized and follow-
ing local privacy policies. However, the heterogeneous differences in data
distributions, model structures, network environments, and devices pose
challenges in realizing collaboration. In this paper, we reviewed the het-
erogeneous federated learning (HFL) approaches and classified them into
data heterogeneity, device heterogeneity, communication heterogeneity,
and model heterogeneity. Also, we concluded their advantages and disad-
vantages and gave the solutions to the limitations in detail. Meanwhile,
this paper introduces the commonly used methods for evaluating the
performance of federated learning and suggests the future directions of
the HFL framework.
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1 Introduction

In today’s technologically advanced society, edge devices such as smartphones,
wearable devices, and mobile networks are widely used in real-world applica-
tions. However, it is challenging to use the large amount of personal data stored
on these devices without compromising privacy. To address this challenge, fed-
erated learning has emerged as a promising solution. Federated learning allows
multiple devices to train machine learning models collaboratively while keeping
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the data decentralized, adhering to the data locality principle. In this paradigm,
the devices participating in the federated learning system are called clients. Fed-
erated learning is a secure and distributed machine learning framework based on
encryption techniques, enabling organizations to engage in collaborative model
training while safeguarding data privacy. Federated learning(FL) [1,2], a collabo-
rative learning model paradigm, has attracted increasing attention from industry
and academia. Extensive research on this approach has been conducted in various
real scenarios, including healthcare [3], recommendation systems [4], anti-money
laundering [5], and data security [6].

Federated learning has achieved significant success. However, since most
existing research in federated learning is based on the assumption of homo-
geneous data that can be easily aggregated. there are numerous challenges [7],
including variations in data distributions, model structures, network environ-
ments, and edge devices, making federated collaboration hard to implement.
The heterogeneity issues have existed in various aspects of the learning process,
including data heterogeneity, device heterogeneity, communication heterogeneity,
and model heterogeneity. As shown in Fig. 1, the specific challenges are summa-
rized as follows.

(1) Data heterogeneity: Due to the Non-Independent Identical Distribution
(Non-IID) problem of the client’s local data, the results obtained from model
training on one client may not be able to be generalized to other client’s
data, resulting in a decline in the overall performance of the model.

(2) Device heterogeneity: Due to the differences in client’s storage, computation,
and communication capabilities, the computational power of some clients is
weak, and they cannot perform complex model training or gradient calcu-
lation, resulting in an imbalance between the devices involved in federated
learning, affecting the overall training effect.

(3) Communication heterogeneity: Due to the differences in the network envi-
ronment in which the client is located, there may be communication delays
and bandwidth constraints, resulting in a blockage of the aggregation pro-
cess of the model parameters, which affects the model’s updating and con-
vergence speed.

(4) Model heterogeneity: In various application scenarios, different tasks require
different models, so customers need to effectively integrate different types of
models. However, this is a challenging task that requires solving the problem
of model fusion and integration.

To address the above heterogeneity problems, we provide a comprehensive sur-
vey of research work on HFL in this paper. We conduct a comprehensive inves-
tigation into the fundamental causes of heterogeneity in federated learning and
subsequently classify HFL approaches into four categories: data heterogeneity,
device heterogeneity, communication heterogeneity, and model heterogeneity.
This study sufficiently analyzes the solutions to address these challenges. Addi-
tionally, it employs commonly employed performance evaluation methodologies
to evaluate the performances of existing HFL approaches and also gives four
potential research directions of the HFL framework.
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Fig. 1. Schematic of heterogeneous federated learning

1.1 Related Surveys

A survey conducted by Yang et al. [2] was quite influential in establishing the
fundamental principles and concepts of Federated Learning. It also proposed an
extensive and robust FL framework. Kairouz et al. [8] expanded the applications
of FL to various scenarios. Wahab et al. [9] conducted a thorough investigation
and synthesis, presenting a multi-level classification methodology and evaluation
criteria, and exploring the prospects of federated learning within communication
and network systems. In a more recent survey [10], the domain of Personalized
Federated Learning (PFL) was introduced, accompanied by an exploration of the
fundamental challenges of privacy-preserved machine learning on heterogeneous
data. The survey described PFL techniques, pivotal concepts, and future research
directions.

However, it is worth noting that several surveys focus on HFL. The study [11]
offered an all-encompassing assessment of the profound impact of heterogeneity
on quality and fairness in federated learning, highlighting significant effects on
model performance and fairness in mixed heterogeneity scenarios. The concept
of HFL was initially introduced by Gao et al. [12], who endeavored to tackle the
intricate challenges posed by heterogeneity in federated learning through the
comprehensive investigation of various aspects, including data space, statistics,
systems, and model heterogeneity. In a recent survey, Ye et al. [13] provided a
systematic examination and comprehensive review of the practical challenges and
innovative solutions of HFL. The survey research challenges in HFL, a thorough
review of recent advancements, analysis of existing approaches, and an insightful
on future research directions.
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2 A Taxonomy of Heterogeneous Federated Learning

2.1 Definition

The concept of HFL aims to address the inherent heterogeneity among par-
ticipants in terms of data, devices, communication, and models. The primary
objective of HFL is to facilitate the integration of knowledge across diverse par-
ticipants, thereby enhancing model performance and generalization capabilities.

2.2 Analysis

Data Heterogeneity. Data Heterogeneity is often regarded as statistical het-
erogeneity, where the data deviates from complete independence and identical
distribution, commonly known as non-independent and identically distributed
(non-i.i.d.).

Model Heterogeneity. Model heterogeneity presents numerous technological
and algorithmic challenges in the field of federated learning. Primarily, models
with different architectures may have different quantities of parameters and fol-
low distinct update rules. Consequently, this makes the aggregation of model
parameters notably complex during the federated learning process. Moreover,
model heterogeneity gives rise to disparities in model performance, as divergent
model types may exhibit variances in data processing and learning tasks.

Device Heterogeneity. In a pristine federation environment, clients demon-
strate a diverse range of device configurations, including variations in GPU,
CPU, software, and network conditions. This heterogeneity leads to significant
discrepancies in device overhead, such as compute time and resource utilization,
when striving to accomplish the same task. Consequently, this exacerbates the
performance degradation of a global model.

Communication Heterogeneity. In real-world implementations of the Inter-
net of Things (IoT), devices are commonly deployed in diverse network envi-
ronments, each characterized by distinct network connectivity settings. Conse-
quently, that leads to variations in communication attributes such as bandwidth,
latency, and reliability, resulting in what is widely known as communication het-
erogeneity.

3 Heterogeneous Federated Learning Taxonomy

3.1 Federal Learning Strategies with Heterogeneous Data

The presence of non-i.i.d. data among clients poses a challenge known as data
heterogeneity. Addressing the detrimental effects of non-i.i.d. data remains an
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ongoing research endeavor. Non-i.i.d. data exhibits distributional skews, often
observed as label distribution skew, feature distribution skew, and quantity skew.

Label Distribution Skew: In the context of label distribution skew [14], the
heterogeneous distribution of target labels (or classes) can lead to significant
disparities among diverse clients.

Feature Distribution Skew: Feature distribution skew refers to discrepancies
in the distributions of input features among clients [15]. The variation in feature
distributions could increase due to divergent data collection processes employed
by different clients.

Quantity Skew: Quantity skew refers to disparities in the available data vol-
ume among clients. Certain clients may possess a substantial amount of data [16],
while others may have a limited number of data samples. Consequently, clients
with abundant data can exert undue influence on the training process. Effec-
tively managing quantity skew requires techniques to mitigate the impact of
data imbalance and prevent clients with limited data from being overshadowed.

Based on the classification of data heterogeneity problems, there are several
potential solutions to consider. One such solution is data augmentation, which
involves enriching or amplifying data by incorporating supplementary informa-
tion or features. Fedmix [17] aims to integrate Mixup techniques into federated
learning to enhance the mean-based federated learning paradigm. This inno-
vative approach introduces mean-enhancement techniques within the federated
learning framework, approximating the benefits of Mixup. As a result, Fedmix
effectively addresses challenges such as overfitting, enhances model generaliza-
tion, and mitigates issues associated with imbalanced data distribution. However,
it is important to note that Fedmix has its limitations. The collection of local
data distributions may introduce potential information leakages, raising concerns
about privacy and security. Astraea [18] tackles the challenges of data imbalance
and model bias through adaptive sample selection and uncertainty-driven model
updating strategies. The efficacy of these approaches is rigorously demonstrated
across various datasets encompassing mobile deep-learning applications. How-
ever, it is worth noting that some researchers have expressed concerns about
Astraea’s method, suggesting that the disclosure of local data distributions dur-
ing upload could inadvertently expose vulnerabilities and make it susceptible to
malicious intrusion.

This section delves into the data heterogeneity issues encountered in fed-
erated learning, encompassing label distribution skewness, feature distribution
skewness, and quantity skewness. To address these challenges, the section exam-
ines potential solutions, including data augmentation and the Fedmix method.
In future research, it would be valuable to explore approaches that effectively
mitigate the limitations of these methods and further enhance their efficacy and
security.

3.2 Federal Learning Strategies with Heterogeneous Model

Model heterogeneity presents a challenge when attempting to transfer knowledge
between the clients that employ different models with a model-independent app-
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roach. To tackle this issue, we classify model heterogeneity into two categories:
partial heterogeneity and full heterogeneity.

Partial Heterogeneity. Partial heterogeneity refers to the differences in the
model architectures adopted by various clients, while certain components or lay-
ers of the models remain consistent across clients. In other words, there exists
a partial overlap in the model architectures. This variability may arise due to
hardware limitations, individual requirements, or variations in the task proper-
ties that clients aim to address.

Complete Heterogeneity. Complete heterogeneity in federated learning
occurs when different clients use model architectures that have significant dif-
ferences, leading to a wide variety of models. To effectively tackle this challenge,
sophisticated strategies like meta-learning [19] or model-agnostic mechanisms are
necessary. These strategies facilitate the generalization and transfer of knowledge
while accommodating the diverse model structures.

Several solutions are proposed based on the above categorization of model
heterogeneity into partial and complete heterogeneity. One of these solutions
is knowledge distillation, which relaxes the stringent requirements for homoge-
neous local models by using logarithms as a representation of knowledge trans-
fer. This approach allows for the creation of federated learning systems that can
accommodate different model architectures [19]. Wang introduced the VFed-
Trans framework for facilitating privacy-preserving data sharing and knowledge
transfer among healthcare organizations [20]. This framework utilizes a joint
modeling approach to extract a federated representation of shared samples by
combining their features. However, researchers have expressed concerns regard-
ing the effectiveness, scalability, and applicability of this approach in different
scenarios of vertical federated learning. In the field of federated learning, Le et
al. proposed FedLKD, an approach that utilizes layer-wise knowledge distilla-
tion [21]. The goal of FedLKD is to enhance the local training process by apply-
ing knowledge distillation between global and local models, using a small proxy
dataset. However, it is important to carefully consider the potential impact of
this method on privacy preservation, as emphasized by several researchers. Yu
et al. proposed an innovative approach to address the inherent heterogeneity
in joint learning through local adaptation [22]. This technique aims to enhance
model efficiency and convergence by incorporating local model adaptation and
parameter tuning. It enables each client to personalize model training based on
its local data characteristics and device capabilities. However, it is important to
consider the potential limitations of this method when utilizing logits, as it may
result in insufficient integration of local information.

In summary, dealing with model heterogeneity presents a significant challenge
in the field of federated learning, which can be categorized as partial hetero-
geneity and complete heterogeneity. To tackle this challenge, researchers have
proposed several effective solutions, such as knowledge distillation, federated
inter-layer distillation, local model adaptation, and parameter tuning. However,
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it is crucial to conduct further research and practical validation to improve the
efficiency and feasibility of these approaches. Moreover, it is important to care-
fully consider essential aspects like privacy protection and potential limitations
when implementing these methods.

3.3 Federal Learning Strategies with Heterogeneous Communication

Within the intricate landscape of the Internet of Things, the prevalence of com-
munication heterogeneity poses significant challenges, characterized by high com-
munication costs and suboptimal efficiency [23], thereby diminishing the efficacy
of federated learning. Several methodologies have emerged as joint strategies to
address the pervasive challenge of communication heterogeneity. These encom-
pass the optimization of compression parameters and gradients, the reduction of
communication rounds, and the implementation of asynchronous training tech-
niques.

Compression Parameters and Gradients. Model parameter compression is
an effective strategy for dealing with variations in communication during feder-
ated learning. It reduces the amount of data transmitted by compressing model
parameters and can be personalized based on the characteristics and limitations
of individual devices. By selectively transmitting gradient updates according to
device characteristics and communication conditions, we can minimize commu-
nication overhead and improve efficiency.

From the perspective of Compression Parameters and Gradients, there are
several methods to address the communication heterogeneity in federated learn-
ing. For example, Communication-Mitigated Federated Learning [24] addresses
the transmission of inconsequential updates to the central server by evaluating
the compliance of local updates with global updates. This method is effective
in reducing the workload of communication transmission. However, it is crucial
to take into account the limitations of this approach when dealing with net-
works that are highly diverse or unreliable. The Federated Deep Neural Networks
Framework [25]introduces a transformative approach by substituting every fully
connected (FC) layer with a pair of low-rank projection matrices, thereby achiev-
ing model compression within the DNNs architecture. The framework establishes
a comprehensive global error function to reconstruct the output of the com-
pressed DNNs model, ensuring fidelity in the compression process. In addition,
FedSkel [26] enhances federated learning by improving computational efficiency
and optimizing communication on edge devices. This is achieved through selec-
tive model updates that solely target the essential components, thereby reducing
resource requirements. However, it is important to note that the scalability of
the system, particularly concerning privacy and security concerns, has not been
extensively analyzed.

Reducing Communication Rounds. Reducing the number of communica-
tion rounds is an effective strategy to handle communication heterogeneity. It
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helps to minimize the overall communication overhead between participants. In
the context of federated learning, FedMMD [27] improves the optimization pro-
cess by introducing the Maximum Mean Discrepancy constraint into the loss
function. This integration leads to a reduction in the required communication
rounds. Another approach, FedSeq [28] enhances the algorithm’s performance
and convergence rate by setting a predefined communication round budget. This
approach effectively manages resource allocation and streamlines the learning
process.

Reducing the number of communication rounds is an effective approach to
address communication differences in federated learning. FedMMD integrates the
Maximum Mean Discrepancy constraint into the loss function, aiming to mini-
mize communication rounds. Meanwhile, FedSeq enhances performance and con-
vergence by setting a predetermined limit on the communication rounds allowed.

Asynchronous Training. In asynchronous training, participants have the free-
dom to update model parameters independently without waiting for others to fin-
ish their updates. This concurrent process has the potential to improve commu-
nication efficiency, especially in situations with high communication latency [7].
In the context of asynchronous training, several methods have been proposed
to handle communication differences in federated learning. For example, Fed-
SeC [29] introduces a framework for differential privacy that incorporates an
optimization technique based on updates. On the other hand, FedSA [30] uses
a semi-asynchronous mechanism that relies on the sequential order of model
updates. Additionally, FedHe [31] applies a knowledge distillation-like approach
to reduce communication overhead.

Communication heterogeneity in federated learning poses significant chal-
lenges, including high communication costs and suboptimal efficiency. To address
this issue, researchers have developed several methodologies, including com-
pression parameters and gradients, reducing communication rounds, and asyn-
chronous training techniques. Methods such as Communication-Mitigated Fed-
erated Learning, Federated Deep Neural Networks Framework, and FedSkel
optimize compression and computational efficiency, while FedMMD and FedSeq
reduce communication rounds. Asynchronous training methods such as FedSeC,
FedSA, and FedHe also address communication heterogeneity.

3.4 Federal Learning Strategies with Heterogeneous Devices

Device heterogeneity in federated learning arises due to disparities in device con-
figurations, including hardware, software, and network conditions [7]. To address
this challenge, methodologies such as fine-tuning training tasks and client selec-
tion are utilized to allocate suitable tasks to edge devices, aiming to optimize
overall efficiency.

Training Tasks Adjustment. To optimize global efficiency in federated learn-
ing, it is essential to allocate appropriate tasks based on the computational
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capabilities of each device, while also considering factors like fairness, privacy,
and data diversity. Intelligent algorithms play a crucial role in navigating device
heterogeneity and enabling effective collaboration. For instance, Abdellatif et
al. [32] propose an efficient user and resource allocation scheme for horizontal
federated learning. This system leverages the vast volumes of data generated
by Internet of Things (IoT) devices to train deep learning models, addressing
the challenges and requirements posed by data privacy and resource-constrained
environments.FedSAE [33] tackles the issue of performance degradation in fed-
erated learning through two key mechanisms: automatic adjustment of device
training task capabilities and participant selection. This approach utilizes com-
prehensive information about a device’s history of training tasks to predict its
training load capacity, enabling adaptive participant selection. However, it is
important to note that refining workload allocation based on client training his-
tory may introduce temporal delays.

Client Selection. Client selection is a critical aspect of federated learning, aim-
ing to identify suitable clients for each iteration based on their constraints, such
as network bandwidth, computation capability, and local resources. Selection
strategy plays a crucial role in accelerating convergence and improving model
accuracy. Wang et al. [34] have made significant contributions in this field. Their
research tackles the challenges posed by non-IID data in federated learning.
They propose a reinforcement learning framework specifically designed for this
scenario, including an effective data representation method, an optimized task
allocation strategy, and a model aggregation mechanism. It is important to note
that reinforcement learning models require a substantial amount of data for effec-
tive training. Furthermore, in addressing the challenges arising from device het-
erogeneity, client selection is often combined with task adjustment. Researchers
have developed methodologies like CFL-HC [35]and HeteroSAg [36]to handle the
varying computational capabilities of edge devices. These approaches effectively
mitigate the impact of device heterogeneity, ensuring optimal performance and
efficiency in federated learning settings.

In federated learning, addressing device heterogeneity requires the allocation
of suitable tasks to edge devices and the selection of appropriate clients based on
their constraints. Fine-tuning training tasks and client selection strategies are
crucial for maximizing overall efficiency while considering factors like fairness,
privacy, and data diversity. To tackle the challenges posed by device heterogene-
ity and ensure optimal performance and efficiency in federated learning settings,
researchers have developed methods such as FedSAE, CFL-HC, and HeteroSAg.
These methodologies effectively handle the varying computational capabilities
of edge devices. Additionally, reinforcement learning models show promise in
addressing the issue of non-IID data.

More details of the contributions and limitations of the existing
Heterogeneous FL method can be found in the supplemental mate-
rial. Given the evolving nature of this field, it is essential to establish widely
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ac-knowledged benchmarking and evaluation frameworks for heterogeneous sce-
narios with different complexities.

4 Heterogeneous Federal Learning Evaluation Methods

The concept of collaborative learning was first introduced by McMahan et al. [1].
In this rapidly evolving field, it is crucial to establish widely recognized bench-
marking and evaluation frameworks for different scenarios with varying complex-
ities. Empirical evaluation plays a vital role in examining a verifiable federated
learning approach in simulated or real-world error-prone environments. It allows
for a comprehensive exploration of its effectiveness in complex computational
landscapes while ensuring the reliability of the findings.

Model Performance and Communication Overhead. The evaluation of
federated learning methods takes into account precision, convergence velocity,
and factors such as client heterogeneity and disparate data distributions [37].
It is crucial to strike a balance among precision, communication overhead, and
model performance when assessing these methods. Researchers commonly use
metrics such as accuracy, precision, recall, F1 score, and convergence velocity to
measure the effectiveness of federated learning approaches. By analyzing both
model performance and communication overhead, potential areas for optimiza-
tion can be identified.

Robustness. Robustness is an essential metric for assessing the resilience of
federated learning methods against adversarial scenarios [38,39]. It ensures that
the model maintains its performance and accuracy in the federated learning
environment. Evaluation techniques commonly include adversarial attacks such
as model inversion, membership inference, and data contamination. Metrics such
as accuracy degradation, model divergence, and anomaly detection are used to
quantify robustness.

Privacy Protection. Privacy protection is an important consideration when
evaluating the effectiveness of HFL methods. In federated learning, participants
often have sensitive data, so ensuring the security of this data is paramount.
Researchers evaluate the effectiveness of methods in preserving individual pri-
vacy using metrics such as differential privacy [40], information entropy, and data
aggregation. These metrics allow for quantifying the level of privacy protection
provided. By enhancing privacy protection measures, researchers aim to ensure
data security and privacy during the federated learning process.

Customer Contribution. Analyzing client contributions is a crucial aspect
of federated learning. It involves quantifying individual contributions by con-
sidering factors such as the quality and quantity of data, computational capa-
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bilities, and reliability. Metrics like data quality, data quantity, and computa-
tional resources are used to assess client contributions. Understanding the vary-
ing degrees of contribution is important for optimizing the federated learning
process, improving model performance, and addressing data heterogeneity. For
instance, FedCav [41]introduces an algorithm for model aggregation that takes
into account client contributions in the presence of heterogeneous data.

5 Future Directions

Our empirical investigation unequivocally demonstrates the burgeoning promi-
nence of HFL research. Nonetheless, many difficulties persist, necessitating their
resolution to empower this technology to confront the difficulties encountered in
real-world applications. We will look over the next steps for future inquiry to
enhance the efficacy of addressing heterogeneous predicaments within forthcom-
ing Federated Learning systems.

5.1 Privacy Protection

In HFL, participants often have sensitive personal data, so privacy protection
measures are necessary. Future research should prioritize the development of effi-
cient and secure privacy-preserving mechanisms to ensure participants have con-
trol over their privacy while sharing data. Differential privacy offers a mathemat-
ical guarantee that statistical results can be publicly released while safeguarding
individual privacy [46]. By combining differential privacy with federated learn-
ing, it becomes possible to prevent the disclosure of sensitive information during
model training and aggregation. Future research should focus on improving dif-
ferential privacy algorithms and mechanisms that can accommodate diverse data
types and privacy requirements in HFL. Another important research direction is
investigating the use of Secure Multi-Party Computation in the context of fed-
erated learning [47]. However, it is important to note that these solutions may
need to be adapted to account for system heterogeneity.

5.2 Improving Communication Efficiency

Communication plays a pivotal role in coordinating the collaborative learning
process among heterogeneous participants, but it often incurs substantial costs
in terms of bandwidth, latency, and energy consumption [42,43,45]. To enhance
communication efficiency in HFL, researchers can explore the following aspects.
(1)Integration of differential privacy techniques: By incorporating differential
privacy techniques, the amount of information exchanged during the federated
learning process can be effectively reduced. (2)Gradient compression techniques:
These techniques aim to minimize the size of gradients communicated during
federated learning, thereby reducing the communication overhead. (3)Leverag-
ing edge computing capabilities and enabling local model updates: By utiliz-
ing the computational capabilities of edge devices and facilitating local model
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updates, the dependency on frequent communication with the central server
can be decreased, leading to improved communication efficiency. (4)Knowledge
transfer techniques: Exploring techniques that enable knowledge transfer among
clients can significantly reduce the extensive communication requirements. Meth-
ods such as transfer learning, model personalization, and parameter sharing facil-
itate the transfer of learned knowledge from high-resource clients to low-resource
clients, thereby mitigating overall communication needs.

In conclusion, enhancing communication efficiency is a critical area for future
research in HFL. By employing techniques such as differential privacy, gradient
compression, edge computing, and federated learning with knowledge transfer,
we can effectively reduce communication overhead and enhance the scalability
and efficiency of federated learning in heterogeneous settings.

5.3 Federated Fairness

Federal equity is a crucial consideration in the design and implementation of
federated learning systems.The presence of diverse and distributed data sources
among heterogeneous participants introduces biases and inequalities, and thus
effective mitigation is required urgently [6]. Future research should prioritize the
development of strong frameworks and algorithms that actively promote fair-
ness, equality, and nondiscrimination in federated learning. One way to enhance
fairness in federated learning is to focus on privacy-preserving methods that safe-
guard sensitive data and prevent unauthorized access or misuse [44]. By explor-
ing privacy-enhancing technologies, we can facilitate collaborative learning while
respecting individual privacy rights. This not only mitigates the risk of biased
model updates but also fosters fairness in the process of aggregating data. Addi-
tionally, it is crucial to design federated learning algorithms explicitly to tackle
the challenges posed by data heterogeneity and fairness requirements [45]. Tra-
ditional federated learning methods may unintentionally favor participants with
more extensive or representative data, resulting in biased models and persistent
inequality. To address this, future research should concentrate on innovative tech-
niques such as sample weighting, domain adaptation, and model regularization.
These approaches effectively account for data heterogeneity and ensure fairness
throughout the model training and aggregation processes.

In conclusion, it is crucial to prioritize addressing equity at the federal level
in federated learning. Researchers can promote fairness, equality, and nondis-
crimination in federated learning systems by developing methods that protect
privacy, exploring technologies that enhance privacy, and designing algorithms
that explicitly address the diversity of data and fairness.

5.4 Uniform Benchmarks

The growing fascination with HFL is evident based on the results of our recent
survey. However, as we delve further into this domain, numerous challenges arise
that require immediate attention to make this technology suitable for practi-
cal applications. A crucial aspect for future research directions in addressing
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heterogeneity in FL systems revolves around the establishment of standardized
benchmarks.

Improved Datasets. To accurately represent the diverse nature of real-world
federated learning scenarios, it is crucial to develop comprehensive and realis-
tic datasets. Improving datasets is a key area for future advancements in the
field of heterogeneous federated learning. Researchers should focus on different
aspects of dataset construction, including being aware of heterogeneity, using
representative data sampling techniques, assessing and enhancing data quality,
generating privacy-preserving datasets, creating benchmark datasets, and incor-
porating real-world data. By addressing the challenges associated with data het-
erogeneity using these strategies, researchers can enhance the performance and
effectiveness of federated learning models in diverse settings. The availability of
these improved datasets will enable more realistic and impactful research in the
field of HFL.

Enhanced Evaluation Metrics. Establishing clear and consistent evaluation
metrics is crucial for effectively measuring the performance of Horizontal Feder-
ated Learning. It is essential to advance the field by developing enhanced evalu-
ation metrics that can provide a comprehensive understanding of the strengths
and limitations of federated learning systems. A key focus of future research
should be on expanding existing models such as FedEval [48]. The objective
should be to create metrics that consider heterogeneity awareness, privacy preser-
vation, fairness orientation, robustness emphasis, resource efficiency, and real-
world performance. These enhanced evaluation metrics will drive progress in the
field and contribute to the development of more effective and equitable federated
learning systems.

6 Conclusion

This paper aims to provide a comprehensive definition and analysis of HFL.
It categorizes HFL into four types of heterogeneity: data, model, device, and
communication, based on the underlying causes of heterogeneity in federated
learning. The study offers a meticulous examination of potential solutions to
address these challenges, ultimately enhancing the reader’s comprehension of
the impact of heterogeneity on federated learning. Furthermore, it succinctly
summarizes commonly employed performance evaluation methods and proposes
future directions for the development of the HFL framework. These insight-
ful discussions hold significant value in contributing to the advancement of the
HFL community. HFL presents itself as an engaging research avenue, necessitat-
ing collaborative efforts from the machine learning, systems, and data privacy
communities (Tables 1, 2, 3 and 4).
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Appendix

Table 1. Heterogeneous data methods

Methods Key Contributions Limitations

Zhang et al. [14] FedlC solves the problem of skewed
label distribution in federated
learning by calibrating logits and
introducing label boundaries

The effectiveness in dealing with
extreme labeling distribution
skewness still needs further research
and improvement.

Luo et al. [15] DFL solves the problem of uneven
attribute distribution on the
performance and convergence
stability of federated learning

Challenges remain in dealing with
complex relationships between
domain-specific and cross-invariant
attributes.

Yoon et al. [17] FedMix for improving the
performance of federated learning
with non-independent Identically
distributed Data and Addressing
Privacy Preservation

Collecting local data distributions
may bring potential information
leakage.

Duan et al. [18] Astraea for Improving Classification
Accuracy in Mobile Deep Learning
Applications

Disclosure of local data distribution
during upload may inadvertently
expose vulnerabilities and make it
susceptible to malicious intrusion

Table 2. Heterogeneous model methods

Methods Key Contributions Limitations

Fallah et al. [19] MAML uses a personalized version
of joint averaging algorithm and
evaluates its performance against
gradient specification of the
non-convexloss function

verlooking other potential
approaches or techniques that could
enhance personalization in federated
learning.

Wang et al. [20] VFKF proposes a vertical federated
knowledge transfer mechanism for
feature enrichment in cross-party
machine learning systems

The scalability and applicability of
vertical federated learning in
different scenarlos are not apparent.

Le et al. [21] FedLKD effectively addresses the
statistical heterogeneity challenge by
leveraging knowledge istillation
between global and local models

Its effectiveness and privacy
preservation may vary depending on
the specific characteristics of the
dataset and the selection of proxy
data.

Yu et al. [22] They alleviate the issue of overfitting
in personalized updates by
augmenting the coherence of logits
between the global and local models

The exploitation of logits may
engender inadequate assimilation of
local information
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Table 3. Heterogeneous communication methods

Methods Key Contributions Limitations

Hou et al. [23] FedChain combines the advantages
of local and global update methods
infederated learning,achieving fast
convergence while leveraging data
similarity

Devices may connect slowly,
rendering them expensive and
unreliable communicate.

Lu et al. [24] CMFL avoids transmitting irrelevant
updates to the server by measuring
the consistency of local updates with
global updates

Difficult to handle highly
heterogeneous or unreliable network
environments.

Li et al. [25] They presents a concise and efficient
federated learning framework
fortraining deep neural networks on
resource-constrained mobile device

Lack of in-depth analysis of
potential privacy or security
implications of proposed frameworks.

Luo et al. [26] Fedskel enables federated learning
for efficient computation and
efficient communication on edge
devices by updating the essential
parts of the mode

Limited scalability analysis of the
system with privacy or security
concerns

Table 4. Heterogeneous device methods

Methods Key Contributions Limitations

Abdellatif et al. [32] Allow massive amounts of data
generated by IoT devices to train
deep learning models

Failure to minimize communication
overhead in hierarchical joint
learning.

Li et al. [33] FedSAE effectively addresses
systems heterogeneity by adjusting
the training tasks of devices and
actively selecting participants

Refining the allocation of workloads
in accordance with the client
straining history may encounter
temporal delays.

Wang et al. [34] Favor dynamically curates the
optimal cohort of clients to engage
in iterations of federated learning

Raining reinforcement learning
models necessitates a substantial
volume of data

The four tables above summarize the solutions to federated learning data het-
erogeneity, model heterogeneity, communication heterogeneity, and device het-
erogeneity, and analyze the main contributions and limitations of each approach.
These valuable discussions can contribute to the high-quality development of the
heterogeneous federated learning community.

References

1. McMahan, B., et al.: Communication-efficient learning of deep networks from
decentralized data. In: Artificial Intelligence and Statistics. PMLR (2017)

2. Yang, Q., et al.: Federated machine learning: Concept and applications. ACM
Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

3. Dayan, I., et al.: Federated learning for predicting clinical outcomes in patients
with COVID-19. Nat. Med. 27(10), 1735–1743 (2021)

4. Wu, C., et al.: FedGNN: federated graph neural network for a privacy-preserving
recommendation. arXiv preprint arXiv:2102.04925 (2021)

5. Suzumura, T., et al.: Towards federated graph learning for collaborative financial
crimes detection. arXiv preprint arXiv:1909.12946 (2019)

http://arxiv.org/abs/2102.04925
http://arxiv.org/abs/1909.12946


Towards Heterogeneous Federated Learning 187

6. Usynin, D., et al.: Adversarial interference and its mitigations in privacy-preserving
collaborative machine learning. Nat. Mach. Intell. 3(9), 749–758 (2021)

7. Li, T., et al.: Federated learning: challenges, methods, and future directions. IEEE
Signal Process. Mag. 37(3), 50–60 (2020)

8. Kairouz, P., et al.: Advances and open problems in federated learning. Found.
Trends R© Mach. Learn. 14(1-2), 1–210 (2021)

9. Wahab, O.A., et al.: Federated machine learning: survey, multi-level classification,
desirable criteria and future directions in communication and networking systems.
IEEE Commun. Surv. Tutor. 23(2), 1342–1397 (2021)

10. Tan, A.Z., et al.: Towards personalized federated learning. IEEE Trans. Neural
Netw. Learn. Syst. 34, 9587–9603 (2022)

11. Abdelmoniem, A.M., et al.: A comprehensive empirical study of heterogeneity in
federated learning. IEEE Internet Things J. 10, 14071–14083 (2023)

12. Gao, D., Yao, X., Yang, Q.: A survey on heterogeneous federated learning. arXiv
preprint arXiv:2210.04505 (2022)

13. Ye, M., et al.: Heterogeneous Federated Learning: State-of-the-art and Research
Challenges. arXiv preprint arXiv:2307.10616 (2023)

14. Zhang, J., et al.: Federated learning with label distribution skew via logits calibra-
tion. In: International Conference on Machine Learning. PMLR (2022)

15. Luo, Z., et al.: Disentangled federated learning for tackling attributes skew via
invariant aggregation and diversity transferring. arXiv preprint arXiv:2206.06818
(2022)

16. Zhu, H., et al.: Federated learning on non-IID data: a survey. Neurocomputing
465, 371–390 (2021)

17. Yoon, T., et al.: Fedmix: Approximation of mixup under mean augmented federated
learning. arXiv preprint arXiv:2107.00233 (2021)

18. Duan, M., et al.: Astraea: self-balancing federated learning for improving classifi-
cation accuracy of mobile deep learning applications. In: 2019 IEEE 37th Interna-
tional Conference on Computer Design (ICCD). IEEE (2019)

19. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with the-
oretical guarantees: a model-agnostic meta-learning approach. Adv. Neural. Inf.
Process. Syst. 33, 3557–3568 (2020)

20. Wang, L., Huang, C., Han, X.: Vertical federated knowledge transfer via represen-
tation distillation. In: FL-IJCAI Workshop (2022)

21. Le, H.Q., et al.: Layer-wise Knowledge Distillation for Cross-Device Federated
Learning. In: 2023 International Conference on Information Networking (ICOIN).
IEEE (2023)

22. Yu, T., Bagdasaryan, E., Shmatikov, V.: Salvaging federated learning by local
adaptation. arXiv preprint arXiv:2002.04758 (2020)

23. Hou, C., et al.: FeDChain: Chained algorithms for near-optimal communication
cost in federated learning. arXiv preprint arXiv:2108.06869 (2021)

24. Luping, W., Wei, W., Bo, L.: CMFL: mitigating communication overhead for fed-
erated learning. In: 2019 IEEE 39th International Conference on Distributed Com-
puting Systems (ICDCS). IEEE (2019)

25. Li, X., et al.: A unified federated DNNs framework for heterogeneous mobile
devices. IEEE Internet Things J. 9(3), 1737–1748 (2021)

26. Luo, J., et al.: Fedskel: efficient federated learning on heterogeneous systems with
skeleton gradients update. In: Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management (2021)

27. Yao, X., et al.: Federated learning with additional mechanisms on clients to reduce
communication costs. arXiv preprint arXiv:1908.05891 (2019)

http://arxiv.org/abs/2210.04505
http://arxiv.org/abs/2307.10616
http://arxiv.org/abs/2206.06818
http://arxiv.org/abs/2107.00233
http://arxiv.org/abs/2002.04758
http://arxiv.org/abs/2108.06869
http://arxiv.org/abs/1908.05891


188 Y. Lin et al.

28. Zaccone, R., et al.: Speeding up heterogeneous federated learning with sequentially
trained superclients. In: 2022 26th International Conference on Pattern Recognition
(ICPR). IEEE (2022)

29. Gao, Z., et al.: FedSeC: a robust differential private federated learning framework in
heterogeneous networks. In: 2022 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE (2022)

30. Ma, Q., et al.: FedSA: a semi-asynchronous federated learning mechanism in hetero-
geneous edge computing. IEEE J. Sel. Areas Commun. 39(12), 3654–3672 (2021)

31. Chan, Y.H., Edith, C.H.N.: Fedhe: heterogeneous models and communication-
efficient federated learning. In: 2021 17th International Conference on Mobility,
Sensing and Networking (MSN). IEEE (2021)

32. Abdellatif, A.A., et al.: Communication-efficient hierarchical federated learning for
IoT heterogeneous systems with imbalanced data. Future Gener. Comput. Syst.
128, 406–419 (2022)

33. Li, L., et al.: FedSAE: a novel self-adaptive federated learning framework in het-
erogeneous systems. In: 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE (2021)

34. Wang, H., et al.: Optimizing federated learning on non-IID data with reinforcement
learning. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions. IEEE (2020)

35. Wang, D., et al.: CFL-HC: a coded federated learning framework for heterogeneous
computing scenarios. In: 2021 IEEE Global Communications Conference (GLOBE-
COM). IEEE (2021)

36. Elkordy, A.R., Salman Avestimehr, A.: Heterosag: secure aggregation with hetero-
geneous quantization in federated learning. IEEE Trans. Commun. 70(4), 2372–
2386 (2022)

37. Li, Y., et al.: FedH2L: Federated learning with model and statistical heterogeneity.
arXiv preprint arXiv:2101.11296 (2021)

38. Takahashi, H., Liu, J., Liu, Y.: Breaching FedMD: image recovery via paired-
logits inversion attack. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2023)

39. Liu, Y., et al.: A secure federated learning framework for 5G networks. IEEE Wirel.
Commun. 27(4), 24–31 (2020)

40. Ding, J., et al.: Differentially private and communication efficient collaborative
learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35. No. 8. (2021)

41. Zeng, H., et al.: FedCAV: contribution-aware model aggregation on distributed
heterogeneous data in federated learning. In: Proceedings of the 50th International
Conference on Parallel Processing (2021)

42. Bibikar, S., et al.: Federated dynamic sparse training: computing less, communicat-
ing less, yet learning better. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36. No. 6 (2022)

43. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: Advances in Neural Information Processing Systems, vol. 29 (2016)

44. Lyu, L., et al.: Towards fair and privacy-preserving federated deep models. IEEE
Trans. Parallel Distrib. Syst. 31(11), 2524–2541 (2020)

45. Gálvez, B.R., et al.: Enforcing fairness in private federated learning via the modified
method of differential multipliers. In: NeurIPS 2021 Workshop Privacy in Machine
Learning (2021)

46. Sun, L., Lyu, L.: Federated model distillation with noise-free differential privacy.
arXiv preprint arXiv:2009.05537 (2020)

http://arxiv.org/abs/2101.11296
http://arxiv.org/abs/2009.05537


Towards Heterogeneous Federated Learning 189

47. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (2017)

48. Chai, D., et al.: FedEval: A Holistic Evaluation Framework for Federated Learning.
arXiv preprint arXiv:2011.09655 (2020)

http://arxiv.org/abs/2011.09655


From Passive Defense to Proactive
Defence: Strategies and Technologies

Chong Shi1 , Jiahao Peng1 , Shuying Zhu1 , and Xiaojun Ren1,2(B)

1 Instituite of Artificial Intelligence, Guangzhou University,
510006 Guangzhou, China
shichong@e.gzhu.edu.cn

2 Guangdong Provincial Key Laboratory of Blockchain Security,
510006 Guangzhou, China
renxiaojun@gzhu.edu.cn

Abstract. The goal of network defense mechanisms is to enable sys-
tems to actively detect and withstand attacks, reduce reliance on exter-
nal security measures, and quickly recover and repair. This paper elabo-
rates on relevant works from both passive defense and proactive defense
perspectives. Our first contribution is to introduce strategies and tech-
nologies related to passive defense, discussing in detail access control
strategies, identity authentication technologies, and firewall technolo-
gies. These technologies play a significant role in protecting computer
systems and networks from unauthorized access and malicious activi-
ties. Addressing the limitations of passive defense, such as: difficult to
resolve uncertainty attacks and passive self-defense, our second contri-
bution is to introduce strategies and technologies related to proactive
defense. Firstly, we provide a comparative introduction to moving target
strategies, intrusion tolerance strategies, and mimic defense strategies.
Secondly, based on the mimic defense strategy, we provide a detailed
introduction to mimic routers and mimic server technologies, which sim-
ulate normal network traffic and service behavior to enhance system
security. Moreover, we provide future prospects and suggest potential
directions. These approaches can help protect computer systems and
networks from various security threats and provide valuable insights for
researchers and security professionals on how to address evolving threats.

Keywords: Cybersecurity · Passive Defense · Proactive defense

1 Introduction

Cyberspace security is the comprehensive concept of protecting network systems,
data, and online information, encompassing information security and network
security. With the increasing popularity of the Internet, cyberspace has become
the fifth domain [1] after land, sea, air, and space, holding significant strategic
importance for maintaining national security and driving economic development.
The rapid advancement of technology poses numerous challenges to cyberspace
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security, such as hacker attacks, virus intrusions, and phishing attempts, which
threaten the security of individuals, businesses, and nations. The main issues in
network security are concentrated in the following aspects:

– Software and hardware backdoors. Malicious code left in network infor-
mation systems allows hackers to bypass security controls and gain access to
the information system. Unfortunately, backdoor issues persist in the era of
globalized supply chains.

– Unknown security vulnerabilities. Current network security defense tech-
nologies cannot address vulnerabilities or backdoors caused by information
system software and hardware design flaws. This problem is one of the main
targets for future resolution.

– Low cost of attack. Any group or organization capable of discovering and
exploiting vulnerabilities or backdoors can easily disrupt and undermine the
principles of space network security, significantly increasing the cost and con-
sequences of network security defense.

In response to the issues above, our first contribution is to introduce the tradi-
tional strategies and techniques (Passive Defense) for network security defense.
Traditional network security defense is primarily achieved through the com-
prehensive application of various security measures. Among them, traditional
network security defense strategies, mainly employing identity authentication,
access control, data encryption, and firewalls, play a memorable role in network
security, laying the foundation for defense.

The essence of a passive defense system lies in achieving effective and precise
defense by pre-gathering threat characteristic information such as attack sources
and attack patterns. However, standard passive defense security techniques may
have the following drawbacks:

– Uncertainty attacks are difficult to address. Existing security defense
technologies worldwide have difficulty ensuring the trustworthiness of encryp-
tion and authentication devices.

– Passive self-defense. Traditional passive defense theories, relying on prior
knowledge, cannot effectively mitigate the threats of dynamic network
attacks. They can only dynamically search for system vulnerabilities or flaws
and then improve through passive defense techniques such as antivirus mea-
sures and patching.

– Singular defense system architecture. The transparent architecture of
network information systems makes it challenging to close the security chain,
resulting in a singular defense system architecture.

Tradition network security defense measures are technologically passive.
Thus, the future trend of network security defense will shift from passive defense
technologies towards active defense. our second contribution is introducing the
existing proactive defense techniques. Proactive defense empowers cybersecurity
personnel with proactive control over system defense, reversing the traditional
reactive approach. Shifting from “passive” to “active”, it establishes an asym-
metric strategic defense advantage and propels network security protection into
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a more advanced stage. It represents the future direction of development for
network security defense technologies.

2 Passive Defense

Network security static defense employs a variety of strategies and technologies
to protect networks from security threats. These strategies include access con-
trol, network segmentation, patch management, configuration hardening, and
secure coding practices, aiming to restrict access to network resources, reduce
the attack surface, address known vulnerabilities, and develop secure code. In
terms of technologies, firewalls are used to filter unauthorized network traffic,
IDS/IPS systems monitor and prevent malicious activities and attacks, secure
protocols and data encryption ensure secure data transmission, and SIEM inte-
grates logs and event data for real-time monitoring and threat detection. By
applying these strategies and technologies in a comprehensive manner, organiza-
tions can establish a robust network security static defense framework, enhance
network security, and effectively mitigate various threats.

2.1 Access Control

The goal of access control is to minimize the security risks of unauthorized access
to physical or logical systems. It utilizes access control policies, and authentica-
tion technology to protect data confidentiality and security. Traditional access
control models include Discretionary Access Control [17–21], Mandatory Access
Control [22,23], Role-Based Access Control [24–28], and Attribute-Based Access
Control models [29–33]. Discretionary Access Control (DAC) is an access control
model that is based on the ownership of resources by subjects to control access
permissions. In this model, users can freely determine the access permissions for
other users to their resources. This model offers high flexibility but also carries
the risk of permission misuse, requiring system administrators and users to nego-
tiate and manage permissions themselves. cc In this model, security policies are
defined by system administrators or policymakers and are applied to all subjects
and resources. This model provides higher security but lower flexibility, making
it less adaptable to dynamic environments. Role-Based Access Control (RBAC)
is an access control model that is based on user roles and responsibilities to
control access permissions for resources. In this model, access permissions are
assigned to roles, and users obtain corresponding permissions through the roles
assigned to them. This model simplifies permission management and mainte-
nance, improving system scalability and manageability. Attribute-Based Access
Control (ABAC) is an access control model that is based on attributes (such
as user attributes, resource attributes, environmental attributes, etc.) to con-
trol access permissions. In this model, access control rules are defined based on
attribute values and conditions using a policy language. This model has flex-
ible access control rules, allowing access control decisions based on dynamic
attributes. As Table 1, we discuss the differences of the aforementioned policies.
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Table 1. Comparison of different types of access control policies

Type DAC RBAC ABAC MAC

Features Autonomous Role-based Attribute-based Label-based
Focus Object’s c

permission list
Subject’s
permission list

Attribution of suject,
sobject, and request

Labels of subject,
object and request

Use Cases User-controlled
permissions

Administtrator
controlled
permissions

Scenarios where role
definition is unclear

Scenarios where
labeling of
all data is
possible and
request

Example Consumer-facing
where users have
control over
the their own
content

Internal company
systems where
administrators
design roles and
assign users to
their roles

Network reguests
when there are
multiple subjects
and objects involved
and it is challenging
to clearly define
roles

Government systems
where each piece if
data and every
individual has
a specpfic level of
confidentiality
classfication

2.2 Identity Authentication Technology

Identity authentication technologies are used to verify the identity of users
or entities, ensuring that only authorized individuals can access systems or
resources. These technologies play a crucial role in safeguarding system and
data security by confirming the legitimacy of users and preventing unautho-
rized access. The most common identity authentication technology is password
authentication, where users verify their legitimacy and validity through a user-
name/password combination. Two-factor authentication technology [54,55] adds
an authentication token beyond a static password. Users need to authenticate
both static and dynamic passwords during the login process to confirm their
identity. This approach offers higher security and dynamism. With technolog-
ical advancements, biometric-based identity authentication technology [56–60]
has emerged. It utilizes unique biological features of individuals to authenti-
cate their identities, extracting physiological characteristics or specific behaviors
as verification methods. It combines digital identity with a person’s real iden-
tity. Currently, widely used biometric authentication methods include fingerprint
recognition [61,62], iris recognition [63,64], and behavioral recognition [65]. How-
ever, compared to password authentication, where passwords are static and sus-
ceptible to interception by Trojan programs in computer memory or network
monitoring devices, biometric authentication also has lower security. Addition-
ally, the accuracy and stability of biometric recognition are greatly influenced by
environmental conditions, especially for injured or ill users. Furthermore, bio-
metric authentication systems tend to have higher costs and are suitable for
scenarios with high-security requirements. Moreover, digital certificates [66–68]
are also an essential means of user identity authentication. Digital certificates
serve as proof of user identity and contain identity-related data, similar to phys-
ical identification cards in real life. Digital certificate authentication requires
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the support of a trusted third-party certification authority (CA) responsible for
issuing digital certificates and ensuring the authority and authenticity of user
identity authentication.

Moreover, data encryption techniques have become indispensable with the
advancement of identity authentication technologies. As shown in Fig. 1, Data
Encryption Technology transforms information into meaningless ciphertext using
encryption keys and encryption algorithms, and the recipient can decrypt the
ciphertext back into plaintext using decryption keys and decryption algorithms.
Therefore, data encryption technology effectively prevents the leakage of com-
puter system information. Traditional data encryption technologies include
symmetric encryption [34–38], asymmetric encryption [39–42], and transpar-
ent encryption [43,44]. Symmetric encryption uses the same key for encryption
and decryption, providing fast speed but complex key management. Asymmet-
ric encryption uses a pair of keys, with the public key used for encryption and
the private key for decryption, offering high security but slower speed. Trans-
parent encryption automatically encrypts and decrypts data during transmis-
sion or storage, providing a seamless and convenient experience for users, but
it may impact system performance to some extent. Today, symmetric encryp-
tion algorithms [45,46] and triple Data Encryption Algorithm (3DES) [47,48]
are widely used, primarily due to their superior security levels and computa-
tional speeds. Additionally, there are asymmetric encryption algorithms such
as RSA [49], ElGamal [50], and elliptic curve algorithms [51]. Among them,
the RSA algorithm has a higher security level. It provides solid guarantees for
the security and integrity of data information transmission, making it the most
commonly used asymmetric encryption algorithm. Finally, there are two com-
mon types of transparent encryption techniques: hook-based transparent encryp-
tion (application-layer transparent encryption) [52] and driver-layer transparent
encryption [53].

Fig. 1. Data Encryption Technology
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2.3 Firewall Technology

A firewall is a traffic control device that controls secure access at different net-
work boundaries. It is a system that exists between networks and executes secu-
rity policies. The firewall is a protective gateway between the enterprise intranet
and the public network. It can be categorized into hardware and software, with
the main principle being the filtration and blocking traffic according to prede-
fined security policies. Packet filtering, application proxy, and stateful inspection
are three main types of firewall technologies. Packet filtering firewall [2–7], the
earliest firewall technology, blocks or allows packets based on packet header
information and filtering rules. Application proxy firewall [8–10] examines the
application data of packets and maintains a complete connection state. It can
analyze complete command sets of different protocols and allow or block spe-
cific commands based on security rules. It also has features like URL filtering,
data modification, identity authentication, and logging. Intrusion state detection
firewall [11–16], also known as an adaptive firewall or dynamic packet filtering
firewall, which generates filtering rules dynamically based on past communica-
tion information and other application-derived state information. It filters new
communication based on the newly generated filtering rules. Traditional firewall
technologies have the advantages of high security, complete user and application
authentication, and effective isolation of direct communication between internal
and external networks, but they cannot detect unknown attacks. Based on pro-
tocol analysis, a stateful inspection firewall reads packets at the network layer,
filters abnormal connections based on existing filtering rules (or attacks signa-
ture libraries based on packet headers), generates corresponding alerts and logs,
and enhances security, achieving a balance between performance and security. As
Table 2, we compare and analyze the differences among these three technologies.

Table 2. Comparison of different firewall technologies.

Type Packet Filter Application Proxy Dynamic Packet Filter

OSI Layer Transport Layer Application Layer Transport Layer
Strength 1. High Performance

2. User-friendly
3. Wide applicability

1. In-depth inspection
2. Provide access control and
authentication
3. Hide internel network
structure

1. Combining the
advantages of the previous
2. Flexible configuration

Weakness 1. Limited application
layer control
2. Prone to deception
3. Difficult to handle
complex protoclos and
applications

1. Performance degradation
2. Complex configuration
3. Limited flexibility

1. Complex configuration
2. Requires real-time
updates and adjustments
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3 Proactive Defence

Traditional security defense strategies tend to be passive and static, relying on
prior knowledge of known attacks and needing more ability to address new types
of network attacks and threats, resulting in poor generalization. However, with
the advancement of attack techniques, network attacks have become automated,
intelligent, intense, diverse, and highly covert. Additionally, the extreme asym-
metry in the current network’s attack and defense situation makes it difficult for
traditional network security defense techniques to effectively respond to complex
and diverse network attacks and threats, let alone attacks based on unknown
exploitable vulnerabilities and backdoors.

Proactive defense primarily involves real-time monitoring of the entire com-
puter system, enabling quick detection of changes in network traffic, analysis of
program behavior, and prohibition of any suspicious activities to protect com-
puter system security. At the same time, proactive defense systems also collect
information on how suspicious behaviors connect to the computer (potential
intrusion behavior) and other helpful information (knowledge about the intrud-
ers). Users can utilize this information to employ "counterattack" measures,
making it difficult for intruders to carry out their attacks. The main strate-
gies include: Moving Target Defense (MTD) [70], Intrusion Tolerant System
(ITS) [71] and Mimic Defense (MD) [69]. We compares and analyzes the differ-
ences among these strategies as Table 3.

Table 3. Comparison of three proactive defense techniques.

Strategy IST MTD MD

Architecture SITAR MAFTIA ITUA SCIT MAS TALENT Mimic Router MimicServer
Diversity � � � � � � �
Redundancy � � � � �
Voting � � � � �
Migration � � � � �
Focus Mitigate attack impact Increace attack difficulty 1.Disrupt attack chains

2.Increace the difficulty
of sustained attack

Strength 1.Implement node-
protection
2. High security

1.Achieve stealeffect
2.High confidentiality

1.High cost-effectiveness
2. High availability,
integrity and
confidentiality

Weakness High cost 1.Limited pattern diver-
sity
2.Poor stability

Requires futher maturation

MTD is a network security strategy and technology designed to increase the
difficulty for attackers and reduce the success rate of attacks. The core idea
of MTD is to constantly change the system’s attack surface, making it chal-
lenging for attackers to discover and exploit vulnerabilities in the system. In
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addition, the three significant architectures based on intrusion tolerance tech-
nology, namely SalableIntrusion-tolerant Architecture for Distributed Services
(SITAR) [72] and, Malicious-and AccidentalFault Tolerance for Internet Appli-
cations (MAFTIA) [73], and Intrusion Tolerance by Unpredictable Adaptation
(ITUA) [74] have attracted significant attention from researchers.

ITS is a computer system designed to maintain regular operation in the
face of persistent and sophisticated attacks. It achieves high system availability
and security by incorporating fault-tolerant techniques and multiple layers of
defense. Specifically, the Self-Cleansing Intrusion Tolerance (SCIT) [75] archi-
tecture applied to DNS and Web servers, the Moving Attack Surface (MAS) [76]
architecture based on different software-hardware combinations of virtual server
stacks, and the Trusted Dynamic Logical Heterogeneity System (TALENT) [77]
architecture applied to kernel-level, operating layer, and hardware layer have all
received significant attention from researchers.

MD is a computer security strategy that protects systems from malicious
activities by imitating attacker behavior, hiding system features, and expanding
the attack surface. Its core idea is to make the system unpredictable, making
it difficult for attackers to identify and exploit vulnerabilities, thus enhancing
system security and resilience. We primarily focus on discussing the concepts of
Mimic Routers and Mimic Server.

3.1 Mimic Defense Strategy

MD proposed by academician Wu Jiangxing, aims to dynamically and pseudo-
randomly select and execute various software and hardware variants under active
and passive triggering conditions. This approach aims to create a hardware exe-
cution environment and software behavior that internal and external attackers
find unobservable or difficult to construct an attack chain based on vulnera-
bilities or backdoors. The goal is to reduce system security risks. Both MTD
and MD share the concept of dynamic, diverse, and random proactive defense.
MD inherits MTD’s dynamic, proactive defense concept while enriching its con-
tent. It achieves an inherent proactive defense capability by applying heteroge-
neous redundant architecture and mimic computing. The theoretical framework
of mimic defense consists of three main aspects: dynamic, heterogeneous, and
redundant (DHR). The typical architecture [79] is illustrated in Fig. 2. The het-
erogeneous execution units are composed of heterogeneous elements with the
same functionality but different internal structures from heterogeneous pool,
serving as the first step in achieving dynamic scheduling and policy distribution.
The execution unit refers to the computing systems responsible for task execu-
tion. The policy distribution module dispatches tasks to the online execution
unit set, while the policy arbitration module evaluates the processing results of
the execution unit set and provides feedback to the policy scheduling module.
The output module handles the arbitration results and performs the output.
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Fig. 2. DHR Architecture

The mimic defense model achieves its effectiveness by dynamically selecting
a set of execution bodies and adaptively changing the system composition, ren-
dering the attack information obtained by attackers ineffective and making it
difficult to sustain or reproduce the same attack. The mimic defense model has
been continuously developed in recent years with a more enriched and robust
model system.

3.2 Mimic Router Technology

Mimic router technology [78] combines network routing with mimic techniques
to dynamically rewrite and forward network traffic, achieving obfuscation and
concealment of the network traffic. It can simulate multiple virtual network
nodes and perform deceptive routing operations between nodes, making it dif-
ficult for attackers to obtain accurate network topology and target node infor-
mation. Mimic router technology prevents attackers from accurately tracking
and identifying real targets, enhancing network security and privacy protection
capabilities. The critical elements of mimic router technology are as follows:

– Virtual node simulation: Mimic router technology utilizes virtual node
simulation to emulate multiple fake network nodes. The presence of these
virtual nodes makes it challenging for attackers to determine the real target
nodes, increasing the difficulty of attacks.

– Deceptive routing operations: Mimic router technology performs decep-
tive routing operations between virtual nodes. This means that data packets
transmitted in the network may follow a series of fake routing paths, making
it difficult for attackers to determine the real data flow and target nodes.



From Passive Defense to Proactive Defence: Strategies and Technologies 199

– Traffic obfuscation and concealment: Mimic router technology obfus-
cates and hides network traffic, making it difficult for attackers to distinguish
between real and fake traffic. This can be achieved by modifying packet header
information, encrypting data, or using randomization techniques.

Based on the above, mimic router technology effectively disrupts and confuses
attackers’ behavior, reduces the probability of successful attacks, and improves
network security. It plays a crucial role in defending against network attacks,
protecting network privacy, and countering network reconnaissance. Therefore, it
has received extensive attention and application in the field of computer security.

3.3 Mimic Server Technology

The main idea of mimic server technology [79] is to create one or more virtual
mimic servers that appear nearly identical to real servers from the outside, but
are actually fake or protective. Mimic servers can employ various techniques and
mechanisms to simulate the behavior of real servers, including fake service ports,
forged operating system and application fingerprints, false log records, and more.
By introducing mimic servers, attackers will face the following difficulties and
challenges:

– Confusing attack targets: Mimic server technology makes it difficult for
attackers to determine the location and characteristics of real servers. Attack-
ers may be redirected to mimic servers, reducing the threat to real servers.

– Increasing attack complexity: Mimic servers can simulate various
responses and behaviors, making it challenging for attackers to differenti-
ate between real and fake servers. Attackers need to invest more time and
resources in analyzing, testing, and attacking mimic servers, thereby increas-
ing the complexity and cost of attacks.

– Providing early threat detection: Mimic servers can monitor and record
the behavior of attackers. By analyzing the attack activities on mimic servers,
potential threats can be detected and identified early, allowing for appropriate
defensive measures.

Mimic server technology has wide-ranging applications in various scenarios,
including network security defense, intrusion detection and response, penetra-
tion testing, and more. It can enhance system security and privacy protection
capabilities, helping organizations effectively address various network attacks
and threats.

4 Outlook

Proactive defense in cyberspace empowers cybersecurity personnel with the ini-
tiative in system defense, effectively reversing the passive defense dilemma of tra-
ditional networks, transforming from "passive" to "active", and establishing an
asymmetrical strategic defensive advantage. This advancement propels network
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security protection into a more advanced stage and represents the future direc-
tion of security technologies. However, in comparison to the increasingly complex
methods of cyber attacks, further promotion of emerging security technologies,
innovative defense concepts, and the enhancement of proactive, collaborative,
and holistic network defense techniques are necessary. This will contribute to
reducing the imbalance between network attacks and defenses, mitigating risks
and losses caused by various types of cyber attacks, and ensuring the security
of computer networks at all levels. However, as follows, there are still aspects
worth exploring.

1) Mlti-source Open Heterogeneous: The mimic defense technology based
on the DHR architecture faces challenges in achieving fine-grained hetero-
geneity across the entire software stack and underlying hardware. Moreover,
due to the limited space of intrinsic security component mimic entropy, there
is an urgent need to develop multi-source open heterogeneous implementation
mode designs and novel secure software and hardware creations with native
intrinsic security.

2) Heterogeneity Gain and Execution Entity Synchronization: On one
hand, to enhance the security gain of system transformation and prevent
multi-modal collaborative attacks based on redundant inter-component port
links, shared spaces, and other channels or synchronization mechanisms, it
is necessary for execution entities and components to achieve a high degree
of heterogeneity. On the other hand, when synchronizing the working states
and input-output vectors of heterogeneous execution entities, although rel-
atively secure plugin modes or message queue modes can be used, the high
heterogeneity of execution entities increases deployment difficulties and syn-
chronization delays. The trade-off between the gain in heterogeneity and the
associated costs constrains the improvement of network performance. Fur-
thermore, there is a lack of mature quantifiable validation and measurement
mechanisms, making it challenging to achieve a trusted balance condition.

3) The Balance of Security and Functionality: Firstly, the introduction
of various security components for mimic defense technology will inevitably
increase costs and pose challenges in the deployment of heterogeneous design
for execution entities. Secondly, in order to enhance the credibility of schedul-
ing and decision-making strategies, the complexity of scheduling and decision-
making strategies is increasing. The current research on diverse dynamic indi-
cators and complex algorithms needs to address issues related to costs, deploy-
ment difficulties, and network support in a timely manner.

4.1 Conclusion

The rapid development of the Internet poses new challenges to network secu-
rity. In the face of the fundamentally insecure nature of the cyberspace, which
is characterized by being "easy to attack and difficult to defend". This paper
introduces the origin of network security imbalance and analyzes the deficien-
cies and limitations of existing passive defense security systems. Furthermore,
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it introduces the development framework of proactive defense systems, focusing
on the essential core and technological features of mimic defense, and extracting
a comparison between intrusion tolerance and moving target techniques. Lastly,
two technical implementations of mimic defense strategy are proposed. More-
over, we propose the presentation of the future development vision for defense
technologies. The aim is to promote further advancements in defense technolo-
gies and provide a globally trusted theoretical and technological foundation for
achieving the "cybersecurity rebalancing strategy".
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Abstract. Artificial inspection of surface defects in chip inductors faces
issues such as low efficiency and poor accuracy. To enhance production
efficiency, increase intelligence, and reduce production costs, this paper
proposes the use of machine vision technology for chip inductor surface
defect detection. Specifically, the paper builds upon the DETR model,
improving its feature extraction network and attention mechanism. The
approach involves transferring the pre-trained detection model to gen-
eralize it for chip inductor surface defect datasets. Consequently, the
improved DETR model is applied to chip inductor surface defect detec-
tion. Experimental results demonstrate that the enhanced DETR model
successfully detects chip inductor surface defects, improving the fea-
ture extraction and object localization capabilities of the network while
reducing training time. The application of machine vision in chip induc-
tor surface defect detection enhances efficiency, addresses the issue of
lengthy DETR model training and poor small object detection perfor-
mance, achieves classification and localization of chip inductor surface
defects, and validates the feasibility of the detection method.
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1 Image Preprocessing and Dataset Creation

To achieve surface defect detection in chip inductors, it is essential to train the
detection model to learn defect characteristics. Therefore, the creation of a defect
dataset is a crucial step in achieving successful detection.
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1.1 Analysis of Surface Defects in Chip Inductors

Introduction to the Inspection Subject. Chip inductor components are
electronic components primarily used for circuit functions such as filtering, iso-
lation, and matching. Due to their characteristics of minia-turization, high qual-
ity, high energy storage, and low resistance, they are widely employed in various
electronic products. The chip inductors used for detection in this paper are wire-
wound chip inductors made from insulated conductors, collectively referred to
as chip inductors, as shown in Fig. 1 below.

Fig. 1. Chip Inductive Element

Defect Analysis. During the production process of chip inductors, every factor
may cause defects on the surface of chip inductors. These defects not only affect
the appearance of the product, but also affect the performance of chip inductors.
These four defects are mainly detected, as shown in Fig. 2 below.

1.2 Image Preprocessing

During the process of image capture and transmission, there are various sources
of interference that affect the quality of chip inductor component images, ren-
dering them unsuitable for direct use in image detection. Further preprocessing
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Fig. 2. (a) Damaged Magnetic Rings, (b) Concealed Cracks in Magnetic Rings, (c)
Exposed Copper on Electrodes, (d) Exposed Wire on Electrodes

of the images is required. Image preprocessing serves to enhance image quality,
eliminate interference, and, in cases of limited data, employ image enhancement
techniques to augment the dataset.

Distortion Correction. Initially, this paper selected a 9×9 calibration board
with an accuracy of 0.01 mm and captured images of the calibration board from
six different positions, as shown in Fig. 3.

Fig. 3. Chip Inductive Element

After performing distortion correction on the images, the resulting capture
quality is shown in the figure below (Fig. 4):
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Fig. 4. Effect Chart of Distortion Correction (a) Before Correction (b) After Correction

Image Denoising. Gaussian Filter
After Gaussian filtering, the effect on the chip inductor component image is

shown in Fig. 5, where (a) is the original image, and (b) is the filtered image.
Median Filter
In this paper, we used [specific filter name] as the filter to process the

patch inductor component images, and the filtering results are shown in Fig. 6.
Figure 6(a) represents the original image of the chip inductor component cap-
tured, while Fig. 7(b) shows the chip inductor component image after undergoing
median filtering.

Image Enhancement. Data augmentation methods [1] refer to a set of trans-
formation techniques applied to original data to generate new training data,
thereby increasing the dataset’s size, diversity, and generalization capability. In
this project, a total of 1280× 1024 pixel color images were captured for chip
inductor components. The dataset includes images of good-quality components
as well as those with dark cracks and broken magnetic cores. To address the issue
of limited sample data collected in this study, the decision was made to employ
data augmentation techniques to supplement the dataset and enhance the per-
formance of the neural network model. Common data augmentation methods
include random cropping, flipping, rotation, scaling, translation, deformation,
arbitrary adjustments to image brightness, contrast, saturation, and adding
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Fig. 5. Effect of Gaussian Filtering

Fig. 6. Effect Chart of Median Filtering
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noise, among others. These data augmentation methods can be used individ-
ually or in combination to generate a more diverse and robust training dataset.

1.3 Creation of Chip Inductor Surface Defect Dataset

Data Cleaning. Data cleaning refers to the process of handling and transform-
ing data to eliminate redundant information, correct erroneous data, deal with
missing values, and make the data more suitable for analysis and utilization. The
following are the steps involved in cleaning the collected patch inductor image
data: removing duplicate data, handling missing values, correcting erroneous
data, and formatting image data.

Data Labeling. The format of the dataset in this project follows the format
of the commonly used MS COCO [2] dataset in object detection, making it
convenient for pre-training of neural network models. For the surface defect
detection of chip inductors studied in this paper, the dataset is created following
the format of the MS COCO dataset.

In this defect detection task, data annotation was carried out using the open-
source software called labelme [3]. Upon completion of the annotation, annota-
tion files quired for network training are generated. The labelme software inter-
face and the structure of annotation files are illustrated in Fig. 8.

Fig. 7. Annotation Assistant lebelme Annotation Interface

The Division of the Detection Dataset. TA complete dataset consists of
three parts: the training set, validation set, and test set. Splitting the dataset
is a crucial step as it helps us evaluate the model’s performance and prevents
overfitting. Generally, the majority of the data in the dataset is used for training
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the model, a smaller portion is used to validate whether the model has learned
successfully, and another portion is used to test the model’s generalization ability.
In this detection project, 618 images of chip inductors were captured, and after
data augmentation, the dataset was expanded to 970 images. The dataset was
divided into training, testing, and validation sets in an 8:1:1 ratio, with the data
in the validation and test sets being mutually exclusive from the training set.
The specific division is shown in Table 1 below.

Table 1. Dataset Split.

Surface Mount Inductor Dataset Training Set Validation Set Test Set

970 776 97 97

2 The Relevant Design and Detection of Surface Defects
in SMT Inductor Inspection Algorithm

To achieve the detection of surface defects on chip inductors, the core component
of the image processing system, the defect detection algorithm, is designed. In
cases with limited data, an improved object detection model is generalized to
the chip inductor surface defect detection project using transfer learning, thereby
enabling the detection of surface defects on chip inductors.

2.1 Analysis of Object Detection Methods Based on Deep Learning

Based on different learning frameworks, object detection methods using deep
learning can be broadly categorized into two types:

Object detection methods based on Convolutional Neural Networks include
representative algorithms such as the YOLO (You Only Look Once) [4] series,
YOLOv4 [5], YOLOv7 [6], etc. These methods directly regress the class of
detected objects and predict bounding boxes. Another type involves generat-
ing candidate boxes containing objects and then classifying the objects within
these generated candidate boxes and regressing their positions. Representative
algorithms in this category include Faster R-CNN [7], among others.

Object detection methods based on Transformers follow three main steps: fea-
ture learning, object estimation, and label matching. Representative algorithms
in this category include DETR [8], VIT FRCNN [9], and others.

The Table 2 displays the training results of different object detection net-
work models on the COCO 2017 dataset [10] and our chip inductor surface
defect dataset. In the table, APs represents the average precision for small object
detection, APM represents the average precision for medium object detection,
and APL represents the average precision for large object detection. Analysis of
the table reveals that, on average precision, object detection methods based on
Convolutional Neural Networks tend to have higher AP values overall. However,
both types of methods show less-than-ideal results in detecting small objects.
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Table 2. Performance Comparison of Different Object Detection Network Models

Object detection model Dataset AP/% APs/% APM/% APL/%

Faster RCNN COCO 2017 40.2 24.2 43.5 52

37.8 21.7 39.3 46.8

YOLOv4 COCO 2017 43.5 26.7 46.7 57.3

37.7 20.5 41.6 52.7

YOLOv7 COCO 2017 55.9 31.8 55.5 65

49.6 25.7 50.6 56.7

VIT FRCNN COCO 2017 37.8 17.8 41.4 57.3

34.1 12.3 37.7 54.8

DETR COCO 2017 44.9 23.7 49.5 64.1

41.7 21.8 46.7 60.3

For medium and large object detection, the difference in APM and APL values
between the two methods is not significant. Despite being slightly less perfor-
mant than object detection methods based on Convolutional Neural Networks,
Transformer-based object detection algorithms have a relatively short research
history in the field. They hold significant research value and room for improve-
ment. Hence, in this paper, we choose to build upon the DETR network model
and improve the DETR algorithm for chip inductor surface defect detection.

2.2 Improved DETR Algorithm

Improvement of the Feature Extraction Network. The improvement of
the feature extraction network in the DETR model relies on convolutional neu-
ral networks (CNNs). When CNNs extract image features, their convolutional
kernels have a fixed size. When using the same convolutional kernel for convo-
lution operations, feature extraction can only occur within a fixed region of the
image. This means that the receptive field of the convolutional kernel remains
fixed and cannot adapt to changes in the shape of the detected objects, resulting
in a limited ability to extract image features. To address this issue, this paper
introduces deformable convolutional neural networks (DCNNs) to enhance the
model’s feature extraction capability.

Improvement of the Attention Mechanism. Traditional self-attention
mechanisms spend a significant amount of time locating object position infor-
mation within redundant background information in images. To address this
issue, a Spatial Prior module is introduced on top of the self-attention mech-
anism, allowing the attention mechanism to select crucial information from a
vast amount of data quickly and efficiently locate object positions. This aims to
reduce the model’s training time. The computational principle of the improved
self-attention mechanism is illustrated in Fig. 10.
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Fig. 8. Spatial Self Attention Model

The computational formula for the spatial self-attention model is as shown in
Equation (6). Compared to the calculation formula of the self-attention mecha-
nism, it incorporates spatial weights for the spatial prior. The spatial weights are
computed using a two-dimensional Gaussian function, as illustrated in Equation
(7).

SPSattention = softmax(
KT

i Q√
d

+ logG)Vi (1)

G(i, j) = e
(− (i−x)2

ϕw2 − (j−y)2

ϕh2 ) (2)

In Equation (7), where x and y respectively represent the center coordinates
of the predicted bounding boxes in the query, w and h represent the width
and height of the predicted boxes, and are used to adjust the bandwidth of
the Gaussian distribution. As depicted in Fig. 10, the input to the spatial prior
module is the query values after linear transformation. The spatial weights,
denoted as G, are computed using a Gaussian function. These spatial weights
are then added to the result of the dot product between Q and K. Afterward, a
softmax operation is applied to normalize the result, yielding the SP Attention
Map. Finally, this map is multiplied by to obtain the spatial self-attention feature
map. The principle of the spatial prior module is to adjust the search range
for each object query vector in the self-attention mechanism to be around the
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object’s center and the region near the predicted bounding box. It disregards
low-importance areas that are far from the object center, thereby accelerating
the convergence of DETR.

The Enhanced DETR Network Architecture. The improved DETR net-
work structure retains the overall framework of DETR and is primarily composed
of the following components, as shown in Fig. 11 and (Fig. 9).

Fig. 9. Improved DETR network structure

2.3 Surface Defect Detection of Chip Inductors Based on Improved
DETR Network

Setting up the Testing Environment. The selection of hardware and soft-
ware for the image processing system is crucial for establishing the operational
environment of the detection algorithm. As the original DTER algorithm was
developed in the Ubuntu operating system using the Python language, we opted
to install the Ubuntu operating system on the computer to facilitate later train-
ing and testing of the detection algorithm. Additionally, we selected PyCharm
as the software environment.

PyCharm serves as a Python IDE and offers excellent support for Python
language development. Its robust interactive environment, along with features
such as project management, autocompletion, code modification, syntax high-
lighting, code navigation, error display, version control, and more, significantly
enhance development efficiency. This allows us to create project environments
that match the detection algorithm’s requirements effectively.

Detection Model Training. In the field of object detection, when dealing with
cross-category detection, many object detection methods often employ transfer
learning [11]. This approach reduces the algorithm’s reliance on large datasets
and significantly enhances the accuracy of object detection and recognition when
the model is generalized to the classes it needs to detect. Due to the limited
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dataset for detecting surface defects on patch inductors, in order to improve the
accuracy of the improved DETR model for object detection and recognition, it
was decided to use the transfer learning approach. This involved pre-training the
improved DETR algorithm on the COCO 2017 dataset and then generalizing it
to the dataset for surface defects on patch inductors to train the improved DTER
model.

During the training process, it is typically assessed by monitoring changes in
loss and accuracy to evaluate the current training status of the model. Adjust-
ments to hyperparameters are made promptly to achieve better training results.
Therefore, the initial configuration of hyperparameters is crucial [12]. In this
paper, adjustments primarily focus on the following categories of hyperparame-
ters: learning rate, batch size, number of iterations, and optimizer.

Table 3. Model training hyperparameters

Hyperparameters Numerical

Initial learning rate 0.01

Batch Size 3

Iteration count 300

Optimizer SGD with momentum

To observe the training performance of the improved DETR model on the
surface defect dataset of patch inductors before and after the enhancement, a line
chart was used to visualize the changes in the loss function during the training
process, as shown in Fig. 12 The horizontal axis in the chart represents epochs,
while the vertical axis represents loss. It can be observed that the improved
DETR model significantly reduced the training time compared to DETR. In
the case of the improved DETR model, the loss on the training set gradually
decreases around the 50th epoch and then quickly converges. In contrast, the
DETR model’s loss only begins to converge around the 250th epoch.

To assess the recall of the DETR model before and after the improvement, a
line chart was utilized to visualize the changes in recall during the training pro-
cess, as depicted in Fig. 13. From the graph, it is evident that the improved
DETR model exhibited an enhanced recall compared to the original DETR
model. The recall increased from approximately 0.69 to around 0.8, and the
improved DETR model also converged faster than DETR.

To assess the accuracy of the DETR model before and after the improvement,
a line chart was used to visualize the changes in accuracy during the training pro-
cess, as shown in Fig. 14. From the graph, it is evident that the improved DETR
model achieved an increased accuracy, rising from around 0.67 to approximately
0.8. Based on the training results mentioned above, the improved DETR model
significantly reduced training time and improved both recall and accuracy in
the detection of surface defects on patch inductors. This improvement is likely
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attributed to the deformable feature extraction network and spatial self-attention
mechanism of the improved DETR model, which are advantageous for obtaining
better feature perception and object localization capabilities during the training
phase, thus surpassing the training performance of the original DETR model.

Detection Results and Performance Analysis. Figure 15 displays the PR
performance curves of the improved DETR model for various defect categories,
showing the Precision and Recall values at different confidence thresholds for
each defect category. When the confidence threshold is close to 0, all annotated
boxes are detected, resulting in high Recall and low Precision, corresponding to
the lower-right corner of the PR curve. Conversely, when the confidence threshold
is close to 1, most predicted boxes include the target, leading to high Precision
and low Recall, corresponding to the upper-left corner of the PR curve. The area
enclosed by each curve represents the Average Precision (AP) for that category.
Since the PR performance curves traverse various confidence thresholds, AP is
a performance evaluation metric that is independent of confidence.

Fig. 10. PR performance curve of improved DETR model for each defect category

From Fig. 15, it can be observed that when the threshold is set to 0.5, the
Average Precision (AP) for the detection of all defect categories reaches 0.75.
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Table 4 presents the performance evaluation metrics for the model on the surface
defect dataset of patch inductors, including Electrode Exposed Copper (DJLT),
Magnetic Ring Cracks (CHAL), Exposed Wire of Electrode (DJLX), and Mag-
netic Ring Damage (CHPS). These correspond to the areas under the PR per-
formance curves for each class in the figure. Specifically, Magnetic Ring Cracks
achieve an AP of 0.931, Electrode Exposed Copper has an AP of 0.804, Exposed
Wire of Electrode has an AP of 0.672, and Magnetic Ring Damage has an AP
of 0.297.

Table 4. Performance Evaluation Metrics for the Model on the Surface Defect Dataset
of Patch Inductors

Category Images precision Recall mAP@0.5 mAP@0.5:0.95

CHPS 97 0.589 0.228 0.297 0.116

CHAL 97 0.918 0.929 0.931 0.513

DJLT 97 0.831 0.81 0.804 0.392

DJLX 97 0.686 0.714 0.672 0.211

The improved DETR model’s object detection results on the test set images
are shown in Fig. 16. For each defect, the model outputs qualitative predictions
for the category, quantitative confidence scores, and pixel coordinates. Therefore,
the model demonstrates excellent generalization and compatibility across various
defect categories.

In the test set’s detection results, although predictions for defect categories,
quantitative confidence scores, and pixel coordinates are provided for all images,
there are instances in some patch inductor images where the confidence in detect-
ing certain defects is relatively low. For example, the lowest confidence score for
detecting Magnetic Ring Damage is only 0.3. The factors affecting detection
confidence primarily stem from two reasons. After image filtering in inductor
component images, the edge information of the image becomes blurred, affect-
ing the extraction of features related to edge Magnetic Ring Damage defects.
Magnetic Ring Damage typically occurs in the central region of the magnetic
ring, resulting in a larger number of data samples for this defect category. In
contrast, defects near the edge of the magnetic ring are less common, leading to
a scarcity of data samples for the model to learn from. This data imbalance can
hinder the model’s ability to detect edge defects.

To address these issues in future research, one approach is to optimize and
enhance image sharpening algorithms to better emphasize edge defect informa-
tion in patch inductor images. Additionally, collecting more image data that
includes instances of edge Magnetic Ring Damage will make it easier for the
model to learn the features of such defects.
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Fig. 11. Improved DETR Model for Test Set Image Target Detection Results
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Abstract. Driving conditions such as stress, sleepiness and fatigue can
easily lead to traffic accidents, and the detection of these unsafe con-
ditions is an important means of ensuring driving safety. The fatigue
detection system currently on the market suffers from a single detec-
tion feature and low detection accuracy. In view of the powerful fea-
ture extraction and fusion capabilities of neural networks, a multimodal
driver fatigue detection method based on physiological and visual signals
is proposed for processing physiological signals from wearable devices
and visual signals from cameras during the driving process. Firstly, the
model processes the physiological signal sequences and locates signifi-
cant changes in physiological state, and extracts visual features based
on visual signals, mainly eye features and complementary mouth and
head features. Secondly, the fatigue features are obtained by fusing the
physiological and visual features in the temporal dimension, based on
which an effective fatigue detection model can be trained. We use pub-
licly available datasets to segment physiological signal sequences such
as heart rate and quantitatively capture change points. After testing in
different visual environments such as day and night and with or without
face occlusion, this model can meet the requirements of basic real-time
fatigue detection with a high detection accuracy.

Keywords: Fatigue Detection · Multimodal Fusion · Time-Series
Segmentation

1 Related Work on Fatigue Testing

The automotive industry and researchers have developed various protocols to
perceive and detect the state of humans while driving. It can be mainly divided
into methods based on facial features and methods based on human physiological
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features. The method based on facial features has low accuracy detection, low
cost, and is easy to achieve, with a low probability of affecting driver operations.
The method based on human physiological characteristics has high detection
accuracy, but it is costly and difficult to popularize. This section mainly intro-
duces the relevant methods and research status of fatigue testing.

1.1 Based on Facial Features

The existing work on fatigue, drowsiness, or stress detection mainly focuses on
the occurrence of extreme fatigue and obvious signs, such as yawning, drowsi-
ness, and prolonged eye closure [3]. For example, Zhang et al. [4] used convolu-
tional neural networks (CNN) to detect yawning by using features from the nose
region rather than the mouth region caused by the vehicle driver turning their
head. Ouyang et al. [23] extracted ROI based on facial feature points of drivers,
migrated deep networks that performed well in other computer vision tasks to
fatigue detection tasks, and combined LSTM’s ability to process temporal data
for fatigue detection. Wang Hongjun et al. [24] used a multi-threaded optimized
Dlib (Image Processing Open Source Library) to locate and track the driver’s
face. The facial key point detector in the Dlib open source library was used to
extract key feature points of the driver’s face, and the aspect ratio and mouth
aspect ratio of the driver’s eyes were calculated in real-time. At the same time,
four indicators were calculated: blink frequency, closure frequency, percentage of
eye closure time, and yawn frequency, Using mathematical methods for real-time
fusion, driver fatigue status is graded based on the values of fusion indicators.

However, for the driving operator, this obvious sign may not appear until a
moment before the accident occurs. Therefore, it is necessary to detect fatigue
as early as possible and provide drivers with more time to make appropriate
responses. Therefore, in our literature, we utilize temporal information to detect
unsafe states as soon as possible.

1.2 Based on the Characteristics of Human Physiological
Parameters

The first issue that needs to be addressed in fatigue detection methods based on
human physiological parameter characteristics is the issue of experimental data.
In most cases, experimental data is collected by recruiting subjects for driving.
Firstly, in the real world, some pre-defined routes [6] can be used, or driving
simulator can be used to configure driving settings on the driving simulator [7]
and collect information based on the subject’s driving situation. In most cases,
we not only need to pay attention to the driver’s physiological signals, but also
need to pay attention to the vehicle’s status. Because vehicle usage data, such
as pedal and steering wheel usage, or meta parameters such as vehicle speed
and acceleration, can provide information about the driver’s state and behavior
[8]. However, for wake-up estimation tasks, the measurement of physiological
signals remains the most important feature. And it is usually necessary to record
multiple signals simultaneously, as a single measurement may result in significant
differences between subjects.
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Some widely used sensing data methods include electrocardiogram (ECG),
electromyography (EMG), blood pressure, respiratory rate, electrodermal activ-
ity (EDA), and skin temperature. The heart rate (HR) and heart rate variabil-
ity (HRV) extracted from electrocardiogram data are commonly used analytical
data. There is already literature proving that in stress events, heart rate increases
[9] and heart rate variability decreases [10]. HRV can be extracted in the time
or frequency domain using various linear or nonlinear methods [11]. Respiratory
rate is another indicator of unsafe driving conditions, such as significant changes
in respiratory rate under stress or fatigue. In reference [12], it can be seen that
changes in respiratory rate are related to increased pressure. Electromyography
and temperature measurements are more susceptible to noise and artifacts [13],
therefore their applicability is limited. Meanwhile, EDA is considered one of the
most representative measurement data as it is related to the autonomic nervous
system activity that causes physiological arousal [14]. EDA can capture in vitro
conduction changes caused by sweating. Due to many factors that affect sweat
gland activity, such as environmental temperature, different treatment methods
are usually used. The commonly used method is to extract two signal compo-
nents corresponding to low-frequency trends and high-frequency oscillations: skin
conductivity level (SCL) and skin conductivity response (SCR). In our study,
we followed reference [15] and regarded EDA as the reference (“gold”) standard
for driver wake-up status.

2 Introduction of Our Method

Given the powerful feature extraction and fusion capabilities of neural networks,
this paper proposes a multimodal driver fatigue detection method based on phys-
iological and visual signals, which is used to process physiological signals from
wearable devices and visual signals from cameras during driving. This method
consists of three parts, as shown in Fig. 1. Firstly, the model processes physio-
logical signal sequences and locates significant changes in physiological states,
extracting visual features based on visual signals, primarily eye features and
supplemented by mouth and head features. Secondly, physiological and visual
features are fused in the temporal dimension to obtain fatigue features. Based on
this feature representation, an effective fatigue detection model can be trained.
Finally, driver fatigue detection and discrimination are carried out based on the
obtained fatigue characteristics.

For visual signals, we need to extract facial features. Obtain key eye, mouth,
and head regions through facial recognition and key point localization of images,
and extract features from each image to generate a time series. For physiolog-
ical signals, high-frequency noise is removed from the physiological signal time
series through a low-pass filter, and then the filtered time series is downsam-
pled to ensure detection and analysis at a common sampling rate. Use Gaussian
segmentation algorithm to segment time series data and apply time series clus-
tering to the obtained segmentation. Then, physiological and visual features are
fused in the time dimension to obtain fatigue features, and based on this fea-
ture representation, an effective fatigue detection model can be trained. Finally,
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Fig. 1. Multimodal driver fatigue detection method based on physiological and visual
signals.

driver fatigue detection and discrimination are carried out based on the obtained
fatigue characteristics.

2.1 Extraction of Facial Features

For the processing of visual signals, we use a hybrid deep neural network architec-
ture to extract facial features from images. As shown in Fig. 2, the architecture
of the proposed hybrid deep neural network consists of three main modules: (1)
face detector, (2) spatial feature extractor, and (3) temporal feature modeling.
They are connected together through multiple learning networks. Firstly, the face
detector uses a multi task cascaded convolutional neural network (MTCNN) [16]
to allocate facial region bounding boxes and corresponding facial feature points
in each frame of the video. Further extract the eye, mouth, and head regions of
the facial region. Secondly, a customized mobile vision application efficient con-
volutional neural network (MobileNet) [17] is used as a spatial feature extractor
to extract facial features from images of each frame. Finally, since fatigue fea-
tures follow a pattern over time, an LSTM network is used to utilize the time
patterns of a series of features within a specific time interval. The following
sections provide a detailed introduction to each module.

Fig. 2. Facial Feature Extraction.

2.2 Face Detector

Driver fatigue detection based on video images has many problems, as facial area
detection and alignment are influenced by many factors such as lighting condi-
tions, driver gestures, video resolution, facial angle, and occlusion. Therefore,
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Fig. 3. Three architectures of MTCNN.

the design of facial detectors is crucial for achieving accurate facial region detec-
tion before facial feature extraction and fatigue detection. During driving, the
driver may change their posture due to vehicle movement, extreme lighting or
darkness inside the vehicle, and abnormal occlusion. Due to significant changes
in the driver’s posture and the fact that the camera often has the same view-
ing angle, extracting the specific positions of the mouth and eye areas becomes
more difficult. The MTCNN proposed by Zhang et al. [16] is known as one of the
fastest and most accurate facial detectors. To address the above issues, MTCNN
uses several different stages for face detection and alignment tasks. As shown in
Fig. 3, MTCNN consists of three network architectures (P-Net, R-Net, and O-
Net) to obtain facial bounding boxes and feature points of three different scales.
In MTCNN, h is the result parameter set and the input image, as shown in
formula 1. Through three networks (P-Net, R-Net, and O-Net), the predicted
facial bounding box positions are. In addition, the five coordinates including left
eye, right eye, nose, left mouth corner, and right mouth corner are represented
as lx0, ly0, lx1, ly1, lx2, ly2, lx3, ly3, lx4, and ly4, respectively. To obtain a more
accurate image for subsequent cropping, the head area of the image is cropped
according to formula 2 based on the position of the facial bounding box. Based
on five coordinates, the eye and mouth regions are also cropped and extracted,
using a 30% face bounding box size (w represents the width of the bounding box,
and h represents the height of the bounding box) and the center coordinates, as
shown in Eqs. 3 and 4.
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hθMTCNN (I) = [Sx;Sy;Ex;Ey; lx0; lx1; ly1; lx2; ly2; lx3; ly3; lx4; ly5] (1)

Iface = I[Sx : Sy, Ex : Ey] (2)

Icrop = Iface[xc : 0.3w, yc : 0.3h] (3)

xc = x − 0.3w
2

yc = y − 0.3h/2
(4)

2.3 Spatial Feature Extractor

The spatial feature extractor is a CNN based model for extracting facial fea-
tures from single frame images. It includes determining the head, eyes, and
mouth as facial markers through the MTCNN in the face detector. In this study,
MobileNet was used as the main method to achieve a fast and stable training
process to generate feature extraction models. This model has achieved good
performance in image recognition on various datasets. MobileNet and its vari-
ants were introduced as a solution primarily for speed optimization. Figure 4
shows the improved MobileNet architecture, which includes thirteen convolu-
tional layers (grouped as Conv 1–13), five maximum pooling layers (Max Pool
1–5), one average pooling layer (Ave Pool), and one fully connected feedforward
network layer (FC).

Fig. 4. Architecture of a CNN based feature extraction model

2.4 Time Series Feature Extraction

Although feature extractors can predict the fatigue level of each image frame
based on spatial features, sometimes it is still difficult to distinguish slight
dynamic changes with strong temporal dependencies, such as yawning and speak-
ing. Therefore, it is beneficial to consider the time information in consecutive
frames. To this end, deep LSTM [18] was applied to model temporal features.
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LSTM is a special type of recurrent neural network (RNN) used to analyze
hidden sequence patterns in temporal and spatial sequence data. It can learn
long-term dependencies because it has a unique structure of input, output, and
forgetting gates, which can control long-term sequence pattern recognition. The
LSTM used in the proposed hybrid network aims to avoid long-term depen-
dence by controlling the amount of information provided within each time frame
through gate composition. The working principle of a door is to try to forget
some unimportant information from the previous frame. At the same time, it
also analyzes information within the current time frame and makes assumptions
based on current information and previous important information.

2.5 Time Series Feature Extraction

Although feature extractors can predict the fatigue level of each image frame
based on spatial features, sometimes it is still difficult to distinguish slight
dynamic changes with strong temporal dependencies, such as yawning and speak-
ing. Therefore, it is beneficial to consider the time information in consecutive
frames. To this end, deep LSTM [18] was applied to model temporal features.
LSTM is a special type of recurrent neural network (RNN) used to analyze
hidden sequence patterns in temporal and spatial sequence data. It can learn
long-term dependencies because it has a unique structure of input, output, and
forgetting gates, which can control long-term sequence pattern recognition. The
LSTM used in the proposed hybrid network aims to avoid long-term depen-
dence by controlling the amount of information provided within each time frame
through gate composition. The working principle of a door is to try to forget
some unimportant information from the previous frame. At the same time, it
also analyzes information within the current time frame and makes assumptions
based on current information and previous important information (Fig. 5).

Fig. 5. Human Physiological Parameter Feature Extraction.

2.6 Data Preprocessing

For our research, we will limit the scope to HR and BR, as these are easily
obtainable or extractable in all the aforementioned datasets and have previously
been proven to be effective indicators of human stress. In the absence of res-
piratory measurements in the dataset, we continue to extract such information
using the ECG derived respiratory algorithm proposed in [20]. Then, we use
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[21] to extract the respiratory rate from the respiratory time series. Physiologi-
cal indicators were initially sampled at various sampling rates, so we performed
downsampling. Specifically, we first apply low-pass, third-order Butterworth fil-
ters to reduce high-frequency components, and then extract the filtered signal
to a universal rate of 0.5Hz. In this way, we can focus on significant changes
in the signal while eliminating possible artifacts. In Table 1, we summarize the
sampling parameters used in each dataset.

As for the basic facts, we have attempted three different methods to explain
the variability of the provided data. Electrodermal activity (EDA) has been
used as the gold standard for emotional state estimation, so we use it as a
basic factual measure in all cases. We will also evaluate our subjective stress
level methods when available. In order to improve the integrity of our work, we
also consider considering reference standards by averaging the time series and
subjective ratings of EDA as much as possible. This strategy was adopted in
reference [34] as a method for determining subjective stress levels. All ground
truth measures are further filtered to eliminate any rapid oscillations, as shown
in Table 1.

Table 1. Physiological Signal Experimental Dataset Processing.

Dataset Physiological signal Driver Distance length Sampling rate

DriveDB ECG EDA 24 >30 km 15.5 Hz
HCL Lab Driving ECG, HR, EDA 10 24 km 1024 Hz
AffectiveROAD HR, EDA 14 31 km 1–4 Hz

2.7 Gaussian Segmentation

To segment time series data, we used the greedy Gaussian segmentation (GGS)
algorithm proposed by Hallac et al. [19]. GGS gradually divides the data stream
into multiple parts, and its data points can be described as independent samples
of Gaussian distribution.

Given a set of breakpoints B = (b1, b2, . . . , bk), the algorithm only considers
the distribution (mean and covariance) of signal changes at these breakpoints.
More specifically, given the two breakpoints bi and bi+1 in B, GGS estimates
the empirical covariance S(i) of that segment using the following formula:

S(i) =
1

bi+1 − bi

bi+1∑

t=bi

(xt − μ(i))(xt − μ(i))T (5)

where xt is the data sample at the tth time point, μ(i) and
∑

(i) are the mean
and covariance of the segments. Using the covariance calculated from the above
equation, GGS tends to estimate B to maximize the likelihood as follows:
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− 1
2

K+1∑

i=1

[(bi+1 − bi) log(S(i) +
λ

bi+1 − bi
I)− λTr(S(i) +

λ

bi+1 − bi
I)−1] (6)

Here λ is a regularization term that sets the importance of covariance. The
use of dynamic programming has solved the search and decision-making problem
of multiple breakpoints. We intentionally chose GGS as the segmentation algo-
rithm because it can effectively work in multimodal scenarios by considering the
multivariate distribution shown in [22]. Our goal is to detect such breakpoints in
physiological signals and evaluate their robustness in estimating corresponding
changes in driver pressure levels.

2.8 Time Series Clustering

The main objective of this study is to detect the most prominent changes in
stress levels, but not to identify any type of change in the data. To quantify
this concept, we apply time clustering based on the breakpoints proposed by the
GGS algorithm to the ground real time series. After running GGS, we treat each
fragment as an independent time series sample and perform a simple time series
k-means to cluster the fragments into k sets. Subsequently, we use the clustering
results to discard all breakpoints located between segments in the same cluster.
In Fig. 6, you can see the visualization of the result representation of the example
EDA signal.

Fig. 6. Clustering example of EDA ground truth signals from the HCI dataset.

3 Experimental Analysis

3.1 Experimental Data

Due to privacy issues with physiological data, there are currently no pub-
licly available datasets containing multiple physiological signals, nor are there
datasets related to driving status. Therefore, in our study, we used three public
datasets that best met our goals.

The visual signal data includes videos from two sources: the available pub-
lic datasets NTHU-DDD, UTA-RLDD, and YawnDD, as well as videos captured
by the authors interviewing expert operators while performing a crane operation
simulation in the Unity3D game environment. Details of the videos are shown
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in Table 3. They were filmed in different scenarios, including working in front of
a computer, simulated or real driving environments, and simulated crane oper-
ations. They have different facial features, behaviors, races, lighting conditions,
acquisition scenes, and facial poses (different camera positions). Videos are also
captured at different resolutions, e.g. 640 × 480, 1280 × 720, etc. (Table 2)

Table 2. Experimental dataset.

Dataset Driver behavior Lighting Scenario introduction

NTHU-DDD Quiet Wear glasses during the day
Yawn No accessories during the day
Nod Day and night Wear sunglasses
Look to the side No jewelry at night
Look to the side Wear glasses at night

YawnDD Usual Wear glasses
Speak Daytime Wear sunglasses
Yawn No accessories
Sing Have a beard

UTA-RLDD Alert Morning Wear glasses
Low vigilant Noon Wear sunglasses
Drowsy Midnight Have a beard

Each dataset has its collection method and scenario, label pattern, dataset
size, and facial expressions of whether fatigue has “evolved”. They are used to
understand dataset characteristics suitable for crane operator fatigue detection.

More information about the three datasets is described below: The University
of Texas at Arlington Real Life Drowsiness Dataset (UTA-RLDD) [1] was created
for a multi-stage drowsiness detection task. The goals of the dataset focused on
discriminants such as subtle micro-expressions in fatigue situations, not just
extreme and easily observable expressions. 60 healthy participants recorded 30 h
of RGB video in the dataset. By using the participants’ cell phones or webcams,
they recorded facial videos themselves in real life.

Therefore, it is expected to detect fatigue or drowsiness at an early stage,
activating mechanisms to prevent drowsiness through these subtle conditions.
Due to the physiology and instincts of the participants, it was difficult for them
to pretend to be lethargic or tired by mimicking subtle micro-expressions.

The NTHU Driver Drowsiness Detection dataset (NTHU-DDD) [3] is a pub-
lic dataset collected by the computer vision laboratory of National Tsinghua
University, which contains 36 IR videos under various simulated driving scenar-
ios. These scenes include normal driving, yawning, slow blinking, falling asleep,
laughing, etc. The videos were shot under daytime and night lighting conditions.
However, they are all themed around fake fatigue.
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The Yawning Detection Dataset (YawDD) [4] was collected by the Dis-
tributed Collaborative Virtual Environment Research Lab (DISCOVER Lab)
at the University of Ottawa. It contains two available sub-datasets: the first
contains 322 RGB videos of normal facial expressions, and the second contains
29 RGB videos of drivers yawning. Both sub-datasets consist of bespectacled
and non-bespectacled/sunglasses male and female drivers from different races.
In addition, there are three different mouth situations in the dataset: (1) shut
up and drive normally (no talking), (2) talk or sing while driving, and (3) yawn
while driving. In other applications, it can also be used for yawning and fatigue
detection, such as simulating communication between an operator and a rigging.

During the experiment, due to the long-term dependence on specific datasets,
a problem arose that, within a few seconds, alert facial expressions on a series of
frames, if just restored, would still be considered signs of drowsiness. Warning
expressions after drowsiness. Furthermore, the level of detail of existing labels in
this dataset does not allow for the identification of drowsiness states with high
precision in the time dimension. Compared with other datasets, there is also
no uniform evaluation criteria and labeling principles among them. To address
these issues, the authors relabeled three available datasets, NTHU-DDD, UTA-
RLDD, and YawnDD, in segmented units per frame and per minute. Those
typical facial states or behaviors, such as eyes closed, yawning, head bowed,
are still considered evidence for judging whether a frame contributes to fatigue
awareness. To describe the transition states between alarm and fatigue, and
to establish uniform evaluation criteria, we propose a relabeling workflow and
uniform relabeling principles.

3.2 Data Preprocessing

For all videos, MTCNN is used to detect faces in all frames. The detected face
bounding box with five landmark points is cropped together with the boundary
pixels, and the cropped face area is adjusted to a fixed size of 64 × 64. Due to
the high frame rate of the dataset (e.g., 30 fps or 15 fps), this study re-samples
the video frames by a factor of 6 or 3 and inputs the face sequence to the
proposed hybrid neural networks at a frame rate of 5 fps. The classification results
(prediction level) can be upsampled back to the original video length. In addition,
some videos in the dataset are grey release videos. Therefore, each frame should
be replicated three times as a 3-channel image in order to generalize the proposed
method when processing color or grey release inputs.

3.3 Training and Testing

In experiments, two classifiers of the proposed learning architecture, called Spa-
tial Feature Extractor (MobileNet) and Temporal Feature Modeling (LSTM),
are trained and evaluated respectively. The entire architecture is then tested
by combining two trained classifiers. General training and testing results are as
follows:
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1) All videos in the public dataset are cropped into fixed-length video clips that
can start from any frame of the original video. Sequential features calculated
from the human eye, mouth, and head regions in one video clip are consid-
ered. From all available data obtained from the video clip, 70% are randomly
selected to train the classifier, which is then evaluated using the other 30%
of the remaining data.

2) For the spatial feature extractor (MobileNet), the eye, mouth and head
regions detected from the customized MTCNN have three fatigue levels: alert-
ness, low vigilance and fatigue for training and validation. Additionally, this
custom MobileNet is used to extract sequence features for further training in
the next step.

3) For temporal feature modeling (LSTM), since fatigue features follow a certain
pattern over time, it is used to exploit a temporal pattern of a series of features
over a specific time interval. It is also trained and evaluated by randomly
selecting the same set of 70% and 30% data from all available datasets.

4) After the training of the two classifiers is completed, for the three datasets,
select the data to test the trained model to integrate the two classifiers. Then
evaluate all final performance based on real labels.

3.4 Evaluation Indicators

The performance of the proposed fatigue detection architecture on multiple
datasets is quantitatively evaluated in terms of accuracy and loss. To achieve
more detailed and valuable fatigue level predictions, the mean absolute error
(MAE) is used as a loss measure because fatigue level detection is a multi-class
ordinal classification problem. It takes into account the intermediate problem
between regression and classification. Furthermore, for multi-class ordinal clas-
sification, Gaudette and Japkowicz compared various indicators of the accuracy
of ordinal classification. They found that, as a single statistic, MAE (mean abso-
lute error) or MSE (mean squared error) performed better than other indicators
they found in the literature. Although MAE/MSE is designed for continuous
data, its more severe penalty for deviation from the mean applies to ordered
data converted to small integers.

Evaluation metrics are defined in the Eqs. 5 and 6. Accuracy is the main
metric in this study. It refers to the percentage of entire videos that have been
correctly classified, not individual video clips.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

TP, TN, FP, and FN represent true positives, true negatives, false posi-
tives, and false negatives, respectively, based on comparisons between fatigue
test results and underlying facts.

The loss (i.e. mean absolute error, MAE) is the mean absolute difference
between the estimated value and the actual value:

Loss =

∑N
i=1

∣∣∣Yi − Ŷi

∣∣∣
N

(8)
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Yi represents the predicted degree of fatigue and Ŷi represents the actual
label value. N is the video frame number for fatigue detection.

3.5 Experimental Results and Analysis

In contrast, when explicit stress annotations are taken as basic facts, both signals
are robust and have comparable accuracy in locating state changes. In the third
version of our experiment, we considered the fused gold standard for reporting
ratings and EDA, and AffectiveROAD achieved a significant improvement of
27% compared to EDA-only performance and a 13% improvement compared to
rating-only performance, indicating that this fusion effectively lays the founda-
tion for arousal estimation in AffectiveROAD. We emphasize that the perfor-
mance of the Multi-modality model doubles its score compared to the model
using EDA-only (Fig. 7).

Fig. 7. Data Test

Select a YawDD dataset containing videos captured at different camera posi-
tions for testing to determine the appropriate angle for facial video capture.
As shown in Fig. 8, YawDD contains two sets of driver video sets with various
facial features for yawn detection. In the first set, the cameras are mounted
under the vehicle’s front windshield at an angle to the driver (side view). The
second set of cameras is mounted on the vehicle’s dashboard and faces directly
toward the driver (front view). In the dataset, each driver has three or four
videos. Each video contains facial expressions in different mouth states, such as
still, talking/singing, and yawning. The dataset provides 322 videos, including
male and female drivers, with and without glasses/sunglasses, different races,
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and three different scenarios: (1) driving normally (without talking); (2) talking
and singing while driving; (3) yawning while driving.

As shown in Table 3, the fatigue detection accuracy of the driver’s forward-
looking video is 88.97%, which is higher than the 83.01% of the side-looking
driver’s video. It meets the natural expectation that the more parts of the face
to be captured, the more features to be detected to improve the accuracy of
fatigue detection. Nonetheless, the trained model achieved high accuracy in this
experiment through the detection performance of side-looking video.

Table 3. Experimental dataset.

Dataset Camera Localization Loss Accuracy

Vehicle dashboard 0.2356 0.8897
YawnDD Under the front windshield 0.4105 0.8301

Therefore, in general, our proposed method has great advantages over other
single fatigue detection methods, and has more guiding significance and practical
value.

4 Conclusion

At present, fatigue detection systems on the market have the problem of single
detection features and low detection accuracy. In view of the powerful feature
extraction and fusion capabilities of neural networks, a multimodal driver fatigue
detection method based on physiological signals and visual signals is proposed,
which is used to process physiological signals from wearable devices and visual
signals from cameras during driving. First, the model processes physiological sig-
nal sequences and locates significant changes in physiological state, and extracts
visual features based on visual signals, which are mainly eye features and supple-
mented by mouth and head features. Secondly, physiological and visual features
are fused in the time dimension to obtain fatigue features. An effective fatigue
detection model can be trained based on the feature representation. We use
public datasets to segment physiological signal sequences such as heart rate and
quantify and capture change points. After testing in different visual environ-
ments such as day and night and whether the face is occluded, this model can
meet the requirements of basic real-time detection of fatigue, and the detection
accuracy is high.
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Abstract. With the continuous promotion and deepened application of
Machine Learning-as-a-Service (MLaaS) across various societal domains,
its privacy problems occur frequently and receive more and more atten-
tion from researchers. However, existing research focuses only on the
client-side query privacy problem or only focuses on the server-side model
privacy problem, and lacks a simultaneous focus on bilateral privacy
defense schemes. In this paper, we design privacy-preserving mechanisms
based on differential privacy for the client and server side respectively for
the first time. By injecting noise into query requests and model responses,
both the client and server sides in MLaaS are privacy-protected. Experi-
mental results also demonstrate the effectiveness of the proposed solution
in ensuring accuracy and providing privacy protection for both the clients
and servers in MLaaS.

Keywords: Machine Learning as a Service · Bilateral Privacy ·
Privacy Leakage · Model Extraction · Differential Privacy

1 Introduction

Since the advent of the internet, the pace at which human society produces
data has continuously accelerated, and the complexity of this data has increas-
ingly grown. By 2025, according to IDC, the total amount of data is expected to
reach a staggering 175 ZB [1]. Traditional business intelligence tools have become
inadequate for handling such vast quantities and varieties of data, requiring more
efficient analytical tools. The rapid advancement of machine learning (ML) tech-
nology aptly fills this gap, while machine learning-as-a-service (MLaaS) came
into being. Due to its remarkable service capabilities and consistently decreasing
costs, it quickly garnered favor among customers worldwide, with the global mar-
ket size projected to reach $16.7 billion by 2027 [2]. Concurrently, major global
tech corporations have established their commercial foothold in the MLaaS sec-
tor, including platforms like Amazon Marketplace [3], Google Cloud AI [4], and
Azure Machine Learning [5].
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However, with the incremental adoption of MLaaS, researchers gradually find
that there are numerous security problems in MLaaS. Specifically, during clients
enjoy the convenient MLaaS services, their proprietary data must be uploaded to
service providers, leading to significant potential risks associated with client pri-
vacy breaches [6–9]. Additionally, the service models of providers are also suscep-
tible to model extraction attacks [10], leading to model privacy (i.e., parameters,
hyperparameters, training dataset) exposure. Meanwhile, malicious clients can
even exploit these parameters to construct fake models with similar performance
or launch inversion attacks [13] and membership inference attacks [14].

Addressing these concerns, numerous studies have been conducted, result-
ing in a myriad of solutions. In defense against model extraction attacks, using
technologies such as rounding confidence and differential privacy, researchers
have introduced a variety of methods or mechanisms, achieving satisfactory per-
formance in terms of privacy and/or utility [15–18]. To mitigate client data
privacy leaks, numerous strategies and methods have been proposed leverag-
ing k-anonymity, �-diversity, differential privacy, homomorphic encryption, and
secure multi-party computation [19–21]. To summarize, even though these solu-
tions are effective for their respective privacy challenges, the MLaaS domain
currently lacks a universally practical scheme that safeguards both client and
server model privacy.

In this study, we propose a strategy that employs differential privacy tech-
niques for both client and server ends, offering dual-sided defense capabilities.
On the client side, we amalgamate the exponential mechanism with the Laplace
mechanism to provide data privacy release capabilities. On the server side, we
utilize a defined model decision space to introduce effective differential perturba-
tions for sensitive queries. Furthermore, experiment results prove the effective-
ness of the schemes we proposed. The contributions of this paper are summarized
as follows:

1) We first focus on and propose a generalized scheme with the ability to protect
the privacy of both the client and the server side at the same time.

2) We propose a method to provide client query data privacy release by inte-
grating organically the exponential and Laplacian mechanisms.

3) We propose a method for server-side privacy protection by modeling the deci-
sion space to identify and perturb responses.

4) We perform experiments to demonstrate the effectiveness of the proposed
scheme in providing both client- and server-side privacy protection capabili-
ties.

The remainder of this paper is organized as follows: Section 2 introduces
the privacy leakage risks faced by both the server and client side and the reserve
knowledge of the proposed schemes; Sect. 3 reviews the previous research results;
Sect. 4 describes the details of the schemes that satisfy the privacy preservation
needs of both sides simultaneously; Sect. 5 demonstrates our evaluation method-
ology and the experimental results, and Sect. 6 concludes the proposed schemes
and gives an outlook on the application directions.
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2 Preliminaries

2.1 MLaaS

MLaaS is a cloud-based solution designed to simplify the adoption of machine
learning for developers and businesses [22]. By offering pre-trained models, easy-
to-use APIs, and scalable infrastructure, MLaaS removes the complexities of
managing machine learning environments. This enables organizations to seam-
lessly integrate machine learning capabilities into their applications, regardless
of their expertise in AI [23]. With major cloud providers offering these services,
businesses can now harness the potential of machine learning without the need
for extensive in-house resources or technical knowledge.

2.2 Privacy Leakage in MLaaS

The utilization of MLaaS presents not only privacy challenges for ML model own-
ers (service providers) but also data privacy concerns for data owners (clients).
Specifically, clients using MLaaS are concerned about the privacy and security of
data submitted to the MLaaS platform for use in making predictions [6]. In con-
trast, MLaaS platform proprietors are worry about the potential theft of their
models by adversaries masquerading as clients or other malicious attackers [10].

Client / Data Owner. Typically, MLaaS represents a suite of services. Promi-
nent companies like IBM, Google, Microsoft, and FICO, in pursuit of augmented
profits and user friendliness, commonly retail machine learning tools as a com-
ponent of their cloud computing offerings. This array of services includes but is
not limited to, data visualization, APIs, facial recognition, natural language pro-
cessing, predictive analytics, and deep learning. Once the clients (data owners)
purchase any of the above services, depending on the type of service selected,
the client is required to upload the relevant data to the service provider where
the actual computation of the data takes place in the service provider’s data
center, and it can be seen that the clients’ data is geared towards a very high
risk of leakage and malicious use in the above process.

More specifically, the business nature of MLaaS requires clients to share
data with service provider. Within various societal sectors, this type of data
might be highly sensitive. Examples include personal information aggregated
for social science investigations, patient records garnered for medical studies,
and individual viewing preferences amassed for advertising research. This poses
a risk of accidental data leakage or misuse, especially when service providers
fall short in safeguarding data or divert it for extraneous objectives. Even more
disconcerting is the scenario where a service provider, commanding a significant
market share, accumulates data across diverse societal domains from distinct
clientele. The inherent associations and concealed patterns within this data may
be deciphered by the provider, culminating in more profound intrusions into
client privacy.
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Furthermore, under the existing business model of MLaaS, once a client
uploads data to an MLaaS provider, the client typically has little control over
where the data goes and how it is used, i.e., it loses ownership of the data. This
engenders two potential hazards: first, the client has no way to know and verify
concerns such as data access rights, data storage locations, and data retention
periods, and the protection of the client’s data relies entirely on the service
provider’s ethical self-discipline, which history has shown us to be completely
unreliable. Second, because the client loses ownership of the data and has no
way of monitoring and controlling how the service provider uses the data, there
is no way for the client to enjoy the rewards of trading the data as an asset.

Server / Model Owner. In the context of MLaaS, each model can be perceived
as a specific function that maps input data to output data. Generally, MLaaS
providers offer users two categories of models: generative models and discrimina-
tive models. The primary distinction between these two lies in their treatment
of input data and their respective objectives. Generative models aim to learn
the joint probability distribution of the inputs and infer the conditional proba-
bility given the input data, and they can be employed to describe or generate
samples from a dataset. Discriminative models, on the other hand, directly learn
the mapping or decision boundary from input data to output labels, focusing on
distinguishing between different classes. In essence, while generative models are
concerned with how data is generated, discriminative models emphasize how to
differentiate or classify outputs based on the input.

Ever since Tramèr et al. [10] introduced model extraction attacks in 2016, the
field of model extraction has been undergoing rapid advancements. At present,
based on the objectives of the adversary, these attacks are generally categorized
into two types: fidelity extraction attacks and accuracy extraction attacks [24].
To elucidate further, if one regards a victim model (target model) as a function
fvic that maps input data x to output data y, i.e., y = fvic(x). For discriminative
models, the goal of an accuracy extraction attack is to construct a new model
facc, even if facc differs in structure and parameters from fvic, it still ensures that
the accuracy of facc on a test dataset remains highly consistent with that of the
target model fvic. Fidelity extraction attacks, however, emphasize a comprehen-
sive replication of the target model fvic, encompassing its structure, parameters,
and functionality, ensuring that the new model ffid not only matches the accu-
racy of the target model fvic but also replicates its errors. In a nutshell, while
accuracy extraction attacks focus on functional performance, fidelity extraction
attacks are dedicated to the complete replication of the model.

As illustrated in Fig. 1, the attack process of common model extraction
attacks is depicted, and they are categorized based on the attacker’s objec-
tives: to steal either accuracy model facc or fidelity model ffid. Specifically,
❶ the attacker systematically sends input samples X = {x1, x2, · · · , xn} to
the target model fvic and observes the corresponding outputs Odataset =
{fvic(x1), · · · , fvic(xn)}. ❷ With accumulated input-output pairs (X and
Odataset), the adversary commences the training of the surrogate model. This sur-
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Fig. 1. The diagram of model extraction attack.

rogate endeavors to mirror the behavior exhibited by the original. ❸ To optimize
the accuracy or fidelity of the surrogate model facc or ffid, iterative feedback
loops, involving additional queries, may be necessary.

2.3 Differential Privacy

It is well understood that differential privacy (DP) is a privacy-preserving tech-
nique [11,12]. The principle behind it is to impose a constraint on randomized
computations, ensuring they do not reveal particular details of individual records
in the input. This restriction is realized by mandating that the algorithm behaves
nearly identically on any two datasets that are closely related.

Let’s assume a dataset D that each record originated from an abstract domain
(AD). This dataset can be depicted as a function mapping from AD to the
natural numbers N, where D(x) denotes the frequency of record x within dataset
D. Given this, ‖ D − D

′ ‖ can be utilized to indicate the total absolute difference
in frequencies between datasets D and D

′
. This represents the number of records

required to be added or subtracted to transition D to D
′
.

Definition 1 (Differential Privacy). Having F be a mechanism that mapping
datasets D and D

′
to distributions on the output space R, which satisfies (ε, δ)-

differential privacy if for all possible outputs S ⊆ R and for datasets D, D
′

where ‖ D − D
′ ‖ ≤ 1,

Pr[F (D) ∈ S] ≤ eεPr[F (D′) ∈ S] + δ, (1)

if δ = 0 we say that F provides ε-differential privacy.

The DP frequently employs mechanisms such as the exponential mechanism,
Laplace mechanism, random response mechanism, and Gaussian mechanism.
The solution proposed in this paper is designed on both the exponential and
Laplace mechanisms, and a detailed description of these two mechanisms is as
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follows. The exponential mechanism E is one of the ε-differentially private mech-
anisms, which is predominantly utilized for selecting the optimal choice from a
discrete set of alternatives. Formally, against one alternative set of outcomes
R and one set of data D, a quality scoring function f : D × R → R must be
designed, where f(D, r) signifies the quality by which the result r for the data
set D. In order to ensure ε-differential private capability, the quality function
f is mandated to adhere to a stable performance, that means, for every result
r, the difference |f(D, r) − f(D

′
, r)| is bounded by ‖ D − D

′ ‖. The exponential
mechanism E requires only the selection of an outcome r from a distribution,
which is computed by the Eq. (2).

Pr[(E(D) = r)] ∝ exp
ε × f(D, r)

2
. (2)

Within the context of DP, a linear query is typically defined as a func-
tion q that maps data records in the dataset to the interval [−1,+1]. For-
mally, for a data set D, the result of a linear query can be represented as
q(D) =

∑
x∈D q(x)D(x).

As previously mentioned, the Laplace mechanism is another type of ε-DP
mechanism, primarily employed to compute the approximate sum of bounded
functions within a data set. For a data set D, if q denotes a linear query, the
Laplace mechanism L is defined by the Eq. (3),

Pr[(L(D) = r)] ∝ exp(−ε × |r − q(D)|). (3)

whereas the Laplace mechanism can be regarded as a specific instance of the
exponential mechanism, it can be more efficiently realized by introducing Laplace
noise with parameter 1

ε in the q(D) value. Furthermore, given that the Laplace
distribution is an exponentially concentrated distribution, it is possible for the
Laplace mechanism to approximate the true sum fairly accurately.

To counteract model extraction attacks, our primary approach is based on
the concept of model decision space, employed to safeguard the query responses
near the model’s decision boundary [32]. The specific definition of the model
decision space is as the Eq. (4).

Definition 2 (Model Decision Space). In the given feature space S, there
exists a model f and parameters Λ chosen by the model provider. All feature
vectors x that are adjacent to the model decision space form a zone SΛ within
S,

SΛ = {x ∈ R
d | dist(x, f) < Λ}, (4)

where the distance between a feature vector x and the decision boundary of model
f is quantified by dist(·). All queries falling within the SΛ space are deemed
sensitive, carrying the risk of exposing the decision space of model f .

To this end, in order for the model to successfully resist extraction attack,
it is necessary to perturb all responses within the model decision space. The
aim is to perturb the responses of any two sensitive queries, preventing the
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attacker from ascertaining the true decision boundary within that space. To
achieve the aforementioned goal, we introduce the concept of model decision
space differential privacy. Its formal definition is as follows:

Definition 3 (ε-Decision Space Differential Privacy, ε-DSDP). If and
only if for any two queries �1 and �2 within the model decision space SΛ, an
perturbation algorithm O(·) achieves ε-decision space differential privacy, then
for the true responses ξ1 and ξ2 and the perturbed responses O(ξ1) and O(ξ2),
the following inequality consistently holds true,

e−ε ≤ Pr[ξ1 = ξ2|O(ξ1), O(ξ2)]
Pr[ξ1 �= ξ2|O(ξ1), O(ξ2)]

≤ eε. (5)

Wherein, Eq. (5) ensures that attackers cannot ascertain whether the perturbed
responses O(ξ1) and O(ξ2) are derived from the same query response ξ1 = ξ2 or
different query responses ξ1 �= ξ2, with a high level of confidence (governed by
ε). As a result, irrespective of the number of meticulously crafted queries the
attacker initiates, they cannot discern the authentic decision boundary within
the model decision space SΛ.

3 Related Works

3.1 Defenses for Client in MLaaS

To the best of our knowledge, there’s limited research on how to protect client
data privacy within the MLaaS. Nonetheless, in the field of data publishing,
researchers have published several works. Hardt et al. [25] introduced a novel
differential privacy data release method named MWEM, which achieves theo-
retical guarantees by integrating the multiplicative weights update rule with the
exponential mechanism. A major limitation of this method is that maintain-
ing a complete distribution becomes infeasible when the data domain is very
large. Addressing numerous queries on high-dimensional data sets, Gaboardi et
al. [26] proposed an immensely practical privacy-preserving algorithm, named
Dual Query. This algorithm encapsulates computationally challenging steps into
an indirect integer program, significantly enhancing computational efficiency.
However, both of the aforementioned methods suffer from task bias, unable to
process tasks of any type with satisfactory accuracy. Subsequently, by replacing
core components of MWEM and Dual Query, Vietri et al. [27] introduced three
oracle-efficient algorithms for constructing differential privacy synthetic data, yet
these did not overcome their primary limitations. As a result, Zhang et al. [28]
introduced the PrivSyn method, a general differential privacy data release mech-
anism that can autonomously and confidentially identify correlations in original
data and generate sample data from dense graph models.

3.2 Defenses for Server in MLaaS

The main object of this work is to design defense methods against model extrac-
tion attacks, i.e., model output perturbation [29]. Initially, Tramèr et al. [10]
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delineated a fundamental form of output perturbation, which entails rounding
off prediction results. However, they concurrently noted its impracticality. Lee
et al. [30] introduced a deceptive perturbation method, intended to disrupt the
activation layer located at the model’s last position, thereby amplifying the dif-
ficulty for attackers to retrieve comparable models. Specifically, this technique
perturbs the model’s raw response by appending an inverse sigmoid function,
subsequently employing a normalizer to ensure the sum remains unity. Nonethe-
less, this approach falls short of model extraction attacks that merely operate on
prediction labels. Orekondy et al. [31] proposed a utility-constrained defensive
framework, termed “prediction poisoning”, which harmonizes model privacy and
utility objectives by perturbing predictions. Explicitly, the perturbation maxi-
mizes the gradient deviation of prediction posteriors from those of the original
model. However, this method requires a large number of gradient computations
to implement. In the same year, Zheng et al. [32] introduced the BDPL method,
leveraging differential privacy to perturb model output responses. It appends
a boundary differential privacy layer after the model output layer, obfuscating
responses to queries within the decision boundary zone. Explicitly, BDPL dis-
cerns query sensitivity via pre-defined model decision boundary-sensitive zones.
Upon identifying a query as sensitive, the boundary differential privacy layer
invokes a boundary random response algorithm controlled by the privacy budget
to return the obfuscated response. Yan et al. [33] proposed a monitoring-based
differential privacy technique to resist adaptive query-flooding parameter dupli-
cation attacks. Especially, this mechanism realizes real-time evaluation of the
model state and adaptively adjusts the privacy budget based on the evaluation
results, which in turn dynamically adjusts the amount of noise added to the
model response. Li et al. [34] introduced a personalized local differential privacy
mechanism to defend against the equation-solving model extraction attacks on
regression models. This mechanism makes the model adaptively noisy by adding
high latitude Gaussian noise to the model coefficients.

To summarize, although researchers have carried out a lot of research work
in the respective areas of DP data release and model protection, there is still a
lack of work that integrates the privacy needs of both the server and the client
and conducts research on holistic privacy protection mechanisms in MLaaS.

4 Proposed Method

4.1 Overview

As mentioned above, both service providers and clients grapple with a myriad of
privacy leakage risks and threats in the domain of MLaaS. As depicted in Fig. 2, our
research pioneers an integrated solution aimed at simultaneously preserving the
privacy of both the service providers and clients.Whenhandling private query data
uploaded by clients to service providers, we have innovated a data release method
that cleverly combines Laplace noise with the exponential mechanism (LNEM).
Further, in relation to the response results that the service provider disseminates
to the client, we have architected a model decision space DP (ε-DSDP) that is
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appended to the model outputs, with the primary objective of effectively perturb-
ing responses to sensitive queries originating from the client.

Fig. 2. The framework of the proposed method.

4.2 Privacy for Client

In this part, we utilize the multiplicative weights framework introduced by Hardt
and Rothblum [35] to iteratively refine an approximative distribution to more
accurately resemble the intrinsic true distribution. The fundamental observation
is that, upon detecting a query where the approximative distribution returns
a markedly higher value compared to the true distribution, it is pertinent to
augment the weights of records that positively contribute to this query, while
simultaneously diminishing the weights of those that negatively contribute. In
the inverse scenario, where the approximative distribution procures a signifi-
cantly reduced query result, adjustments to the weights are made in the reverse
order.

To elucidate with greater formality, consider q as a linear query structured
over a domain D encompassing records. Let’s assume that distribution D endeav-
ors to emulate the true distribution D

′
in relation to query q. The multiplicative

weights update protocol dictates the modification of the weight D allots to a
specific record x as Eq. (6):

Dnew(x)
D(x)

= exp(
q(x) × (q(D

′
) − q(D))

2
). (6)

Upon standardization of these weights, Hardt and Rothblum substantiated
that such an update decremental impacts the relative entropy between D and
D

′
by an additive factor of (q(D)−q(D

′
))2 in each iteration. Hence, pinpointing

queries exhibiting disparities between D and D
′

facilitates the iterative refine-
ment of our approximation.
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In essence, this update rule adaptively modulates the weights contingent on
each record’s influence on the discrepant query, culminating in a heightened
probability density on records that resonate more harmoniously with distribu-
tion D

′
. When this mechanism is repetitively applied to in-congruent queries,

the multiplicative weights framework demonstrably navigates distribution D in
closer proximity to D

′
.

To further clarify, the exponential weight modification function accentuates
weights of affirmatively influencing records and diminishes those of adversely
influencing records, commensurate with their contributory significance. This
strategic realignment of probability mass in distribution D ensures greater con-
gruence with records epitomizing distribution D

′
for a stipulated query. When

enacted across a spectrum of queries, the compounded effect of this multiplicative
re-calibration amplifies, enabling the multiplicative weights approach to assimi-
late D into D

′
, even when commencing from a rudimentary approximation. This

methodology epitomizes a sophisticated and theoretically grounded stratagem
for distribution alignment.

4.3 Privacy for Server

In this section, we primarily introduce solutions designed to combat model
extraction attacks. The key idea is to incorporate ε-decision space differential
privacy (ε-DSDP) into the model output, that is, appending an ε-DSDP layer
following the model’s output layer. Especially, this ε-DSDP layer consists of two
pivotal steps: ❶ identifying sensitive queries from either attackers or users based
on the corner-point technique; ❷ employing a perturbation algorithm to perturb
the responses of these sensitive queries to adhere to ε-DSDP. Moving forward,
we will focus on elaborating the proposed perturbation algorithm that satisfies
ε-DSDP.

Warner et al. introduced the randomized response technique [36] as a survey
methodology aimed at mitigating potential biases stemming from non-responses
and societal expectations when posing questions related to sensitive behaviors
and beliefs. At the core of this technique is the intent to safeguard privacy in
the original data by leveraging uncertainty in responses to sensitive inquiries.
It’s primarily tailored for dichotomous data, which assumes two distinct values.
Notably, the perturbation algorithm defined within our boundary differential pri-
vacy framework in this paper offers just two output options. Consequently, we’ve
devised the BWRR (Boundary Warner Randomized Response) algorithm, draw-
ing inspiration from the randomized response technique, to fulfill the require-
ments of ε-DSDP.

For a given model within MLaaS, given a query sample �q and its true
response ξq ∈ {0, 1}, the BWRR algorithm B(ξq) perturbs ξq according to the
Eq. (7), ensuring that B(ξq) adheres to ε-DSDP.

B(ξq) =

{
ξq, with probability 1

2 +
√

e2ε−1
2+2eε

1 − ξq, with probability 1
2 −

√
e2ε−1

2+2eε

(7)
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To this point, we proceed to detail the procedure of the ε-DSDP layer that
is affixed subsequent to the output layer of model f . Specifically, upon receiving
a fresh query �q, if a preliminary lookup discerns that it has been previously
queried by other users, the ε-DSDP layer directly furnishes the querier (client)
with the cached response ξ′

q. This strategy is employed to thwart adversaries
from gleaning multiple perturbed responses for an identical query, which might
consequently undermine the privacy guarantees of ε-DSDP. If this is not the
case, the process is as follows: ❶ the ε-DSDP layer procures the authentic query
outcome ξq as returned by model f . ❷ this layer subsequently scrutinizes all
corner points to ascertain whether �q resides within the model decision space.
Should any corner point be deemed a flip point, the query is promptly flagged
as sensitive. In such an instance, the BWRR(·) algorithm described in Eq. (6)
equipped with a predefined privacy budget ε, is utilized to ensure privacy preser-
vation, i.e., ξ′

q = BWRR(ξq, ε). Conversely, should �q be adjudged non-sensitive
post comprehensive corner point evaluation, the querier is provided with the
authentic query outcome ξq as derived from model f . ❸ the resultant output
of the BWRR(·) algorithm is then harnessed. This perturbed query result ξ′

q is
relayed to the querier. Concurrently, it’s cached locally, laying the groundwork
for potential subsequent inquiries.

5 Experiment

5.1 Setup

• Datasets. We evaluate our approach on four publicly available datasets com-
monly used for machine learning research: the Email Spam dataset contains
emails labeled as spam or not spam based on the presence of certain words. The
Mushrooms dataset from scikit-learn [37] classifies mushrooms as poisonous or
edible based on their characteristics. The other two datasets are obtained from
Kaggle and represent a diverse range of ML tasks. Together, these four datasets
cover several orders of magnitude in size and complexity, enabling comprehensive
analysis.

For all datasets, categorical features are encoded using one-hot encoding
to avoid making assumptions about ordinal relationships between categories.
Missing values in the data are imputed by replacing them with the mean value
for that feature, a simple and widely used approach for handling missing data.
Table 1 summarizes key statistics of the evaluation datasets.

Table 1. Datasets

Dataset Instances Dimensions

SocialAds 401 5

Titanic 1310 28

Email Spam 4601 46

Mushrooms 8124 112
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To evaluate client-side privacy, we add DP noise directly to the user requests
before sending them to the server.

For server-side evaluation, we randomly split each dataset into a training set
(70%) and a test set (30%). The training set serves as private data to train the
target model. The test set is used to evaluate the accuracy of the target model
as well as the accuracy of the model extracted by the adversary (i.e., to calculate
Accuracy). The test set also measures how closely the extracted model matches
the target model (i.e., to calculate 1 − Rtest).

In our adversary model, the adversary queries the target model exhaustively
overall feature spaces. It then uses the prediction results to train the extracted
model. Note that the test set is kept private and not exposed during extracted
model training. Evaluating the extracted model on the private test set illustrates
its generalization ability beyond the query dataset.
• Evaluation Metrics. For client-side evaluation, we use mean squared error
(MSE) to evaluate range queries and relative entropy (Kullback-Leibler diver-
gence, KLD) for binary contingency table queries.

For server-side evaluation, we measure the utility of the LR and NN models
on the test set using accuracy. To evaluate how closely the extracted model
matches the original, we use the Rtest metric from [33] calculated on the test
set. Therefore, 1 − Rtest represents the extraction status in terms of test error.
Since the test set follows the same distribution as the training set, the extracted
model can also be evaluated on random datasets with different distributions to
estimate its fidelity across the full feature space uniformly, denoted as Runif . Test
error Rtest measures the similarity between the extracted model and the original
model on the test set. A lower Rtest indicates higher similarity and a more
effective extraction attack. For clarity, we define Extraction status = 1 − Rtest

and use this metric in our experiments. Formally, given the extracted model
f̃(x) and the test dataset Dtest,

Rtest =
1

|Dtest|
∑

i∈Dtest

d
(
f(x(i)) �= f̃(x(i))

)
(8)

where d is an indicator function that equals 1 if f(x(i)) = f̃(x(i)), otherwise 0.

5.2 Evaluate Client’s Mechanism

Here we estimate the error of our proposed defense. The baseline is to add noise
using only the Laplace mechanism, a common simple, and efficient scheme. The
results are shown in Fig. 3.

When accuracy is emphasized, selecting the necessary dimensions to add
noise can significantly improve accuracy. When the privacy budget is very suffi-
cient, or the query set is very simple, directly perturbing all dimensions produces
better results than spending a fraction of the privacy budget to determine what
to perturb. In more challenging cases such as complex data and limited privacy
budget, our algorithm outperforms previous schemes.
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Fig. 3. Comparison of the proposed mechanism with the Laplace mechanism on four
datasets. The y-axis measures MSE and KLD for each query, averaged over five inde-
pendent experimental replications as ε changes. The smaller the ε value, the more noise
is added and the better the effect of our mechanism performs.

5.3 Evaluate Server’s Mechanism

We use the novel extraction attack to examine our proposed defense, along with
the Rounding Confidences (RC) mechanism as the baseline. The results are
shown in Fig. 4.

In order to evaluate the effectiveness of the protection of the model param-
eters, we compare the proposed mechanism with the RC mechanism along with
the effectiveness of the attack in the unprotected state. We chose the strongest
attack scheme available, the QPD model extraction attack. It can be seen that
in various experimental setups, the scheme proposed in this paper shows a sig-
nificant protection effect compared to no defense. And the proposed scheme is
consistently the best performer while the intensity of the attack increases.

6 Conclusions

In this work, we focus on privacy leakage issues pertaining to the client and
server within the MLaaS. Utilizing differential privacy techniques, we safeguard
both the query requests from the client and the model responses from the server.
Specifically, the proposed method offers effective privacy protection for the client-
side query and the server-side model parameters. This is also the first initiative
that concurrently addresses the privacy of both the client and the server in
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Fig. 4. The proposed mechanism is compared with the RC mechanism in terms of
model extraction defense effects on the four datasets. At the beginning of the attack,
our defense was significantly better than RC’s.

the MLaaS setting. We aspire that our solution will tangibly address privacy
protection concerns in MLaaS, enhance its privacy security in real-world appli-
cations, and promote the application and evolution of trustworthy AI technology
in MLaaS.
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Abstract. Federated learning emerged to solve the privacy leakage
problem of traditional centralized machine learning methods. Although
traditional federated learning updates the global model by updating the
gradient, an attacker may still infer the model update through back-
ward inference, which may lead to privacy leakage problems. In order
to enhance the security of federated learning, we propose a solution to
this challenge by presenting a multi-key Cheon-Kim-Kim-Song (CKKS)
scheme for privacy protection in federated learning. Our approach can
enable each participant to use local datasets for federated learning while
maintaining data security and model accuracy, and we also introduce
FedCMK, a more efficient and secure federated learning framework. Fed-
CMK uses an improved client selection strategy to improve the training
speed of the framework, redesigns the key aggregation process accord-
ing to the improved client selection strategy, and proposes a scheme
vMK-CKKS, to ensure the security of the framework within a certain
threshold. In particular, the vMK-CKKS scheme adds a secret verifica-
tion mechanism to prevent participants from malicious attacks through
false information. The experiments show that our proposed vMK-CKKS
schemes significantly improve security and efficiency compared with the
previous encryption schemes. FedCMK reduces training time by 21% on
average while guaranteeing model accuracy, and it provides robustness
by allowing participants to join or leave during the process.

Keywords: Homomorphic encryption · Federated learning ·
Multi-key · CKKS · Machine learning · Secret sharing

1 Introduction

With improved computing power and increased data volume, deep learning has
achieved remarkable success in computer vision, natural language processing,
and other fields. However, large-scale data collection and storage often lead to
privacy leakage and data security issues. To solve the problem of privacy leakage
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in machine learning with a large amount of data and the problem of data island
that a large amount of data cannot be applied, the concept of federated learning
comes into being, aiming at distributed machine learning under the premise of
protecting data privacy [14,19]. In contrast, federated learning empowers indi-
vidual devices to train models locally and share only the model updates with a
central server, preserving the users’ privacy. In recent years, federated learning
has received much attention from academia and industry due to its potential in
various applications such as healthcare, finance, and the smart internet of things
[4,15,23].

Nevertheless, federated learning still faces some challenges in practical appli-
cations [16]. In order to enhance the security of federated learning, many scholars
have carried out research on homomorphic encryption, differential privacy, and
secure multi-party computation [9,11,24]. Additionally, federated learning can
also be attacked by malicious actors who may transmit faulty model updates or
manipulate training processes, damaging overall model performance [1]. There-
fore, it is crucial to design an effective security mechanism to detect and resist
such attacks. Furthermore, federated learning involves multiple participants con-
ducting model training locally, which may result in a slower overall convergence
speed. Balancing the process of local training and global aggregation to improve
training speed and model performance is also a problem worth studying.

In this study, we use improved client selection strategies and multi-key homo-
morphic encryption schemes to solve the problems of data leakage, malicious
party attacks, model training, and convergence rate optimization. Specifically,
we improve the client selection strategy to improve model training and conver-
gence speed [20]. Based on the improved client selection strategy, we designed a
multi-key homomorphic encryption scheme, namely vMK-CKKS, to protect data
privacy and solve the problem of collusion attacks of malicious actors. We pro-
pose a complete federated learning framework, FedCMK, and verify its security
and robustness through experiments. Our contribution is as follows:

(1) We propose a client selection strategy to solve the device heterogeneity prob-
lem and ensure the model’s accuracy while maximizing the training effi-
ciency. Experiments show that our client-selected federated learning frame-
work can improve the training speed by about 21% compared with the tra-
ditional federated learning framework without more than 1% accuracy loss.
For a specific model, the training speed can be improved by up to 33%.

(2) We design a MK-CKKS scheme: vMK-CKKS. Based on the client selection
strategy, we redesigned the way of public key aggregation for different clients.
The vMK-CKKS scheme is based on verifiable secret sharing, ensuring secu-
rity within a limited threshold. It prevents the participants from maliciously
sending false information to destroy the decryption. Experiments show that
our multi-key CKKS scheme is more efficient and secure than the traditional
encryption schemes.

(3) We propose a cross-device federated learning framework FedCMK based on
the client selection strategy with vMK-CKKS encryption scheme. Under
the premise of enhancing privacy security and training efficiency, the
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framework also supports arbitrary training strategy and has high scalability
and robustness. Experiments show that FedCMK can effectively complete dif-
ferent cross-device federated learning tasks and resist malicious attacks from
participants within a certain threshold.

(4) We theoretically prove the security of our federated learning framework and
compare its communication cost and computation cost with some existing
homomorphic encryption schemes, evaluate the efficiency and performance
of our federated learning framework, and discuss some potential risks.

The remainder of this paper is organized as follows. In Sects. 2 and 3, we
introduce related works and the preliminaries. In Sect. 4, we introduce the Fed-
CMK framework, improved client selection strategies, and vMK-CKKS scheme.
Then we present the experimental environment and parameters in Sect. 5, and we
evaluate the experimental results. Finally, we provide proof of the framework’s
security in Sect. 6 and conclude the paper in Sect. 7.

2 Related Work

Our research is mainly aimed at federated learning and multi-key homomorphic
encryption. In this section, we will summarize the current federated learning
framework based on multi-key homomorphic encryption. At the same time, we
will introduce traditional single-key homomorphic encryption schemes.

2.1 Homomorphic Encryption Based FL

Federated learning based on homomorphic encryption offers more robust security
without affecting model accuracy. Homomorphic encryption has become the most
common privacy protection method in federated learning. Recently, many fed-
erated learning frameworks using homomorphic encryption have been proposed.
For example, Dimitris et al. proposed MetisFL, a homomorphic encryption-based
federated learning model for training neural models and predicting certain dis-
eases [21]. However, their research did not optimize homomorphic encryption
schemes or consider potential model leakage. Moreover, their focus was on per-
sonalized FL [22]. In recent years, many federated learning frameworks have used
the Paillier semi-homomorphic encryption scheme [24–26]. However, the Paillier
scheme’s nature is unsuitable for large-scale machine-learning gradient encryp-
tion. In recent years, the CKKS scheme has become the mainstream homomor-
phic encryption framework for federated learning. Microsoft has implemented
CKKS in the SEAL library, and the CKKS scheme has been widely researched
and applied in recent years.

2.2 Multi-key Homomorphic Encryption Based FL

Multi-key homomorphic encryption is more suitable for large-scale multi-party
federated learning scenarios than traditional single-key homomorphic encryption
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schemes [5]. Ma et al. have proposed the xMK-CKKS scheme, which simplifies
the aggregation of public keys by adding them to form an aggregated public key
for encrypting model updates [17]. This approach has the advantage of being easy
to implement. It can be extended to multiple participants while maintaining a
certain level of security against collusion between K − 1 participants and the
server. However, this approach also has some limitations. Firstly, when there are
many participants, aggregating all public keys may lead to excessive noise, which
can negatively impact the accuracy of the ciphertext and increase computation
and communication costs. Secondly, the entire aggregate public key must be
reset if a participant drops out. Finally, although it effectively prevents collusion
between the server and other actors, it is assumed that the server is a trusted
third party in federated learning. In extreme collusion cases, the server can send
false information to obtain private data. In contrast, Du et al. have proposed the
tMK-CKKS scheme, which uses Shamir’s secret sharing to reduce overhead while
ensuring security [7]. However, Shamir’s secret-sharing scheme is not effective in
preventing malicious secret sharing between participants, which could result in
decryption failure. Some studies focus on vertical federation learning scenarios,
such as CryptoBoost, an XGBoost framework proposed by Jin and Wang et
al. based on multi-party homomorphic encryption technology [12]. CryptoBoost
is end-to-end secure, and it proposes a new set of communication protocols to
reduce costs. Applying multi-key homomorphic encryption under vertical fed-
eration learning is also a primary direction for future research [18]. Based on
this, we improve the above algorithm and design a multi-key CKKS variant that
addresses efficiency and security issues in existing schemes.

3 Preliminaries

In this section, we outline part of the notations used in the paper and introduce
the FedCS client selection protocol, which is the basis of our improved client
selection protocol, while we present the multi-key homomorphic encryption-
related techniques.

We set the secret distribution chi to be the uniform distribution over the
set of polynomials in R with coefficients {0,±1}. Each coefficient of the error
e ← ψ is plotted according to a discrete Gaussian distribution centered at zero
and standard deviation σ = 3.2. The model’s weight used in the experiment is
represented by 32 bits of floating point numbers.

3.1 Federated Learning

Federated learning is a cutting-edge artificial intelligence technology that pri-
oritizes user privacy and data security by ensuring participants cannot access
each other’s data. As a mainstream algorithm in federated learning, FedAvg
allocates a fixed number of training steps to each participant and aggregates
locally trained models to compute a new global model. This approach allows for
model updates without requiring the exchange of raw data between participants,
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ensuring privacy and security. The FedAvg algorithm has been widely adopted
in practical applications of federated learning.

3.2 Client Selection

In cross-device federated learning, the participation of numerous edge devices
and mobile terminals with limited performance capabilities can lead to a signifi-
cant waste of computing resources or the exclusion of numerous devices that can-
not perform multiple epochs within a given time frame. Nishiod et al. proposed
the FedCS protocol to solve the heterogeneous problems in federated learning
[20]. We improved on this to fit our framework.

3.3 MK-CKKS Scheme

Song and Dai proposed a multi-key homomorphic encryption (MK-HE) scheme
based on CKKS in their work [3,5,6,8]. They designed multi-key variants of
Brakerski-Fan-Vercauteren (BFV) and CKKS and provided a new relinearization
scheme. Moreover, they applied the MKHE scheme to evaluate convolutional
neural network (CNN) models.

However, directly applying the MK-CKKS scheme to federated learning may
result in privacy risks since the server can decrypt model updates and access
personal data during decryption. While the server is typically trustworthy, this
contradicts the goals of federated learning. Therefore, our MK-CKKS scheme
limits the decryption ability of the server to the ciphertext of a single client,
preventing the potential privacy leakage risk on the server side. Specifically, for
encrypted model updates, the server can only decrypt the sum of all model
updates in ciphertext and cannot decrypt the model updates of individual par-
ticipants separately.

4 FedCMK

In this section, we introduce our cross-device federated learning framework Fed-
CMK, including its system model, our simulated attack model, improved client
selection algorithm, and its encryption algorithm and overall system flow.

4.1 Problem Statement

Suppose there is an encrypted cross-device federated learning framework, a total
of K clients participate in the training process, and the whole training process is
based on the Federated Average (FedAvg) algorithm. The server randomly selects
several clients for this round of learning and sends them the global model. The
selected clients use the local data set for local training and upload the updated
gradient information to the server after encryption. In such a system, we might
face the following challenges:
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Device Heterogeneity: In a cross-device federated learning system, the per-
formance between devices and the amount of data is different. If the client is
randomly selected, it may cause a lot of computing power or data waste. There-
fore, how to choose the client will affect the accuracy and time of training.

Encryption and Decryption of Gradients: In this cross-device federated
learning system, each participating client may have its key. If each client encrypts
the gradient with its key and uploads it, the decryption process will be difficult
for the server. If a uniform key is used, the security of the key is not satisfactory to
every client, and the parties may be malicious and conspire to steal data. At the
same time, if the server can decrypt the ciphertext of each client separately, then
a not fully trusted server will easily steal all the data, which is also unacceptable.
Therefore, selecting an appropriate encryption scheme is essential to ensure local
data security.

Robustness of the System: In this cross-device federated learning system,
any client may join or leave during the process, and their actions should not
affect the entire training.

4.2 Threat Model

In our threat model, we default the federation launcher to be a trusted entity.
In the vMK-CKKS scheme, it will generate the secret to building the aggregate
public key used for encryption. While the federation controller and federation
learners are honest and curious, they will strictly follow the protocol but will be
curious to infer the data of other learners. In order to better reflect the security,
we introduce an active adversary A into the model. In the vMK-CKKS scheme,
we set A = t. A should be several learners smaller than A, or a federation
controller and several learners smaller than A. The goal of A is to obtain as
many ciphertext decryption results as possible to steal the local data of learners.
The following are some possible inferences:

1. A may consist of at most A − 1 learners who obtain each other’s ciphertexts
or decrypt shares by collusive attacks and wish to decrypt the ciphertexts to
steal data from the remaining learners.

2. A is some maliciously participating learner who broadcasts the wrong secret
shares to other learners.

3. A maliciously sends the wrong decrypt share and hopes to cause an error in
the decryption process.
We notice that such an opponent is very typical in the threat model [2].

4.3 Our Client Selection Design

The original FedCS scheme uses a greedy algorithm to strive for as many high-
performance participants as possible to participate in the training task, but this
also has some shortcomings. Secondly, it may lead to many devices being unable
to participate in the training task. In the case of uneven data distribution, it may
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lead to certain data waste problems. Finally, some high-performance devices may
be malicious, leading to persistent malicious attacks. Therefore, we make some
optimizations based on Nishio et al. ’s FedCS framework to be more suitable for
our federated learning framework and homomorphic encryption scheme. Firstly,
we notice that the choice of Tr in the original scheme has a significant impact
on the final model update, so we compare the training time and accuracy of
FedCMK under different Tr, and choose a more appropriate Tr value. We also
add a safety margin Trs = 1

60Tr to account for the network fluctuations that
communication may face in real-world applications. Second, we clustered all the
clients and selected clients for each clustered client set to make use of as many
devices as possible. Finally, we observe that clients with larger datasets tend
to be underutilized, leading to severe data wastage and potentially lower model
accuracy. To solve this problem, we introduce a weighted selection scheme in
which we add several clients with large datasets according to a weight Wsin the
S set. In addition, we cache the clients with excellent performance in subset
S′and can directly schedule them for subsequent training if they are idle. The
Settings of weight Ws and subset S′ vary from device to device. Our experiments
compare the accuracy and time of training under different Ws. Considering the
balance of performance and efficiency, we chose Ws = 0.2 and |S′| = 0.1 |S|.

4.4 Our MK-CKKS Scheme Design

We have optimized and proposed a MK-CKKS variant that will be used to build
our federated learning framework FedCMK. The vMK-CKKS scheme is based
on verifiable secret sharing (VSS), which is similar to Shamir’s secret sharing
but with an additional verification mechanism [10]. This mechanism enables
participants to verify the correctness of the received secret fragments, helping
to prevent malicious actors from tampering with or forging shares during the
sharing process, thus enhancing the system’s security. Moreover, the verification
function of all parties of VSS improves the system’s fault tolerance and robust-
ness since even if some participants provide incorrect shares when restoring the
aggregate public key, the final result will not be affected. We will discuss this
method in more detail below.

– SecretShare : A trusted third party performs secret generation, and we refer
to this third party as the generator hereinafter(GH). GH randomly selects
ai ∈ Zp, and construct a polynomial of degree t-1, satisfying f(x) = a0 +
a1x + · · · + at−1x

t−1(modp), sets a0 = z. For a client ki , its secret share is
zi = f(i). Any t participants can jointly reconstruct the secret.

– Setup : For a given security parameter λ, set the RLWE dimension n,
ciphertext modulus q , key distribution χ and error distribution ψ over R.
Then, takes all the security parameters as input and returns the public
parameterization(n,q ,χ,ψ,R).

– KeyGen : For the generator hereinafter, randomly selects a secret z ∈ Zp,
this secret will be split into n shares, and each of which will be held by one
participant. Simultaneously GH computes Aj = gaj , where j = 0, 1 . . . , t − 1,
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and exposes those parameters. Therefore, the aggregated public key can be
expressed as b̃ = −si · a + e (mod q), where si = z · s (mod q), s ← χ.

– Verify : For a client ki verifies the correctness of the secret after receiving it
and refuses to perform subsequent operations if the equality gzi = Πt−1

j=0A
xj
i

j

is not met.
– Encryption : Let a = a[0], b = b[0]. Sample v ← χ and e0, e1 ← ψ, For a

client ki, encoding a plaintext mi ∈ M and outputs a ciphertext cti ∈ {0, 1},
where

cti = (cki
0 , cki

1 ) = (v′ki · b̃ + mi + eki
0 , v′ki · a + eki

1 ) (mod q) (1)

– Add : The sum of ciphertext is as follows:

Csum =
K∑

i=1

cti � (Csum0 , Csum1,) =

(
K∑

i=1

(v′ki · b̃+mi + eki
0 ),

K∑

i=1

(v′ki · a+ eki
1 )

)

(mod q)

(2)
– Decryption : Any K participants can jointly reconstruct the ciphertext, and

the decryption share is calculated as follows:

Di = si · Csum1
+ e∗

i = si ·
K∑

i=1

(v′ki · a + eki
1 ) + e∗

i (mod q) , e∗ ← ψ (3)

Then the sum of all plaintexts Csum can be decrypted as the same.

4.5 FedCMK Design

Based on the above discussion, we have designed a federated privacy-preserving
learning framework using the vMK-CKKS scheme. In this framework, a trusted
server acts as the federation launcher, serving as the entry point for the entire
federated learning process. Before the federated learning process begins, the
federation launcher initializes the model and defines the required machine learn-
ing architecture. It also generates hyperparameters and a secret for aggregating
public keys distributed to all learners. The federation controller is responsible
for scheduling learners to perform federated learning tasks and aggregating the
local model updates of each learner to compute a new global model. Prior to
each round of training, the federation controller selects K ′ learners, who transmit
their performance status and resource information to the federation controller.
The federation controller then selects S learners to participate in the current
round of training. Each participant in the federated learning process is referred
to as a federated learner, and communication between learners is limited to the
broadcast phase during secret verification. The learner receives the global model
from the federation controller and trains it locally using their private dataset and
the tasks assigned by the federation controller. After completing one round of
training, the learner sends the ciphertext of their model update to the federation
controller.
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Therefore, a complete round of federated learning process will be expressed
as follows:

Fig. 1. The Federated Learning Framework Based on our MK-CKKS Homomorphic
Encryption (FedCMK)

Initialization: The federation launcher completes the setting of hyperparame-
ters, such as the dimension of RLWE, the ciphertext modulus, and the sampling
distribution, and sets up the federation environment. At the same time, the
federation launcher generates secrets for aggregated public keys.

Client Selection: The federation controller randomly selects K ′ learners, and
the selected K ′ learners send their current resource information to the federation
controller, such as whether the CPU/GPU is occupied, the approximate size of
the local dataset. The federation controller then selects S learners according to
the client selection strategy for this round of training.

Local Training: After determining the learners for this round, the federation
controller selects the training model, and the selected learners download the
global model and conduct local training on their private dataset, generating the
local model.

Model Update Encryption: The learners encrypt their local model updates
using the secret and public key distributed by the federation launcher and upload
the encrypted model updates to the federation controller.

Ciphertext Aggregation: After the federation controller receives the model
update ciphertexts of all participating learners, it adds all the ciphertexts into
Csum.

Decryption: The federation controller sends Csum1 to learners in this round
(if learners in this round S are less than the decryption threshold t, learners in
K ′ are selected in turn), then the selected learners calculate their decryption
shares and upload to federation controller. After the federation controller gets
all the decrypted shares, it uses Csum and the decrypted shares to restore the
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plaintext and then updates the global model for w + 1 rounds. Then federation
controller distributes the new global model to learners participating in the next
round (Fig. 1).

5 Performance Evaluation

5.1 Experimental Setup

Our evaluation of the federated framework was conducted on a server with an
Intel i5-11400F CPU, NVIDIA RTX 3060Ti GPU, and 16GB RAM, running
the Ubuntu 22.04 operating system. We implemented the FedAvg algorithm
using Pytorch to evaluate our federated framework. Our multi-key encryption
scheme was built using the HEAAN library and compared with several previous
multi-key CKKS schemes. We also compared the privacy-preserving learning of
Paillier’s scheme.

5.2 Results

To evaluate our federated framework, we first measured the accuracy and time
cost of one round of FedAvg without multi-key homomorphic encryption. Next,
we measured the accuracy and time cost of the round of communication after
adding the vMK-CKKS scheme. We used three datasets, MNIST, Shakespeare,
and CIFAR100, to conduct four experiments. Additionally, we compared the
performance of our federated learning framework with several recent federated
frameworks.

Client Selection: We first compared the classical FedAvg federated learning
scheme without introducing the client selection strategy and the federated learn-
ing scheme with the introduction of the client selection strategy. After compar-
ison, the average time to reach convergence of the federated learning scheme
with the introduction of the client selection strategy is significantly reduced.
Due to different data sets and different parameter Settings, the convergence
will be greatly affected. Tr = 1min, and the number of clients selected in each
round S = 0.1K ′. Under this parameter setting, the average accuracy difference
between the experiment and the federal learning scheme without client selection
is less than 1%, but the training time is reduced by 23% on average.

Accuracy: To compare the accuracy and security of our federated learning
framework, we evaluated the performance of different models and different
datasets and compared it with several other federated learning frameworks.
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Table 1. Comparison of convergence time of different FL schemes

FL Scheme Total training time Accuracy
Paillier based FL 105min 78.9%
xMK-CKKS based FL 73min 79.5%
tMK-CKKS based FL 61min 79.6%
vMK-CKKS based FL 52min 78.8%

We contrast our federated framework with a federated learning framework
without privacy protection. Four experiments were conducted for each scheme,
using the MNIST, Shakespeares, and CIFAR100 datasets. After comparing
the experimental results, before adding homomorphic encryption, the federated
learning framework has an accuracy rate of 79.2%, 79.8%, 65.5% and 53.0%
in the four experiments, and then added our two multi-key After the CKKS
scheme, the accuracy rates are 78.9%, 79.1%, 65.2%, 52.8%, and 78.8%, 78.9%,
64.2%, 52.9%. It means that our multi-key CKKS scheme keeps the accuracy
of federated learning model training the same. We list some parameters of the
experiment and the final result curve, and we can see that our federated learn-
ing framework curve is very similar to the original framework without privacy
protection. We detailed our experimental parameter Settings in Table 1, and the
results obtained are shown in Fig. 2.

Efficiency: In order to evaluate the performance of the two MK-CKKS schemes,
we compared it with the mainstream federal environment homomorphic encryp-
tion scheme Paillier, and we also compared it with the xMK-CKKS scheme and
the tMK-CKKS scheme. Our experiments mainly compare the following aspects:
first, the model update ciphertext size under the Paillier scheme and the model
update ciphertext size under different multi-key CKKS schemes, which are com-
pared in detail in Table 2, and second, the time cost of encryption and decryption
in the process of other encryption schemes and our encryption scheme, that is,
the computational cost.

(a) MNIST - LR (b) MNIST - CNN (c) CIFAR (d) Shakespeare

Fig. 2. Performance of different datasets and models under several FL frameworks
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According to Table 2, although the encryption and decryption speed of the
Paillier scheme is faster than that of the MK-CKKS scheme within a spe-
cific range, the average encryption time of the CKKS scheme(0.04ms) is much
smaller than that of the Paillier scheme(0.34ms) because of more plaintext can
be packaged in the ciphertext. For several MK-CKKS schemes, xMK-CKKS,
tMK-CKKS, and vMK-CKKS are homomorphic schemes that meet a threshold.
The threshold of MK-CKKS is K, and the threshold of tMK-CKKS and vMK-
CKKS can be unified into t so that the decryption time will change according
to the values of t and K. Theoretically, when t is less than K, The xMK-CKKS
scheme takes longer to decrypt. In general, S will be much smaller than t and K,
so the decryption time per round will be shorter than several other MK-CKKS
schemes.

Table 2. Different Homomorphic Scheme Parameters And Time Costs

Scheme Library Security level Packing Size Key size Ciphertext size Enc(ms) Dec(ms) Add(ms)
Paillier Python-Paillier 128 60 3072 6144 31.3 15.7 0.1
xMK-CKKS HEAAN 128 2048 4096 8192 77.1 19.2 2.5
tMK-CKKS HEAAN 128 2048 4096 8192 77.1 19.2 2.5
vMK-CKKS HEAAN 128 1024 2048 4096 33.7 12.4 1.8
vMK-CKKS HEAAN 128 2048 4096 8192 77.1 19.2 2.5

Figure 3 shows the effect of different client weights and clustering on federated
learning training time and accuracy. We notice that when the considerable data
weight reaches 0.25, which means that there is at least one-quarter of big data
clients, our federated learning model can guarantee almost the same accuracy
as the original model, but the training time decreases by about 17%. When
the weight reaches 0.3, the accuracy of the model is improved by 0.01%, but
the training time is only decreased by 10% compared to the original model.
Considering the efficiency requirement in practical applications, we set the weight
to 0.25 to ensure the balance between accuracy and time overhead. The model
can obtain high accuracy quickly for the clustering strategy when the number of
clusters is 4. That is, 1000 clients are grouped into 4 clusters of 250 clients per
group. Compared with the unclustered algorithm, the accuracy of the model is
reduced by less than 0.01% when divided into four clusters, but the iteration time
of each round is reduced by about 27%, and the overall training time is reduced
by about 10%. In summary, the improved client selection strategy ensures the
accuracy of the model while reducing the training time and making more clients
participate in the training.
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(a) Accuracy and time cost under different client weights (b) Accuracy and time cost under different client clusters

Fig. 3. Accuracy and time cost under different client clusters and weights

Figure 4 shows the computational cost of encryption, decryption, ciphertext
addition, and ciphertext decryption under several schemes. We compare the
computational cost of our two schemes with Paillier’s scheme, the xMK-CKKS
scheme, and the tMK-CKKS scheme. For Paillier’s scheme, as the CKKS scheme
packs more ciphertexts simultaneously (based on polynomial dimension), as the
amount of data increases, It is faster than Paillier’s scheme in encryption and
decryption, and the gap increases linearly with the number of models to be
encrypted. For xMK-CKKS and tMK-CKKS schemes, there is no obvious differ-
ence in the speed of encryption, decryption, and ciphertext addition under the
same parameters. However, in the decryption phase, the xMK-CKKS scheme
requires all K clients to calculate the decryption share, so the computational
cost is high. For the tMK-CKKS scheme and vMK-CKKS scheme, more than t
clients must jointly decrypt the calculation because t is usually less than K, and
the computational cost is low. At the same time, due to client selection, clients
involved in vMK-CKKS decryption share calculation often have better perfor-
mance. Therefore, the decryption speed is faster than tMK-CKKS. We show a
more detailed comparison of several MK-CKKS schemes in Fig. 5.

(a) Average encryption time cost (b) Average decryption time cost (c) Average addition time cost

Fig. 4. Comparison of calculation time cost between Paillier and different MK-CKKS
schemes

Figure 6 shows the computational overhead on the server side. In Fig. 6(a),
we compare the influence of different client numbers K, threshold size t, and the
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number of clients selected in each round of the client selection strategy S on the
decryption of the aggregated ciphertext. It can be seen that the value of K is
much larger than t and S in general. The decryption cost of xMK-CKKS is higher
than that of other schemes because it requires all clients to aggregate. For differ-
ent choices of t, a smaller value of t will bring faster decryption speed but reduce
the security of collusion attacks. The threshold-based secret sharing method for
decryption is still faster than the aggregation method in xMK-CKKS. For our
multi-key homomorphic scheme, since S in the client selection strategy is smaller
than t, the decryption still requires at least t clients to participate. Therefore,
the whole is still faster than the tMK-CKKS scheme under the same threshold
t. In Fig. 6(b), we compare the time cost of different models. It can be seen
that the vMK-CKKS scheme reduces the time cost by about 6% compared with
tMK-CKKS. In practical application, considering the balance between security
and efficiency, the weight of vMK-CKKS can further reduce the time cost.

(a) Average encryption time cost of
different MK-CKKS schemes

(b) Average decryption time cost of
different MK-CKKS schemes

(c) Average addition time cost of different
MK-CKKS schemes

Fig. 5. Calculation cost of different MK-CKKS schemes

Figure 7 shows the communication cost under different encryption schemes,
and we take the ciphertext size simplicity of different schemes as the cost of
the communication overhead. In the Paillier scheme, the cost of the cipher-
text grows linearly much more than the other CKKS schemes. The xMK-CKKS
scheme (K = 1000) always has a higher ciphertext cost than tMK-CKKS and
vMK-CKKS based on a threshold (t = 300). In the tMK-CKKS scheme, due
to the client selection strategy of vMK-CKKS), the size of plaintext used for
encryption in each round is less than that of the tMK-CKKS scheme, and the
ciphertext size is also slightly reduced. However, in practice, because of the ver-
ification mechanism, vMK-CKKS needs to broadcast between clients to verify
the correctness of secret fragments, and the client selection strategy requires
the client to inform the server of its corresponding resource information, which
increases the communication requirement of each round by about 11KB com-
pared with other schemes. Suppose the total number of aggregated rounds is 50.
It will incur about 0.53MB of communication overhead, which is still an order
of magnitude smaller than ciphertext. Therefore, the communication overhead
of the vMK-CKKS scheme is still smaller than that of the other two MK-CKKS
schemes when the number of aggregation rounds is small.
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(a) Decryption time cost on server (b) Average computation time cost

Fig. 6. Decryption time cost on server

(a) Communication cost of different encryption schemes (b) Communication cost with different number of clients

Fig. 7. Communication cost of different encryption schemes

6 Security and Functionality Analysis

6.1 Analysis of vMK-CKKS

In Sect. 6.1, we analyze the multi-key CKKS scheme and prove its security, based
on which we will analyze the security of the vMK-CKKS scheme.

Theorem 1. The vMK-CKKS scheme is semantically secure, based on the hard-
ness of the RLWE problem [3].

Proof. The security of the vMK-CKKS scheme follows directly from the security
of the CKKS homomorphic encryption scheme. We can see that cti = (cki

0 , cki
1 ) =

(v′ki · b̃ + mi + eki
0 , v′ki · a + eki

1 ) (mod q), and the decryption share Di = si ·
Csum1

+ e∗ = si · ∑K
i=1(v

′ki · a + eki
1 ) + e∗ (mod q), these messages are all added

with errors. The security of the CKKS scheme relies on the hardness of the Ring
Learning with Errors (RLWE) problem. RLWE problem is believed to be hard
in the worst-case sense, even in the presence of quantum computers.

The aggregate public key security of the vMK-CKKS scheme is guaranteed by the
Feldman threshold secret sharing scheme, which is information-theoretic secure.
If the secret is divided into s shares, any s−1 shares can not recover the original
secret so that the vMK-CKKS scheme can resist a certain threshold of collusion
attack.
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6.2 Security Analysis of FedCMK

We consider here a four-party scenario, with learners K1, K2, K3, K4 and fed-
eration launcher (i.e. S1) and federation controller (i.e. S2).

According to the previous definition, the federation initiator is a trusted
third-party server, assuming that the participants K1, K2, K3 are hon-
est and curious, they will abide by the corresponding communication pro-
tocol but try to obtain the private information of other participants, while
K4 is a malicious party, it may not transmit the correct information. Let
F = {S1, S2,K1,K2,K3,K4} be the set consisting of this federated learn-
ing framework. We consider potentially several kinds of adversaries A =
{As2 ,AK1 ,AK2 ,AK3 ,AK4}, where AK1 represents a possible inference attack
by learner K1, and so on.

If the encryption adopts the vMK-CKKS scheme, now consider the follow-
ing scenario. Firstly, S = {K1,K2,K4} is selected as the learner of this round
according to the client selection strategy. Ideally, the trusted federation launcher
generates and distributes the secret s. K1, K2 and K4 encrypt the model update
information m1, m2 and m4 through the aggregate public key b̃ formed by s and
output the ciphertexts ct1, ct2 and ct4. But in the secret distribution phase, K1,
K2, and K4 will verify whether their secret shares are correct by broadcasting.
Finally, suppose the secret shares of all participants reach the threshold t of the
secret sharing scheme. In that case, at least t participants have the correct secret
shares, and the federation controller decrypts and outputs the sum of plaintexts
m on the premise that at least t participants jointly decrypt. We consider the
algorithm to be secure.

6.3 The Security of FedCMK

Here, we perform the security proof of the federated learning framework FedCMK
based on the analysis in Sect. 6.2.

Theorem 2. Any private privacy information of the parties involved in Fed-
CMK will not be inferred, in the presence of honest and curious adversaries
A = {As2 ,AK1 ,AK2 ,AK3}.
Proof. We here analyze the effect of inference attacks by semi-honest adversaries
on the overall system. In the vMK-CKKS scheme, since the aggregate public
key used for encryption is based on the threshold secret sharing technique, nei-
ther individual semi-honest federation controllers nor learners can decrypt the
ciphertext independently because they cannot reconstruct the secret indepen-
dently. Therefore, a semi-honest adversary cannot steal the private data of other
learners alone.

Theorem 3. Even if at most n - 1 learners perform a collusion attack, any pri-
vate privacy information of the parties involved in FedCMK will not be inferred,
in the presence of honest and curious adversaries A = {As2 ,AK1 ,AK2 ,AK3}.
(In the vMK-CKKS scheme, n represents the threshold t of secret sharing)
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Proof. We here analyze the impact of collusion attacks among multiple members
on the overall system. In the vMK-CKKS scheme, considering the worst case,
t−1 learners conduct a collusion attack with the federation controller, hoping to
infer the private information of the remaining learner. We introduce the model
in Sect. 6.4 for illustration, that is, the federation controller S2 conspires with
learners K2 and K4 to infer the private information of K1. Since the vMK-CKKS
scheme builds on the VSS scheme, any holder of t + 1 secret shares can recover
it by polynomial modulo q, while the holder of t − 1 shares cannot. The VSS
scheme is based on the discrete logarithm problem, and there is no probability of
cracking through the polynomial complexity algorithm, so it is computationally
secure. Therefore, t − 1 malicious attackers cannot obtain the data of other
learners through joint collusion.

Theorem 4. Even if some malicious adversary shares the wrong secret share,
it will not derive any private information of the parties involved in FedCMK
or break the decryption, in the presence of honest and curious and malicious
adversaries A = {As2 ,AK1 ,AK2 ,AK3}.
Proof. The vMK-CKKS scheme is based on Feldman’s verifiable secret sharing
scheme. After each client receives the secret share, it needs to verify whether zi

satisfies the equation gzi = Πt−1
j=0A

xj
i

j . The equality is derived as follows:

Πt−1
j=0A

xj
i

j (mod q) = g(ajx
t−1
i +bjx

t−1
i +cjx

t−1
i +vj) (mod q)

= gzi (mod q)
(4)

According to the difficulty of discrete logarithm calculation, all parameters are
hard to be calculated, so if one party provides the wrong secret share, it can not
participate in the final decryption calculation, nor can he steal the data. Since
only a threshold of t parties with secret shares is needed for secret reconstruc-
tion, the wrong secret shares sent by malicious parties do not affect the final
decryption.

7 Conclusion

We have improved xMK-CKKS and tMK-CKKS, the two previous multi-key
encryption schemes, and optimized the algorithm for efficiency and security.
We have improved the aggregation mode of public keys to better adapt to the
characteristics of distributed training of federated learning. The overall federated
learning framework is more secure, robust, and efficient.

We evaluate our scheme in terms of accuracy, computation cost, and commu-
nication cost and compare our scheme with the mainstream Paillier encryption
scheme and several different multi-key CKKS schemes. Experiments show that
our federated learning framework is more efficient than the traditional federated
learning framework while ensuring accuracy and can conduct secure federated
training under the condition of having a trusted server.
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However, when the number of clients is large, the verifiable secret sharing
mechanism requires broadcasting between clients to verify the correctness of the
obtained secret snippets, which can incur significant additional overhead, and
the communication between clients may cause potential security problems.

In future work, we may optimize scenarios for large-scale federated learning
for large-scale clients to ensure that there is not a large amount of additional
communication overhead. Optimizing the client selection mechanism may be
an option [13]. At the same time, we hope that our encryption scheme can be
more suitable for distributed scenarios, such as federated learning without the
participation of a trusted third party and vertical federated learning, where each
participant holds different keys.
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Abstract. The structure of the Generative Adversarial Network (GAN)
has demonstrated good performance in various tasks, mainly comprising
two competing sub-networks. The GAN has the potential to effectively
generate artificial samples that closely resemble the actual sample distri-
bution. The field of steganography utilizing the Generative Adversarial
Network (GAN) structure has witnessed a wealth of research with highly
successful outcomes. This paper proposes a steganography framework
that integrates reinforcement learning and introduces a new reward func-
tion to analyze the embedding cost of images in the steganography prob-
lem. In this framework, the reward function assigns distortion values to
each pixel of the image and relates the security performance of steganog-
raphy. Based on the conducted experiments, an enhanced steganographic
embedding scheme can ultimately be achieved.

Keywords: Steganography · steganalysis · reinforcement learning ·
embedding policy · automatic cost learning

1 Introduction

1.1 Steganography

Image steganography is a technique for hiding secret information in an image.
The current state-of-the-art steganography methods are primarily implemented
using a distortion minimization framework [1], which aims to modify as few
detectable elements in the image as possible while achieving a specified embed-
ding capacity. One approach involves the use of tuned filters. Methods such as
HUGO [2], WOW [3], HILL [4], S-UNIWARD [5], and MiPod [6] are all based
on the distortion minimization framework, where various filters are employed to
estimate distortion costs, resulting in excellent anti-detection performance while
accommodating a large information payload.

One steganography method involves a combination of a distortion minimiza-
tion framework and deep learning. The utilization of deep learning to enhance
both steganography and steganalysis represents a cutting-edge approach in this
field. ASDL-GAN [7] employs a generative adversarial network to autonomously
learn the probability of embedding changes for individual pixels in a provided
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14509, pp. 272–282, 2024.
https://doi.org/10.1007/978-981-99-9785-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9785-5_19&domain=pdf
https://doi.org/10.1007/978-981-99-9785-5_19


An Embedded Cost Learning Framework 273

cover. The discriminator in ASDL-GAN utilizes XuNet [8], and it estimates the
corresponding gradient by constructing an auxiliary neural network. SPAR-RL
[9] learns an attack steganography strategy using reinforcement learning and
adversarial attacks against a given analyzer based on convolutional neural net-
works, aiming to achieve optimal security. MCTSteg [10] enhances the order
and extent of modifications to the state and pixel embedding of the cover, with
more detailed operations resulting in improved steganography. ReLOAD [11]
optimizes the asymmetric distortion applied in additive steganography, leading
to a substantial enhancement in the performance of this steganographic method.

There are also methods that exclusively rely on deep learning techniques
to embed information, significantly enhancing the image’s embedding capacity
while sacrificing a portion of its security performance. SSGAN [12] uses informa-
tion embedding as the generative part and visual image recognition and steganog-
raphy detection as the discriminative part. Some studies [13–15] have success-
fully concealed information within images using generative adversarial networks.
StegGAN [16] generates steganographic images through unsupervised adversar-
ial training. SteganoGAN [17] employs deep convolutional steganographic struc-
tures to attain improved results in both visual quality and steganographic secu-
rity. HiDDeN and others [18,19] embed a substantial amount of information
while enhancing security and visual quality through the joint training of encoder
and decoder networks.

Most existing research on deep learning-based steganographic structures
focuses on the learning objective of embedding probability. However, the work
presented in this paper will concentrate on learning the embedding cost.
Our work in this paper employs a reinforcement learning approach for image
steganography. Specifically, the agent network takes a state as input, and its
output corresponds to the embedding cost. Using the embedding cost, we apply
the additive distortion framework to derive the embedding probability, which,
in turn, is used to generate the final stego. Additionally, we consider the perfor-
mance of steganalysis on the generated steganographic image when providing the
reward function for the agent network and configuring the environment. The pri-
mary objective of employing reinforcement learning as a framework is to estimate
the approximate cost associated with embedding the cover image. During this
process, we face several primary challenges. Firstly, multiple distinct embedding
schemes exist for a cover image, leading to a one-to-many problem. Determining
the associated embedding cost through specific embedding results is challenging
due to the imperfect nature of embedding analysis. Addressing this issue requires
a substantial number of embedding samples, which inevitably increases the costs
and complexity of the learning process. Another issue arises from incorporating
the discriminator as part of the environment. The robustness of the discriminator
network becomes a major concern since the information from the discriminator
network significantly influences the learning capacity of the agent network.



274 W. Tang and Y. Xie

2 Preliminaries

Since the framework proposed in this paper combines two fundamental tech-
niques, namely the minimum distortion framework and reinforcement learning,
we will begin by introducing them in this section. For the remainder of this arti-
cle, matrices will be denoted by bold capital letters, while the individual elements
of the matrix will be represented by the corresponding lowercase letters.

2.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm that models a problem as
a Markov decision process. In this process, the agent interacts with the environ-
ment to learn a strategy that maximizes the expected return. A Markov decision
process comprises three essential elements: state, action, and reward. The state
signifies the condition of the environment, the action is the output of the agent
based on the state, and the reward is the signal from the environment in response
to the agent’s action. At any given time t, a Markov decision process defines the
Markov nodes and is represented as follows.

{st, at, rt}, st ∈ S, at ∈ A, rt ∈ R,

Here, S, A, and R all represent finite sets. The transition from a state at any
given time t to the state at the next time t + 1 can be expressed as follows:

st
at−−−−−→

R(at,st)
st+1.

The state value function, described by the following equation, is calculated as
the expectation of discounted rewards in the current state s:

Vπ(s) = Eπ

[
t=T−1∑

t=0

γtR(at, st)

]
, s0 = s, (1)

the loss function for reinforcement learning can be expressed as

θ ← θ + η �θ logπθ (a|s)A(a|s), (2)

where A denotes the advantage function

A(a|s) = R(a|s) − V (a|s). (3)

2.2 Distortion Minimization Framework

The framework commonly used in steganography for minimising distortion
involves modelling the process of information embedding as a constrained opti-
mization problem. This problem can be expressed as follows, with a given infor-
mation embedding capacity of C.

min
Y

D(X,Y), s.t. ψ(Y) = C, (4)
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where X denotes cover and Y denotes stego. Function ψ measures the embedded
information capacity C and is usually measured in bits.

It can be assumed that the distortion cost between each pixel is independent
of each other, and the overall distortion can be defined by the additive distortion
function, as in the following equation

D(X,Y) =
H∑

i=1

W∑
j=1

ρi,j |xi,j − yi,j |, (5)

where H and W represent the height and width of the image, respectively, and
ρi,j represents the embedding distortion value for the i-th row and j-th column.
The function D is used to measure the overall distortion value.

In the ternary embedding scheme, the modification point is M ∈ (−1, 0, 1),
and the embedding probability is determined by the given embedding capacity
as follows:

p
(m)
i,j =

e−λρ
(m)
i,j∑

m̃∈M e−λρ
(m̃)
i,j

, m ∈ M, (6)

where λ is a parameter determined by the following constraint:

−
H∑

i=1

W∑
j=1

∑
m∈M

p
(m)
i,j log2p

(m)
i,j = C. (7)

3 Framework

3.1 Overview of the Overall Framework

A reinforcement learning framework is introduced to autonomously learn the
embedding cost of cover images through interactions between the agent and
the environment. The framework for this work comprises two main compo-
nents: one is the U-Net, which serves as the agent, and the other is the envi-
ronment. The environment consists of two subcomponents, a distortion mini-
mization framework and a steganalysis discriminator, which can be a commonly
used steganography analyzer. The overall framework is illustrated in Fig. 1. The
Agent network’s parameters are denoted as θ, and the network takes an image
C = (ci,j)

H×W as input. The Agent network will directly output the correspond-
ing embedding cost, denoted as ρ = Πθ =

(
πθ

i,j

)H×W , for the image, where πθ
i,j

represents the embedding cost of each pixel. The embedding cost will be trans-
formed through an additive distortion framework into an embedding probability
map, denoted as pθ =

(
pθ

i,j

)H×W , which will be sampled to obtain a simulated
embedding point, denoted as M. The modification point obtained in this manner
can be represented as M =

(
mθ

i,j

)H×W , where mθ
i,j represents the modification

value of the pixel at row i, column j. In this manner, we can obtain the stego as
represented in the following equation:

S = C + M, (8)
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Fig. 1. Schematic diagram of the overall framework.
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Fig. 2. The above figure represents the U-Net structure used as agent, where the fea-
tures extracted by one encoder will be used as shared features for three decoders. The
three decoders have the same structure.

and the second deep neural network is called the environment network, denoted
by the parameter ω, which is used by the steganalysis network to provide
reward signals. Typical CNN steganalysers, such as XuNet and SRM [20], can
be employed for this purpose. The environment network is trained using the
corresponding steganographic images generated by the covers and agents. To
calculate the reward, we design a reward function that considers the distortion
of the steganographic information at each pixel.
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Fig. 3. Information on cumulative rewards. The stego and cover are linearly interpo-
lated into many slices. Each slice can be used to obtain the inverse gradient of each
point in the image using a fixed discriminator. Ideally, the higher the number of slices
obtained by linear interpolation, the cumulative gradient will allow the accurate cal-
culation of the distortion value of each modified point relative to the cover image.

It’s important to note that the proposed framework operates in a manner
where the sampled actions depend on the reward signals provided by the envi-
ronment for policy updates. Actions with higher rewards will have a greater like-
lihood of being sampled in the next iteration, while actions with lower rewards
will still have a certain probability of being sampled. This framework repre-
sents a steganographic single-step multi-agent Markov Decision Process (MDP)
problem. The details of the U-Net structure used as an agent are illustrated in
Fig. 2. It is worth noting that in the architecture of this paper, the discrimi-
nator located in the environment part adopts a soft update strategy. On one
hand, in the early stages of training, the performance of the discriminator may
be unstable. The inclusion of the soft update strategy can stabilize the gradient
information provided by the discriminator within the environment. On the other
hand, the concept of soft update is inspired by DDPG [21], where the idea of
deterministic gradient effectively addresses the issue of excessively large state
spaces.

3.2 Details of Cumulative Rewards

In reinforcement learning, agents learn by responding to reward signals, with
the ultimate goal of maximizing their cumulative rewards. The paper models the
process of steganographic embedding using multiple agents in an environment
where the steganalyzer plays a dominant role. The reward signal is generated by
the reverse gradient passing through the steganalyzer, with the ultimate learning
goal of minimizing the overall distortion cost. Building on the concept above,
our objective is to compute the distortion value for every corresponding pixel
in both the cover and the stego images. Typically, adversarial networks employ
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reverse gradients to compute the network gradient. The gradient information
must traverse an additive distortion framework, which is a non-differentiable
structure, after the backward loss, as detailed in this paper. The cumulative
reward is designed to compute the reward for each pixel-specific action. Initially,
we perform evenly spaced linear interpolation between the stego and the cover
images. Here is a description of the slices that are interpolated between the stego
and the cover:

Si = M ∗ i

K
+ C, i ∈ {1, 2, · · · , k − 1}, (9)

Here, M represents the modification points, C is the cover, Si is a slice between
the cover C and the stego S, and K denotes the interpolation number.

The cover and stego can obtain the corresponding gradient of the stego after
the discriminator undergoes the loss backpropagation. The corresponding gradi-
ent of the stego can be represented as

gω
i =

∂lossω

∂Si
. (10)

Multiplying the corresponding gradient of each slice by the amount of modifica-
tion gives the loss of the modification point to the discriminator loss function.
This process can be expressed as follows:

�lossω
i ≈ gω

i

M
K

, (11)

the approximate loss can be obtained by accumulating the gω
i obtained from

each slice as follows

�Lω =
K∑

i=1

�lossω
i =

K∑
i=1

gω
i

M
K

=
K∑

i=1

∂lossω

∂Si

M
K

, (12)

the final reward function is expressed as

R = −P � �Lω, (13)

where ω represents a steganalysis network. Ideally, as i tends to infinity, we
can obtain a precise measurement of the pixel-level distortion between the
stego and the cover. The gradient corresponding to the modification point is
obtained through backward gradient propagation for each equally spaced inter-
polated slice. The distortion value resulting from each modification point pair
is obtained by accumulating the gradients of the slices. The specific implemen-
tation is depicted in Fig. 3 and (Fig. 4). The ultimate learning objective of the
policy network can be expressed as the following optimization problem, which is
defined by the loss function

θ ← θ + η �θ logπθ (a|s)R. (14)
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(a) Cover image (b) Modification map of it-
eration 30000

(c) Modification map of it-
eration 70000

(d) Modification map of it-
eration 110000

(e) Modification map of it-
eration 140000

(f) Modification map of it-
eration 170000

Fig. 4. Illustration of the cover image “01013.pgm” from 256 × 256 BOSSBase and its
modification map of different steganographic methods on 0.4 bpp, where white points
indicate modifications of ±1.

4 Experiment

4.1 Setting

The framework presented in this paper is trained on the Alaska256 dataset, which
comprises 37,511 grayscale images with dimensions of 256 × 256. The testing
phase employs the BossBase dataset, which includes 10,000 grayscale images with
dimensions of 256 × 256. The generator is used to create the distortion map for
the cover images in the testing phase. This is accomplished by minimizing the
distortion framework to obtain simulated embedding points, thereby generating
stego images. The security performance of the framework is assessed using a deep
learning-based SRM feature set as described in this paper. The test error of the
steganalyzer is employed to evaluate security performance and is calculated as
the average of the false alarm rate and the miss detection rate. This is represented
by the equation:

PE =
1
2
(PFA + PMD). (15)
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Table 1. Security performance of Our work.

Steganographic scheme 0.4 bpp
SRM

Our Scheme with different Training Iterations 30000 21.20%
70000 23.87%

110000 24.87%
140000 25.42%
170000 25.24%
210000 25.88%

HILL 27.00%

The framework proposed in this paper is implemented on PyTorch and trained
using a sheet of NVIDIA Tesla V100s (Table 1).

4.2 Analysis

As demonstrated, the generator in this paper is optimized and converges towards
the optimal embedding cost over the course of iterations. We present the model’s
results at 0.4bpp. Even after reaching a final stabilization above 0.25, there is
still potential for further optimization to achieve the best possible performance.
Simultaneously, we must acknowledge that the final performance falls short of
the expected results. We believe this may be attributed to a combination of
factors, as outlined below.

– As this framework is based on generative adversarial networks, the generator’s
performance is significantly influenced by the discriminator’s strength, and
hence the discriminator’s robustness impacts the inverse gradient information.

– Regarding the reward function design, while this paper proposes a pixel-level
reward function, the overall embedding security performance has not been
fully accounted for and leaves room for further exploration.

5 Conclusion

The steganography performance of the generator improves as the model iterates.
However, we also observe that the final results fail to surpass the performance
of the traditional filter-based approach. We believe that there may be unac-
counted factors in the design of the reward function that contribute to the final
performance falling short of our expectations.
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Abstract. Assuring of AI-enabled systems is challenging and beyond
current assurance practices, especially in bridging the gap between assur-
ance process and tools. In this paper, an AI-powered corrosion detection
system for maritime inspection is presented as an assurance use case.
It serves as a decision support tool for surveyors to assess the coating
conditions in ballast tanks. Before deployment, it is crucial to estab-
lish confidence of this system as the stakeholders seek to understand the
potential risk of adopting it compared to existing or alternative solu-
tions.

Different from other works focused on assurance process or frame-
work, this paper conducts both assurance process and testing methods
to create a detailed assurance case. A systematic top-down approach is
used to derive the assurance requirements from the system level to the
machine learning component level, while testing is conducted using a
bottom-up approach to collect the required evidences. Furthermore, a
risk-based approach is integrated into the corresponding AI assurance
lifecycle, providing valuable insights on analyzing the risk that an AI
component may bring into AI-enabled systems.

Keywords: Trustworthy AI · Risk analysis · Assurance case · Testing

1 Introduction

With the rapid development of AI technologies, many systems are enabled
by AI components to enhance efficiency and reduce cost. These systems have
been widely adopted across various industries, from energy, health care, supply
chain, transportation to manufacturing. At the same time, concerns have arisen
from different aspects, encompassing both technical and ethical considerations.
Among them, the requirements of trustworthy AI are highlighted from privacy,
fairness, safety, transparency and others.

Various stakeholders, including communities, international or national stan-
dard organizations and policy makers are actively working on how to guide
or regulate the AI development in order to address trust issues. For example,
the International Organization for Standardization (ISO) and the International
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14509, pp. 283–299, 2024.
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Electrotechnical Commission (IEC) are working on a series of technical reports
to cover AI-related concerns and provide corresponding guidelines. The China
Electronics Standardization Institute, in collaboration with all other research
institutes and industrial partners, has also published guidelines on the ethics of
trustworthy AI in 2023. In 2021, the European Commission proposed the EU
AI Act [2], which emphasizes the classification of risks for different AI applica-
tions. This legislation is set to come into force soon and become the world’s first
comprehensive law to regulate AI.

Despite the numerous requirements and guidelines in place, there remains a
huge gap in implementing these requirements in practice for the assurance of
AI. This is due to the complexity and dynamics inherent in AI systems. Firstly,
it is challenging to align these high-level requirements with specific, action-
able requirements or suitable solutions. Secondly, proper tools and methods are
needed to facilitate the compliance check for these requirements.

In this paper, we use the Assurance of Machine Learning in Autonomous
Systems (AMLAS) [3] framework to conduct an assurance use case study on the
AI-based corrosion detection system. The key contributions of this paper are
as follows: (1) It provides a detailed and systematic assurance example for AI-
enabled systems, (2) A risk analysis is conducted throughout the entire assurance
process, which is rarely seen in related case studies, (3) Testing tools and methods
are used to collect evidence to support the claims of requirements, which provide
insights on how to implement assurance for AI-enabled systems.

The structure of this paper is organized as follows. Section 2 provides
an overview of the assurance case. Section 3 conducts the assurance scoping.
Section 4 presents the assurance requirements. Section 5 discusses the data man-
agement assurance. Sections 6, 7 and 8 cover the model learning, model verifica-
tion and development assurance. At last, Sect. 9 summarizes the conclusions.

2 Assurance Case Description

In this section, we provide a description of the assurance case, including system
description, component description and the operational environment description.
These details are typically derived from the AI product specification documents.

2.1 System Description

The assurance case in this study is anAI-powered corrosion detection system called
Corrosion.ai that is designed to detect rusted areas in ballast tanks [8]. This web-
based tool supports surveyors in assessing coating condition, particularly in esti-
mating the percentage of rusted area. The system architecture is shown in Fig. 1.
Firstly, images are captured by cameras. The quality and relevance of images are
then checked by experts, and only images satisfying pre-defined constraints are
sent to the segmentation algorithm. The segmentation algorithm, which is based
on deep neural networks, identifies rusted regions in the image and returns a mask
indicating both rusted and rustless areas. Based on the output mask, the corrosion
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percentage value is calculated, and the corresponding coating condition is rated.
It serves as a second opinion for surveyors, aiming to help them make reliable deci-
sions, especially in controversial situations.

Sensors  Corrosion 
segmentation

Coating condition rating:
GOOD/FAIR/POOR Images Corrosion 

percentage 
value

Satisfy 
image 

constraints

Image quality 
check

Surveyor evaluation  
Coating condition rating:

GOOD/FAIR/POOR 
Final coating 

condition rating 

Compare 
and decide

Fig. 1. Corrosion.ai system architecture.

2.2 ML Component Description

The main ML component of Corrosion.ai is a semantic segmentation network
with U-Net architecture [7] which identifies corrosion regions in ballast tank
images. The encoder part of the U-Net employs SE-ResNeXt-50 [4] with pre-
trained weights learned on ImageNet. The neural network is implemented using
the open-source machine learning framework PyTorch with the 3rd party code
based Segmentation Models library. The dice loss between network outputs and
corrosion masks produced by human annotators is calculated to generate the
supervision signal which optimizes the network’s weights. The final weights
achieved an IoU score of 0.5042 on the validation dataset and 0.4011 on the
test dataset.

2.3 Operational Environment Description

The operational environment description is used to specify the operational design
domain (ODD) of the assurance case. For Corrosion.ai, we describe it from the
following categories: hull structure types, surfaces, field of view, photo quality,
illumination, particulate matter, and supported coating failure types. These cat-
egories are shown in Table 1.

3 Assurance Scoping

The product specifications in previous section, including system architecture,
operational environment, and supported functions, are utilized as inputs for the
assurance scoping.
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Table 1. Summary of the operational environment description.

Description

Hull Structure Types It supports the majority of hull structure types
in ballast tanks belonging to “area under
consideration” depicted by [5], including hopper
area, tank top, bottom, frame, and bilge.

Surfaces Surface pre-treatments, such as the removal of
mud, oil, and grease on the area, are needed to
ensure a dry, clean and light-coloured paint
surface.

Field of View According to [5], a holistic assessment of
specified area under consideration shall be
provided. Photos shall cover a sufficiently large
field of view and be taken at an appropriate
distance from the object of interest.

Photo Quality High-resolution images are recommended, and
down-scaling of photos shall be greater than 800
pixels. Motion blur or defocus blur shall be
avoided.

Illumination Sufficient and proper illumination inside ballast
tanks is essential for achieving a good corrosion
detection result.

Particulate Matter Impurities in images shall be avoided. Fog,
smoke, smog, spatter, dust, and dirt should be
limited to a human-recognizable level

Coating Failure Types i). General corrosion (uniform corrosion), ii).
Pitting corrosion (localized corrosion). The
detection of coating failures/degradations
described by ISO 4628 (e.g., flaking) is not
supported.

3.1 System Level Requirements

SYS-REQ1. Corrosion.ai shall achieve human-level performance in the defined
Operational Design Domain (ODD).

The rationale of system level requirements includes:

– Usually, a target, e.g., the performance declared in the product specification
needs to be established or an existing system, e.g., the AI-enabled system
compared to the traditional system needs to be benchmarked. In this case,
the performance of Condition Assessment Program(CAP) surveyors is used
as the baseline.

– The existing domain-specific rules and standards [5] do not provide an accep-
tance threshold for corrosion evaluation. However, the qualification of CAP
surveyor’s results can be used to qualify the Corrosion.ai product. Since the
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corrosion estimation and classification (GOOD, FAIR, POOR) are objective,
and the surveyors cannot even reach a consensus in boundary situation. But
the evaluation variations and misclassification rate of Corrosion.ai shall not
be larger than that of CAP surveyors.

– The view of stakeholders is also very important. In this case, from domain
experts and users, it is agreed that the Corrosion.ai shall not take over the
decision of surveyors.

3.2 Requirements Allocated to ML Component

The ML component of the system is the segmentation algorithm and the corre-
sponding requirements developed from system level can be further broken down
to the component level.

COM-REQ1. Corrosion.ai shall give correct segmentation and rating when
the input image meets image quality, shooting requirements and environmental
requirements.

The final rating is calculated from the ML segmentation component as a
percentage value, with the corresponding mappings of: GOOD (3%), FAIR(3–
20%), and POOR (>20%). From the final rating results of corrosion estimation,
the hazards (consequences) are divided into two parts.

– Underestimation: It rates from POOR to FAIR, POOR to GOOD, and FAIR
to GOOD. This may lead to un-suggested repair and maintenance, which can
cause damage to the structure and safety issues.

– Overestimation: It rates from GOOD to FAIR, GOOD to POOR, and FAIR
to POOR. While the severity is low, but it may still cause reputation loss for
the system user, further investigation and additional costs may be needed to
re-evaluate the corrosion conditions.

Harzards Analysis. Since Corrosion.ai is a decision assistant tool, human
checks and further investigations are still required for real-world applications,
especially when it rates a structure as POOR or FAIR. In that case, surveyor’s
intervention is assumed, and corrosion images are reviewed by them for mak-
ing claims. As a result, the assurance burden is shared between humans and
ML component. Accordingly, we can map the hazards from the system level to
the ML component level, as shown in Table 2. The hazard is mitigated from
moderate (system level) to minor (component level) if it mis-rates the corrosion
percentagefrom GOOD to POOR. For other mis-rating situations, consequences
do not change from the system level to the component level.

Considering both the hazards and operational environment, these require-
ments can be further refined as performance and robustness requirements in the
next section.
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Table 2. Hazards analysis from system level to component level.

Rating results
GOOD (3%) FAIR (3–20%) POOR (>20%)

Ground truth GOOD (3%) None Minor Moderate (System)
Minor (Component)

FAIR (3–20%) Major None Minor
POOR (>20%) Major Moderate None

4 ML Assurance Requirements

From the component requirements, we can further derive the ML specific require-
ments which include performance requirements and robustness requirements (see
Table 3).

Table 3. ML specific assurance requirements.

Performance

PER-REQ1 The accuracy of “GOOD-FAIR-POOR” rating shall achieve
the accuracy of human surveyors

Robustness
ROB-REQ1 The corrosion segmentation component shall perform as

required for all (main) structures of a ballast tank within the
defined ODD

ROB-REQ2 The corrosion segmentation component shall identify
corrosion irrespective of the background appearance (painting
color, typical drawing, mild dirty surface) with respect to the
camera

ROB-REQ3 The corrosion segmentation component shall identify
corrosion for a distance ranging from 1.5 m to 10 m under
good illumination

ROB-REQ4 The corrosion segmentation component shall identify
corrosion for a human-recognizable degraded image (lighting,
blur, noise)

ROB-REQ5 The corrosion segmentation component shall identify
corrosion irrespective of their pose with respect to the camera

4.1 Rationale for ML Specific Requirements

The accuracy of human surveyors or the “human-level performance (HLP)” on
assessing GOOD/FAIR/POOR coating conditions is derived from the following
activities:
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– Seven senior surveyors with experience of 8–14 years are selected by the oper-
ator.

– 108 images are selected from different inspection stations, and are reviewed
by domain experts. Those images constitute the dataset referred to as pilot
dataset.

– For each image, among all seven surveyors’ assessments, we remove the two
most “outlying” ones and take the median values of the rest as the ground
truth assessment.

– Surveyors’ accuracy of assessment is then evaluated against the ground truth
obtained from the previous step, results are shown in Fig. 2a.

To translate from human-level performance to IoU of image segmentation,
the algorithm was tested on several augmented image datasets with degradation.
It is shown that a human-level accuracy in Fig. 2a corresponds to 0.345 of IoU.
IoU is a common metric for image segmentation, which is more directly to verify
the algorithm. In this report, the actual IoU is verified for PER-REQ1 when
pixel-level labelled ground truth is available, otherwise, a confusion matrix is
evaluated.

4.2 Risk Analysis

For the risk analysis of human-level performance, both the consequence (Table 2)
and likelihood (Fig. 2a) shall be considered. To quantify the risk, we replace
the confusion matrix as following: corrected rating = 0, minor=1, moderate=2,
major=3, then we calculate the risk as:

Risk = Consequence× Likelihood (1)

Accordingly, the risk matrix of human-level performance is obtained as shown
in Fig. 2b.

Rating 
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(a) Human-level performance.
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4.3 ML Assurance Requirements Validation Results

As it is challenging to list all dimensions of variation or decide a quantitative
boundary of variation for robustness requirements, the authors invited reviewers,
including AI researchers and ship surveyors, to an inspection meeting for the
validation of these requirements.

Before the meeting, a dataset of 4,000 images was prepared from a dataset of
around 12,000. This dataset was generated by filtering out low quality images and
clustering by image hidden features. During the meeting, reviewers went through
the image dataset to decide if the image can be used for the CAP survey. This
decision generally covers all aspects listed above in robustness requirements.

Finally, image samples were selected to represent the typical variation in the
robustness requirements, for instance, typical painting color, drawings, lighting
conditions. All reviewers agreed that Corrosion.ai shall at least work well on
these scenarios. If more images are to be added to verify robustness requirements,
they shall represent the same range of variation as the currently selected image
samples.

5 Data Management Assurance

In this section, we firstly describe the data requirements and how these require-
ments are linked to the previous ML performance and robustness requirements.
Then we will give the data verification methods and results as evidences to
support the arguments of data requirements.

5.1 Data Requirements

According to [3], the data requirements are specified as relevance, completeness,
balance, and accuracy which are listed in Table 4. The relevance requirements
describe the data must match the operational domain, from structure, corrosion
type, condition, environment, and image quality while the completeness require-
ments specify the coverage of that domain. The balance requirements describe
the distribution of the data according to different dimensions, and the accuracy
requirements are related to the data labelling quality.

5.2 Rationale for Data Requirements

All the data requirements are derived from the operational domain and are the
results of further development from ML specific component requirements. Gen-
erally, the relevance and completeness requirements are derived as the corrosion
detection system shall operate in the relevant operational domain, and cover the
interested area without expectation for all situations. The balance requirements
are also derived from these dimensions and requirements relating to accuracy are
derived from labelling accuracy for image segmentation. All these data require-
ments have been discussed and reviewed by AI experts and ship surveyors in
regular project meetings.
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5.3 Data Generation

In total, three categories of datasets are created: development data, internal test
data, and verification data. The development data and internal test data are
ballast tank photos taken from 13 vessels, which are also categorized as training,

Table 4. ML data requirements.

Relevance

REL-REQ1 All data samples shall represent images of a hull structure
that corresponds to the ODD

REL-REQ2 All data samples shall represent images of a corrosion type
that corresponds to the ODD

REL-REQ3 All data samples shall represent a condition (including FOV,
distance, illumination, pose) that images are captured that
corresponds to the ODD

REL-REQ4 All data samples shall represent an environment (including
surface, particulate matter, background) that images are
captured that corresponds to the ODD

REL-REQ5 All data samples shall represent images of the quality that
corresponds to the ODD

Completeness
COM-REQ1 The data samples shall include images representing all types

of hull structures according to the ODD
COM-REQ2 The data samples shall include images representing all

corrosion types according to the ODD
COM-REQ3 The data samples shall include images representing all coating

conditions (GOOF, FAIR, POOR) according to the ODD
COM-REQ4 The data samples shall include images representing all

possible conditions (including FOV, distance, illumination,
pose) that corrosion areas may be shot by cameras

COM-REQ5 The data samples shall include images representing all
common environments that images are captured that
corresponds to the ODD

Balance
BAL-REQ1 The data set shall contain both positive and negative

examples
BAL-REQ2 The percentage of samples of each coating condition (GOOD,

FAIR, POOR) in the data set shall be balanced
BAL-REQ3 The percentage of samples of each supported hull structure in

the data set shall be balanced
BAL-REQ4 The percentage of samples of each supported failure type in

the data set shall be in balanced
Accuracy
ACC-REQ1 Only rusted areas in data samples shall be labelled
ACC-REQ1 All rusted areas in the data samples shall be correctly labelled
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validation, and test subset. They are labeled in pixel-wise level. Since photos
taken from different sections of the same vessel usually share similar properties
(e.g., the lighting condition and coating color), to guarantee a fair evaluation,
the subset split is such that all images of a certain vessel can only be present in
the same subset (either training set, validation set or test set).

5.4 Data Validation

The data validation activity is to check whether the generated data sets are
sufficient to meet the defined ML data requirements. And the output shall be
documented as ML data validation results. Here we only take the training dataset
as an example to validate its corresponding data requirements.

Relevance. As shown in Fig. 1, the inputs of Corrosion.ai are controlled by
surveyors which rules out the irrelevant images from structure, conditions to
environment. As a result, all the relevance requirements REL-REQ1,2,3,4 and
5 are validated through human check. In practice, this part can also be tested
by out of distribution (OOD) detection if systems are designed without human
supervision.

Completeness. The assurance requirements related to data completeness can
be validated with the help of testing tool. Here one tool named as Data Represen-
tativeness Testing (DRT) is presented. It uses out-of-distribution detection-based
methods [6] to measure how well a scenario (data slice) is represented by a cer-
tain dataset, or in other words, how representative of the dataset is for that slice
of data generating from the scenario. To conduct DRT, one needs to prepare a
reference dataset containing samples from each of the testing scenarios. Then a
R-score will be calculated as:

R-score = 100− RatioOOD, (2)

where RatioOOD is the percentage ratio of points classified as out of distribution
samples.

For example, to test training set’s representativeness for different hull struc-
tural elements, a reference dataset containing 103 images of six structures is
employed. The R-scores, which measure the training set’s representativeness for
the six hull structural elements, are all above the acceptance threshold of 90%.
This indicates all six hull elements are well covered by Corrosion.ai’ s training
dataset. To test the three coating conditions, a reference of 54 images are used,
results show that only POOR category has a lower R-score than 90%.

Balance. For each sample in the training set, since the coating condition is
not given during the annotation process, only a “surrogate” coating condition is
derived using the percentage of corrosion pixels in that image. Results show that
the POOR coating condition only takes up an extremely small proportion with
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0.83% while GOOD accounts for 75.37% and FAIR accounts for 23.80%. This
imbalance of distribution could cause the model to under-perform on samples of
that coating condition.

Accuracy. All pixel-wise annotations (“masks”) have been double-checked by
another trained person and surveyors to ensure the requirements of annotation
accuracy ACC-REQ1 and ACC-REQ2 are satisfied.

6 Model Learning Assurance

During model learning stage, the model development log and internal test results
need to be documented which provide evidence for the assurance argument.

6.1 Internal Test Results

For our use case, the Intersection over Union (IoU) (also referred to as the
Jaccard index) is used as target metric for reporting model performance. The
internal test evaluated the model performance on both validation set and test
set (during practice, a detailed data generation log is required). The IoU scores
on both datasets, together with some other metrics of the model are reported,
based on that the final confusion matrix are reported in Fig. 3.

6.2 Risk Analysis

Considering both the consequence (Table 2) and likelihood (Fig. 3a and Fig. 3b),
similar to Fig. 2b, we can get the risk analysis results of Corrosion.ai on validation
and test dataset (illustrated in Fig. 4).
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Fig. 3. Confusion matrix of internal test results.
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Fig. 4. Risk analysis of internal test results.

7 Model Verification Assurance

In this section, the model verification activities and corresponding results are
reported to support the derived performance and robustness requirements.

7.1 Verification Data

For model verification, ideally we should cover test scenarios or samples as much
as possible, but in practice the AI systems are running in very complex environ-
ment and the data collection are not endless to cover all corner cases. As a result
the preparation of verification dataset are very important, apart from the derived
data requirements in previous section, more attention should also be assigned
to the high risk scenarios or hard samples. For this case, we prepared one pilot
dataset for routine testing, and one high-risk dataset from a large open unlabeled
dataset which is selected by model uncertainty quantification method [9], one
perturbation dataset which is produced according to the required operational
environment.

7.2 Verification Results

The verification results are reported from performance and robustness respec-
tively.

Performance Verification. The performance verification results are reported
on pilot dataset (Fig. 5a) and high-risk dataset (Fig. 5b). Comparing the verifi-
cation results and the internal test results with the human-level results (Fig. 2a),
we can find that the Corrosion.ai surpasses the human-level except the POOR-
to-FAIR item.
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Fig. 5. Confusion matrix of verification results.

Risk Analysis. Similar to the risk analysis on human-level performance, we can
get the risk matrix in Fig. 6. The results show risk reduction for the majority of
categories but a slightly increase for POOR-to-FAIR item compared to human-
level risk.
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Fig. 6. Risk analysis of verification results.

Robustness Verification. Robustness requirements are verified on the per-
turbation data gathered with aim of testing the models to the breaking point
but still within the operational domain. Here we give an example of evidence to
test the ROB-REQ4, as shown in Fig. 7. The acceptance threshold was set to
86%, which is the ratio of required mIoU of 0.345 to the baseline mIoU of 0.4.
Perturbation sensitivity analysis facilitates the comparison of effects of different
perturbation types and levels under a unified metric space [1] with consideration
of the rationality for their existence. Perturbation score matrix illustrates the
model degraded performance on the testing dataset under various perturbation
types and levels. As shown by the perturbation results, the Corrosion.ai passes
the test for Gaussian noise, spatter, and fog on level 1, but fails for darkness,
motion blur, and fog on level 2 and 3.
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(a) Perturbation sensitivity analysis
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Fig. 7. Image perturbation results.

8 Model Deployment Assurance

After model verification, the AI model will be deployed and integrated into a
broader system. The performance of the integrated system should be comparable
with ML model testing results. During operation, the system can be updated
at times, so continuous monitoring of the operational environment and system
performance is required. The operational constraints and requirements should
be complied all the time. Here we discuss the use case from following aspects.

8.1 Erroneous Behavior

This part presents the key observations from internal testing of the AI model.
The findings will provide meaningful insights for continuous assurance.

Images Out of ODD. The performance of Corrosion.ai will degrade if images
do not satisfy the pre-defined ODD. For example, if images are from decks, the
coating condition rating results of Corrosion.ai may be significantly different
from surveyors. To avoid potential risks, the usage of Corrosion.ai should be
strictly restricted to its ODD. Images not from ballast tanks will be rejected in
image quality check phase, as shown in Fig. 1.

Poor Quality Images. During system operation, noises or perturbations dur-
ing sensing or transmission are unavoidable, and sensors may be broken due to
extreme weather or improper usage. To mitigate this kind of risk, image pre-
processing or rejection are needed before sending these samples to Corrosion.ai.

Disagreements on Results. During integration testing, it is found that Corro-
sion.ai has a certain probability to disagree with surveyors in evaluating images
from ballast tanks of POOR or FAIR coating conditions. Surveyors base their
rating grades (GOOD, FAIR and POOR) on their experience and gut-feeling,
while Corrosion.ai is hard-coded to calculate corrosion percentage first and assign
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rating grade based on calculated percentage according to rule table (no “per-
sonal” judgment included). In fact, the differences between POOR and FAIR
conditions are small, therefore, disagreements are common not only between
Corrosion.ai and surveyors, but also among different surveyors. To resolve this
dilemma, expert meetings and discussions are required to achieve final decisions.

8.2 Integration Testing

The aim of integration testing is to check whether the integrated system satisfies
SYS-REQ1 under Operational scenarios. The integrated system is tested using
validation, testing and verification dataset. It is expected that the testing per-
formance will not degrade significantly comparing with ML component testing
results using the same dataset.

Integration testing does not focus on the performance of one single module,
which should be tested before. Instead, it emphasizes the normal operation of the
whole system. For instance, the interface between Corrosion.ai and hardware or
other software works well, image acquisition and transmission over the integrated
system are correct, timing of different components are correct, etc.

In this Corrosion.ai case, the model is directly deployed on a cloud platform.
In many IoT applications, the model is compressed by quantization for a light
and fast deployment. This may cause a performance gap, which is required to
be verified in this stage.

9 Conclusions

Above all, the main results of the assurance case are summarized as follows:

– To ensure data quality, the training dataset is used as a test case to ver-
ify the requirements of DAT-COM-REQ1 and DAT-COM-REQ3. The other
requirements can be checked by statistical methods and human inspection.

– For model learning, the internal test results show that Corrosion.ai has better
performance than human experts in all categories except for the POOR-to-
FAIR category.

– For model verification, the performance results on the pilot dataset and
the hard cases selected by the uncertainty quantification method indicate
that Corrosion.ai outperforms human experts in all categories except for the
POOR-to-FAIR category. For the robustness requirement, the image pertur-
bations test reveals that Corrosion.ai needs to improve its robustness against
darkness, motion blur and fog.

– For model deployment and continuous assurance, we provide the possible
erroneous behaviors that may occur, and the integration testing requirements
that need to be met.

This paper provides a detailed and systematic assurance case on AI-powered
corrosion detection system. To derive the assurance requirements, we use a top-
down approach that starts from the system level and then goes down to the
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component level. Furthermore, we specify the machine learning specific require-
ments, which include the model requirements and the data requirements. To
verify these requirements, we use a bottom-up approach that goes from the
data requirements to the model learning, the model verification, and the model
deployment.

The risk analysis is conducted throughout the entire AI assurance case study.
It compares the risk of human-level performance for decision making and the risk
of using Corrrosion.ai as a decision support tool on different internal testing and
verification datasets. It also gives insights on how to use a risk-based approach
to conduct an AI assurance case.

During the case study, verification methods are explained and testing tools
are also used to collect evidence to support related claims for assurance require-
ments. For example, the data representativeness testing calculates the R-score for
data representativeness measurement; the image perturbation testing is used for
robustness verification on possible operational variations and the uncertainty-
based sampling is employed to identify high risk scenarios for performance
testing.

In the future, to achieve trustworthy AI and assure the AI-enabled systems, it
is necessary to explore more practical approaches to link high-level requirements
to specific actionable requirements. Due to the complexity and dynamic nature of
AI system, the research and development of corresponding verification methods
and testing tools are very important to fill this gap.
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Abstract. Aim to repair EXFAT file system, a file system reconstruction algo-
rithm based on cluster size assumption and computational verification is proposed.
Firstly, an experimental verification study is conducted on the key BPB parameters
such as cluster size and first cluster start sector number inWindows EXFAT. After
that, the algorithm for calculating andverifying the cluster size is proposed. Finally,
the EXFAT file reconstruction system is designed and implemented. Experiments
and comparative analysis are carried out with existing algorithms and popular
software. The results show that the proposed algorithm is superior in terms of the
success rate, temporal attribute, file content, directory structure, as well as the effi-
ciency of its execution. It has great potential in the applications of reconstruction
of EXFAT File System formatted by Windows system.
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1 Introduction

With the continuous development of information technology, computers are increasingly
involved in people’s work and life, playing an increasingly important role in society and
life. The use of computers has permeated all aspects of government, military, culture and
education and everyday life. They all use computers to access information and process it,
while saving their most important information in the form of data files in computers. The
high reliance on information technology also poses huge security risks for mankind. The
growing prevalence of e-crime has led to an increasing focus on e-discovery techniques.
E-discovery treats the document system as a crime scene.

The cluster size is a key BPB parameter in the EXFAT file system, which determines
the structure of the entire file system, as well as the location of metafiles and files in
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the file system, once the EXFAT file system has been maliciously formatted, completely
deleted or otherwise damaged by criminals, the BPB parameters such as cluster size, FAT
start sector number and first cluster start sector number will be lost, making it extremely
difficult to reconstruct the file system from the remaining information.

Based on this, this paper experimentally verification study the key BPB parameters
such as EXFAT cluster size under Windows, and proposes and implements an EXFAT
file system reconstruction algorithm based on the assumption of cluster size and compu-
tational verification. The algorithm firstly assumes the cluster size and FAT start sector
number, then uses the calculation algorithm to get the first cluster start sector number
FCS and root directory start cluster number RFS, etc. as verification parameters, and
then uses the verification algorithm to verify the cluster size and FAT start sector number
by the directory block, data block start sector number, and file and folder start cluster
number. File system reconstruction of file names, time attributes, data content, etc., it
can maximize the accuracy of system reconstruction. This algorithm solves the defects
of the existing EXFAT file system reconstruction, greatly improves the effect of recon-
struction, and is a significant addition to the file reconstruction and thus e-discovery after
the destruction of the EXFAT file system structure.

2 Related Work

In the past few years, research on file system reconstruction algorithms has been increas-
ing,mainly divided into file reconstruction based onfile carving, file reconstruction based
on file system metadata, and a combination of the two.

2.1 File Reconstruction Algorithm Based on File Carving

Yoo B et al. describes the development process of file carving [1]. 0, Pal A et al. proposes
a method to sculpt AVI, WAV, MP3 multimedia compressed files in NTFS file system
by using multimedia compressed file characteristics and by file signature and file footer
verification [2]. Thing VLL et al. proposes a method to transform the fragment sculpting
problem into a graph theory problem and build a model to achieve reconstruction [3].
Reference [1–3] File carving technique is based on file structure and content only, using
information such as file signature values, it can recover file content without matching
any file system metadata. However, as there is no metafile directory information, the
size of the carved-out files is inconsistent and file names, file times, etc. are difficult to
obtain accurately.

2.2 File Reconstruction Algorithm Based on File Carving

Oh J proposed amethod to achieve file reconstruction by analyzing and tracking the revi-
sion history of file data in $LogFile by simulating MFT, obtaining the location of the
file data and the data residing in each instance of modification [4]. Karresand M et al.
proposed a method to derive the file reconstruction time in FAT32 using the correlation
between the storage location of a file, the location of its directory entries, and the cre-
ation time of the file in its nearby location [5]. Literature [4, 5] used $LogFile and time
attributes inNTFS respectively,which are key evidence in e-discovery.KarresandMet al.
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also proposed a method to improve the efficiency of file carving by comparing the file
allocation behavior of block writes and streamwrites to determine the location and order
in which files are stored [6]. Literature [6, 7] utilized the research carried out into the
storage location of files which is determined by metafiles.Alhussein M et al. proposed
to reconstruct files by embedding special identifiers in clusters and using the identifiers
to keep track of the clusters of individual files [8, 9]. Fellows G researched NTFS volume
mounts, directory joins, and $Reparse in forensic research. Cho G-S presented a com-
puter forensic method for detecting timestamp forgeries in the Windows NTFS file sys-
tem [10]. Cho G S proposed a computer forensic method using $logfile to detect times-
tamp forgeries in the Windows NTFS file system [11]. BO Dong et al. proposed an anti-
anti-forensic approach based on NTFS transaction features and machine learning algo-
rithms [12]. Dp A et al. proposed a new forensic method using four existing Windows
artefacts, namely $USNjrnl, linked files, prefetched files, and Windows event logs [13].
LeeWYetc. proposed anovelmethod that constructs a creation timeboundoffiles recov-
ered without time information. The method exploits a relationship between the creation
order of files and their locations on a storage device managed with the Linux FAT32 file
system [14]. Minnaard W studied allocation algorithms and file creation order Recon-
struction for Linux FAT32 file system drivers [15]. KarresandM conducted an empirical
study of allocation algorithms in NTFS from different perspectives and over time [16].
Nordvik R et al. proposed an approach to forensics in NTFS file systems by using the
$ObjId index to record user activity and correlating this index with the corresponding
record in the MFT table [17].

2.3 File Reconstruction Algorithm Integrating File Carving and File System
Metadata

Ma Guo-fu et al. proposed a comprehensive algorithm for file location, file feature
characters and file fragmentation reorganization [18], in which the correlative coefficient
proposed byXie Juan-ying et al. was used in the SVM-based fragmentation classification
algorithm [19], but the degree of synthesiswas not high, and it failed to take full advantage
of the size of the existing or potential cluster.Vandermeer Y et al. proposed a forensic
analysis algorithm for mapping directory entries by combining FAT and bitmap [20],
which mentions the need to calculate the conversion from sectors to clusters by using
the EXFAT partition size and the cluster size, and proposes a correlation coefficient with
the “number of HEAPs of sectors retained by the system”. The algorithm is related to
the “number of HEAPs of sectors retained by the system” for the root directory, but no
specific algorithm for HEAPs is proposed [20]. Sitompul O S et al. proposed an Aho-
Corasick algorithm that reads the file attributes from the Master File Table (MFT) to
check the status of the file, and parses the file attributes, damage status, and extensions
through the MFT and the file contents, and thus reconstructs the file [21, 22]. Sahib H I
et al. conducted a comparative analysis for NTFS logical file reconstruction technique
and Aho-Corasick file reconstruction technique [23].

In conclusion, file sculpting technique based on file signature and file reconstruction
technique based on file systemmetadata are current hotspots, which can solvemost of the
file system reconstruction problems in NTFS and FAT32 file systems, while at present,
there are few studies specifically for EXFAT file system and e-forensic using metadata
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and file signature, thus this paper presents a study of the reconstruction algorithm for
Windows EXFAT file systems based on the assumption of cluster size and computational
verification.

3 EXFAT File System Reconfiguration Algorithm

The overall idea of EXFAT file system reconstruction algorithm is shown in Fig. 1:
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Fig. 1. Overall idea of file system reconfiguration algorithm

3.1 Experimental Verification Study Based on Cluster Size etc.

Windows system is a closed source operating system, it is further partitioned for EXFAT,
“the first cluster start sector number” is not immediately after the FAT table, there will
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be some reserved sectors in the middle, once the number of FAT sectors can determine
the “first cluster start sector number” FAT sector number must follow a certain pattern,
in order to find the law, the experimental verification study of partitioning test, select
the default cluster size, the test area is:<= 67108846 MB (≈64 TB). Empirical studies
as shown in Table 1, 1G = 1024 * 1024 * 1024, 1 M = 1024 * 1024, 1 s = 512 B, FS
on behalf of the FAT starting sector number, CS on behalf of the cluster size, FCS on
behalf of the first cluster starting sector number.

Table 1. The experimental verification study based on cluster size etc.

Partition Size (B) FS (s) CS (s) FCS (s)

i * 8G <= partition size < (i + 1) * 8G
(int i = 0;i <= 3;i + +)

2048 64s (i + 2) * 2048

i * (4 * 8G)<= partition size< (i + 1) * 3(4 * 8G)
(int i = 1;i <= 15;i + +)

2048 4 * 64 (i + 2) * 2048

i * (8 * 8G) <= partition size < (i + 1) * (8 * 8G)
(int i = 8;i <= 15;i + +)

2048 8 * 64 (i + 2) * 2048

i * (16 * 8G) <= partition size < (i +
1) * (16 * 8G)
(int i = 8;i <= 15;i++)

2048 16 * 64 (i + 2) * 2048

i * (32 * 8G) <= partition size < ((i +
1) * (32 * 8G)-2048 s
(int i = 8;i <= 15;i++)

2048 32 * 64 (i + 2) * 2048

(i + 1) * (32 * 8G)-2048 s < = partition size < (i
+ 1) * (32 * 8G)(int i = 8;i <= 15;i++) special

2048 2048 (i + 1 + 2) * 2048

i * (2 * 64 * 8G) <= partition size < (i +
1) * (2 * 64 * 8G)-4096s
(int i = 4;i <= 7;i++)

2*2048 64 * 64 (i + 2) * 4096

(i + 1) * (2 * 64 * 8G)-4096s <= partition size <
(i + 1) * (2 * 64 * 8G)
(int i = 4;i <= 7;i ++) special

2 * 2048 4096 (i + 1 + 2) * 4096

i* (4*128*8G) <= partition size < (i + 1)*
(4*128*8G)-8192s
(int i = 2;i <= 3;i++)

4 * 2048 128 * 64 (i + 2) * 8192

(i + 1) * (4 * 128 * 8G)-8192s <= partition size
< (i + 1) * (4 * 128 * 8G)
(int i = 2;i <= 3;i++) special

4 * 2048 8192 (i + 1) + 2 * 8192

i * (8 * 256 * 8G) <= partition size < (i +
1) * (8 * 256 * 8G)-16384s (int i = 1)

8 * 2048 256 * 64 (i + 2) * 16384

(i + 1) * (8 * 256 * 8G)-16384s <= partition size
< (i + 1) * (8 * 256 * 8G) (int i = 1) special

8 * 2048 16384 (i + 1 + 2) * 16384

32T <= partition size < 67108846M 16 * 2048 512 * 64 65536
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Analysis of the special cases listed in Table 1 reveals that when the CS ≥ 2048s, ,
let the first cluster start sector number when (i + 1) * (m * n * 8G)-“1 cluster size” <=
partition size < (i + 1)* (m * n * 8G) be S1 and the first cluster start sector number
when i* (m * n * 8G) <= partition size < (i + 1)* (m * n * 8G)-“1 cluster size” be S2
(m = FS/2048, n = CS/64), then S1-S2 = FS. When the CS< 2048s, there is no special
case at this point since the minimum allocation unit for partitions is 2048s. This leads
to the conclusion that EXFAT’s FSN and FCS starts to increase the space allocated for
one cluster at the location of the (i + 1) * (m * n 8G)-“1 cluster size”.

3.2 Calculation Algorithm Based on Cluster Size etc.

Through the analysis of EXFAT, the FAT sector number FSN is related to the number
of FAT entries, and the number of FAT entries is related to the actual total number of
clusters in the partition RSC, so the first cluster start sector number FCS is related to
RSC; at the same time, RSC is related to the total sector number TSP, the cluster size
CS and the first cluster start sector number FCS, TSP and CS are already randomly
determined by the user, so the final RSC is related to FCS again.

At this point an oxymoron is formed. To resolve this oxymoron, the author tries
to introduce the concept of ideal total cluster number ISC, which ISC assumes is the
number of clusters that the operating system allocates all the space of the partition into
clusters. ISC starts from sector 0, RSC starts from FCS, the number of sectors fromDBR
to the starting sector number of FAT is an integer multiple of the cluster size, and FSN
also takes up space, so ISC> RSC. Therefore, if the number of FAT entries in an EXFAT
partition meets ISC, then it must also meet RSC, so The number of FAT entries = ISC,
according to 0 and 1 are special FAT entries, the FAT entries in the data area start from
2, each FAT entry occupies 4 bytes, and there are 128 FAT entries in a sector of the FAT
table. The FSN is an integer multiple of the CS and the FCS is an integer multiple of the
FS.

According to the conclusion of 3.1, The formulae for calculating the FCS and FSN
are based on the downward rounding feature as follows:

From formula (1):

ISC = �TSP/CS� (1)

In formula (1), ISC represents the ideal total number of clusters, TSP represents the
total number of sectors, CS represents the cluster size, and �� represents rounding down.

ISC starts from sector 0, and RSC starts from FCS, the number of sectors from DBR
to FAT is an integer multiple of the cluster size and FSN also takes up space, so ISC >

RSC. It can be concluded that if the number of FAT allocation items can be satisfied ISC
during EXFAT partition, it must also be satisfied RSC. Therefore, the number of FAT
allocation items= ISC is enough. According to the fact that item 0 and item 1 are special
FAT items, the FAT items in the data area start from item 2, and each FAT item occupies
4 bytes. There are 128 FAT items in a sector of the FAT items, FSN are integer multiples
of CS and FCS are integer multiples of FS. Then, according to the characteristics of
rounding down, the calculation formulas for the FSN and FCS are obtained as follows:
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From formula (2):

FSN = (�(ISC + 2 − 1) ∗ 4/512/CS� + 1) ∗ CS (2)

Further obtained:

FSN = (�(ISC + 1)/128/CS� + 1) ∗ CS (3)

In formula (3), FSN represents the number of FAT sectors, ISC represents the ideal
total number of clusters,CS represents the cluster size, and ��represents rounding down.

Further obtained:

FCS = (�(ISC + 2 − 1) ∗ 4/512/FS� + 2) ∗ FS (4)

Further obtained:

FCS = (�(ISC + 1) /128/FS� + 2) ∗ FS (5)

In formula (5), FCS represents the starting sector number of the first cluster, ISC
represents the number of ideal total clusters, FS represents the starting sector number of
FAT, and �� represents rounding down.

It can be obtained from formula (3) and formula (5). FS + FSN is not necessarily
followed by FCS, there may be reserved sectors in the middle, mainly because the values
of FS and CS may be inconsistent, because FSN are integer multiples of CS and FCS
are integer multiples of FS.

When CS < 2048s, FS! = CS, there may be reserved sectors, FCS is obtained from
formula (5).

When CS >= 2048s, FS == CS, there is no reserved sector, FCS can be obtained
directly from FS + FSN or formula (5).

The number of the first cluster in the root directory is related to the initial sector
number of the first cluster and the size of $bitmap. While $bitmap is determined by the
actual total number of clusters, RSC is obtained by using formula (6):

RSC = (�(TSP − FCS)/CS� (6)

In formula (6), RSC represents the actual total number of clusters, TSP represents
the total number of sectors, FCS represents the starting sector number of the first cluster,
CS represents the cluster size, and �� represents rounding down.

Use formula (7) to get the first cluster number of the root directory. The first cluster
number of the root directory is:

RFC = 4 + �(RSC − 1)/4096/CS� + �11/CS� (7)

In formula (7), RFC represents the number of the first cluster in the root directory,
RFC represents the actual total number of clusters, CS represents the cluster size, and
�� represents rounding down.
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3.3 Verification Algorithm Based on Key Parameters Such as Cluster Size etc.

Since the initial sector number of the first cluster and the size of the cluster are very
important in the EXFAT file system, when the EXFAT file system structure is damaged,
how to quickly and accurately determine the key parameters ofBPB is particularly impor-
tant in electronic forensics. We can implement it according to the method of hypothesis
verification.

The study found that the starting sector of each directory block or data block of
different types is actually the starting sector SS of the cluster where the directory block or
data block of different types is located, and the starting sector of the cluster is determined
by CS, cluster number DBClu and FCS. Therefore, the first hypothesis judgment rule,
the second hypothesis judgment rule and the third judgment rule can be obtained. If the
first judgment rule is not satisfied, the second judgment rule does not need to be verified.
The first assumption judgment rule formula is:

(SS − IFCS)%CS == 0 (8)

In formula (8), SS represents the starting sector of the directory block or data blocks
of different types, IFCS represents the starting sector number of the temporary first
cluster, and CS represents the cluster size.

The second assumption judgment rule formula is:

DBClu = (SS − IFCS)/CS + 2

If DBClu ∈ SCL, then PZ = PZ + + (9)

In formula (9), DBClu represents the cluster number of the directory block or data
blocks of different types, SS represents the starting sector of the directory block or data
blocks of different types, IFCS represents the starting sector number of the temporary
first cluster,CS represents the cluster size, SCL represents the list of folder or file starting
cluster numbers, and PZ represents the matching value.

The third judgment rule formula is:

PD = (float)PZ/(float)n1 ∗ 100%

If PD >= Set threshold , is is assumed that the verification is successful (10)

Formula (10) indicates that for each FS and CS, the matching degree of all directory
blocks and data blocks of different types is calculated. If the set threshold is met, the
matching is successful, the verification of FS and CS is completed, and the cycle exits.
Otherwise, the verification fails, and the next cycle continues.PD represents thematching
degree of all directory blocks and data blocks, PZ represents the matching value, and
the initial value is 0, n1 represents the total number of directory blocks and data blocks.
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3.4 Assumptions and Computational Validation Algorithms Based on Cluster
Size etc.

The Windows EXFAT file system reconstruction algorithm based on cluster size
assumptions and computational validation is implemented in the following steps:

Step 1: According to the characteristics of the directory block, scan to get the start
sector number list of each directory block DSL_d , according to the characteristics of
the data block of different types of files, get the start sector number list of each data
block DSL - f[i][q] (i = 0,1,2,3……, representing doc, xls, ppt, jpg, bmp, etc.), through
the information of the directory entries in the directory block, get the folder start cluster
number list SCL_d , the list of the start cluster number of the file SCL_fi (i = 1,2,3……,
representing doc, xls, ppt, jpg, bmp, etc.), through the information of the directory entries
in the directory block, get the list of the folder start cluster number, the list of the file
start cluster number SCL_fi (i= 1,2,3……, representing doc, xls, ppt, jpg, bmp, etc.) and
the list of the file and folder attributes FAL.

FS is a multiple of 2048. The maximum value is 65536. CS is one of 17 data [1,
2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]. It is
assumed that the initial sector code of FAT is FS, and the initial value FS = 2048, as
the external loop. In the process of assuming the FAT start sector, it is assumed that the
cluster size is CS. According to the rule FS and CS, and range of CS, assuming FS and
CS, IFCS is calculated. Complete the initial verification of the directory block and the
starting sector number of the data block through the data such as, IFCS, DSL, and then
complete the secondary verification through the calculated starting cluster number of
the directory block, the starting cluster number of the data block and the data in SCL,
and count the matching values of all the directory blocks and data blocks. Divide the
matching values by the total number of the directory blocks and data blocks to obtain
the matching degree. Compare the matching degree with the target matching threshold,
and finally verify FS and CS.

Step 3: throughFS andCS,FSN is obtained according to formula (3),FCS is obtained
according to formula (5) and RSC is obtained according to formula (6). Then RFC
is obtained according to formula (7) and reused FCL to finally complete electronic
forensics.

Step 1 consists of:
Step 1.1: obtain the total number of sectors TSP according to the damaged partition.
Step 1.2: traverse the partition and obtain the starting sector number of each directory

block DSL - d[p], through the characteristics of each directory block. The unit is sector,
where, p = 1, 2, 3, . . . ,N1,N1 is the total number of directory blocks. The starting sector
number of the data blockDSL - f[i][q] is obtained according to the characteristics of dif-
ferent types of files, and the unit is sector. Among them, i, q representing the number of
q data block represents the type of file i, i = 1, 2, 3, 14, 5, 6, 7, 8, 8, 9, 10, 11, 12 . . .
representing doc, docx, xls, xlsx, ppt, pptx, jpg, gif, bmp, pdf, zip, png (this article
only takes the 12 file types as an example), q = 1, 2, 3, . . . ,Mi,Mi representing the
total number of files of the type of file i. The starting cluster number of each folder
SCL - d[r] is obtained from the directory entries in the directory block. The unit is clus-
ter, r = 1, 2, 3, . . . ,N2, N2 is the total number of folder starting clusters. The starting
cluster number of each file SCL - f[i][s] is obtained from the directory entries in the
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directory block. The unit is cluster, i, s represents the file s of the file type i where,
i = 1, 2, 3, 14, 5, 6, 7, 8, 8, 9, 10, 11, 12 . . . respectively represents doc, docx, xls, xlsx,
ppt, pptx, jpg,gif, bmp, pdf, zip, png and other file types, and s = 1, 2, 3, . . . ,Ki, Ki

represents the total number of starting clusters of the file types i. Get the attributes
of each file and folder FAL[t] through the directory entry in the directory block,
t = 1, 2, 3, . . . ,N3,N3 is the total number of files and folders obtained through the

directory entry, N3 = N2+
12∑

i=1
Ki.

The characteristics of the directory block are: 0 bytes of the root directory block are
0x83 or 0x03 (when deleted), 32 bytes must be 0x81, 64 bytes 0x82, 0 bytes of other
directory blocks are 0x85 or 0x05 (when deleted), 32 bytes are 0xc0 or 0x40 (when
deleted), and 64 bytes are 0xc1 or 0x41 (when deleted). The directory block consists of
multiple directory entries.85 attribute contains the time attribute and file attribute of the
file. If the fourth byte &0x10 is true, it is a folder, otherwise it is a file. The C0 attribute
contains the starting cluster number, size, fragment flag, etc. of the file or folder, and the
C1 attribute contains the file name.

The characteristics of different types of files are: doc, xls and ppt files start with
0xd0cf11e0a1b11ae1, docx, xlsx and pptx files start with 0x504b0304, jpg files start
with 0xffd8ffe1, gif files start with 0x47494638, bmp files start with 0x424d, pdf files
start with 0x2550442d, zip files start with 0x504b03041400, and png files start with
0X89504E470D0A1A0A.

Step 2 consists of:
Step 2.1: assume that the starting sector number of external circulation FAT is FS,

the initial value FS = 2048, Then each external cycle is completed FS = FS*2.
Step 2.2: assuming that the size of the inner loop cluster is CS, the initial value CS

= 65536, and the matching degree is PZ, the initial value PZ = 0, each inner loop is
completed CS = CS/2.

Step 2.3 consists of:
Step 2.3.1: obtain ISC by using formula (1). Use formula (3) to get the initial

sector number of the temporary starting cluster IFCS. Set the initial value, PZ = 0,
PZ .d=0,PZ .fi=0, PZ as the matching value, which is used to count the number of
directory blocks and data blocks that conform to the cluster size and the FAT starting
sector code. PZ .d represents the matching value of the directory block, PZ .fi represents
the matching value of the data block of the type file i.

Step 2.3.2: set the initial value p = 1, p representing the directory block number,
representing that the matching value is calculated from the first directory block, N1
representing the total number of directory blocks.

Step2.3.3: take out the starting sector number of the directory block p is DSL - d[p].
Use formula (8), if DSL - d[p] − IFCS)%CS == 0 is not valid, then p++, other-
wise,using formula (9) to obtain the starting cluster number of the directory block
DBClu = (DSL - d[p] − IFCS)/CS + 2, and judge whether DBClu exists in SCL - d[r].
If it exists, that is,DBClu ∈ SCL - d[r],the matching value PZ .d = PZ .d + +, p++;
Otherwise p++.

Step 2.3.4: judge whether p > N1 is satisfied? If not, skip to step 2.3.3; If yes, the
directory block hypothesis verification is completed, and the process jumps to step 2.3.5.
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Step 2.3.5: set the initial value i= 1, i represents the first file type and i= 1 represents
the matching value for the first file type.

Step 2.3.6, set q = 1, q represents the data block number q, the initial value is 1,
representing the data block number 1, fetching Mi, Mi representing the total number of
files of the file type i.

Step 2.3.7: take out the starting sector number of the data block No q of the file type
i, DSL - f[i][q],using formula (8), If DSL - f[i][q] − IFCS)%CS == 0 is not valid, then
q++. Otherwise, use formula (9) to obtain the starting cluster number of the directory
block DBClu = (DSL - f[i][q] − IFCS)/CS + 2, and judge whether DBClu exists in
the SCL - f[i][s]. If it exists, that is, DBClu ∈ SCL - f[i][s],the matching value PZ .fi =
PZ .fi + +, q++; Otherwise, q++.

Step 2.3.8: judge whether q > Mi is satisfied? If not, skip to step 2.3.6; If yes, the
directory block hypothesis verification of i file types is completed, and skip to step 2.3.9.

Step 2.3.9: judge whether i > 12 is satisfied? If not, then i++,skip to step 2.3.6; If
yes, the directory block hypothesis verification of all file types is completed, and the
process jumps to step 2.3.10.

Step 2.3.10: calculate the matching value PZ = PZ .d +
12∑

i=1
PZ .fi and the total

matching amount PL = Min(N1,N2) +
12∑

i = 1
Min(Mi,Ki). If (float)PZ/(float)PL*100%

>= 90%, (90% represents the threshold, which is determined according to the user’s
needs), then the actual FAT start sector number = FS and the actual number of sectors
per cluster = CS. If the verification is successful, exit the cycle; otherwise, skip to step
2.3.11.

Step2.3.11: calculate CS = CS/2, assuming that the value of the sector code of each
cluster is halved; If CS >= 1, go to step S230 and continue to verify the correctness of
CS and FS according to the determination rule. Otherwise, go to step 2.3.12.

Step 2.3.12, calculate FS = FS *2. If FS <= 65536, go to step 2.2 and continue
to verify the correctness of CS and FS according to the decision rule of formula (10).
Otherwise, itmeans that thewhole hypothesis verification fails.According to the partition
size and the default value in Table 1, the actual FAT start sector number equals the default
value, and the actual number of sectors per cluster equals the default value.

Step 3: FS and CS is obtained in step 3. FSN is obtained according to formula (3).
FCS is obtained according to formula (5). RSC is obtained according to formula (6).
Then RFC is obtained according to formula (7) and FCL reused to finally complete
electronic forensics.

4 Experimental Analysis

The author designed and implemented FormatRecovery, a tool for EXFAT file system
reconstruction, to simulate and emulate the implementation of the Aho-Corasick algo-
rithm [21], the Forensic Analysis algorithm [20], and the Integrated Approach [18]
in EXFAT, using the FormatRecovery with the three algorithms and the current mar-
ket popular R-Studio_v8.8.171971_Network_Edition, Super-disk-recovery (Chinese),
EasyRecovery_Professional_14 three data recovery software to do the test comparison.
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Test environment: Intel(R) Core(TM) i5-8400 CPU@2.80 GHz@2.81 GHz; RAM:
16 GB; OS: Windows 10 Professional; Virtual USB flash drive, partition size: 256 GB
(262143 MB); File system: EXFAT; Cluster size: 1MB; Number of directories: 16,
of which First-level directory: 13, second-level directory: 3; Number of files: 60021;
Occupied space: 4367873678B; Destruction: Format the partition into NTFS format
and simulate the virus damage to the root directory area, the original data shown in
Table 2, and algorithm experiment results data shown in Table 3, the software experiment
results data shown in Table 4, the experimental analysis of the comparative data shown
in Table 5, FormatRecovery software scanning results shown in Fig. 2:

Table 2. Original data

File. type quantity capacity /B File. type quantity capacity /B

ppt 5000 454313472 bmp 000 940811200

pptx 5000 187087801 gif 5000 465086208

doc 5000 134048768 jpg 5000 89463246

docx 5000 65090121 png 5000 1314466769

xls 5000 125440000 zip 21 411056316

xlsx 5000 44764434 pdf 5000 136096225

txt 5000 149118 Total 60021 4367873678

Table 3. Algorithm experimental results data of recovery

File. Type FormatRecovery Aho-Corasick Forensic Analysis Integrated Approach

quantity capacity /B quantity capacity /B quantity capacity /B quantity capacity /B

ppt 5000 454313472 5000 454313472 4992 453596672 0 0

pptx 5000 187087801 5000 187087801 4996 186940450 4997 186977253

doc 5000 134048768 5000 134048768 4990 133782528 4995 133915648

docx 5000 65090121 5000 65090121 4993 64999097 4996 65038112

xls 5000 125440000 5000 125440000 4993 125264384 4997 125364736

xlsx 5000 44764434 5000 44764434 4496 44728620 4998 44746535

txt 5000 149118 0 0 0 0 0 0

bmp 4979 936860302 4937 928958506 4900 921997400 4885 919175330

gif 5000 465086208 5000 465086208 4998 465065235 4997 465020074

jpg 5000 89463246 5000 89463246 4995 89160993 4994 89121761

png 5000 1314466769 5000 1314466769 4993 1314177475 4997 1313217210

zip 21 411056316 21 411056316 21 411056316 21 411056316

pdf 5000 136096225 5000 136096225 4998 136040743 4999 136066532

Total 60000 4363922780 54958 4355871866 54365 4346809913 49876 3889699507
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Table 4. Software experiment result data of recovery

File. Type FormatRecovery R-Studio EasyRecovery Super- disk-recovery

quantity capacity /B quantity capacity /B quantity capacity /B quantity capacity /B

ppt 5000 454313472 5000 454313472 0 0 0 0

pptx 5000 187087801 5000 187087801 5000 187087801 5000 187087801

doc 5000 134048768 5000 134048768 5000 134048768 4995 132986880

docx 5000 65090121 4998 64987032 5000 65090121 5000 65090121

xls 5000 125440000 5000 125440000 5000 125440000 5000 125440000

xlsx 5000 44764434 5000 44764434 5000 44764434 5000 44764434

txt 5000 149118 5000 149118 0 0 0 0

bmp 4979 936860302 4906 923126228 4888 919739744 4906 923126228

gif 5000 465086208 5000 465079088 5000 465086208 4992 241454961

jpg 5000 89463246 4998 89199862 4994 89251230 4991 88218497

png 5000 1314466769 5000 1314466769 5000 1314466769 4970 742485882

zip 21 411056316 21 411056316 21 411056316 21 411056316

pdf 5000 136096225 5000 136096225 0 0 5000 136096225

Total 60000 4363922780 59923 4349815113 44903 3756031391 49875 3097807345

Table 5. Experimental comparison of EXFAT file system reconstruction

item compared FormatRecovery Aho-Corasick Forensic

Analysis

Integrated

Approach

R-Studio EasyRecovery Super-disk-recovery

Directory

number

3 0 0 0 0 0 0

Directory

Reconstruction

rate

20% 0 0 0 0 0 0

File Name

number

60000 0 0 0 5000 0 0

File Name

Reconstruction

rate

0 99.74% 0 0 8.33% 0 0

File number 60000 54958 54365 49876 59923 44903 49875

File

Reconstrution

rate (B/sec)

99.97% 91.56% 90.58% 83.10% 99.84% 74.81% 83.10%

Size/B 4363922780 4355871866 4346809913 3889699507 4349815113 3756031391 3097807345

Size

Reconstruction

rate (B/sec)

99.91% 99.73% 99.52% 89.05% 99.59% 85.99% 70.92%

Scan Time/sec 3m49s 4m32s 4m21s 4m11s 4m42s 12m18s 8m13S

Scan rate

(B/sec)

19056431 16043286 16654444 15496811 15424876 5089473 6283585
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Fig. 2. Scanning results of FileReconstruction software

The experimental results show that the EXFAT file system reconstruction algorithm
proposed in this paper is significantly superior in terms of efficiency and success rate
compared with algorithm such as Aho-Corasick, Forensic Analysis and Integrated App-
roach as well as software of R-STUDIO, EasyRecovery and SuperDrive Data Recovery.
EXFAT file system formatting, virus damage to the root directory, resulting in the file
system structure of the cluster allocation confusion, file and file contents, folder direc-
tory and folder contents and other inconsistent relationship, the reconstruction of the file
system has become extremely difficult. This method can quickly and accurately calcu-
late important BPB parameters such as cluster size, first cluster start sector number and
other important BPB parameters based on the information obtained from scanning, can
effectively reconstruct EXFAT file system structure, and completely recover secondary
directory names, uncovered file names, files and other data under the root directory based
on the information of parameters, directory entries and other information, whereas the
other algorithms and software, which are not able to calculate the BPB key parameters.
The EXFAT file system structure cannot be reconstructed either and can only perform
RAW recovery through special file header and file tail information, which results in the
loss of directory names and file names, and certain errors in the size and content of files.

5 Conclusions

In this paper, an EXFAT file system reconstruction algorithm based on cluster size
assumption and computational validation is proposed. It makes full use of EXFATmeta-
data and various types of file signatures, and uses the starting sector number, starting
cluster number of directory block, data block, and the list of starting cluster number of
files and folders for verification. It combines the advantages of carving technique and
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logical data reconstruction technique, and it can maximally obtain the key information
of file name, time, directory structure, and file content, and the complexity of CS and
FCS calculation is low. Experiments show that it is very suitable for the reconstruction
of the EXFAT file system formatted by Windows. Our future work will be concentrated
on reconstruction of the EXFAT file system formatted by Linux.
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Abstract. In the context of the evolving Data LakeHouse distributed
architecture and the inescapable challenges posed by DM-Crypt, a ver-
ifiable dynamic multi-secret sharing obfuscation scheme applied to the
Data LakeHouse is proposed. In the proposed scheme, participants select
their shadows using a secure one-way function and hide their true iden-
tities for self-protection. This scheme can conceal the actual key within
any dimension of the homogeneous linear equation system. It can ver-
ify whether the distributor, participant, or key restorer has committed
fraud by comparing the hash information published by the previous oper-
ator on the public bulletin board with the hash information calculated
by the current operator. Enables dynamic addition or deletion of par-
ticipants, dynamic key modification, and periodic key updates. Among
these dynamic operations, it is fully dynamic only when participants are
added or deleted, as long as the remaining participants meet the mini-
mum decryption threshold. In other cases, the process is semi-dynamic,
requiring modifications to information related to other participants. The
security of the scheme is based on the Shamir threshold scheme, the
asymmetric key encryption system (RSA), a secure and tamper-resistant
hash function, and a secure one-way computation function.

Keywords: Data LakeHouse · Key Management · Verifiable Dynamic
Multi-Secret Sharing · Threshold scheme

1 Introduction

Given the limitations of Data Warehouses, including closedness and high cou-
pling, the Data Lake emerged. It is defined as a raw data repository that can
store various formats. While the Data Lake is suitable for data storage, it lacks
some key functions, such as no support for transactions, a lack of consistency
and isolation, and no guarantee of data execution quality. These shortcomings
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make it unrealistic for the Data Lake to support read and write access, batch
processing, and streaming jobs. Consequently, the original goal of establishing
a Data Lake has not been achieved, and in many cases, the original advantages
of traditional Data Warehouses have been forfeited. Especially now, multiple
systems typically coexist within enterprises, including a Data Lake alongside
multiple Data Warehouses and other dedicated systems. This not only increases
the difficulty of operation and maintenance, but more importantly, the transfer
of data between different systems will add a lot of delay and cannot improve the
timeliness of the data. This not only increases the complexity of operation and
maintenance, but, more significantly, data transfer between different systems will
introduce significant delays and fail to enhance data timeliness.

Data LakeHouse [1] is a new type of open architecture that combines the
advantages of Data Warehouse and Data Lake. It is built on the low-cost and
highly flexible data storage architecture of the Data Lake and inherits the data
processing and management functions of the Data Warehouse, as Fig. 1 shows.
Therefore, Data LakeHouse has the advantages of strong reliability, an open
data format, high scalability, transaction support, and high performance, and
is widely used in diverse scenarios such as data science, machine learning, SQL
queries, and analysis [2,18].

Fig. 1. Example Lakehouse system design, with key components shown in green. The
system centers around a metadata layer that may add transactions, versioning, and
auxiliary data structures over files in an open format, and can be queried with diverse
APIs and engines. (Color figure online)

However, with the rise of LakeHouse architecture, data security and privacy
protection issues have gradually become prominent. The data stored in the Lake-
House often contains a large amount of sensitive information, such as personal
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privacy data, corporate operating data, customer confidential data, etc. There-
fore, effective measures must be taken to protect these data from unauthorized
access and leakage. Some scholars protect data security from the perspectives of
attributes [33,34], channels [16,28,29,35], data models [26], encryption schemes
[19], etc., and some scholars have proposed a key agreement protocol [30,32,34]
to protect system data security in a cloud computing environment similar to a
LakeHouse integration.

Data encryption is a common measure to protect the data security of the
LakeHouse system. Among them, DM-Crypt, a powerful disk encryption tool,
has been widely used in the field of disk encryption, which can effectively pre-
vent unauthorized access, data leakage, etc. However, the key management of
DM-Crypt is often criticized. Traditionally, the key of DM-Crypt is manually
entered by the user or stored on the local computer, which has many potential
security risks. For example, users may choose weak passwords to reduce encryp-
tion security. Secondly, if the user decides to store the key in the local computer,
then when the computer is attacked or damaged, the key may be leaked or lost,
making the data inaccessible or stolen by the attacker.

This paper presents a dynamic multi-secret sharing obfuscation scheme as a
forward-looking technology to address the key management problem of the Lake-
House structure. The main process is to expand and obfuscate the secret that
needs to be protected. After obtaining the obfuscated multi-secrets, distribute
them in shards to each participant and allow runtime modifications to the obfus-
cation method and shares, i.e., adding, deleting, updating existing shares, or
updating shares periodically.

The structure of the paper is organized as follows. In the next section, we
introduce some related work. In Sect. 3, we briefly introduce the development of
the Data LakeHouse architecture and the pain points of DM-Crypt. In Sect. 4, a
verifiable dynamic multi-secret sharing obfuscation scheme applied to the Data
LakeHouse is proposed. In Sect. 5, we analyze the verifiability and dynamics of
our scheme. Finally, in Sect. 6, the conclusion of this paper is presented.

2 Related Work

Secret sharing is an important method for protecting privacy and ensuring infor-
mation security, and it has played a vital role in fields such as finance, medical
care, cloud computing, and big data analysis. Secret sharing was first proposed
in 1979 by Shamir [23] and Blakley [4]. Many researchers have improved this
scheme to have dynamic, verifiable, multiple secrets, etc.

To overcome the limitation that communication groups can only share a
single secret and each secret can only be used once, multi-secret sharing (MSS)
[6,11,12,31] was proposed. Although it solves the problem that only one secret
can be shared at a time, there is no way to verify the honesty of distributors
and participants, which means that dishonest distributors/participants cannot
be dealt with. A paper [24] points out that it is possible to introduce discrete
logarithms into the scheme. Some other papers [8,9] propose to use discrete
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logarithm and the intractability of the RSA cryptosystem to improve the YCH
scheme. Still, it cannot solve the problem of resource consumption, resulting in
slow operation.

Chor et al. [7] proposed the first verifiable secret sharing (VSS) in 1985. It
allows each participant to verify their share. If the participant recognizes that
he has received an invalid share, he can ask the distributor to regenerate the
share for distribution. Generally speaking, invalid shares may be caused by com-
munication channel noise, deception, or malicious attacks. Feldman [10] and
Pedersen [20] developed non-interactive VSSs based on cryptographic commit-
ment schemes, but they all can only verify their share. Stadler [25] proposed
the first publicly verifiable secret sharing (PVSS) scheme, in this scheme, each
participant can mutually verify that the others’ shares are valid.

Cachin [5] and Pinch [21] propose dynamic secret sharing schemes respec-
tively, but each participant’s shadow should not change after dynamic entry or
exit. In the scheme of the paper [14], participants can dynamically join or exit
their own shadow, which increases the dynamics. Paper [15,22,27] proposes a
similar scheme based on Lagrange interpolation or Hermitian interpolation. In
2012 Hu et al. [13] and in 2015 Mashhadi et al. [17] respectively proposed verifi-
able multi-secret sharing schemes. The latter paper thinks that participants can
dynamically add or delete shared secrets, and participants can dynamically join
or exit. In 2017A et al. [3]. Proposed a verifiable general structure based on the
ECC(Elliptic Curve Cryptography) algorithm. This scheme has high efficiency,
but cannot generate multiple keys at the same time.

3 Preliminaries

3.1 LakeHouse Architecture

The general architecture of the Data LakeHouse is as follows: The top layer is the
service interface, responsible for retrieving processed data from the computing
engine. The layer above, functioning as the computing engine, is responsible for
extracting data from the Data LakeHouse and providing it to the service interface
layer in near real-time, utilizing batch or stream processing. The middle layer is
the metadata layer, primarily tasked with managing the metadata of both the
Data Lake and the Data Warehouse, and implementing specific optimizations.
The bottom layer, serving as the original data layer, is responsible for storing
the raw data. The primary storage options consist of locally deployed Hadoop
Distributed File Systems and remotely hosted cloud storage solutions like AWS
S3, Google Cloud Storage, and Object Storage Service, among others.

Managed cloud services typically offer the advantages of ease of management,
high flexibility, global performance, and online accessibility. Nevertheless, pro-
longed usage can lead to high costs, particularly in the case of extensive and
frequent data access. Moreover, it cannot be compared to HDFS in terms of
data privacy and security. In some near-real-time scenarios, enterprises may opt
to utilize local HDFS as the ultimate storage solution. Hence, the security and
key management of local storage data have emerged as challenges that require
attention.
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3.2 DM-Crypt

DM-Crypt is a transparent block device encryption subsystem, a component
of the device mapper infrastructure, and utilizes encryption routines from the
kernel’s encryption API. It can encrypt entire disk partitions, software RAID
volumes, logical volumes, as well as files. It appears as a block device and can
be used for backing up filesystems, swaps, or as an LVM physical volume. It is
highly suitable as a foundational storage encryption tool for Data LakeHouse.
DM-crypt employs the initrd to request a password from the user at the console
or to insert a smart card before the regular boot process. Security issues in the
encryption process often arise in key management, including weak passwords,
social engineering attacks, password leaks, forgetfulness, and so on. In distributed
systems, secret sharding is commonly employed for key management.

4 The Proposed Scheme

The basic idea of the proposed scheme is illustrated as follows. The secret sharing
system consists of a distributor (D), a secret restorer (C) and multiple partici-
pants (P = {P1, P2, · · · , Pn}). The distributor will directly obtain the password
(originP ) from the DM-Crypt encrypted disk. The RSA asymmetric encryption
algorithm is initially used to establish a secure communication tunnel with other
participants. The distributor D will then expand and obfuscate the original pass-
word, resulting in multiple secret sequences (S = {S1, S2, · · · , Sk}). Designate
the last item, Sk as the true secret, and the other items as false secrets. The
purpose of this operation is to conceal the actual original password. Finally, the
obfuscated multi-secrets are divided using the dynamic multi-secret sharing algo-
rithm. The dynamism of this scheme is achieved through modifying the access
structure, adding or removing participants, and obfuscating secrets.

4.1 Initialization Phase

The initialization phase aims to exchange public information, such as publishing
the list of supported cipher suites and computing the public key of Pj . Through
the following steps, D can securely communicate with participants.

(1) D chooses a secure asymmetric encryption algorithm (such as RSA, ECC),
a safe and collision-resistant hash function h(·), a large prime number p, and
a generator g of Fp.

(2) D choose a safe one-way function f(·, ·) and selects an integer u. It is easy
to compute the value of f(u, v) when given two parameters u and v. But it
is tough to calculate in the following cases:
a. Given u and f(u, v), it is extremely difficult to compute v.
b. Given v and f(u, v), it is extremely difficult to compute u.
c. Given one of v and u, but without knowledge about f(·, ·), it is extremely

difficult to compute f(u, v).
d. For u′ �= u, given u and f(·, ·), it is difficult to compute f(u, v).



Verifiable Dynamic Multi-secret Sharing Obfuscation Scheme 321

e. Given v , it is difficult to find two different values u1, u2, such that
f(u1, v) = f(u2, v).

(3) D publishes {p, g, Fp, u, h(·), f(·, ·)}.
(4) Each participant select choose its own identifier(Pj , j = 1, 2, · · · , n) and

compute the identity of themselves

Ij = f(u, Pj), j = 1, 2, · · · , n (1)

And then constructs a pair of asymmetric encrypted public keys and private
keys. Take the RSA algorithm as an example:
a) Pj firstly selects two large prime numbers pj and qj . Then calculate mj =

pj · qj and ϕ(mj) = (pj − 1)(qj − 1), where ϕ is the Euler function.
b) Pj selects one random ej , 1 ≤ ej ≤ ϕ(nj), satisfied gcd(ej , ϕ(nj)) = 1.
c) computes the inverse dj of ej over the domain modulo ϕ, where 1 ≤ dj ≤

ϕ(mj), satisfied ej · dj mod ϕ = 1.
(5) Pj publishes < Ij , ej ,mj >. Ij is used as an index, which only corresponds

to pair < ej ,mj > and cannot correspond to Pj , effectively protecting the
identity information of the participants.

(6) D should ensure the uniqueness of each set of data pairs in the set {<
Ij , ej ,mj >} released by the participants. Otherwise, the participants should
re-select e again.

4.2 Construction Phase

The main purpose of this stage is to construct a shared secret among n par-
ticipants by operating on the original secret and using a one-way function to
verify whether the participants and the distributor have engaged in fraudulent
behavior.

(1) D expands and obfuscates the originP to create S = {S1, S2, · · · , Sk}.
Among them, Sk is the actual key, and the others are fake keys intended to
obfuscate. Then calculate the hash value of Si:

hSi
= h(Si) (2)

(2) Randomly select distinct numbers xj ∈ F ∗
p , j = 1, 2, · · · , n. Then compute

the following equation from each participant’s public key:

yj = x
ej
j mod mj (3)

(3) For each secret Si, construct a polynomial of degree i−1, which is given by:

Fi = (Si + d1x + d2x
2 + · · · + di−1x

i−1) mod p, i = 1, 2, · · · , k (4)

In this equation, Fi(0) = Si.
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(4) For i = 1, 2, · · · , k and j = 1, 2, · · · , n, compute the following:

Vij = Fi(Ij) (5)

cij = hi(xj) ⊕ xj (6)
hcij = h(cij) (7)

Rij = V ij − cij mod p (8)
In the above formula, Vij is a set of equations with [k, n] dimensions. cij
represents a set of pseudo-secret shares, signifying a protected intermediate
result. hcij is later used to verify whether any participant cheated when
publishing the hash value in the recovery phase. Rij is a set of data that
must be published and is used by each participant to compute their shard
key.

(5) D publishes all {{yj}, {hSi
}, {hcij}, {Rij}}.

(6) Pj uses their private key dj to calculate compute their shard key:

xj = y
dj

j (9)

4.3 Recovery Phase

In a general analysis, suppose we wish to recover the index r secret Sr. In this
case, r or more participants are required to cooperate in performing the following
steps:

(1) Each participant computes their own pseudo-secret share and the corre-
sponding hash value as follows:

crj = hr(xj) ⊕ xj (10)

h∗
crj = h(crj) (11)

Participant Pj first checks whether h∗
crj is as same as hcrj published by D.

If they are different, it indicates that D has cheated; otherwise, Pj send crj
to the secret restorer C.

(2) After C receives the crj sent by Pj , C will also calculate the correspond-
ing hash value h∗∗

crj by Eq. (12). If it is different from the published hcrj ,
this indicates that at least one participant has cheated. C will request all
participants to resend data until everything matches. If C received all the
correct data, Crj(j = 1, 2, · · · , r), the index r secret can be reconstructed
as follows:

h∗∗
crj = h(crj) (12)

Sr =
r∑

j=1

(crj + Rrj)
r∏

t=1,t�=j

−It
Ij − It

mod p (13)

After obtaining the secret Sr, C will calculate its hash value h∗
Sr

using Eq.
(14). Then, if the hash value matches h(Sr) published by D, the correct
secret is obtained; otherwise, it suggests that D is dishonest.

h∗
Sr

= h(Sr) (14)
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5 Verifiability and Dynamics Analysis

5.1 Verifiability Analysis

This scheme achieves verifiability by comparing the hash value read from the
public bulletin board with the hash value calculated from the corresponding
data.

During the recovery phase, participant Pj reads the values of yj and hcrj

from the public bulletin board. Pj will compute its pseudo-secret crj and then
compute h∗

crj through eqs. (10) and (11). If h∗
crj �= hcrj , then D is considered to

have cheated in publishing yj ; otherwise, the verification is passed.
When C restores the key, Pj should actively transfer crj to C securely. Simul-

taneously, C should read hcrj from the public bulletin board. C will first verify
whether the crj passed by Pj is valid, by calculating through Eq. (12). If there
exists h∗∗

crj �= hcrj (j = 1, 2, · · · , n), it can be concluded that at least one partici-
pant has cheated.

If there is no problem with the previous process, then C will calculate the
secret Sr through Eq. (13) and calculate its hash value h∗

Sr
through Eq. (14).

If h∗
Sr

matches hSr
as read from the public bulletin board, then the verification

passes; otherwise, it indicates that D is dishonest.

5.2 Dynamics Analysis

In actual operation, the following situations may occur that require reconsider-
ation:

i. Need to add or delete participants.
ii. Need to modify the threshold.
iii. Need to modify the shards periodically.
iv. Need to modify the origin key.

We will analyze these situations one by one to verify whether the scheme pro-
posed in this paper satisfies the dynamic characteristics.

(1) Addition of New Participants
When new participants {Pn+1, Pn+2, · · · , Pn+l} want to become partici-
pants, they first retrieve f(·, ·) and u from public bulletin board to com-
pute their identifiers, as shown in Eq. (1). Each Pn+t should choose two
large prime numbers pn+t, qn+t and en+t (1 ≤ en+t ≤ ϕ(mn+t)). Then,
they compute mn+t, ϕ(mn+t) and dn+t(1 ≤ dn+t ≤ ϕ(mn+t)). After these
calculations, the uniqueness of < In+t, en+t,mn+t > should be ensured.
Otherwise, en+t should be re-selected and recomputed.
In the construction phase, D selects xn+t and calculates yn+t using Eq. (3),
where xn+t ∈ F ∗

p , and xn+t �= xj(j = 1, 2, · · · , n). Then D calculates Vi,n+t,
ci,n+t, hi,n+t, Ri,n+t using eqs. (5) to (8).
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The content to be published during the addition participant phase is: {{<
In+t, en+t,mn+t >}, {yn+t}, {Vi,n+t}, {ci,n+t}, {hci,n+t

}, {Ri,n+t}}
This allows new participants to calculate their own shards xn+t using Eq.
(9) without modifying the shards of the original participants. The shards of
the new participants are also valid for recovery keys.

(2) Deletion of Participants
When deleting participants, they can be safely removed as long as the num-
ber of remaining participants reaches the threshold required for key recovery.
The method for deleting participant Pj is to remove the hcij of Pj from the
public bulletin board. If Pj wishes to recover the key after deletion but his
hash authentication has expired and cannot pass the authentication, the
security of the shared key will not be compromised.

(3) Modification of the Threshold
If someone wants to modify the threshold for secret recovery, they need to
consider that our actual key is always stored in the highest dimension. They
need to reselect the value of k and start calculating Eq. (4) again. Then
they must modify the values of hcij and Rij on the public bulletin board.
Afterward, every Pj should recalculate their own new shard xj . This will
modify the data of other participants, but there’s no need to reinitialize and
recalculate yi. Therefore, in this case, this scheme is not fully dynamic.

(4) Periodic Modification of Shards
This situation is more complex than modifying the threshold. Since the
threshold has not changed, the secret shard needs to be regenerated, which
means D needs to reselect xj(xj ∈ F ∗

p , j = 1, 2, · · · , n) for every Pj and
then compute Eq. (3). In this case, it is necessary to republish new value of
{yj}, {hcij}, and {Rij}. Afterward, every Pj should recalculate their own
new shard xj . This fulfills the objective of periodically changing shards.
However, this scheme is not fully dynamic in this case either.

(5) Modification of the Origin Key
In this case, you need to start over from the beginning of the construction
phase. This is because the first step in the construction phase involves the
use of the origin key. If the origin key is modified, the key group must also
be adjusted. In this case, it is necessary to republish new values of {hSi

},
{yj}, {hcij} and {Rij}. Afterward, every Pj should recalculate their own
new shard xj . This completes the purpose of periodically changing shards.
However, this scheme is not fully dynamic in this case either.

6 Conclusion

Based on the Data LakeHouse distributed system, we have proposed this verifi-
able dynamic multi-secret sharing obfuscation scheme in this paper. This scheme
also incorporates the advantages of previous ones, but we have expanded and
obfuscated a single key into a sequence of keys, making it more difficult to crack.
Analysis shows that our scheme is computationally verifiable and dynamic. This
scheme achieves verifiability mainly by comparing the hash value read from the
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public bulletin board with the hash value calculated from the corresponding
data. This scheme supports the following dynamics: removing or adding partic-
ipants dynamically, modifying the threshold dynamically, changing the shards
periodically, and modifying the origin key dynamically, but only the first of these
satisfies full dynamism. Moreover, it is easy to implement and is applicable in
practical scenarios.

References

1. Armbrust, M., Ghodsi, A., Xin, R., Zaharia, M.: Lakehouse: a new generation of
open platforms that unify data warehousing and advanced analytics. In: Proceed-
ings of CIDR, vol. 8 (2021)

2. Begoli, E., Goethert, I., Knight, K.: A lakehouse architecture for the management
and analysis of heterogeneous data for biomedical research and mega-biobanks. In:
2021 IEEE International Conference on Big Data (Big Data), pp. 4643–4651. IEEE
(2021)

3. Binu, V.P., Sreekumar, A.: Secure and efficient secret sharing scheme with general
access structures based on elliptic curve and pairing. Wireless Pers. Commun. 92,
1531–1543 (2017)

4. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements
Knowledge, International Workshop on, pp. 313–313. IEEE Computer Society
(1979)

5. Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) Cryptography and Coding
1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60693-9_22

6. Chien, H.-Y., Jan, J.-K., Tseng, Y.-M.: A practical (t, n) multi-secret sharing
scheme. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 83(12), 2762–
2765 (2000)

7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual Symposium on
Foundations of Computer Science (SFCS 1985), pp. 383–395. IEEE (1985)

8. Massoud Hadian Dehkordi and Samaneh Mashhadi: An efficient threshold verifiable
multi-secret sharing. Comput. Stand. Interfaces 30(3), 187–190 (2008)

9. Massoud Hadian Dehkordi and Samaneh Mashhadi: New efficient and practical
verifiable multi-secret sharing schemes. Inf. Sci. 178(9), 2262–2274 (2008)

10. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp.
427–438. IEEE (1987)

11. Harn, L.: Efficient sharing (broadcasting) of multiple secrets. IEE Proc.-Comput.
Digital Tech. 142(3), 237 (1995)

12. He, J., Dawson, E.: Multistage secret sharing based on one-way function. Electron.
Lett. 30(19), 1591–1592 (1994)

13. Chunqiang, H., Liao, X., Cheng, X.: Verifiable multi-secret sharing based on LFSR
sequences. Theoret. Comput. Sci. 445, 52–62 (2012)

14. Huang, Y., Yang, G.: Pairing-based dynamic threshold secret sharing scheme. In:
2010 6th International Conference on Wireless Communications Networking and
Mobile Computing (WiCOM), pp. 1–4. IEEE (2010)

15. Hwang, R.-J., Chang, C.-C.: An on-line secret sharing scheme for multi-secrets.
Comput. Commun. 21(13), 1170–1176 (1998)

https://doi.org/10.1007/3-540-60693-9_22
https://doi.org/10.1007/3-540-60693-9_22


326 S. Tang et al.

16. Liang, C., Qiu, K., Zhang, Z., Yang, J., Li, Y., Jingjing, H.: Towards robust
and stealthy communication for wireless intelligent terminals. Int. J. Intell. Syst.
37(12), 11791–11814 (2022)

17. Mashhadi, S., Dehkordi, M.H.: Two verifiable multi secret sharing schemes based
on nonhomogeneous linear recursion and LFSR public-key cryptosystem. Inf. Sci.
294, 31–40 (2015)

18. Oreščanin, D., Hlupić, T.: Data lakehouse-a novel step in analytics architecture.
In: 2021 44th International Convention on Information, Communication and Elec-
tronic Technology (MIPRO), pp. 1242–1246. IEEE (2021)

19. Pang, P., Aourra, K., Xue, Y., Li, Y.Z., Zhang, Q.X.: A transparent encryption
scheme of video data for android devices. In: 2017 IEEE International Conference
on Computational Science and Engineering (CSE) and IEEE International Confer-
ence on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 817–822. IEEE
(2017)

20. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

21. Pinch, R.G.E.: On-line multiple secret sharing. Electron. Lett. 32(12), 1087–1088
(1996)

22. Qu, J., Zou, L., Zhang, J.: A practical dynamic multi-secret sharing scheme. In:
2010 IEEE International Conference on Information Theory and Information Secu-
rity, pp. 629–631. IEEE (2010)

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
24. Shao, J., Cao, Z.: A new efficient (t, n) verifiable multi-secret sharing (VMSS)

based on YCH scheme. Appl. Math. Comput. 168(1), 135–140 (2005)
25. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT

1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68339-9_17

26. Sun, H., Tan, Y., Zhu, L., Zhang, Q., Li, Y., Shangbo, W.: A fine-grained and
traceable multidomain secure data-sharing model for intelligent terminals in edge-
cloud collaboration scenarios. Int. J. Intell. Syst. 37(3), 2543–2566 (2022)

27. Tadayon, M.H., Khanmohammadi, H., Haghighi, M.S.: Dynamic and verifiable
multi-secret sharing scheme based on hermite interpolation and bilinear maps.
IET Inf. Secur. 9(4), 234–239 (2015)

28. Tan, Y., Xinting, X., Liang, C., Zhang, X., Zhang, Q., Li, Y.: An end-to-end covert
channel via packet dropout for mobile networks. Int. J. Distrib. Sens. Netw. 14(5),
1550147718779568 (2018)

29. Tan, Y., Zhang, X., Sharif, K., Liang, C., Zhang, Q., Li, Y.: Covert timing channels
for IoT over mobile networks. IEEE Wirel. Commun. 25(6), 38–44 (2018)

30. Tan, Y., Zheng, J., Zhang, Q., Zhang, X., Li, Y., Zhang, Q.: A specific-targeting
asymmetric group key agreement for cloud computing. Chin. J. Electron. 27(4),
866–872 (2018)

31. Yang, C.-C., Chang, T.-Y., Hwang, M.-S.: A (t, n) multi-secret sharing scheme.
Appl. Math. Comput. 151(2), 483–490 (2004)

32. Zhang, Q., Li, Y., Song, D., Tan, Y.: Alliance-authentication protocol in clouds
computing environment. China Commun. 9(7), 42–54 (2012)

33. Zhang, Q., Yong Gan, L., Liu, X.W., Luo, X., Li, Y.: An authenticated asymmetric
group key agreement based on attribute encryption. J. Netw. Comput. Appl. 123,
1–10 (2018)

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17


Verifiable Dynamic Multi-secret Sharing Obfuscation Scheme 327

34. Zhang, Q., Wang, X., Junling Yuan, L., Liu, R.W., Huang, H., Li, Y.: A hierarchical
group key agreement protocol using orientable attributes for cloud computing. Inf.
Sci. 480, 55–69 (2019)

35. Zhang, X., Liang, C., Zhang, Q., Li, Y., Zheng, J., Tan, Y.: Building covert timing
channels by packet rearrangement over mobile networks. Inf. Sci. 445, 66–78 (2018)



DZIP: A Data Deduplication-Compatible
Enhanced Version of Gzip

Hengying Xiao(B) and Yangyang Liu(B)

University of Electronic Science and Technology of China, Chengdu, China
2692645221@qq.com, sagelyy@uestc.edu.cn

Abstract. Data deduplication is a common method for reducing storage
space in backup storage systems. Despite extensive research aimed at
improving the efficiency of data deduplication, we have observed poor
compatibility between compressed data and deduplication. Specifically,
two files with significant duplicate content cannot be deduplicated once
they are compressed. In this paper, we delve into the internals of gzip and
investigate the primary cause of this issue: the default compression-ratio-
based heuristic blocking algorithm within deflate introduces a boundary
offset issue. We introduce Dzip, which incorporates a content-defined
chunking algorithm into gzip to maintain the redundancy of similar files
after compression. The dataset-driven evaluation demonstrates that data
compressed by Dzip can achieve a deduplication ratio of up to 86.2%
compared to uncompressed data, with the compression ratio remaining
largely unchanged compared to gzip, while achieving a throughput of up
to 96% of gzip.

1 Introduction

Backup data storage constitutes a crucial component within modern data stor-
age systems, finding widespread application in scenarios such as network hard
drives and data centers(i.e. Google Drive, Dropbox). Within backup data storage
system, users periodically upload local files backup to cloud servers for persis-
tent storage. Studies [21] indicates a substantial amount of redundancy among
the uploaded backups, which has inspired researchers to integrate data dedu-
plication into backup data storage system [16,24] to improve storage efficiency.
Data deduplication partitions uploaded backups into chunks and ensures that
identical physical chunk is stored only once, thereby enhancing storage efficiency.

Nevertheless, the formats of user-uploaded files are diverse and unpredictable,
with certain file formats not inherently compatible with data deduplication. For
instance, in a cost-saving effort, users might compress different versions of files
before uploading them to the cloud server. We found that even if the two versions
of the files share significant duplicate content before compression, this duplicate
content is substantially lost after compression.
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Addressing the aforementioned challenges, this paper takes the widely used
compression software, gzip [9], as a case study to investigate the incompatibility
between compressed data and deduplication. Our insight is that gzip did not take
into account the potential for deduplication of compressed data. Consequently,
its internal use of a compression-ratio-based heuristic blocking algorithm led to
boundary offset issues.

We present Dzip, in which we replace the built-in blocking algorithm with
a content-defined chunking algorithm. The contributions of this paper are as
follows:

1. This paper employs a combination of data-driven experiments and theoretical
analysis to investigate the issue of duplicated content loss in compressed data.

2. This paper introduces Dzip, which is an enhanced version of gzip. It improves
compatibility between compressed data and deduplication by modifying the
internal blocking algorithm of gzip.

3. This paper conducted evaluations of Dzip, and the results indicate that data
compressed through Dzip achieve a deduplication ratio of 82.6% of the origi-
nal data’s deduplication ratio with only a slight reduction in throughput and
without compromising the compression ratio.

The rest of this paper is organized as follows: In Sect. 2, we provide a detailed
overview of the backup storage system and two common data reduction tech-
niques, deduplication and compression. In Sect. 3, we leverage data-driven exper-
iments and conduct theoretical analysis to highlight the limitations of gzip in
deduplication, which serve as the motivation for the design of Dzip. In Sect. 4
and Sect. 5, we delve into the design details of Dzip and present the correspond-
ing evaluation results, respectively. Finally, in Sect. 6 and Sect. 7, we discuss
related research and conclude this paper.

2 Background

Backup Storage System. Figure 1 illustrates the basic architecture of the
reduction-based storage system: the client periodically backs up local files and
uploads the backup to the server. Upon receiving the client’s backup, the server
first performs data reduction and then writes the reduced data to the underlying
physical storage. The physical storage is built on top of storage media, responsi-
ble for persisting data to devices such as hard disks and solid-state drives (SSDs).
Common data reduction techniques include data deduplication, lossless compres-
sion, delta compression, etc. This paper primarily focuses on the first two. Details
about these techniques will be elaborated in the following paragraphs.
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Fig. 1. The fundamental architecture of a data deduplication-based backup storage
system. The client sends upload and download commands, while the server is respon-
sible for data reduction and persistent storage.

Deduplication. Deduplication is employed to eliminate data redundancy in
both backup and primary workloads [6,12,20,26,27]. It begins by using chunk-
ing algorithm(e.g., fixed-size chunking, RabinCDC [2,19]) to partition files into
multiple consecutive chunks. The size of a chunk generally varies from 4KiB
to 8KiB depending on the chunking algorithm and the scenario. Subsequently,
it employs hashing algorithms like MD5 to calculate the content hash of each
chunk as its fingerprint. Chunks with the same fingerprint are considered to have
identical content, and vice versa [1]. Finally, in physical storage, data dedupli-
cation ensures that chunks with the same fingerprint are stored only once, while
maintaining two data structures: a fingerprint index and a file recipe index. The
former records the physical storage addresses of each unique chunk, while the
latter records the fingerprint sequence of chunks contained in each file.

Compression. In backup storage system, compression is usually applied after
data deduplication to further reduce the size of unique chunks. This paper focuses
on the GNU software gzip [9] and the compression algorithm deflate [5] it uses.
Deflate is a stream-based lossless compression algorithm that comprises two main
components: LZ77 encoding and Huffman encoding.

LZ77 encoding [25], achieves data compression by identifying and eliminat-
ing recurring data patterns. To accomplish this, it scans the data stream for
repeated patterns and substitutes them with references pointing to earlier occur-
rences. The search process is constrained to a predefined length forward from the
current position, meaning patterns located beyond this searching range are not
considered for reference. Whether or not a pattern is located, LZ77 generates a
short code (l, d) to represent the outcome of each search, in which l represents
the length of the pattern, and d represents the distance between the current
pattern and the found pattern. If no patterns are found during the search, LZ77
directly outputs the current byte, which is stored in l.

After the LZ77 encoding, gzip employs a compression-ratio-based heuristic
blocking algorithm to divide the short code sequence output by Lz77 into mul-
tiple blocks, then applying Huffman encoding [11] to each block individually.
Specifically, it scans the LZ77 short code sequence, accumulating each code it
encounters into the ongoing block. Subsequently, gzip estimates the compression



DZIP: A Data Deduplication-Compatible Enhanced Version of Gzip 331

ratio that the current block would achieve post Huffman encoding. If this esti-
mated compression ratio meets the predefined criteria, the current block is ter-
minated, and a new block begins. At this phase, gzip employs Huffman encoding
to encode the terminated block by building a dynamic Huffman tree and saves
the encoded binary data into the compressed file.

3 Observation

We then study the limitations of applying deduplication on compressed data
through data-driven evaluation, and motivate the design of Dzip through theo-
retical analysis.

3.1 Limitations

We selected 5 different versions of the gcc software packages, ranging in size
from 508.7MiB to 512.8MiB (see Sect. 5 for details), we then measured the
deduplication ratio (the ratio of the total size of logical chunks to the total size of
unique chunks) before and after compression. Specifically, The experiments were
divided into two groups: in the first group, the 5 versions were left unprocessed,
while in the second group, the same 5 versions were compressed using gzip with
default configuration. For each group, we applied the RabinCDC [2,19] algorithm
to partition each version of the release into chunks with an average chunk size
of 4KiB and conducted deduplication. Finally, for each group, we calculated the
deduplication ratio after processing each version. The results for both groups are
depicted in Fig. 2.

Fig. 2. The deduplication ratios of two groups of backups, one compressed and the
other uncompressed.
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Fig. 3. The two steps of gzip compression, LZ77 encoding, and Huffman coding, both
result in the loss of duplicated data.

From the figure, it can be observed that for the compressed group, as the
number of versions participating in deduplication increases, the deduplication
ratio remains around 1. However, for the group where deduplication is per-
formed directly without compression, the deduplication ratio steadily increases
as more versions are involved. When all 5 versions of data are processed, the
deduplication ratio reaches 3.4. This indicates that there is a significant amount
of duplicate content among the uncompressed versions of these software pack-
ages, which disappears after compression. Therefore, the duplicate data among
multiple versions is challenging to preserve after they are compressed.

3.2 Motivation

Analysis. Next, we delve into the reasons behind the above evaluation result.
Gzip’s compression of the original data stream involves two main phases: LZ77
encoding and Huffman encoding. We contend that both of these phases can
impact the deduplication ratio, as outlined in detail below:

1. The LZ77 encoding amplifies the differences between two version
of files that share duplicate content. The output data stream from LZ77
(i.e., the short code sequence) is not solely determined by the current pro-
cessing data, it also relies on data within a preceding searching range (refer to
Sect. 2 for details). As illustrated in Fig. 3, for a segment of deduplicated con-
tent in two versions of a file, the LZ77 short code output for data within the
first searching range depends on its preceding content, resulting in it being
encoded differently. However, the content following the first searching range
remains unaffected and, therefore, still remains the same. Therefore, LZ77
encoding reduces the duplicate data between the two versions of the files.

2. The compression-ratio-based heuristic blocking algorithm employ-
ed by gzip introduces boundary shifts. As depicted in Fig. 3, for the
output data stream from LZ77 with identical content, their blocking positions
are likely to differ (due to potentially different starting blocking positions).
Consequently, the frequency distribution of short codes within the current
block diverges, and Huffman coding encodes each l and d in every LZ77 short
code into a bit sequence based on their frequencies. This triggers a butterfly
effect, resulting in completely different compressed data.
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Our Approach. The analysis above highlights that both stages of gzip, namely
LZ77 and Huffman encoding, introduce adverse effects on data deduplication.
To address this concern, we are motivated to enhance gzip’s compatibility with
data deduplication by focusing on two dimensions: LZ77 searching range size
and blocking algorithm. Our design focus is centered on addressing boundary
shifts. Our insight is to integrate a content-defined chunking algorithm into gzip,
replacing the previous heuristic blocking algorithm to mitigate boundary offset
issues. When it comes to the LZ77 searching range, although a smaller searching
range reduces the amplification of differences, it also significantly lowers the
compression ratio. Therefore, we are considering modifying the default searching
range size to strike a balance between compression ratio and deduplication ratio,
which will be discussed in our future work.

4 Dzip Design

4.1 Design

We introduce Dzip, a solution that utilizes a content-defined chunking algorithm
to deal with the LZ77 short code sequence instead of gzip’s default heuristic
blocking algorithm. The content-defined chunking algorithm, a well-established
technique, involves analyzing a data stream using a sliding window, calculating
hash values for each window, and partitioning the file into data chunks based on
patterns in these hash values. This approach effectively addresses the boundary
shift problem. Consequently, our modification aims to resolve the compatibility
issue between compressed data and data deduplication.

Specifically, Dzip maintains a fixed-size sliding window (e.g., 48). Whenever
new LZ77 short code is generated, Dzip computes the rabin fingerprint [19]
within the window and checks whether the current fingerprint adheres to a spe-
cific pattern (e.g., congruent to 0 modulo 210). If satisfied, dzip immediately
concludes the current block and initiates a new block. The terminated block
is subsequently Huffman-encoded and written into the file as compressed data
stream. Although we replaced the previous default heuristic blocking algorithm,
this modification had minimal impact on the compression ratio of the data,
which will be detailed in the evaluation section.

As the deflate RFC [5] does not impose any strict requirements on the block-
ing algorithm, our design is fully compatible with existing decompression soft-
ware (e.g., zlib [7]). Furthermore, although our research primarily focuses on
gzip, it’s worth noting that many compression softwares or algorithms, such as
zstd [4], also internally employ the method of blocking before compression based
on Huffman coding. Therefore, our work may potentially be applicable to other
software as well.

4.2 Implementation

We made modifications to the source code of gzip version 1.2.6 by integrat-
ing an open-source implementation [18] of RabinCDC and altering the blocking
algorithm within the deflate implementation.
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Due to the fact that the open source implementation of RabinCDC operates
at a byte-level granularity, and since LZ77 output short codes exceed 256, with-
out the possibility of splitting individual LZ77 short codes, we customized the
open-source implementation to handle a wider input range.

Table 1. The detailed information about the dataset we used. The deduplication ratio
is computed using the RabinCDC algorithm with an average chunk size of 4 KiB, while
the compression ratio is measured using gzip with default configuration.

Versions 5
Total Size 2552.7 MiB
Deduplication ratio 3.39
Compression ratio 5.08

5 Evaluation

We conduct dataset-driven experiments to evaluate the performance of Dzip.
Our evaluation shows the following key findings:

– In terms of reduction ratio, Dzip retains a significant amount of duplicate con-
tent compared to gzip with almost no loss in compression ratio. The dedupli-
cation ratio of data compressed by Dzip can reach 82.6% of the deduplication
ratio of the original data (Exp#1).

– In the evaluation of storage efficiency in the backup storage system, Dzip
employed a pre-compression followed by deduplication approach, resulting in
a final physical storage size only 36.6% of that achieved by gzip using the same
approach. Furthermore, compared to the approach of deduplication followed
by compression, Dzip significantly reducing both server CPU and network
overhead (Exp#2).

– In terms of throughput, Dzip achieves compression speeds reaching up to
96% of gzip (Exp#3).

5.1 Setup

We obtained five consecutive backup versions of GCC releases from the GNU
gcc website [8]. These releases were distributed as tar.gz format archive files. To
prevent incompatibility issues between the tar format and data deduplication
[17] that could affect our evaluation results, we initially decompressed these
compressed archive files. Subsequently, we preprocessed these extracted archive
files using mtar [17] to create a tar.fm format archive file that is compatible with
data deduplication. The only difference between this format and the traditional
tar format is the rearrangement of internal metadata to support deduplication.
Table 1 provides some details about this dataset.
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Fig. 4. Exp#1 (Reduction ratios): The average deduplication ratio and compression
ratio after processing each backup version

We conduct experiments on a machine running Debian 11 with Linux kernel
5.10. It equips with a 16-core Intel Xeon E5-2683v4 CPU, 128GB DDR4 RAM,
quad 4TiB SATA HDDs in a RAID5 array.

In our evaluation, in addition to comparing Dzip with gzip under default
configuration, we also configured multiple dzip instances with various blocking
granularity, ranging from 128, 256, 512, and all the way up to 8k (i.e., 8192),
and so on. The blocking granularity refers to the average number of LZ77 short
codes each time dzip preserves before performing Huffman coding.

We primarily focus on the following two aspects: (i) Reduction ratios:
This encompasses both compression and deduplication, quantified as the ratio
between the original size of the backup data before reduction and its size after
reduction. (ii) Throughput: The total volume of data that can be compressed
within a unit of time.
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5.2 Results

Exp#1 (Reduction Ratios). To evaluate the performance of Dzip, we ini-
tially used Dzip (with a blocking granularity of 1024,labeled with “dzip1k”)
and gzip to individually compress each of the backup version processed by
mtar.Subsequently, we conducted deduplication on each backup (with an average
block size of 4KiB). After processing each backup file, we measured the aver-
age deduplication ratio and compression ratio. The results are shown in Fig. 4.
Additionally, to evaluate the impact of Dzip on deduplication ratio, we also plot-
ted the step deduplication ratio of uncompressed backup versions in the figure
(labeled as “raw”).

For deduplication ratio, we observed from Fig. 4(a) that the deduplication
ratio under the Dzip approach increases with the number of backups. After
processing all 5 backups, Dzip achieved a deduplication ratio of 2.80, which is
82.6% of the deduplication ratio without compression, which is 3.39. In contrast,
for gzip, the deduplication ratio of its compressed backups remained around 1.0.
This difference arises because the default deflate blocking algorithm used by gzip
introduces boundary shifts that result in the loss of duplicate content, while
Dzip, utilizing a content defined chunking approach, preserves the redundancy.

As for compression ratio, which is shown in Fig. 4(b), the compression ratio
of Dzip and gzip are nearly indistinguishable. After processing all 5 backups,
Dzip achieved a compression ratio of 5.01, which is 98.8% compared to gzip,
which is 5.08. This indicates that when the blocking granularity of Dzip is 1024,
while Dzip abandoned the heuristic blocking algorithm, its actual compression
ratio is almost unaffected.

Exp#2 (Storage Efficiency). We evaluate the storage efficiency of Dzip in
a basic backup storage system. Specifically, we compare three different data
reduction approaches:

1. dzip: First, we compress each backup file on the client side using Dzip with
different blocking granularity. Then, we upload these backups to the server
for deduplication.

2. gzip: This approach is the same as dzip, but we compress backups using gzip
instead of Dzip.

3. raw: We directly upload the original backup versions to the server, where the
server deduplicates these backups first and then applies gzip compression to
each unique chunk separately.

All three approaches have a deduplication granularity of average 4KiB using
RabinCDC. Figure 5(a) shows the physical sizes after processing all backup ver-
sions, while Fig. 5(b) displays the deduplication ratio and compression ratio for
each approach after processing all backups.
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Fig. 5. Exp#2 (Storage efficiency): The final physical data size and reduction ratios
of different approaches.

From Fig. 5(a), it can be observed that for different instances of Dzip, the
final physical data size of the backup files decreases first and then increases.
When the block granularity is 8192, the physical data reaches its maximum size,
at 212.81MiB, which is 115.3% of the physical data size of the raw approach.
However, when the block granularity is 1024, the physical data reaches its min-
imum size, at 182.25 MiB, only 98.7% of the raw scheme’s size. In contrast, for
gzip, the backups’ physical size in this approach is 497.27MiB, which is 269.3%
of the size in the raw approach.

The results in Fig. 5(b) illustrate the reasons for the above phenomenon. For
Dzip, as its blocking granularity increases, the deduplication ratio gradually
decreases, but the compression ratio decreases gradually. Furthermore, in the
gzip approach, there is almost no deduplication among different backups (The
deduplication ratio is only 1.011, which is very close to 1), resulting in a signif-
icantly larger final physical size. Lastly, for the raw scheme, although it has a
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Fig. 6. Exp#3 (Throughput): The compression throughput for different Dzip instance
and gzip

clear advantage in deduplication ratio, reaching 3.38, which is 112.1% that of
dzip1024, its compression ratio is severely limited by the block-level compression
scheme and only reaches 4.08, which is 81.6% that of dzip1024.

Although Dzip’s approach of compressing before deduplication results in
slightly lower storage efficiency compared to the original approach of deduplica-
tion before compression, it also brings several additional advantages:

1. The data compression has been shifted from the server side to the client side,
which reduces the CPU overhead on the server when performing online data
storage.

2. The data sent from the client to the server has been transformed from the
original data into smaller-sized compressed data, which saves network over-
head.

Therefore, we argue that the marginal storage space waste introduced by Dzip
is justified.

Exp#3 (Throughput). Due to Dzip’s design, which replaces the original
heuristic blocking algorithm to RabinCDC, we evaluated its impact on through-
put. Specifically, we opted for a specific version of the file and conducted 10
repeated measurements for each instance of Dzip and gzip to determine the time
required for compressing the entire file. We then calculated the average compres-
sion time and subsequently derived the throughput. The results are depicted in
Fig. 6.

From the figure, it can be observed that the throughput of Dzip increases
with the blocking granularity. For instance, at a blocking granularity of 128,
the throughput reaches 22.64MiB/s, while it reaches 27.10MiB/s at a block-
ing granularity of 8192. This is because coarser blocking granularity reduces the
number of LZ77 short codes that participate in Huffman coding during each
iteration of the deflate algorithm. Consequently, it increases the frequency of
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Huffman coding, which in turn raises CPU overhead and lowers throughput. On
the other hand, gzip has the highest throughput, reaching 28.11MiB/s. At an
8k blocking granularity, Dzip’s throughput is only 96.4% that of gzip. This indi-
cates that content-defined chunking algorithms have higher overhead compared
to compression-ratio-based heuristic blocking algorithms.

6 Related Work

Most existing research in the optimization of data deduplication backup sys-
tems has predominantly focused on improving I/O locality (e.g., MFdedup [27],
ALACC [3]), optimizing indexing (e.g., DDFS [24], sparse indexing [16]), and
enhancing block algorithms (e.g., FastCDC [23], bimodal CDC [13]). In the
realm of combining data compression and deduplication, DEC [10] leverages
the locality introduced by data deduplication to cluster similar chunks, thereby
enhancing compression ratio. Nitro [14], Cache Dedup [15] and Austere Cache
[22] apply both data compression and deduplication to flash cache devices to
improve cache efficiency.

In addressing the incompatibility between file formats and deduplication,
the research most closely related to dzip is mtar [17]. Using the tar format as
an example, mtar explores the reasons why tar archive files are challenging to
deduplicate and enhances compatibility between tar format archive files and data
deduplication through metadata rearrangement.

7 Conclusion

We took gzip as an example to investigate the reasons why different versions of
files with a significant amount of duplicate content cannot be deduplicated after
compression. We then proposed Dzip, which is an enhanced version of gzip. In
the design of Dzip, we replaced gzip’s original compression-ratio-based heuristic
blocking algorithm with a content-based chunking algorithm to improve its com-
patibility with deduplication. Our dataset-driven experiments show that Dzip,
compared to gzip, retains a significant amount of redundancy in compressed
data, achieving a deduplication ratio of 82.6% of the original data’s deduplica-
tion ratio. Additionally, Dzip’s throughput can reach up to 96% of gzip’s with
minimal impact on compression ratio.
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Abstract. Wildcard Searchable Symmetric Encryption can achieve flex-
ibility and pattern matching while protecting data privacy. There is
a promising future for combining secure wildcard search with emerg-
ing technologies such as AI. However, there are challenges in reduc-
ing the communication cost and improving security. In this paper, we
propose an efficient wildcard searchable symmetric encryption with for-
ward and backward security. The complexity of communication costs in
the search protocol is O(1), independent of the number of characters
of wildcard keywords, or files in the search result. It is achieved by a
double-compressed index in which the character set and file identifiers
are encoded simultaneously. Then, the double-compressed index provides
a possibility to achieve oblivious keyword query and update, so that the
proposed scheme only reveals the query type (search or update) without
anything else. It achieves forward and backward security using the dis-
tributed multi-point function and an additively homomorphic symmetric
encryption scheme. Detailed security proof and the theoretical compar-
ison show the improvement in security and efficiency. The acceptable
overheads of the proposed scheme are presented by the extensive perfor-
mance evaluation.

Keywords: Searchable Symmetric Encryption · Wildcard Keyword
Search · Data Update · Forward and Backward Security

1 Introduction

As a technique with flexibility and pattern matching, wildcard search allows
users to represent one or more unknown letters using a wildcard, so that users
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can query words or phrases matched to a specified pattern. In particular, there
are two kinds of wildcards % and _. The multiple-character wildcard % is used
to indicate letters with any length, and the single-character wildcard _ only
replaces one letter. Due to the flexible expression, wildcard search is widely used
in various fields and has been incorporated into search engines (e.g., Google,
Bing), databases (e.g., SQL Databases), text editors (e.g., Sublime Text), and
so on.

Wildcard search is also a powerful tool for AI programs. For example, there is
an AI project to train a ball recognizer so the trainer needs to search for photos
of all balls as training data. Assuming there are “Baseball, Football, Basketball,
Volleyball, Soccerball, Softball, Beachball, Handball, Fireball, Eightball, . . . ” in
the data set, users can use the wildcard keyword “%ball” to capture all poten-
tial variations rather than searching for each possible word separately. Formally
speaking, the wildcard keyword W represents all variant keywords w1, w2, . . .
in a dataset. Overall, this flexible and pattern-based information retrieval can
enhance the user’s ability to find relevant content even when they do not have
precise details about what they’re looking for. So the efficiency of AI training
could be further improved and developed using wildcard search.

Recently, frequent data leakage incidents have captured users’ attention to
data security. As valuable assets, datasets, even without sensitive information,
are to be protected. Encrypting the entire dataset can prevent information leak-
age but simultaneously destroy the search functionality in the process. The
method to download, decrypt, and search is not economical and efficient. There-
fore, searchable encryption was proposed and provided an alternative way to
achieve privacy-preserving search [16]. For users who upload datasets and then
query data by themselves, protecting the dataset with a symmetric system in
the context of searchable encryption is preferred, i.e., Searchable Symmetric
Encryption (SSE). Therefore, we mainly focus on SSE in this paper.

Flexible queries in SSE have always attracted attention, and the wildcard
keyword search is a potential and powerful assistance for emerging technologies
such as AI. In addition to performing flexible queries and then data aggregation
without compromising data privacy, it is also promising to be applied in data
regulations, especially for industries subjected to strict data privacy regulations
(e.g., GDPR, HIPAA). For example, it can help them comply with these reg-
ulations by ensuring that data remains encrypted while enabling analysis and
research.

However, there still exist some challenges in SSE supporting wildcard search
thus far. On the one hand, the computation or communication complexity often
is linear with the number of keywords or the size of search results. It is eager to
improve the efficiency of wildcard search over encrypted data for more promising
applications. On the other hand, in terms of data updates, file-injection attacks
utilize only a small amount of information to compromise the privacy of data [24].
Forward and backward security is the necessary defense for any SSE supporting
data update [12]. The same holds true for SSE with wildcard search. In this
paper, we solve the above challenges simultaneously, and the contributions are
summarized in three folds:
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– We design a double-compressed index to simultaneously describe the key-
words and file sets. Keywords are presented for wildcard search by character
sets using a modified extraction rule and then compressed in bloom filters.
The file sets containing each keyword are encoded into a ciphertext and thus
reduces communication costs.

– We propose an SSE scheme with the double-compressed index to achieve a
forward and backward secure wildcard search. Specifically, users query wild-
card keywords in an oblivious way and cloud servers learn nothing except the
middle computation result. Whereas the method of no differential update is
adopted to resist file-injection attacks.

– We formally prove that the proposed SSE scheme supporting wildcard search
is forward and backward secure under a simulation-based paradigm. Then
the comparison with existing works is presented theoretically. In addition, the
extensive performance evaluation shows that the proposed scheme is efficient
in terms of computational and communication overheads.

The rest of the paper is organized as follows. The related works review is
presented in Sect. 2, followed by descriptions of the system model, adversarial
model, security model, and design goals. Then, Sects. 4 and 5 show the prelimi-
naries and proposed construction. Its security proof is in Sect. 6. Section 7 shows
the performance evaluation and comparison. Finally, we conclude this paper in
Sect. 8.

2 Related Work

To search for a wildcard keyword W , the straightforward approach is to query
each keyword w ∈ W . Indeed, wildcard searchable encryption was first consid-
ered in the seminal paper on symmetric searchable encryption (SSE) by Song et
al. [16]. This work achieved wildcard search in a limited form by enumerating all
possible keywords. For example, to query ab[a−z], users would need to generate
and query 26 keywords {aba, abb, . . . , abz}. However, it’s evident that both the
leakage and the number of queries increase rapidly as the constraints on key-
words decrease. To enhance the efficiency and security of simultaneously query-
ing multiple keywords, multi-keyword search has emerged as an alternative for
achieving wildcard keyword search [1]. It encompasses conjunctive/conjunctive
keyword search [6,22] and boolean search [11,20]. In terms of security, the design
of forward and backward secure schemes for multi-keyword search has become
essential [13,19]. However, users often face the challenge of complex keyword
enumeration for W and the computation of trapdoors, especially when dealing
with a relatively large keyword space. Improving computation and communica-
tion efficiency has become a prominent area of research. Additionally, existing
works have explored techniques such as hidden vector encryption [15], homomor-
phic encryption [21], proxy middleware [10], and inner product [14] to achieve
wildcard search within the context of public encryption.

Another popular approach to realize wildcard keyword search is by describ-
ing a keyword using characters, allowing cloud servers to determine whether
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a keyword w ∈ W by assessing the subset relationship between the keyword
and the trapdoor. Suga et al. [17] proposed a position-specific keyword search
scheme, where the positions of letters in a keyword need to be known. The rule
to extract characters is represented as {s ‖ 1, e ‖ 2, c ‖ 3, . . . , y ‖ 8,null ‖ 9}
for the word “security”. To further query keywords with letters in unknown posi-
tions, Hu and Han [8] improved the extraction rule by incorporating 2-gram
information, reverse order, and the existence of letters, resulting in {s ‖ 1, e ‖
2, c ‖ 3, . . . , y ‖ 8; y ‖ −1, t ‖ −2, . . . , s ‖ −8; se ‖ 0, ec ‖ 0, . . . , ty ‖ 0; s ‖ 0, e ‖
0, c ‖ 0, . . . , y ‖ 0}. This enhancement allows users to query, for example, s%oo%
using the character set {s ‖ 1, oo ‖ 0, o ‖ 0}. Similar work includes schemes
proposed by Zhao and Nishide [25], and Hu et al. [9]. However, the search cost
in these works is linear with the number of keywords, as keywords are judged in
the index one by one. To enhance search efficiency, Zhang et al. [23] introduced a
three-step search method with a tree-based index. They expanded the function-
alities of single-character wildcard search by introducing AB‖ 1. They classified
characters into three types: A-characters to describe the existence of letters,
AB-characters to indicate the relative position of letters, and BF-characters to
provide further keyword details. The search process, from A to AB and then BF
characters, narrows down the range of keywords step by step, avoiding the linear
comparison of character sets.

From the perspective of security, many schemes supporting wildcard search
use the security model of searchable symmetric encryption. For example, Hu et
al. [9,14] follow the IND-CKA or IND-CKA1 model. The scheme in Bösch et al.
[1] is adaptive secure. Suga et al. [17]proposed a security model: Indistinguisha-
bility against Chosen Position-Specific Keyword Attack (IND-CPSKA). Zhang
et al. [23] put forth a nonadaptive Indistinguishability Against Chosen Character
Set Attacks (IND-CCSA). To date, there are fewer schemes to achieve forward
and backward security [18].

3 Models and Design Goals

3.1 System Model

As shown in Fig. 1, our system model consists of users and cloud servers.

– Users: Users are entities with resource-limited devices such as phones and
computers. They purchase storage space from the cloud to store their dataset,
and then require keyword search and data update services. Specifically, They
have a file universe F = {F1, . . . , Fn}, and users’ file sets are subsets of this
universe. Each file Fi has a unique identifier idi and is associated with some
keywords. The keyword universe is denoted as W = {w1, . . . , wm}. Therefore,
the dataset can be described by an index D with m pairs (w,D(w)) where
D(w) is the set of identifiers of files related to keyword w. Users search for
specific keywords w and wildcard keywords W to retrieve D(w) and D(W ),
where D(W ) is the union of D(w) for all w in W . They also update the index
D with pairs (w, id, op) where op =“Add” or “Delete”. To achieve data security
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and protect users’ privacy, the index D and files set F are encrypted to ED and
EF respectively, before uploading to cloud servers. Then the keyword search
and data update services are run securely between users and cloud servers.
Users are honest and do not engage in any behaviors that could endanger
system security.

– Cloud Servers (CSs): Cloud servers have enough storage space and powerful
computational capabilities, so they are service providers for resource-limited
users. They store ED and EF uploaded from users and run algorithms or
protocols to provide users with services. Specifically, they receive trapdoors
trW to target the search algorithm, and (w, id, op) in a secure format to
invoke the update protocol. CSs are honest-but-curious entities, meaning that,
they faithfully follow the algorithms or protocols but may passively analyze
users’ information due to curiosity and commercial interests. Additionally,
communications among CSs are safe and collusion is not allowed.

Fig. 1. The system model

Similar to existing works [5,7], we mainly focus on how users query the
encrypted index using keywords in a privacy-preserving manner. The process of
retrieving files {F1, . . . , Fn} securely with identifiers is an independent work.

3.2 Security Model

The syntax of wildcard searchable symmetric encryption consists of one algo-
rithm and two protocols:

– Setup(λ,K,D) → ED: This algorithm is invoked by users to encrypt the
index D. Users input a security parameter λ, the inverted index D and a key
set K, and output an encrypted index ED. Finally, ED is outsourced to CSs.
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– Search(W,K;ED) → D(W ): This protocol is executed between users and
CSs. Users input the key set K and the queried wildcard keyword W to
compute a trapdoor trW . CSs input the encrypted index ED, and output the
search result D(W ) using the trapdoor.

– Update((w, id, op),K;ED) → ED
′: This protocol is run between users and

CSs. Users input the update information (w, id, op) and the key set K to
protect data privacy. CSs input the encrypted index ED and update the D(w)
in D. That is, users send the encrypted update information ΔED to CSs.
Finally CSs output the latest version of the encrypted index ED

′.

Security Model: The forward and backward security of scheme Π is captured
by an ideal/real world simulation paradigm. The information leaked to CSs is
defined as a leakage function L = (LSetup,LSearch,LUpdate). Then, a simulator
S who has the leakage function is interactive with an adversary A in the ideal
world IdealΠA,S(λ). If the adversary A cannot distinguish IdealΠA,S(λ) from the real
world RealΠA(λ) where a challenger C responds to A, we say the scheme Π is L
-adaptive-secure. Additionally, if the leakage function LSearch only contains the
wildcard keyword query operation s, the LUpdate only shows the update oper-
ation u, we say the scheme Π further achieves forward and backward security.
Formally,

Definition 1. (L -adaptive-secure). For each PPT adversary A, if there
exists a simulator S who invokes the leakage function L to simulate the ideal
world IdealΠA,S(λ) such that

|Pr[RealΠA(λ) = 1] − Pr[IdealΠA,S,L(λ) = 1]| ≤ ε,

where λ is the security parameter and ε is a negligible function of λ. We say the
scheme Π is L -adaptive-secure.

Definition 2 (Forward and Backward Security). If the leakage function
of the L -adaptive-secure scheme Σ is

LSearch(w) = L′
(OP),

LUpdate((w, id, op)) = L′′
(OP),

where L′
and L′′

are stateless functions, and OP ∈ {s, u}, we say the L -adaptive-
secure scheme Σ is forward and backward secure.

3.3 Design Goals

Based on the system and security models, the following design goals should be
achieved.

– Efficient wildcard searchable symmetric encryption. The proposed scheme can
achieve wildcard keyword search efficiently without limitations on wildcard
types. The user’s communication or computation costs are independent of the
size of the character sets or search results.
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– Keyword and file update. Users can add(delete) keywords or files without
running the setup algorithm again. Specifically, they achieve this goal by
changing the D(w) in index D so that the encrypted index ED can be updated
by cloud servers. The search result is based on the latest version of ED.

– Forward and backward security. The goal is to ensure the data privacy of the
proposed scheme in the search and update protocol.

4 Preliminaries

4.1 Character Set and Presentation

Based on existing works, wildcard keywords can be described by a character set
according to some extraction rules. Here, the rule of character extraction is to
extract the keyword itself, normal order, reverse order, 2-gram, 3-gram, AB‖1,
and AB-character [23]. Take the keyword “security” as an example, its character
set CS is “security; s ‖ 1, e ‖ 2, c ‖ 3, . . . , y ‖ 8; y ‖ −1, t ‖ −2, . . . , s ‖ −8; se ‖
0, ec ‖ 0, . . . , ty ‖ 0; sec ‖ 0, ecu ‖ 0, . . . , ity ‖ 0; sc ‖ 1, eu ‖ 1, cr ‖ 1, ui ‖ 1, rt ‖
1, iy ‖ 1; se, sc, su, . . . , sy, ec, eu, . . . , ey, cu, cr, . . . , cy, . . . , ty”.

To represent the character set CS for searching wildcard keywords, we use
the bloom filter, a popular space-saving tool, to achieve an approximate set
membership test. Generally, it consists of three polynomial-time algorithms.

– BF.Gen(p, b1) → ({hi}b2i=1 , B = 0b3): Users input the false positive rate p and
the number of characters b1 in CS, output a hash functions set {h1, . . . , hb2},
and the initialized bloom filter B = 0b3 , a b3 bits zero string, where the
number of hash functions b2 = − logp2 and the size of bloom filter b3 = b1×b2

ln 2 .
– BF.Upd(CS, B, T ) → B′: For each character e ∈ CS, users compute

{hi(e)}b2i=1, obtaining a position set T = {i1, . . . , it}. Then users set 1 := B[it]
to obtain the updated bloom filter B′.

– BF.Chk(e,B′, T ′) → b: CSs input a position set T ′ evaluated from CS
′ and

the updated bloom filter B′, then output b =
∧

B′[ij ]tj=1, where b = 0 means
the character set CS

′ is not a subset of CS, otherwise, CS′ ⊆ CS.

4.2 Distributed Multi-point Function

Distributed Multi-point Function (DMPF) is a secure tool to achieve efficient
PIR [2,4]. A multi-point function f̄ outputs ȳi = f̄(x̄i) at some particular points
x̄i and 0 else.

A two-party distributed multi-point function f̄ computes the sum of Σiȳi. It
divides Σiȳi into two shares where each part can be evaluated by keys k̄0 and
k̄1 respectively. Therefore, each party evaluates its share using its key k̄j , then
users can recover Σiȳi. Formally,

– DMPF.Gen(λ, f̄) → (k̄0, k̄1): Users input a security parameter λ and a multi-
point function f̄ with particular points {(x̄i, ȳi)}, then output a pair of key
(k̄0, k̄1).
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– DMPF.Eval(k̄j , x) → ȳj : Each party Pj , j ∈ {0, 1} inputs the key k̄j and
x, then outputs ȳj where if x = x̄i, ȳi = f̄(x̄i) = ȳ0 + ȳ1; otherwise, ȳi =
ȳ0 + ȳ1 = 0.

4.3 Additively Homomorphic Symmetric Encryption Scheme

The Additively Homomorphic Symmetric Encryption(AHSE) has three algo-
rithms [3].

– AHSE.Gen(λ, k, f, l) → skl: Users input four parameters to initialize the
additively homomorphic symmetric encryption scheme, that is, the security
parameter λ, the symmetric key k, the pseudorandom function f and a ran-
dom number l. At last, users output a symmetric key skl = fk(l).

– AHSE.Enc(skl,m, h, r) → Enc(m): Users input the key skl, a length-matching
hash function h : {0, 1}λ → {0, 1}λ1 , and a nonce r to encrypt a plaintext m.
The output of this algorithm is (l,Enc(m)) where Enc(m) = m + h(fskl

(r))
mod M and |M | = λ1.

– AHSE.Dec(skl, r,Enc(m)) → m: Users input the key skl and a ciphertext
Enc(m), they can compute the corresponding plaintext m = Enc(m) −
h(fskl

(r)) mod M .

Homomorphic Addition: For two ciphertexts (l1,Enc(m1)) and (l2,Enc(m2)),
the sum of two ciphertexts is ((l1, l2),Enc(m1) + Enc(m2)), and its plaintext is
m1 +m2 = Enc(m1) + Enc(m2) − h(fskl1

(r)) − h(fskl2
(r)) mod M .

4.4 Super-Increasing Sequence

If there is αi > t · Σj<iαj , i, j ∈ [1, n] in a sequence S = {α1, . . . αn}, we say it
is a super-increasing sequence (SIS). One can encode a set S = {(ai, bi)} into a
number s. That is, ai ∈ [1, t], bi ∈ [1, n] and each (ai, bi) means ai · αbi . SIS has
two algorithms: Encode and Decode.

– SIS.Ecd(S, S) → s: Users input a SIS S and a set S, then output an encoded
number s = Σ(ai,bi)∈S(ai · αbi).

– SIS.Dcd(S, s) → S: Users input the sequence S and the encoded number s and
then output the set S using modular operation.

5 Detailed Construction

In this section, we present the details of the proposed wildcard searchable sym-
metric encryption scheme. To query a wildcard keyword, users first interact with
cloud servers to determine the keyword set W and its D(W ). Then, the encrypted
files in the search result are obtained with an additional round of interaction.
Generally, we consider the first round merely, and its communication complexity
is linear with |W |, even with D(W ). The proposed scheme focuses on reducing the
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Fig. 2. Procedures to compress CS and D(w)

communication complexity and then improving the security in update protocol,
i.e., forward and backward security.

On the whole, we design a double-compressed index so that users can search
wildcard keywords W in an oblivious way. The index D consists of the character
set CS and D(w). The CS is compressed by bloom filters, whereas the D(w)
is encoded using SIS.Ecd. When users query the W , the keywords are filtered
by the bloom filters, then the search result D(w) is recovered from SIS.Dcd. To
achieve low communication cost, each file in F is mapped into an element of S so
that the search result D(W ) can be compressed. By using the above index, the
search and update protocols can be achieved obliviously by using DMPF and
AHSE. Additionally, it needs only one round of interaction. The algorithms and
protocols of our construction are detailed below.

In Setup algorithm, users choose the security parameter λ and define the
key set K = {p, k, b1,S,S1, k̂, k̃, r′} where S = {α1, . . . αmn}, S1 = {β1, . . . βt},
k̂, k̃ are keys of hash functions ĥ, h̃. Then, users input λ and b1 to initialize the
bloom filter and the hash function set {hi}b2i=1 by running BF.Gen. Then for each
keyword wi ∈ W, users extract the character set CS, and generate its bloom
filter B′ by invoking BF.Upd, and then the bloom filter B′

i is encrypted into EBi

by masking it with the fragment of h̃(k̃, r′) from [(i− 1)b3 +1]-th bit to (ib3)-th
bit. Additionally, D(wi) ⊆ {α(i−1)n, . . . , αin} is encoded to si by SIS.Ecd(S, S)
where S = {. . . , (1, αj), . . . } for each αj ∈ D(wi). Users also invoke AHSE.Gen

to obtain the symmetric key ski = fk(ĥ(k̂, i)) so that the encoded number si can
be encrypted as Enc(si) homomorphically. The compression process is shown in



Efficient Wildcard Searchable Symmetric Encryption 351

Fig. 2. Finally, the encrypted index ED = {. . . , (p(i),Enc(si), EBi), . . . } is sent
to cloud servers where p is a pseudorandom permutation.

When users want to query a wildcard keyword W , they first extract the
character set CS. Secondly, they compute the position set T = {i1, i2, . . . , it}
from {hi(e)}b2i=1 where e ∈ CS. Then, users can get a multi-point function
f̄ with particular points {(il, βl)} where l ∈ [1, t]. Thirdly, users invoke the
DMPF.Gen(λ, f̄) to compute the trapdoor trW : the key pair (k̄0, k̄1). After
receiving k̄0 and k̄1 from users, CSj runs the ȳj = DMPF.Eval(k̄j , x) to obtain
s̄j,p(i) = (Σt

l=1(ȳj · EB′
i[il]) + 1) · Enc(si) for each item i in ED. Finally,

CSj sends s̄j = Σp(i)s̄j,p(i). According to the property of DMPF, there is
Enc(̄s) = s̄0+ s̄1 = Σp(i)(̄s0,p(i)+ s̄1,p(i)) = Σp(i)((Σt

l=1(βl ·EB′
i[il])+2) ·Enc(si)).

Thus, users can decrypt s̄ = AHSE.Dec(Σski, r,Enc(̄s)) invoke the decode algo-
rithm SIS.Dcd(S, s̄) to obtain the search result.

Specifically, there are three situations. Take t = 4 as an example, (1) If the
string of B′

i[i1 : i4] and h̃(k̃, r′)[(i−1) ·b3+ i1 : (i−1) ·b3+ i4] are 1111 and 1100,
EBi equals to 0011. Thus, users can learn that β3 + β4 + 2 is the coefficient of
si from the s̄. Then, users could recover that B′

i[i1 : i4] = 1100 ⊕ 0011 = 1111,
meaning that the keyword wi ∈ W , and that D(wi) evaluated from si belongs
to the search result. (2) If the string of B′

i[i1 : i4] and h̃(k̃, r′)[(i − 1) · b3 + i1 :
(i − 1) · b3 + i4] are 1010 and 1100, EBi equals to 0110. Thus, users can obtain
that β2 +β3 +2 is the coefficient of si from the s̄. Then, users could recover that
B′

i[i1 : i4] = 1100 ⊕ 0110 = 1010 , meaning that the keyword wi /∈ W . (3) If
the string of B′

i[i1 : i4] and h̃(k̃, r′)[(i − 1) · b3 + i1 : (i − 1) · b3 + i4] are 1010
and 1010, EBi equals to 0000. Thus, users can learn that 2 is the coefficient of
si from the s̄. Then, users could recover that B′

i[i1 : i4] = 1010 ⊕ 0000 = 1010 ,
meaning that the keyword wi /∈ W .

In the Update protocol, the updates {(wi, idj , op)} is achieved by adding or
deleting elements α(i−1)n+j from S. More specifically, each operation (wi, idj , op)
can be regarded as the update of D(w) so that users only renovate the Enc(si).
The correctness is ensured by the homomorphic addition property of AHSE.

6 Security Analysis

Theorem 1. The proposed scheme can achieve forward and backward security
if AHSE is IND-CPA secure, DMPF is function private, and pseudorandom
functions are secure.

Proof. We employ a series of indistinguishability games to demonstrate that the
proposed scheme achieves both forward and backward security. We start with
the first game, denoted as G0, which represents the real world. Subsequently, we
introduce modifications to G0 in order to create additional games. Ultimately,
we construct a game representing the ideal world, which is simulated using the
leakage function.

Game G0: We define G0 to be equivalent to RealΠA(λ), so Pr[RealΠA(λ) = 1] =
Pr[G0 = 1].
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Game G1: It is obtained by replacing all instances of EBi in
(p(i),Enc(si), EBi). Specifically, when users want to encrypt B′

i using h̃, they
replace h̃(k̃, r′) with a long random bit string. If an adversary B1 can distinguish
G0 and G1 with non-negligible probability, it means B1 can determine which
string is the output of h̃(k̃, r′). This would imply a breach of pseudorandom
security, contradicting its definition. Therefore, we have|Pr[G0 = 1] − Pr[G1 =
1]| ≤ AdvPRF,B1(λ).

Game G2: It differs from G1 only in how Enc(si) is generated. In the real
world and G1, si is encrypted using AHSE.Enc. According to the IND-CPA secu-
rity of AHSE, the simulator S chooses random numbers and encrypts them to
replace all ciphertexts in (p(i),Enc(si), EBi) in G2. This replacement maintains
indistinguishability between G1 and G2 unless the probability of distinguishing
them is negligible. In formal terms, |Pr[G1 = 1]− Pr[G2 = 1]| ≤ AdvAHSE,B2(λ).
Where B2 is an adversary capable of breaking the IND-CPA security of AHSE.

Game G3: G3 builds upon G2 but differs in the Search protocol. There are
two servers that do not communicate with each other. Consequently, in response
to a query W , each server CSj receives only a key k̄j and its evaluation result,
gaining no information about the search result. Furthermore, the key pair is
changed by users through the selection of a new random number, ensuring that
cloud servers learn nothing about the queried keywords. The simulator in G3

can arbitrarily select a wildcard keyword and send the output key pair as the
trapdoor. Leveraging the security of DMPF, an adversary B3 cannot ascertain
the computed function, therefore, cannot distinguish between the two games.
This leads to the inequality |Pr[G2 = 1] − Pr[G3 = 1]| ≤ AdvDMPF,B3(λ).

Game G4: It demonstrates how to simulate the Update protocol in G3.
To update ED, a ΔED is generated using {(wi, idj , op)} by encrypting ele-

ments in S or using zeros. Due to the IND-CPA security of AHSE, the cloud
servers gain no knowledge about the updated keywords and files. In G4, the
simulator S has the flexibility to generate a random ΔED to replace the one in
G3. These two games are indistinguishable, or else an adversary B2 would be
capable of breaking the IND-CPA security. The relationship can be expressed as
follows: |Pr[G3 = 1] − Pr[G4 = 1]| ≤ AdvAHSE,B2(λ).

In the ideal world, where the simulator S communicates with the adversary
A following the same rules as in G4, we have Pr[IdealΠA,S(λ) = 1] = Pr[G4 = 1].
This equality reflects the indistinguishability of the ideal world and the game
G4.

Finally, we can design a simulator S for each adversary A, and S only uses the
leakage function to ensure that the difference between the real world and ideal
world satisfies the following inequality: |Pr[RealΠA(λ) = 1] − Pr[IdealΠA,S(λ) =
1]| ≤ AdvPRF,B1(λ) + 2AdvAHSE,B2(λ) + AdvDMPF,B3(λ)

Thus, the proposed scheme achieves both forward and backward security.

7 Comparison and Performance Evaluation

In this section, we compare the proposed scheme with existing works and then
present the performance evaluation of the proposed scheme.
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7.1 Theoretical Comparison

To present a comprehensive comparison, we compare the proposed scheme with
existing works using multi-keyword search or character set extraction to achieve
wildcard search. For the latter, there are some keywords not matched with the
wildcard keyword, which is defined as the false positive. “Y/N” means that a
scheme has/has not the false positive. Then, the number of cloud servers required
in schemes is listed and CSs are honest-but-curious (semi-honest). In terms of
functionalities, we evaluate whether a scheme can support data update, single-
character wildcard search, and multiple-character wildcard search. Finally, the
security of these schemes is shown. The notation � represents that a scheme
achieves the responding function or security, otherwise, using �. The comparison
result is shown in Table 1. Specifically, the authors of Libertas [18] proposed a
backward construction from an encryption scheme with which key concealing and
an SSE scheme supporting add operations and wildcard queries. They use Zhao
and Nishide’s work [25] as the SSE scheme which can support update, single and
multiple character search. Although both Libertas [18] and the proposed scheme
can achieve the functionalities and security mentioned in Table 1, Libertas leaks
more information than our scheme such as search pattern. And that information
is protected by the oblivious query with the help of two servers.

Then, we further analyze the complexity and storage cost. Here, nΔ is the
number of update pairs (w, id); nΔw or nΔF is the number of update keywords
or files in {(w, id, op)}; In existing works, the trapdoor is linear in the number of
characters extracted from wildcard keywords W since each character is mapped
into bloom filters in encrypted indexes. We consider the users’ communication
and computation complexity of the search and update protocol respectively. The
comparison result is shown in Table 2, and the proposed scheme achieves efficient
communication in wildcard search.

Table 1. The comparison of schemes

Scheme False Positive Server Required Security Model Functionalities Security

Update Single
Character

Multiple
Character

Adaptive
Secure

Forward
Security

Backward
Security

BEIS-I [6] N 1 Honest-but-curious � �1 �1 � � ◦
Hu et al. [8] Y 1 - ◦ � ◦ ◦ ◦
TBIS [23] Y 1 � � � ◦ ◦ ◦
Libertas [18] Y 1 � � � � � �
Our scheme Y 2 � � � � � �

�1: it achieves wildcard search by listing and searching all possible keywords.

7.2 Performance Comparison

Experimental Setup. Our evaluations are written and tested in Java. They
are implemented on a Windows 10 PC with an Intel Core i7-8550U CPU running
at 2.00GHz and 16GB of memory. The instantiations of DMPF and AHSE are
based on the schemes presented in Castro et al. [4] and Castelluccia et al. [3]
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Table 2. The computation and communication complexity comparison

Scheme Wildcard search Update Client Storage Index Storage
Communication Computation Communication Computation

BEIS-I [6] O(|W |) O(|W | + |F|) O(nΔF ) O(nΔF ) O(1) O(|W|)
Hu et al. [8] O(|CS| + |W |) O(|CS| + |W |) - - O(1) O(|W|)
TBIS [23] O(|CS| + |W |) O(|CS| + |W |) O(nΔw) O(nΔw) O(1) O(|W| + S(T ))

Libertas [18] O(|CS| + Σw∈W |D(w)|) O(|CS| + Σw∈W |D(w)|) O(nΔ) O(nΔ) O(1) O(Σw∈W|D(w)|)
Our scheme O(1) O(|CS| + |W|) O(|W|) O(|W|) O(1) O(|W|)

respectively. In our experiments, the false positive rate of the bloom filters p is
set to 0.01 and the length of keyword is set to 5 or 10 respectively. Thus, b1
equals to 31 or 91. According to the BF.Gen, there are b2 = 7, b3 = 314 when
|w| = 5, and b3 = 919 when |w| = 10.

Evaluation. The experiments are designed to measure the effects of changes in
index size, wildcard queries, and updates under varying keyword lengths.

Table 3. The time cost of the setup algorithm

the number of keyword length/files 1000 5000 10000

|w| = 5(e.g.:index) 440.74622 ms 6240.05638 ms 42604.45749 ms
|w| = 10(e.g.:university ) 468.109867 ms 6682.04146 ms 42998.27587 ms

Table 4. The impact on t by varying wildcard keywords

wildcard keywords abc%d %ab %abc %abc% a_bcd a_b_c ab%d

|CS| 18 4 9 6 23 11 10
t∗ 126 28 63 42 161 77 70

∗: We use the maximum of t evaluated by b2 · |CS| where b2 = 7.

Varying Index Size. The number of keywords and |D(w)| is set at 100 by default.
To change the index size, we set the number of files as 1000, 5000, and 10000,
respectively. As shown in Table 3, the time cost of the setup algorithm grows
rapidly with the number of files but changes very little with the keyword length.
This reflects that generating EBi has little impact on the setup time with
changes in the keyword length. The increase in time cost with varying index
size may be caused by the rapidly increasing value in SIS.
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Fig. 3. The time cost of the search protocol

Fig. 4. The time cost of the update protocol

Varying Wildcard Query. In this experiment, we set the keyword length to be 5,
and the number of files to be 1000. To demonstrate the time cost of the search
protocol under different wildcard keywords, we first observe that the number of
positions t in T is the key factor influenced by |CS|, as shown in Table 4. Then,
we vary t from 25 to 200 to simulate different wildcards. The time cost of the
search algorithm is depicted in Fig. 3. To showcase the efficiency of the proposed
scheme, we also provide the time cost from the users’ perspective, illustrating
its efficiency for users. Varying updates.To evaluate the time cost of the update
protocol, we vary the keyword length and the number of files. As shown in Fig. 4,
the time cost of the update protocol grows steadily with the number of files but
changes very little with the keyword length. Considering that users compute
a Enc(α(i−1)n+j) for each (wi, fj , op), it is reasonable to obtain this result. The
growth of time cost with varying the number of files is caused by the increasing
value in SIS.



356 X. Zhang et al.

8 Conclusion

In this paper, we focus on SSE schemes supporting wildcard search. Faced
with the challenges in communication cost and security, we designed a double-
compressed index to encode and reduce the size of search results. It further
achieves oblivious search and update using additively secret sharing in DMPF
and additively encryption in AHSE. Therefore, the proposed wildcard searchable
symmetric encryption is forward and backward secure with lower communication
overhead. The comprehensive experiments prove the efficiency of our scheme.
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Abstract. With the continuous development of artificial intelligence
technology and the increasing richness of remote sensing data, deep con-
volutional neural networks(DNNs) have been widely used in the field
of remote sensing images. Object detection in remote sensing images
has achieved considerable progress due to DNNs. However, DNNs have
shown their vulnerability to adversarial attacks. The object detection
models in remote sensing images also have this vulnerability. The com-
plexity of remote sensing object detection models makes it difficult to
implement adversarial attacks. In this work, we propose an adversarial
attack method against the remote sensing object detection model based
on the L∞norm, which can make the detector blind–that is, the detec-
tor misses a large number of objects in the image. Because some remote
sensing images are too large, we also designed a pre-processing method
to segment and pre-process the huge images, which is combined with
the attack method. Our proposed attack method can effectively perform
adversarial attacks on remote sensing object detection models.

Keywords: Adversarial Attack · Remote Sensing Images · Object
Detection models

1 Introduction

Remote sensing images have always been important data sources for natural
resource surveys, military monitoring, and urban planning management [1]. With
the rapid development of deep learning in the field of computer vision, especially
the extensive application of DNNs in image recognition and object detection
tasks [2], the analysis and processing of remote sensing images have also ushered
in new opportunities and challenges.

In recent years, deep learning has made remarkable progress in the field of
object detection [3–5]. Many deep learning object detection models have been
proposed and applied to remote sensing image object detection [6–9], such as
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ROI-Transformer [7], R3Det [8], and Gliding Vertex [9]. The excellent perfor-
mance of these deep learning-based object detectors further promotes the appli-
cation of remote sensing technology in real life, such as natural resource mon-
itoring, urban planning, traffic control, etc. These application fields often rely
on the highly reliable prediction results of the model to make decisions. Wrong
prediction results may cause serious consequences. Therefore, the safety issue of
the model cannot be ignored.

However, the fragility of DNNs has been exposed in recent years [10]. The
models are vulnerable to adversarial attacks. Adversarial attack refers to the
small perturbation of the input samples to make the model produce wrong results
when performing tasks such as classification or detection. These perturbations
are invisible to the naked eye but can significantly change the model’s predic-
tions. In the field of remote sensing image tasks, the remote sensing classification
model has been proven to be insecure [11], and the remote sensing object detec-
tion model also has such fragility theoretically. However, due to the fact that
the adversarial attack on the target detection model is more difficult than the
adversarial attack on the image classification model, and the size of the remote
sensing image is huge and there are many small objects in any direction dis-
tributed in the picture, which to a certain extent caused the attack difficulty.
Therefore, there is still a lack of systematic research on adversarial attacks on
target detection in remote sensing images.

We propose an effective adversarial attack algorithm for object detection
models in remote sensing images. Remote sensing images are mainly divided
into remote sensing optical images and remote sensing Synthetic Aperture
Radar(SAR) images. Optical images are images obtained by optical photog-
raphy systems using photosensitive film as the medium. They are large in size
and contain grayscale information in multiple bands [7]. SAR sensors only record
echo information in one band, which is a big difference from optical images [12].
Therefore, in this study, we designed different algorithms for two different image
data.

Our main contributions are as follows:
For remote sensing SAR images, we designed an adaptation of the adversar-

ial attack algorithm to the existing remote sensing object detection model. This
attack can significantly reduce the accuracy of the target detection model and
cause the detector to miss a large number of targets in the image. The adversar-
ial attack is successfully completed and the vulnerability of the remote sensing
target detection model is confirmed (Fig. 1).

For remote sensing optical images, due to the large size of the image, we
designed a specific cutting pre-processing algorithm–Split, and combined with
the confrontation algorithm MIM, we also successfully completed the adversarial
attack, and the object detection model could not detect the target.



360 R. Huang et al.

Fig. 1. RoI Transformer model network structure

2 Related Work

2.1 Remote Sensing Image Dataset

Remote sensing image dataset is one of the important resources in the field of
remote sensing technology and computer vision. It contains images of the earth’s
surface obtained from spacecraft, drones or other remote sensing platforms. The
objects in these images are small and dense, and the background is complex.
These data sets It has a wide range of applications in various application fields,
such as environmental monitoring, urban planning and national defense. Remote
sensing image datasets can be divided into remote sensing optical images and
remote sensing SAR images.

Remote sensing optical images are usually high-altitude and long-distance
acquisition images, which are shot by artificial satellites, space shuttles, etc.,
equipped with space cameras. The working band of the imaging sensor is the
visible light band from ultraviolet to infrared, which is the most commonly used
working band in traditional aerial photographic reconnaissance and aerial photo-
graphic mapping. Well-known remote sensing optical target detection datasets
include DOTA, HRSC2016, etc. Among them, the original size range of the
image in the DOTA dataset is about 800 * 800–4000 * 4000, far exceeding the
1000*1000 size of MSCOCO in the common dataset.

Synthetic Aperture Radar is an active Earth observation system that can
be installed in spacecraft such as aircraft, satellites, etc. SAR sensors basically
belong to the microwave frequency band, and the wavelength is usually at the
centimeter level. Since the imaging geometry of SAR is of the slant range projec-
tion type, while optical images are of the center projection type, SAR images are
quite different from optical images in terms of imaging mechanism, geometric
characteristics, radiation characteristics, etc.

2.2 Remote Sensing Image Object Detection

Because of the special nature of remote sensing images, object detection models
for remote sensing images naturally have some different characteristics compared
with general object detection models. Due to the large size of the remote sens-
ing image for target detection, most GPUs cannot support directly sending the
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entire high-resolution image directly into the calculation during the training or
prediction process. Therefore, in order to improve the detection accuracy when
processing large-scale images, the current remote sensing image object detection
model cuts a single large image into multiple small images that can be processed
through certain rules. Another property of object detection models in remote
sensing images is that they are more suitable for rotating object detectors. Due
to the directionality and dense distribution of targets in the image, the com-
monly used horizontal target detection in the past may cause multiple targets to
be squeezed together by a horizontal detection frame, resulting in misalignment
between the bounding box and the object, and it is difficult to train the detector
to extract target features and ensures precise localization of the identified tar-
get. Rotating target detection is more suitable for remote sensing image target
detection tasks, and can draw more accurate frames.

2.3 Adversarial Attack

Adversarial attacks refer to adding small perturbations directly to the pixels
of remote sensing images through optimization algorithms to maximize the loss
function of the target detection model, thereby causing the modified sample
results to deviate from the true values to achieve the effect of the attack. Good
fellow et al. first proposed the Fast Gradient Symbol Method (FGSM) in 2016
to create adversarial samples [13]. A multi-step optimization algorithm was sub-
sequently proposed. Madry et al. proposed PGD [14] in 2018. This multi-step
optimization algorithm can better find the global optimal point compared with
the single-step algorithm. Dong et al. proposed the momentum iterative fast
gradient symbolic method MI-FGSM [15], which achieves higher transferability
to black-box models by incorporating momentum into the attack process.

3 Methodology

For remote sensing SAR images, only one band of information is included, and
the image is black and white, so we use common adversarial attack algorithms
to attack the model. Let x be an clean input image and D be a detector. Send
the picture x directly to the detector D, obtain a series of target detection clas-
sification outputs Y = {Y1, Y2, . . . , Yn}. Our attack goal is to make the detector
D miss or fail to detect as many target objects in the picture as possible, There-
fore, we set the attack target class y′ = 0. Donate Y ′ = {y

′
1, y

′
2, . . . , y

′
n}represents

the set of adversarial attack target categories for the entire image. The adver-
sarial method is based on MI-FGSM, which is an iterative fast gradient sign
method based on momentum. The initialization is a small random noise, and x∗

is updated by the following gradient backpropagation:

x∗
t+1 = x∗

t − αsign (mt+1) (1)

where α is the step size of each update, We use mt to represent the gradient
information of the every iteration. Updated mt via the formula:
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mt+1 = μ · mt +
∇xJ

(
Y ∗

t , Y
′
t

)

||∇xJ
(
Y ∗

t , Y
′
t

) ||∞
, (2)

The μ represents the attenuation factor. J represents the cross entropy loss
function:

J(pn, Yn
′) = − logp(Yn

′|pn) (3)

In each iteration, we update x∗
t+1 by ∇xJ

(
Y ∗

t , Y
′
t

)
.

Fig. 2. Split demos

For remote sensing optical images, due to the special nature of the image, large
size and various types of objects, we cut the images, then split them and send
them to the model to obtain the prediction results. The cutting process is shown in
Fig. 2. We use Split(x) to describe the preprocessing operation of cropping. After
crop we can get a patches set P = {p1, p2, . . . , pn} on x. If we send all p in the P to
D, we will get the set of all proposal regions onP marked as B = {B1, B2, . . . , Bn}
and the detected label set Y = {Y1, Y2, . . . , Yn}. Notice that Bn is also a small set,
Bn = {b1, b2, . . . , bm}, bm stands for the mth proposal region on pn. Same like Bn,
Yn = {y1, y2, . . . , ym} corresponds to the class of bm and ym ∈ {0, 1, 2, . . . , C},
where C is the number of classes, Our goal is making the D ignores the objects in
the x as much as possible, so we set up an adversarial target class y

′
m = 0 for each

proposal region on pn, Donate Y
′
n = {y

′
1, y

′
2, . . . , y

′
m}. And the adversarial target

label is Y ′ = {Y
′
1 , Y

′
2 , . . . , Y

′
n}, Then we update x∗ by:

x∗
t+1 = Clip(x,ε){x∗

t − αsign (mt+1)}. (4)

We use mt to represent the gathered gradients and t is iterations. We update
mt by:

mt+1 = μ · mt +
∇xJ

(
p∗

t n, Y
′
t n

)

||∇xJ
(
p∗

t n, Y
′
t n

) ||∞
, (5)
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In each iteration we update the adversarial example x∗
t+1 by backpropagating

the gradient ∇xJ
(
p∗

t n, Y
′
t n

)

J(pn, Yn
′) = − logp(Yn

′|pn) (6)

4 Experiments

Datasets. We used the HRSID and SSDD from the remote sensing SAR image
dataset, and the HRSC and DOTA from the remote sensing optics dataset.
Among them, HRSID, SSDD and HRSC are conventional remote sensing images,
including ships, DOTA is special. It is a large-scale remote sensing image
datasets. It selects 15 categories for annotations of target objects contained
in the image, including airplanes, ships, piggy banks, baseball infields, tennis
courts, basketball courts, track and field fields, seaports, Bridges, large vehicles,
small vehicles, helicopters, soccer pitches, circular courses, swimming pools.

Metrics. In object detection tasks, mean Average Precision (mAP) is often used
to evaluate model accuracy. AP can be regarded as the area under the precision-
recall curve divided by the number of categories, that is, the average precision
value of recall in the range of (0, 1). mAP is the main evaluation index of the
target detection algorithm. The higher the mAP value, the better the detection
effect of the target detection model on a given dataset. In our experiment, in
order to evaluate the effect of the adversarial attack, we will use mAP drop,
which is the difference between the mAP of the target detection model on the
original dataset and the mAP on the adversarial sample data set to measure the
attack success rate.

Threat Models. In this experiment, our main attack object is RoI Transformer,
a mature remote sensing image object detector. It is a three-stage target detec-
tion model proposed by Ding et al. of Wuhan University. In order to solve the
mismatch between the horizontal detection frame in conventional target detec-
tion and the rotating target in remote sensing images, and the high computa-
tional complexity and matching efficiency faced by rotating target detection low
question. Before the model is attacked, the detection performance in the DOTA
verification set, HRSC test set, HRSIC test set, and SSDD test set is good. For
the DOTA dataset, the mAP is 75.03% mAP, and for the HRSC dataset, it can
reach 98.91%. For HRSIC, 84.92% can be achieved, and for SSDD is 84.31%.

Attack Parameters. For the experiment of remote sensing SAR images, we set
the number of iterations t to 50, and the modified maximum pixel value α is 0.2,
L∞ Norm max perturbation ε is 1, For the experiment of remote sensing optics
images, we set the number of iterations t to 30, and the modified maximum
pixel value α is 0.1, L∞ Norm max perturbation ε is 1. This is because the pixel
values of remote sensing SAR images vary greatly, so differentiated processing
is required.
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5 Results

In experiments on remote sensing SAR images, we achieved significant results. As
shown in Fig. 3, in both datasets, the object detection model was unable to detect
the target in the image and we successfully implemented the hidden attack. In the
HRSID dataset, the mAP value dropped from 84.92% to 6.32%. Most of the ships
in the post attack images could not be successfully identified by the detector. In
the SSDD dataset, the mAP value dropped from 84.31% to 28% (Table 1).

Table 1. mAP drop for different datasets

DOTA HRSC HRSID SSDD

mapDrop 4.99% 94.95% 78.6% 56.31%

Our effect is equally pronounced in attacks against remotely sensed optical
images. For the 15 categories of images in the DOTA dataset, the AP value of
each category has dropped significantly, and the mAP value after the attack has
dropped below 5%, successfully hiding the target (Fig. 4).

In the HRSC dataset, the AP value is reduced from 98.91% to 3.96% when
attacking images of the category of ships, achieving excellent attack performance
(Fig. 5).

Fig. 3. Visualization results after detection of adversarial examples attacking SAR
images (upper left: original HRSID, upper right: adversarial examples of HRSID, lower
left: original image of SSDD, lower right: adversarial examples of SSDD)
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Fig. 4. Various AP detection results on DOTA confrontation samples
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Fig. 5. Visualized results after detection of adversarial samples attacking remote sens-
ing optical images (upper left: original image of HRSC, upper right: adversarial sample
of HRSC, lower left: original image of DOTA dataset, lower right: adversarial sample
of DOTA dataset)

6 Conclusions

In this work, We proposed corresponding adversarial attack methods for different
scenarios of remote sensing images. For remote sensing SAR images, we migrated
the MIM method to the classic target detection model and obtained good attack
results; for remote sensing optical images, according to the image Due to the
huge size, we designed a cutting preprocessing algorithm corresponding to it.
Combined with the classic attack algorithm MIM, it also achieved a significant
attack effect on remote sensing optical images, and the image changes cannot
be seen by the naked eye. In future research, we will consider developing more
stealthy and effective attack algorithms for remote sensing images. In addition,
we also plan to study the adversarial defense strategy of the object detection
model to improve the robustness of the model.
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Abstract. SM9 is an identity-based cryptographic algorithm based on
elliptic curves, which has high security and low management costs. How-
ever, its computational complexity restricts its development and applica-
tion. This paper implements and optimizes the critical modules of SM9
digital signature algorithm based on FPGA. We simplify modular addi-
tion and subtraction, avoiding the use of large number comparators and
saving approximately 50% of LUTs compared to traditional methods.
The modular multiplication adopts the Montgomery modular multipli-
cation algorithm, which only takes 0.24 µ s to realize modular multi-
plication operation on Fp. For complex modules, this paper analyzes
the dependency relationship between calculations and parallelizes irrele-
vant operations to improve the parallelism within and between modules
at different levels, greatly reducing the number of computation cycles
required. In addition, this paper utilizes multiplexers to achieve resource
reuse while ensuring computational performance. This research is not
only of great significance for the high-performance implementation of
SM9, but also has reference value for the implementation of other cryp-
tographic algorithms based on elliptic curves.

Keywords: SM9 · FPGA · Montgomery modular multiplication ·
Miller loop · R-ate bilinear pairing

1 Introduction

SM9 algorithm is an identification cryptographic algorithm based on elliptic
curves. The algorithm standard was released in 2016 [1], which includes digi-
tal signature algorithm, key exchange protocol, key encapsulation mechanism
and public key encryption algorithm. The implementation of traditional pub-
lic key cryptosystems mainly relies on Public Key Infrastructure (PKI), where
the Certificate Authority (CA) ensures the legitimacy of the user identity and
public key. The identity-based cryptographic algorithm eliminates the process of
issuing digital certificates by CA, and the public key is calculated by the user’s
unique identity [2]. This greatly reduces the cost of operation and maintenance,
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and is receiving increasing attention from scholars [3]. However, the high compu-
tational complexity of identity cipher algorithms limits their development and
application.

The underlying operations of SM9 are modular operations, and the upper
operations include point addition, point doubling, point multiplication, bilinear
pairing, etc. SM9 cryptographic algorithm is a typical computationally intensive
task that consumes a large amount of CPU and memory resources, and the pow-
erful logical processing power of the CPU cannot be fully utilized. Compared to
CPU, FPGA supports hardware programming without the need for instruction
decoding and data strobes. It can be optimized at the hardware level for specific
tasks to achieve low latency and high controllability. The parallelism of FPGA
is also much higher than that of CPU. With sufficient resources, functional units
can be replicated in large numbers to improve computational efficiency. There-
fore, using FPGA to implement some or all modules of SM9 to improve its com-
putational efficiency has become the choice of many researchers. [4] designed an
ultra-high radix interleaved modular multiplication algorithm based on Virtex-7
FPGA, which can complete 256-bit modular multiplication operation in 0.56µs.
[5] proved that the computational efficiency of Miller loop under the Jacobian
coordinate system is 5% higher than that under the projection coordinate sys-
tem. [6] improved the parallelism at different levels of the pairing algorithm,
which can complete pairing computation within 3.4ms.

This paper implements the SM9 digital signature algorithm based on FPGA,
and optimizes the performance and resources of critical parts, mainly including
the following aspects:

1. We optimize modular addition, modular subtraction, modular multiplication,
and modular inversion on Fp to simplify logic and reduce resources.

2. We analyze the correlation of different steps within the module, parallelize
unrelated calculations, improve the degree of parallelism at different levels,
and use multiplexers to achieve resource reuse while ensuring computing per-
formance.

3. We re-plan Miller loop to hide modular multiplication calculations, and out-
put partial results of point doubling early to initiate point addition operation
in advance to reduce the number of cycles.

2 SM9 Digital Signature Algorithm

2.1 Data Representation

The SM9 algorithm involves the prime field Fp and extension fields Fp2 , Fp4 , Fp12 .
For extension fields, this paper adopts the following tower extension scheme:

Fp2 [u] = Fp[u]/(u2 − α), α = −2 (1)

Fp4 [v] = Fp2 [v]/(v2 − ξ), ξ = u (2)

Fp12 [w] = Fp4 [w]/(w3 − v), v2 = ξ (3)
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where u2 = α, v2 = u,w3 = v.
During storage and operation, the element on Fp is a 256-bit number with a

range of [0, p − 1]. The element on Fp2 is represented by two elements on Fp, as
shown in Eq. (4). The element on Fp4 is represented by four elements on Fp, as
shown in Eq. (5). The element on Fp12 is represented by twelve elements on Fp,
as shown in Eq. (6).

(a1, a0) = a1u + a0 (4)

(a3, a2, a1, a0) = (a3u + a2)v + (a1u + a0) (5)

(a11, a10, a9, a8, a7, a6, a5, a4, a3, a2, a1, a0) = [(a11u + a10)v + (a9u + a8)]w2

+[(a7u + a6)v + (a5u + a4)]w + [(a3u + a2)v + (a1u + a0)]
(6)

where ai ∈ Fp.

2.2 Algorithm Flow

The SM9 digital signature algorithm is shown in Algorithm 1.

Algorithm 1: SM9 digital signature algorithm

Input: system parameters, message M , signature private key dsA
Output: (h, s)
1: g = e(P1, Ppub−s)
2: generate random number r
3: w = gr

4: h = H2(M ||w,N)
5: l = (r − h) mod N , if (l == 0) then goto 2
6: S = [l]dsA
7: return (h, s)

P1 and N are system parameters. P1 is the generator of the additive cyclic
group G1, in the form of (xP1 , yP1), where xP1 , yP1 ∈ Fp. Ppub−s is the signature
master public key, in the form of (xPpub−s

, yPpub−s
),where xPpub−s

, yPpub−s
∈ Fp2 .

3 Implementation

Basic operations on Fp include modular addition, modular subtraction, modular
multiplication and modular inversion, and the operands are 256-bit numbers.
When performing modular addition and modular subtraction operations, con-
sidering the characteristics of unsigned addition and subtraction, we make full
use of carry information to simplify the operation logic and reduce resources.
The modular multiplication operation adopts an efficient calculation method —
the Montgomery modular multiplication algorithm [7], which effectively avoids
the division operation. When performing modular inversion operations, use dis-
placement instead of division to improve efficiency.
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3.1 Fp Units

Modular Addition on Fp . The modular addition operation is shown in Algo-
rithm 2.

Algorithm 2: Modular addition on Fp

Input: x, y, p
Output: z = add(x, y) = x + y mod p
1: {c0, z0} = x + y
2: {c1, z1} = z0 + (−p)
3: if (c0 == 0 and c1 == 0)
4: return z0
5: else
6: return z1

The modular addition module uses two 256-bit adders with carry. One adder
calculates x+ y and outputs 256-bit z0 and 1-bit c0. If c0 equals 1, which means
x + y is greater than p, then z = {c0, z0} − p = {1, z0} − p = z0 − p. If c0 equals
0, then

z =
{

z0 − p, &z0 ≥ p
z0, &z0 < p

(7)

We use c1 to determine the size relationship between z0 and p to avoid using
a comparator. The efficiency of an adder is generally higher than that of a sub-
tracter, so subtracting p is changed to adding −p, and −p can be calculated in
advance without any delay. Modulo Subtraction on Fp The modular subtrac-
tion operation is shown in Algorithm 3.

Algorithm 3: Modular subtraction on Fp

Input: x, y, p
Output: z = sub(x, y) = x − y mod p
1: {c0, z0} = x − y
2: z1 = z0 + p
3: if (c0 == 1)
4: return z0
5: else
6: return z1

Step 1 uses a subtractor with carry. When x is not less than y, c0 equals 1,
otherwise, c0 equals 0. Therefore, if c0 equals 1, output z0 directly, otherwise,
output z1. The calculation of z1 is show in Eq. (8).

{
z0 = x + 2k − y

z1 = x + p − y = x + 2k − y + p = z0 + p
(8)
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Modular Multiplication on Fp. The modular multiplication on Fp is the
most core operation unit in SM9 algorithm and the fundamental component of
complex operations. The efficiency of modular multiplication determines that of
the SM9 digital signature algorithm. This paper adopts the Montgomery mod-
ular multiplication algorithm, which is an efficient algorithm for implementing
modular multiplication of large integers. The idea is to convert the modular
operation on large prime numbers p into the modular operation on R (2k) to
avoid complex division operations. Wang [6] parallelized the high-radix Mont-
gomery algorithm [8], as shown in Algorithm 4.

Algorithm 4: Parallel high-radix Montgomery multiplication on Fp [6]

Input: x, y, p, w, where w = −p−1 mod r, r = 2n

Output: z = mul(x, y) = xyR−1 mod p, where R = rm

1: z = 0, v = 0
2: for i=0 to m-1 do

2.1: {ca, z0} = z0 + xiy0
2.2: ti = z0w mod r
2.3: {cb, z0} = z0 + tip0
2.4: {ca, z1} = z1 + xiy1 + ca
2.5: for j = 1 to m − 2 do

2.5.1: {cb, zj−1} = zj + tipj + cb
2.5.2: {ca, zj+1} = zj+1 + xiyj+1 + ca

2.6: {cb, zm−2} = zm−1 + tipm−1 + cb
2.7: {v, zm−1} = ca + cb + v

3: if z ≥ p then z = z − p
4: return z

Steps 2.1, 2.2, 2.3, 2.4, 2.5.1, 2.5.2, 2.6, and 2.7 in Algorithm 4 can be sum-
marized in the form of (A + B) + (C ∗ D) and packaged as an addmul module.
The hardware architecture is shown in Fig. 1. Steps 2.3 and 2.4, 2.5.1 and 2.5.2
have no data dependencies and can be calculated in parallel, so instantiate two
addmul modules and use them cyclically. Use Algorithm 3 to improve step 3,
then the final output result is determined by carry. The implementation of mod-
ular multiplication is shown in Algorithm 5.

Fig. 1. addmul module.
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Algorithm 5: Modified parallel high-radix Montgomery multiplication

Input: x, y, p, w, where w = −p−1 mod r, r = 264

Output: z = mul(x, y) = xyR−1 mod p, where R = 2256

1: z = 0, v = 0, i = 0, a = addmul0(0, 0, x0, y0), goto 3
2: v = b1, z3 = b0, a = addmul0(z0, 0, xi, y0)
3: z0 = a0, b = addmul1(0, 0, a0, w)
4: ti = b0, a = addmul0(a0, 0, b0, p0), b = addmul1(z1, a1, xi, y1)
5: a = addmul0(b0, a1, ti, p1), b = addmul1(z2, b1, xi, y2)
6: z0 = a0, z2 = b0, a = addmul0(b0, a1, ti, p2), b = addmul1(z3, b1, xi, y3)
7: z3 = b0, z1 = a0, a = addmul0(b0, a1, ti, p3)
8: z2 = a0, b = addmul1(b1, a1, v, 1), if (i < 3) then begin i = i + 1, goto 2 end
9: {c, z} = {b0, z2, z1, z0} + (−p)
10:if (c == 0 and b[64] == 0) then z = {b0, z2, z1, z0}
11:return z

The result of mul(x, y) is xyR−1 mod p. It is necessary to perform mul(z,R2)
calculation to obtain xy mod p. In this paper, the operands are converted to the
Montgomery field first. Then, all operations are performed on the Montgomery
field. Finally, the result is transferred from the Montgomery field to Fp, as shown
in Algorithm 6.

Algorithm 6: Field conversion

Input: x, y, p, where x, y ∈ Fp

Output: z = xy mod p
1: xm = mul(x,R2), ym = mul(y,R2)
2: zm = mul(xm, ym)
3: z = mul(zm, 1)
4: return z

Modular Inversion on Fp. Modular inversion is implemented by the extended
Euclidean algorithm, specifically using addition, subtraction and displacement
operations, as shown in Algorithm 7.

Algorithm 7: Modular inversion on Fp

Input: a, p where a ∈ Fp

Output: z = inv(a) = a−1 mod p
1: u = a, v = p, m = 1, n = 0
2: if (u �= 1 and v �= 1) repeat

2.1: if (u[0] == 0) repeat u = u � 1,m = (m[0] == 0) ? m � 1 : (m + p) � 1
2.2: if (v[0] == 0) repeat v = v � 1,n = (n[0] == 0) ? n � 1 : (n + p) � 1
2.3: if (u ≥ v) then u = u − v,m = m − n
2.4: else v = v − u, n = n − m

3: if (u == 1) return m
4: else return n
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Steps 2.1 and 2.2 are data independent, so they are executed in parallel.
Step 2.3 is merged into step 2.1, and step 2.4 is merged into step 2.2 to signifi-
cantly reduce the number of cycles required. In addition, the modular inversion
operations of SM9 are mostly connected to multiplication, in the form of ba−1.
Initializing m with b can convert inv(a) into inv mul(a, b).

3.2 Fpn Units

Unlike above work that focuses on algorithm selection and optimization, the
operations on the extension field are a combination of lower level computing
units. Operations on Fp2 , Fp4 ,Fp12 are respectively composed of operations on
Fp,Fp2 ,Fp4 . So, the focus of optimization work is on scheduling. We analyze
whether there is a dependency relationship between each step, execute irrelevant
operations in parallel, set an appropriate number of basic units to reuse, and
achieve a balance between resources and efficiency.

Modular Addition and Subtraction on Fpn . The modular addition and
subtraction operations on Fpn are to perform modular addition and subtraction
on the corresponding elements on Fp. For A = a1u + a0, B = b1u + b0, where
A,B ∈ Fp2 , ai, bi ∈ Fp:

A ± B = (a1u + a0) ± (b1u + b0) = (a1 ± b1)u + (a0 ± b0) (9)

Modular Multiplication on Fpn . The principle of modular multiplication on
Fpn is similar to polynomial multiplication.

For modular multiplication on Fp2 , where A,B ∈ Fp2 , ai, bi ∈ Fp:

A · B = (a1u + a0)(b1u + b0) = a1b1u
2 + (a1b0 + a0b1)u + a0b0

= (a1b0 + a0b1)u + (−2a1b1 + a0b0)
(10)

when instantiating four modular multiplication modules on Fp, the number of
cycles required for calculation is minimal.

For modular multiplication on Fp4 , where A,B ∈ Fp4 , Ai, Bi ∈ Fp2 , ai, bi ∈
Fp:⎧⎪⎪⎨

⎪⎪⎩

A = A1v + A0 = (a3u + a2)v + (a1u + a0)
B = B1v + B0 = (b3u + b2)v + (b1u + b0)

A · B = (A1v + A0)(B1v + B0) = A1B1v
2 + (A1B0 + A0B1)v + A0B0

= (A1B0 + A0B1)v + (A1B1u + A0B0)

(11)

Similar to Eq. (10), there are four modular multiplication operations on Fp2 in
Eq. (11). In this paper, the method of Karatsuba [9] is used to reduce the number
of multiplications, as shown in Eq. (12):

A · B = (A1B0 + A0B1)v + (A1B1u + A0B0)
= [(A1 + A0)(B1 + B0) − (A1B1 + A0B0)]v + (A1B1u + A0B0)

(12)

For Eq. (12), instantiating three modular multiplication modules on Fp2 can
achieve the highest efficiency. Comparing Eq. (11) with Eq. (12), the number
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of modular multiplications in Eq. (11) is greater than that in Eq. (12), but the
implementation logic of Eq. (11) is simpler. When the saved resources cannot
offset the negative effects of increasing circuit complexity and decreasing clock
frequency, optimization fails [10]. This is why resource optimization is not per-
formed on Eq. (10). The final implementation of modular multiplication on Fp4

is shown in Algorithm 8.

Algorithm 8: Modular multiplication on Fp4

Input: A = (a3, a2, a1, a0), B = (b3, b2, b1, b0), p, where A,B ∈ Fp4

Output: Z = mul 4(A,B)
1: a02 = add0(a0, a2), a13 = add1(a1, a3)

(x1, x0) = mul 20((a1, a0), (b1, b0)), (t1, t0) = mul 21((a3, a2), (b3, b2))
2: b02 = add0(b0, b2), b13 = add1(b1, b3)
3: (y1, y0) = mul 22((a13, a02), (b13, b02))
4: t = add0(t1, t1)
5: z0 = sub0(p, t)
6: (y1, y0) = (sub0(y1, x1), sub1(y0, x0))
7: (y1, y0) = (sub0(y1, t1), sub1(y0, t0)), (x1, x0) = (add0(x1, t0), add1(x0, z0))
8: return ((y1, y0), (x1, x0))

In step 1, the time consumption of modular multiplication operation is much
greater than that of modular addition and subtraction operation. So, steps 2 and
3 do not need to wait for the completion of modular multiplication operation in
step 1.

The implementation and optimization for modular multiplication on Fp12 is
similar to that on Fp4 .

Modular Inversion on Fpn . The implementation idea of modular inversion is
similar to the modular multiplication on Fpn . However, due to the limited use of
the modular inversion operation, the implementation of the modular inversion
adopts a resource-saving architecture without excessive parallelization.

3.3 R-Ate Bilinear Pairing

Both in terms of resources and time, bilinear pairing is the core of the SM9
digital signature algorithm, greatly affecting its performance. This paper adopts
R-ate bilinear pairing and optimizes it, including reconstructing Miller loop and
simplifying Frobenius mapping operation. Reconstructing Miller loop can hide
modular multiplication operation and reduce the number of cycles by starting
point doubling early. Simplifying the implementation of Frobenius mapping is
beneficial for the calculation of πp, πp2 and fixed exponential power. The imple-
mentation of R-ate bilinear pairing is shown in Algorithm 9.
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Algorithm 9: R-ate bilinear pairing

Input: P ∈ E(Fp)[r], Q ∈ E
′
(Fp2)[r], a = 6t + 2

Output: g = e(P,Q)
1: a =

∑L−1
i=0 ai2i, aL−1 = 1

2: T = Q, f = 1
3: for i = L − 2 to 0 do

3.1: f = f2, lTT = lT,T (P ), T = [2]T
3.2: f = f · lTT

3.3: if (ai == 1) then
3.3.1: lTQ = lT,Q(P ), T = T + Q
3.3.2: f = f · lTQ

4: Q1 = πp(Q), Q2 = πp2(Q)
5: f = f · lT,Q1(P ), T = T + Q1

6: f = f · lT,−Q2(P ), T = T − Q2

7: f = f (q12−1)/r

8: return f

Miller Loop. Miller loop (step 3 in Algorithm 9) involves modular multipli-
cation on Fp12 , line operation, and point operation. To avoid duplicate calcula-
tions [6,11], lTT = lT,T (P ) and T = [2]T are realized in ltt double module as a
whole, and lTQ = lT,Q(P ) and T = T +Q are implemented as a whole in ltq add
module.

Analyzing step 3 in Algorithm 9, when ai is equal to 1, steps 3.2 and 3.3.1
have no dependency on each other. And step 3.3.2 is independent of the point
and line operations in step 3.1 of the next cycle. When ai is equal to 0, step
3.2 is independent of the point and line operations in step 3.1 of the next cycle.
Therefore, we schedule it as shown in Fig. 2.

Fig. 2. Reconstructed Miller loop state machine.
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S3 is a combination of steps 3.2 and 3.3.1. Since the number of cycles required
to perform a calculation of ltt double or ltq add is much greater than that to
perform a calculation of modular multiplication on Fp12 , S5 is performed after
the modular multiplication in S2 or S4 so as not to occupy additional time cycles.
Our scheduling scheme achieves the concealment of all modular multiplication
operations on Fp12 during the loop process, as shown in Algorithm 10.

Algorithm 10: Modified Miller loop

Input: P ∈ E(Fp)[r], Q ∈ E
′
(Fp2)[r], a =

∑L−1
i=0 ai2i, aL−1 = 1

Output: f, T
1: i = L − 2, last = 0
2: f = f · f, lTT = lT,T (P ), T = [2]T
3: if (i > 0) then i = i − 1 else last = 1

if (ai == 1) then goto 5
4: f = f · lTT

if (last == 0) then begin lTT = lT,T (P ), T = [2]T, goto 7 end else goto 8
5: f = f · lTT , lTQ = lT,Q(P ), T = T + Q
6: f = f · lTQ, lTT = lT,T (P ), T = [2]T, if (last == 1) then goto 8
7: f = f · f, goto 3
8: return f, T

When performing point addition or point doubling operations, Jacobian coor-
dinate system is used to avoid complex inversion operations [12]. Analyzing
Algorithm 9, the point addition operation always follows the point doubling
operation. And the point doubling operation will first calculate the Z coordinate
of [2]T , while the point addition operation will first use the Z coordinate for
calculation. Therefore, after ltt double module calculates the Z coordinate, it
outputs a valid signal for the Z coordinate, enabling ltq add module to initiate
calculations related to the Z coordinate in advance, thereby reducing the number
of cycles.

Frobenius Mapping. In step 4 of Algorithm 9, πp and πp2 are Frobenius once
and twice automorphism, which are point to point mappings defined as follows:

{
πp : E → E, πp(x, y) = (xp, yp)

πp2 : E → E, πp2(x, y) = (xp2
, yp2

)
(13)

The definition of Frobenius mapping ϕ(x) is as follows:
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ϕ(x) = xp (14)

and {
ϕ(x + y) = xp + yp = ϕ(x) + ϕ(y)

ϕ(x · y) = xp · yp = ϕ(x) · ϕ(y) (15)

According to the above definitions and properties, for f ∈ Fp12 :

ϕ(f) = fp = (f11uvw2)p + (f10vw2)p + (f9uw2)p + (f8w2)p + (f7uvw)p

+(f6vw)p + (f5uw)p + (f4w)p + (f3uv)p + (f2v)p + (f1u)p + (f0)p
(16)

According to Fermat’s theorem, when p is a prime number and integer fi is less
than p:

fp
i = fi mod p (17)

The value of (uivjwk)p can be calculated in advance, Therefore, fp can be
obtained by multiplying fi in each dimension by a fixed value.

In Algorithm 9, the calculation results of πp and πp2 need to be calculated
together with the results of the Miller loop, and the number of cycles required by
Miller loop is much larger than that of πp and πp2 . Therefore, using a resource-
saving architecture to implement πp and πp2 , only instantiating one modular
multiplication module on Fp can meet the needs. For the modular exponentiation
operation in step 7 of Algorithm 9, the exponent is a polynomial related to p,
and it is decomposed as follows [13]:

p12 − 1
r

= (p6 − 1)(p2 + 1) =
p4 − p2 + 1

r
(18)

We use fp2
and fp6

to simplify the calculation of modular exponentiation.

4 Result Analysis

We use Verilog to implement the SM9 digital signature algorithm, verify its
correctness through simulation, synthesize and implement it based on the Xilinx
Virtex UltraScale+ platform.

Modular addition, modular subtraction, modular multiplication and modular
inversion are the most fundamental operational units in the SM9 digital signature
algorithm, which determine the performance of the upper modules. We have
optimized and implemented them.

Table 1 and Table 2 compare the improved implementation methods of mod-
ular addition and modular subtraction in this paper with the traditional imple-
mentation methods. Due to the avoidance of comparison between large numbers,
approximately 50% of LUTs are saved compared to the original methods, and
the maximum clock frequency is increased by 15.80% and 34.87% respectively.



SM9 Digital Signature Algorithm 379

Table 1. Comparison of 256-bit modular addition.

Plan Frequency(MHz) LUT

Improved 257.33 389

Original 222.22 820

Table 2. Comparison of 256-bit modular subtraction.

Plan Frequency(MHz) LUT

Improved 275.86 374

Original 204.54 719

Table 3 compares the different implementation methods of modular multipli-
cation. The modular multiplication module in this paper has the lowest latency,
but uses the most DSPs.

Table 4 shows the number of cycles used by the parallel and serial modular
inversion modules to perform inversion operations on randomly selected num-
bers. Compared with the serial method, the parallel method reduces the number
of clock cycles by approximately 27.55%. From the experimental results and
theoretical analysis, it can be seen that the parallel modular inversion method
significantly saves the number of cycles used while the resources are almost
unchanged.

Table 3. Comparison of 256-bit modular multiplication.

Plan Platform Clock Cycles Frequency(MHz) Latency(μ s) LUT DSP

This paper Virtex UltraScale+ 29 121.57 0.24 1400 32

[14] Virtex-7 112 225 0.50 1917 9

[4] Virtex-7 151 268.1 0.56 9100 16

[15] Virtex-7 193 207.1 0.93 1151 /

Table 4. Comparison of 256-bit modulo inversion.

Plan Num0 Num1 Num2 Num3

Parallel 404 398 383 378

Serial 541 546 542 528
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Table 5. The number of basic modules and cycles used in complex modules.

Field Module mul add sub inv Clock Cycles

Fp point doubling 3 2 1 / 99

point addition 3 / 2 / 120

point multiplication 7 2 3 2 41,406*

πp + πp2 1 / / / 249

Fp2 modular multiplication 4 1 1 / 33

modular inversion 2 / / 2 468*

point doubling + line 20 11 9 / 109

point addition + line 16 4 8 / 108

Fp4 modular multiplication 12 5 5 / 39

modular inversion 10 2 2 2 543*

Fp12 modular multiplication 108 59 45 / 44

modular inversion 82 36 44 2 619*

modular exponentiation 216 118 90 / 2,836*

Miller loop 144 74 62 / 8,830
∗: The number of clock cycles is not fixed and depends on the input.

We start from the prime field and realize calculations on extension fields in
sequence. Operation modules on Fp are the basis of other modules, and the upper
complex modules are composed of lower modules combined with logic circuits.
This paper adopts a performance-based design idea, and sets the minimum num-
ber of instances on the basis of ensuring performance to achieve resource saving.
Table 5 shows the resource usage and number of clock cycles required of complex
modules.

5 Conclusion

This paper implementes SM9 digital signature algorithm based on FPGA, sim-
plifies the implementation logic of the underlying operation modules and applies
fine-grained parallelism. For basic modules on Fp, comparators in modular addi-
tion and subtraction are omitted, and the Montgomery modular multiplication
algorithm is improved to achieve circuit simplification and resource conservation.
For complex modules, high parallelism within and between modules is achieved,
greatly reducing the number of computation cycles. However, in order to improve
the computational speed, more resources are used, which needs to be optimized
in future work.
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Abstract. Machine learning has greatly improved the convenience of
modern life. As the deployment scale of machine learning grows larger,
the corresponding data scale also increases, leading to a large number
of small and medium-sized organizations wishing to use their respective
data to train models together, even though this may bring risks of violat-
ing data privacy regulations and privacy leakage. To meet this demand,
federated learning was proposed, which can satisfy the needs of various
organizations to expand the training data scale without directly sharing
data, while avoiding violations of data privacy regulations and privacy
leakage. General federated learning usually allows clients to train local
models independently, and then aggregate them on a central server to
build a global model in a privacy-preserving manner. There are vari-
ous ways to protect privacy, such as homomorphic encryption, differen-
tial privacy, etc. Among these methods, one type of federated learning
scheme is based on homomorphic pseudorandom functions. This type
of scheme is relatively simple to construct, has a smaller communica-
tion scale, is more resilient to disconnections, and has high scalability.
However, the security aggregation with cryptographic primitives based
on classic assumptions such as DDH cannot resist quantum attacks, and
since the protected gradient vectors are usually tens of thousands of
dimensions, obtaining the aggregation results requires solving tens of
thousands of discrete logarithms, which leads to some loss of efficiency.
In this paper, we proposed a secure aggregation scheme based on HPRG
over lattice, which has practical efficiency and resilience to dropout and
can resist quantum attacks due to the hardness of the RLWE assump-
tion. Moreover, our scheme only requires polynomial multiplication and
addition (usually treated as vectors in implements), thus significantly
improving computational efficiency.
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1 Introduction

With the rapid development of machine learning (ML), the demand for data scale
is increasing, and ML has aroused great interest in different industries, including
the Internet, finance, IoT, academia, government, etc. [1–3]. As such, federated
learning (FL) [4] has emerged, giving rise to horizontal federated learning and
vertical federated learning, providing cross-silo or cross-device machine learning
services for different scenarios and institutions. Federated learning allows mul-
tiple participants to train models together without privacy leaks. Unlike tradi-
tional centralized machine learning, in federated learning, participants generally
train models independently on their local datasets, computing gradients, and
then upload the gradients to a central server for aggregation, thus construct-
ing a global model. However, even if only these gradients are leaked, there is
a risk of revealing the local data of individual participants [5]. In this connec-
tion, some cryptographic mechanisms can be proposed to solve the issue, such as
secure multi-party computation (MPC) [6], homomorphic encryption (HE) [7],
differential privacy (DP) [8], and other mechanisms, to preserve privacy while
aggregating the local models in federated learning.

Generally, we can complete PPML by blocking or encrypting the uploaded
gradient and ensuring that the server can aggregate the ciphertext, which can be
achieved through methods such as DP [9], MPC [10], or HE [11]. For example,
applying DP to gradients before uploading to the server can protect gradient
information, while the server can obtain approximate aggregation results with
acceptable errors, although this can result in a trade-off between security and
model performance. Whereas, HE-based PPML directly encrypts gradients. Due
to the homomorphism of HE, the server can directly calculate the ciphertext to
obtain encrypted aggregation results and continue to train on it. This makes
the structure of HE-based PPML simple and easy to implement. However, the
practicality of HE-based PPML depends on the performance of the HE used,
and the selection of HE may be limited for specific ML models.

On the other hand, due to the rapid popularization of mobile internet, a
large number of users involved in federated learning in practical application sce-
narios may be using mobile devices. This means that there could be significant
differences in the computing resources and communication environments of dif-
ferent clients. Therefore, federated learning needs to consider not only privacy
protection but also resilience to disconnections. Some dropout-resilient FL appli-
cations have been deployed, such as Gboard (Google Keyboard) on Android [12],
which has deployed FL on mobile devices to enhance the relevance of contextual
suggestion inputs. In this situation, FL deployed on a large number of mobile
devices inevitably involves disconnection issues, and some devices may exit the
system due to environmental changes.

First, we revisit the basic method of addressing dropout issues based on pair-
wise masks proposed in the pioneer work SecAgg [13]. Suppose there is a group
of clients U , where each client ui ∈ U ’s private input is ωi, we need to compute∑

ωi without revealing any ωi to any participant. In SecAgg, a set of masks is
generated to encrypt ωi as follows:
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yi = ωi +
∑

i<j

PRG (si,j) −
∑

i>j

PRG (sj,i)

where PRG represents a pseudorandom generator that can generate a set of
pseudorandom sequences PRG(s) based on the seed s. In the above equation,
si

j and sj
i are pair-wise keys generated by key agreement, i.e., si

j = sj
i , so when

all yi are added, all pseudorandom sequences serving as masks will be revealed,
thus obtaining

∑
ωi:

∑

ui∈U
yi =

∑

ui∈U

⎛

⎝ωi +
∑

i<j

PRG (si,j) −
∑

i>j

PRG (sj,i)

⎞

⎠ =
∑

ui∈U
ωi

For dropout users, SecAgg solves this by secret sharing the keys used to
generate the masks. However, every two users have to execute a pair-wise key
agreement in SecAgg, resulting in O(n2) communication and computational over-
head. In the follow-up work of SecAgg [14,15], researchers also pointed out its
inefficiency. Therefore, using a method to generate masks that doesn’t rely on
interactive communication can significantly improve the protocol’s performance.
A method that has recently attracted attention is based on Homomorphic Pseu-
dorandom Function (HPRF) [16]. In this regard, some representative works have
been proposed [17] [18]. For instance, in HomoAgg [17], clients encrypt gradients
through HPRF, and by utilizing the homomorphism of Shamir secret sharing
[6], the demasking of the model is completed through seed aggregation, thereby
greatly reducing communication and computational overhead. However, since
its HPRG is based on discrete logarithms, although the impact on performance
is acceptable under the assumption that the values of gradient vectors are not
large [19], it cannot resist quantum attacks. Our scheme refers to the construc-
tion of classic lattice-based encryption like BGV [20], BFV [21] and CKKS [22],
and constructs an efficient PRF based on RLWE, making our PPML protocol
resistant to quantum attacks and practically efficient.

In this paper, we propose an efficient, quantum-attack-resistant, and dropout-
resistant federated learning secure aggregation protocol using an RLWE-based
PRF and a distributed Shamir multi-secret sharing scheme. Overall, the
improved efficiency and resistance to quantum attacks mainly come from the
additive homomorphic pseudorandom function based on RLWE, and the dropout
resilience comes from Shamir secret sharing. Specifically, we replace the PRF
based on discrete logarithms in the original scheme with an RLWE-based PRF.
In this case, clients no longer use multiplication and exponentiation to construct
masks but use addition and multiplication of polynomials, which will further
reduce the computational overhead compared to previous work.

Our contributions: Compared to existing works, our contributions are as
follows:

– The proposed scheme uses a lattice-based PRF, making it resistant to quan-
tum attacks.
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– The proposed scheme only involves the addition and multiplication of vectors,
thus it is more efficient and significantly reduces computational overhead.

– The proposed scheme involves fewer cryptographic primitives, making it easier
to apply or further improve.

Organization: Organization of the paper: The rest of the paper is orga-
nized as follows. In Sect. 2, we review the underlying cryptographic primitives
and define the notations used by our proposed scheme. Then we proceed to our
proposed protocol in Sect. 3, followed by the security analysis in Sect. 4, perfor-
mance analysis, and discussions in Sect. 5. Finally, we give the conclusions in
Sect. 6.

2 Cryptographic Primitives

This section mainly describes the preliminaries of the Shamir multi-secret shar-
ing scheme, homomorphic pseudorandom functions (HPRF), and the signature
scheme.

2.1 Secret Sharing

The Shamir secret sharing scheme [23] is a cryptographic technique that divides
confidential information, known as the secret S, into n shares of data.

In a standard (t, n) Shamir secret sharing scheme, the secret S and its corre-
sponding shares S1, ..., Sn are represented as elements in a finite field ZP , where
P is a prime number and 0 < t ≤ n < P . The scheme involves one secret holder,
us, and a group of n participants u1, ..., un.

It is worth noting that Shamir secret sharing is additive homomorphic [6].
For example, assume there are n users while each user has d secrets to be

shared. Let’s focus on u1 first, assume the secrets are s11, s21,...,s
d
1 (denoted as a

vector S1=(s11, s21,...,s
d
1)) . The secrets S1 are shared among n users u1, u2, ..., un.

Then u1 selects a polynomial of degree t − 1 as:

f1(x) = a0 + a1x + ... + at−1x
t−1 mod P

where a0 = s11, a1 = s21, ..., at−1 = sd
1, and assume t = d. Then, the shares of each

group of {si
1|1 ≤ i ≤ d} to be sent to ui are computed as {xi, f1(xi)}, where xi is

usually sampled from {1, 2, ..., n} (denoted as X) in Shamir-based applications
[13,24,25]. Similarly, another secret holder u2 with secrets s12, {s22,...,s

d
2} selects

a polynomial of degree t − 1 as:

f2(x) = b0 + b1x + ... + bt−1x
t−1 mod P

where b0 = s12, b1 = s22, ..., bt−1 = sd
2. The n shares of S2 are computed as

{f2(xi)}, where xi ∈ {1, 2, ..., n}, and they are sent to ui as {xi, f2(xi)}. Note
that each ui can locally compute {xi, f1(xi) + f2(xi)}, then at least t users can
reconstruct the sum S1 +S2 of secrets S1 and S2 by Lagrange interpolation over
{xi, f1(xi) + f2(xi)} without learning S1 or S2, where xi ∈ X.
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Furthermore, we can reconstruct
∑n

i=1 Si. More specifically, in our proto-
col, each user ui only provides

∑n
j=1 fj(xi) to the server, and the server can

reconstruct
∑n

i=1 Si to demask with {xi,
∑n

j=1 fj(xi)} and obtain final output
without learning anything about the secrets as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 fj(x1) =

∑n
j=1 s1j +

∑n
j=1 s2jx

1
1 +

∑n
j=1 s3jx

2
1 + ... +

∑n
j=1 stjx

t−1
1 mod P,

∑n
j=1 fj(x2) =

∑n
j=1 s1j +

∑n
j=1 s2jx

1
2 +

∑n
j=1 s3jx

2
2 + ... +

∑n
j=1 stjx

t−1
2 mod P,

...
∑n

j=1 fj(xn) =
∑n

j=1 s1j +
∑n

j=1 s2jx
1
n +

∑n
j=1 s3jx

2
n + ... +

∑n
j=1 stjx

t−1
n mod P.

Through the equations mentioned above, the central server can learn each
entry of the sum of secret vectors, i.e., {

∑n
j=1 si

j}, and obtain the sum of the
secrets

∑n
i=1 Si, where i ∈ {1, 2, ..., n}.

Furthermore, we can reconstruct
∑n

i=1 Si. More specifically, in our protocol,
each user ui only provides

∑n
j=1 fj(xi) to the server, and the server can recon-

struct
∑n

i=1 Si to demask with xi,
∑n

j=1 fj(xi) and obtain final output without
learning anything about the secrets.

2.2 Homomorphic Pseudorandom Generator Based on Lattice

A pseudorandom function (PRF) is an essential tool in cryptography. It refers
to a deterministic function F : {0, 1}λ × {0, 1}in → {0, 1}out, where the input
is from the key space × input space. A PRF is considered secure if, for each
input, its output appears to be uniformly sampled from {0, 1}out, resembling a
random selection, i.e., for a uniform k ∈ {0, 1}λ, an oracle for F (k, ·) is com-
putationally indistinguishable from an oracle for a uniform function f(·) [16],
where f : {0, 1}in → {0, 1}out. In a similar vein to the definition of PRF, a
pseudorandom generator (PRG) is an efficient algorithm capable of generating
a sequence of pseudo-random numbers.

To be more precise, a PRG is an efficiently computable function G : S → Y,
where S represents the input space and Y denotes the output space. The PRG
function ensures that for a uniformly chosen input s ∈ S and a uniformly chosen
output y ∈ Y, the distribution {G(s)} is computationally indistinguishable from
the distribution of {y}.

Assume a PRF F : K × X → Y and two groups (K,⊕), (Y,⊗). If for any
F (k1, x) and F (k2, x), there exists an efficient algorithm to compute F (k1 ⊕
k2, x) = F (k1, x) ⊗ F (k2, x), then the pseudorandom function F is said to be
key-homomorphic, i.e., a HPRF is key-homomorphic with respect to its key.
Similarly, for a PRG G : S → Y, any G(s1, x) and G(s2, x), if G(s1 ⊕ s2, x) =
G(s1, x) ⊗ G(s2, x), then the PRG G is said to be seed-homomorphic, and such
a PRG is referred to as a homomorphic PRG (HPRG).

Similar to the HPRF based on hash functions and discrete logarithms
described in [17], we have constructed an HPRF based on RLWE according to
the symmetric encryption scheme of CKKS [22]. Let Rq=Zq[x]/(XN + 1) be a
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polynomial ring modulo q, DG(σ2) be a discrete Gaussian distribution, and Sh

be a uniform distribution over the set of signed binary vectors in {±1}N whose
Hamming weight is exactly h, and the function F : (Sh) × Rq → Rq be

F (s, x) = xs + e

where e ∈ DGN (σ2). We can observe that F is additive homomorphic:

F (s1 + s2, x) ≈ F (s1, x) + F (s2, x)

According to the hardness of the RLWE problem [26], if s is randomly elected
in Sh, then F (s, ·) is indistinguishable from random samples in Rq. Therefore,
an HPRG can be constructed based on F (s, ·) and a set of x [27]. Specifically,
assuming a0 ∈ {0, 1}N is a system parameter and H : {0, 1}∗ → {0, 1}N is
a secure hash function, with ai = H(ai−1), the HPRG G(s) can generate a
pseudorandom sequence, i.e., F (s, a0), F (s, a1), F (s, a2) . . . . The length of the
sequence is �d/N	, where d is the dimension of the vector to be masked.

2.3 Digital Signature

A signature system serves to verify the source of a message.
When a message is signed using the signer’s secret key, it can be confirmed

that the message originated from the signer. A signature system consists of a set
of algorithms (Fgen, Fsig, Fver) such that:

– Fgen is a randomized algorithm that generates a secret key sk and a public
key pk.

– Fsig is a randomized algorithm that takes the secret key sk and a message m
as inputs, and produces a signature σ.

– Fver is a deterministic algorithm that take the public key pk, the message m,
and the signature σ as inputs, and returns 1 if σ is a valid signature for m,
and 0 otherwise.

The signature scheme provides protection against universal forgery under
chosen message attack (UF-CMA). This means that an individual without access
to the secret key is unable to generate a valid signature for a message they have
not previously seen signed. In essence, the likelihood of an adversary successfully
creating a pair (m∗, σ∗) without knowing the secret key sk, where σ∗ is a valid
signature for m∗ and m∗ has been unknown for the adversary so far, is extremely
low, i.e., the probability is negligible.

3 Proposed Scheme

According to the SecAgg scheme, the participants mainly consist of a central
server S and n clients. Each client ui has a locally trained gradient ωi, and the
central server needs to collect these gradients to update the global model and
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distribute it to the users. The goal of our scheme is for the central server to
compute the sum of the gradients without knowing any information about ωi.
Additionally, the scheme should be able to aggregate correctly even if some users
drop out during the process.

Threat model: In many federated learning applications, participants may
come from different companies or institutions, some of which may even have
competing interests. This creates a motivation to obtain data from other par-
ticipants. Due to these reasons, we have considered two threat models, namely
the semi-honest model and the malicious model. In the semi-honest model, the
adversary will execute the protocol normally but will attempt to infer the honest
participants’ data. In the malicious model, the adversary not only tries to infer
information from other clients but may also collude and send false messages.

3.1 Masking Gradients

To protect the local model from leakage, it is necessary to hide the gradients
before uploading them to the central server. The most straightforward approach
is to add a mask. In our scheme, we use a one-time pad to mask the gradients.
Let’s assume the gradient of client ui to be ωi, the scale for eliminating errors
to be Δ, and the corresponding mask to be ri. The masked gradient of client ui

is then calculated as:
yi = Δωi + ri

Subsequently, the client sends yi to the central server. Assuming the server can
somehow obtain the sum of all participants’ masks without errors, denoted as
R =

∑
ui∈U ri − e, then it can obtain:

z =

⎢
⎢
⎢
⎣(

∑

ui∈U
yi − R)/Δ

⎤

⎥
⎥
⎥

=

⎢
⎢
⎢
⎣(

∑

ui∈U
yi −

∑

ui∈U
ri + e)/Δ

⎤

⎥
⎥
⎥

=

⎢
⎢
⎢
⎣

∑

ui∈U
ωi + e/Δ

⎤

⎥
⎥
⎥

=
∑

ui∈U
ωi

where e denotes the sum of all errors after aggregation.

3.2 Handling Dropping Out

According to Sect. 2.2, for simplicity, we assume that for each client uj , Fshare

is a share generation function, Frec is a secret reconstruction function, and the
mask of client uj is rj = G(sj), where G is a homomorphic pseudorandom
generator, sj is the seed of client uj , and Fshare(sj) →

{
i, si

j

}

ui∈U are the shares
generated from sj .Therefore, we can reconstruct sj by Frec(

{
i, si

j

}

ui∈U ′) → sj

where |U ′| ≥ t. Then each client ui calculates the sum of the shares sent to itself,
noted as:

Si =
∑

uj∈U
si

j mod P

According to the additive homomorphism mentioned in Sect. 2.2, the server can
obtain the sum of seeds S without learning any information about any seed of
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clients, i.e., Frec(
{
i, Si

}
ui∈U ′) → S where |U ′| ≥ t. Then, the server can demask

with the HPRG as follows:

R =
∑

ui∈U
ri =

∑

ui∈U
G(si) = G(

∑

ui∈U
si) = G(S)

By the method mentioned above, it’s able to handle dropout clients and make
the protocol dropout-resilient with a (t, n) threshold.

3.3 High-Level View

Once the server obtains R, it can proceed with demasking. Let’s summarize the
above steps into the following protocol:

1. Each client ui selects a random seed si from Sh.
2. Each client ui computes n shares of the seed si using the Shamir secret

sharing scheme as Fshare(si) →
{

j, sj
i

}

uj∈U
, and then sends shares to the

corresponding client uj .
3. Each client ui computes the mask ri = G(si) and the masked gradient yi =

Δωi+ri, and sends yi to the server. Let U ′ be the set of connected clients that
sent yi. The server receives all masked gradients yi from U ′, and computes
the sum

∑
ui∈U ′ yi = Δ

∑
ui∈U ′ ωi +

∑
ui∈U ′ ri = Δ

∑
ui∈U ′ ωi + R.

4. Each client ui computes the sum of the shares received from U ′, i.e., Si =∑
uj∈U ′ si

j , and sends Si to the server.
5. The server reconstructs the sum S of the seeds using the Shamir secret sharing

scheme as Frec(
{
i, Si

}
ui∈U ′) → S, and then computes the sum R of the masks

as R = G(S).

With the above protocol, we utilize the additive homomorphism of Shamir
secret sharing to avoid the need for pair-wise masks and additional secret sharing,
as seen in SecAgg. This significantly reduces the communication overhead and
enhances resilience against client disconnections [17].

3.4 Proposed PPFL Protocol

We call our scheme LHAgg (Lattice-based Homomorphic Aggregation). Our fed-
erated learning protocol involves a central server and n clients. During the pro-
tocol execution, the gradients sent by each client ui to the server are denoted as
an input vector ωi, where d elements belong to Zq.

Similar to SecAgg, assuming there are time constraints on the communication
between the central server and clients, if a client’s communication times out, the
server considers it as a dropout. For convenience, we assume that each client
has a set of keys based on the same public-key infrastructure for encrypting
messages, denoted as Enc(msg, pk) and Dec(msg, sk). Clients may drop out at
any round of the protocol, and as long as the server receives masked gradients
from t non-dropout users, it can output the correct aggregation result. Our
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scheme has resilience to dropouts. Specifically, client ui has already shared its
seed si through secret sharing in the first round. Therefore, if client ui drops
out after uploading the masked gradient yi in the second round, yi can still be
correctly used for calculating the aggregation result.

We can observe that compared to other PPML schemes, our scheme signifi-
cantly reduces the complexity of the computation in the protocol. This is because
we utilize a PRF based on RLWE, which transforms the aggregation computation
into vector addition. The detailed description is as follows:

Lattice-based Homomorphic Aggregation for Federated Learning
(LHAgg)

Participants: A server S and a set of clients U .
Private inputs: Each client ui has a gradient noted as a vector ωi , a secret
key for encryption cSK

i , and a secret key for signature dSK
i . The server has a

secret key for encryption cSK
s and a secret key for signature dSK

s .
Public inputs: The set of clients U , the threshold t < n = |U|, the field ZP

for Shamir secret sharing scheme with function Fshare and Frec, the algorithm
(R, N, q) for HPRG which samples two polynomial rings R=Z[x]/(XN + 1)
and Rq=Zq[x]/(XN + 1), the discrete Gaussian distribution DG(σ2) of vari-
ance σ2, a uniform distribution Sh for sampling, the scale Δ, and the security
parameter κ. Each client ui’s and server’s public key for encryption cPK

i , cPK
s ,

and their public keys for signature dPK
i , dPK

s . Note that P > q > n∗max(ωi).
Outputs: The aggregation result

∑
ui∈U2

xi, where U2 ⊆ U . (U3 ⊆ U)
Round 1:
Client ui:
1) Randomly picks si ∈ Sh. Generates (t, n) Shamir secret shares of si, i.e.,

Fshare (si) →
({

j, sj
i

}

uj∈U

)

2) Sends
(
Enc

(
sj

i , c
PK
j

)
, σ1

i,j

)
to client uj ∈ U , where the signature

Fsig

(
Enc

(
sj

i , c
PK
j

)
, dSK

i

)
→ σ1

i,j (Denote U1 as the set of clients ui ∈ U that

at least t shares of si have been received by other clients).
3) Receives

(
Enc

(
si

j , c
PK
i

)
, σ1

j,i

)
from all the clients uj ∈ U , and then com-

putes si
j = Dec

(
Enc

(
si

j , c
PK
i

)
, cSK

i

)
. If Fver

(
Enc

(
si

j , c
PK
i

)
, dPK

j , σ1
j,i

)
= 0,

aborts.
Server S:
1) Collects messages from at least t clients.
2) Sends messages to corresponding clients.
Round 2:
Client ui:
1) Generates the mask vector ri using HPRG with the seed si , i.e., ri = G (si).
2) Computes the input masked by ri, i.e., yi = Δωi + ri.
3) Sends yi with the signature Fsig

(
yi, d

SK
i

)
→ σ2

i to the server S.
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Server S:
1) Receives all yi with the signature σ2

i from clients (Denoted as U2 ⊆ U1).
If Fver

(
yi, d

PK
i , σ2

i

)
= 0 , remove client ui from U2.

Round 3:
Client ui :
1) Fetches the list of U2 from the server S with the server’s signature
Fsig

(
U2, d

SK
s

)
→ σ3

s . If Fver (U2 , dPK
s , σ3

s

)
= 0, aborts.

2) Sends Fsig

(
U2, d

SK
i

)
→ σ4

i to the server S.
Server S :
1) Receives σ4

i from at least t clients (Denoted as U3 ⊆ U2)
and forwards to the clients in U3.
Round 4:
Client ui :
1) If the protocol does not consist of step 3 for consistency checking, fetches
the list of U2 from the server S. Otherwise, if |U3| < t or for any uj ∈ U3,
Fver

(
U2, d

PK
j , σ4

j

)
= 0 , aborts.

2) Computes the sum of shares of si
j from all the clients uj ∈ U2 , i.e., Si =

∑
uj∈U2

si
j mod P . (U3 under malicious threat model)

3) Sends Si with the signature Fsig

(
Enc

(
Si, cPK

s

)
, dSK

i

)
→ σ5

j to the server.
Server S:
1) Receives Sj from all uj ∈ U4 ⊆ U3. If Fver

(
Enc

(
Sj , cPK

s

)
, dPK

j , σ5
j

)
= 0,

remove uj from U4. Proceed until |U4| > t.

2) Reconstructs the seed for demasking, i.e., Frec

({
j, Sj

}
uj∈U4

)
→ S mod P .

3) Generates the mask R using HPRG with the seed S , i.e., R = G (S).
4) Computes z = (

∑
u∈U2

yi − R)/Δ = (
∑

ui∈U2
yi −

∑
ui∈U2

ri)/Δ =∑
ui∈U2

ωi. (U3 under malicious threat model)
5) Outputs z=

∑
ui∈U2

ωi. (U3 under malicious threat model)

Protocol 1. The description of LHAgg for one round of training.
The underlined parts are only for malicious threat model.

4 Security Analysis

In this section, we analyze the security of Protocol 1, denoted as π.
We assume the set of all clients as U , the central server as S, and the adversary

as a subset of clients denoted as C, where |C| < t. Depending on different threat
models, the adversary may include the central server or not, and all adversaries
can be either semi-honest or malicious.

We claim that our protocol is secure if no attacker has any knowledge of the
inputs of honest clients. More specifically, given a set of adversaries C belonging
to U , any values sent by honest clients U \C during the protocol execution should
be uniformly random.
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Let ωi and xi represent the input and view of clients respectively, REALU
π,C =

{xi|i ∈ C} denote the view of adversaries in the actual execution of the protocol.
Let SIMU

C = {xi|i ∈ C} denote another view of adversaries, where the inputs of
honest participants are randomly chosen by a simulator and represented as xc.
According to the security requirements of the protocol, our protocol is secure iff
the distribution of REAL and SIM is indistinguishable. In addition, due to the
lattice-based property of the PRF in this paper, its security can be reduced to
the hardness of decisional RLWE problem [26] in the single-user scenario, and to
the n-decision RLWE problem in the multi-user scenario, demonstrating semantic
security. We refer interested readers to [28] for details.

Since malicious servers may actively delete some honest clients, we use a
random oracle model similar to that in SecAgg [13] for the security proof of
malicious models with malicious servers. Specifically, it is assumed that SIM can
access a random oracle IDEAL such that:

IDEAL(t,U , C) =
{∑

ui∈U\C ωi |U \ C| > t

⊥ |U \ C| ≤ t

by which SIM can ignore client disconnections and obtain the correct sum of
gradients of honest clients.

Simply, we consider the malicious model with a malicious server. Suppose the
simulator has access to the oracle IDEAL that can ignore client disconnections
and provide the correct sum. For convenience, we assume all communication in
the protocol execution is performed through a trusted third party T .

Theorem 1 (Security against malicious clients and malicious server).
There exists a PPT simulator SIM such that for all t, U , C ⊆ U ∪ {S}

REALU
π,C(n, t;ωU ) ≡ SIMU

C (n, t;xC)

where ≡ denotes that the distributions are indistinguishable.

Proof Similarly, this is also proven through the hybrid argument.

*H0: In this hybrid, the joint view of C in SIM is exactly distributed like that in
REAL.

*H1: In this hybrid, for all honest clients ui ∈ U \C, we select a uniformly random
element Xj

i from the field and replace ui’s share sj
i with Xj

i . Due to the
security of the Shamir secret sharing scheme, this hybrid is indistinguishable
from the previous hybrid.

*H2: In this hybrid, if any party provides an invalid signature σ1
i,j in Round 1,

SIM aborts. The security of the signature scheme ensures that this hybrid is
indistinguishable from the previous one.

*H3: In this hybrid, the mask ri of honest client ui is replaced with a uniformly
random polynomial in the corresponding ring Rq, and the masks of adversaries
are set to 0. Based on the hardness of the decisional RLWE problem, this
hybrid is indistinguishable from the previous one.
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*H4: In this hybrid, if any party provides an invalid signature σ2
i in Round 2, SIM

aborts. Since this violates the security of the signature scheme, this hybrid is
indistinguishable from the previous one.

*H5: In this hybrid, if the server provides an invalid signature σ3
s in Round 3, SIM

aborts. The unforgeability of the signature scheme ensures that this hybrid
is indistinguishable from the previous one.

*H6: In this hybrid, if any party provides an invalid signature σ4
i in Round 4, SIM

aborts. The unforgeability of the signature scheme ensures that this hybrid
is indistinguishable from the previous one.

*H7: In this hybrid, we denote the set U2 sent by the server to clients in Round
3 as U ′

2. If SIM observes any two distinct signed U ′
2, the protocol aborts. The

security of the signature scheme ensures that the adversary cannot forge a
signature with non-negligible probability, which means this hybrid is indis-
tinguishable from the previous one.

*H8: In this hybrid, if any party provides an invalid signature σ4
i in Round 4, SIM

aborts. The unforgeability of the signature scheme ensures that this hybrid
is indistinguishable from the previous one.

*H9: In this hybrid, the simulator SIM obtains the sum of {ωi|ui ∈ U ′
2 \ C} by

querying IDEAL and selects xi such that
∑

ui∈U2\C xi =
∑

ui∈U2\C ωi mod q.
Note that querying IDEAL does not affect the protocol simulation process.
Therefore, this hybrid is indistinguishable from the previous one.

Thus, SIM can simulate Protocol 1 without requiring any input from honest
clients, resulting in SIM ≡ REAL, completing the proof. ��

5 Performance Analysis

In this section, we will sequentially analyze the computational and communi-
cation complexities of our protocol and present our experimental results from
various aspects.

5.1 Complexity Analysis

Computation Overheads. Our protocol structurally resembles HomoAgg,
thus the computational cost for each client largely depends on Shamir secret
sharing and mask generation. Given the adoption of multi-secret sharing, the
complexity of (t, n) secret sharing is approximately O(n2N

t ). For an input vec-
tor of dimension d, each client needs to generate d

N masks. Therefore, the total
computational complexity for each client is O(n2N

t + d
N ). The server needs to

reconstruct the vector sum of N/t seed fragments from N/t groups of n Shamir
secret shares. We employ a pre-computation approach similar to SecAgg for
secret reconstruction, hence the cost for a single reconstruction is O(n), with
the total computational overhead being O(nN

t ).
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Communication Overheads. Each client’s communication includes nN
t

ciphertext shares and a set of d/N N-dimensional mask vectors, hence the com-
plexity is O(nN

t + d). The server’s communication mainly involves forwarding
O(n2) encrypted nN

t shares and receiving d/N N-dimensional mask vectors from
n clients, hence the total communication complexity is O(n2N

t + nd).

5.2 Experiment

Protocol Performance. Our experiments are conducted on a single-threaded
Python implementation, running on a BKunYun C-16–2 instance with Intel
Xeon Cascade Lake 8255C (2.5GHz), 16 cores, and 32GB memory. For cryp-
tographic primitives, we use AES-GCM with a 128-bit key for authenticated
encryption, a specialized (t, n) Shamir multi-secret sharing scheme to generate
seed shares, and cryptographic schemes based on RLWE, such as CKKS [22],
from the Tenseal library to construct HPRG for mask generation. Additionally,
performance can be improved with faster interpolation algorithms [29]. As our
scheme is cryptography-based, it can achieve precise decryption, thereby intro-
ducing no additional errors to model training. We implement and analyze our
experiments from two aspects: (i) Test whether the performance of the LHAgg
secure aggregation protocol is practical; (ii) Train and test model effects using
our protocol based on some classic datasets and machine learning models. We
will test and compare performance from aspects such as the average runtime of
clients per training round, server runtime, and communication volume.

To simplify non-critical parts of the experiment, we directly apply our LHAgg
protocol to model training aggregation by simulating it on separate machines.
The average client runtime is estimated by dividing the total runtime of the
client simulation part by the number of clients. Similarly, the server runtime is
represented by the corresponding part. The communication volume of a single
client with the server is represented by the sum of the average total communica-
tion volume per round. Our experiments will train a classic CNN model based
on the MINIST dataset to verify the usability of LHAgg.

As previously mentioned, our protocol is oriented towards PPFL systems,
where clients are typically mobile devices of different specifications in diverse
environments. Therefore, from the perspective of a single client, the protocol’s
communication volume has the most direct impact, and the client runtime is
shorter than the server runtime, since clients can be considered to run in paral-
lel, we only consider client communication cost. For the server, the server runtime
constitutes the majority of the protocol’s runtime, hence it is the primary indi-
cator in our experimental data. As shown in Fig. 1 and Fig. 2, we can observe
that, under the settings of 500 clients, 100K vector size, and RLWE polynomial
degree N=4096, the coefficient modulus size of 24 bits, the communication cost
for each client in one training round is approximately 0.55MB, and one round
of aggregation can be completed within about 90 s, indicating that LHAgg is
practical in terms of performance.

In addition to runtime and communication volume costs, concerning dropout
resistance, as our protocol structurally resembles HomoAgg, its dropout resis-
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Fig. 1. Server Run Time Fig. 2. Communication Cost

tance is essentially close to it, and the performance comparison under different
dropout rates with SecAgg and SecAgg+ can refer to the data in [20].

Fig. 3. Validation accuracy progression over training runs on MNIST. Batch size is
fixed to 128.

Model Accuracy. The MNIST database is a frequently used benchmark for
image recognition, composed of 60,000 training samples and 10,000 test samples.
Each sample is a 28 × 28 grayscale image of a handwritten digit. We train a clas-
sifier that includes two convolutional layers activated by ReLU, each followed by
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max pooling, and a densely activated ReLU layer with 32 nodes. Finally, classi-
fication is performed using a softmax layer. This model has a total of approxi-
mately 26,000 trainable parameters.

Under the setting of a fixed batch size of 128, after 200 epochs of training, our
MNIST model can achieve an average validation accuracy of 95.9%, close to the
results of FLDP [9]. Figure 3 shows the improvement in model accuracy during
the training process under different dropout rates, even with dropout clients, the
model will still converge after enough epochs, proving that our protocol can be
applied to machine learning models without affecting the final model accuracy.

5.3 Discussion and Future Works

The focus of LHAgg is to protect the data uploaded by clients, without con-
sidering the model distributed to clients during aggregation. Therefore, LHAgg
is still susceptible to the membership inference attack [30]. A natural solution
is to use schemes based on fully homomorphic encryption [31]. Furthermore,
for other known attacks against distributed machine learning, such as backdoor
attacks [32] and the Eclipse attack [33], our scheme can also be combined with
corresponding defense methods to counter these attacks.

6 Conclusion

We proposed an efficient post-quantum secure aggregation protocol LHAgg con-
structed by RLWE-based PRF. Without revealing the private input of the
clients, it computes the aggregation result of the encrypted gradients uploaded
to the central server by a group of clients participating in federated learning.
Moreover, LHAgg is a post-quantum PPFL protocol. Additionally, our proto-
col has two versions, each resistant to attacks from semi-honest adversaries and
active malicious adversaries, respectively. With appropriate parameter settings,
the performance of our protocol is proven to be practical. As post-quantum
cryptographic schemes develop, our protocol can further enhance post-quantum
security.
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Abstract. Machine learning enables organizations and individuals to
improve efficiency and productivity. With an abundance of data and
computational resources, large companies can build complex machine
learning models and provide prediction services to clients. One example
is decision tree evaluation, where a client can access the trained decision
tree model with its input and obtain the classification result. However,
the privacy issues on model parameters and clients’ inputs and results
need to be addressed. In this paper, we propose a privacy-preserving
decision tree evaluation scheme, where we first design an improved inter-
val encoding method that can hide parameters representing an interval.
Then, based on the interval encoding method, hash functions, and the
Diffie-Hellman key agreement technique, a model owner can generate a
set of encodings for the decision tree model and send them to a client,
who can determine the classification result based on its input and the
encodings. The proposed scheme conceals the model parameters from
clients and preserves the data privacy of clients, and only one round of
communication between the two entities is needed. We provide a formal
security proof that demonstrates the privacy preservation property of our
scheme. Performance evaluation shows the practicability of the proposed
scheme.

Keywords: Machine learning · Decision tree evaluation · Privacy
preservation

1 Introduction

With the high demand for machine learning in many industries such as finance
[1], manufacturing [2], and healthcare [3], machine learning as a service (MLaaS)
has spouted in recent years. It can provide out-of-the-box predictive analysis for
various use cases and offer tools that can accelerate the model building and
deployment. Small companies and individuals can use machine learning services
for their business or specific needs without investing in any specialized infrastruc-
ture. A popular predictive service for MLaaS is decision tree evaluation, which
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can be used for the diagnosis of diseases, detection of fraud, and investment
analysis. A decision tree is a machine learning algorithm that can be utilized for
classification and regression tasks. A decision tree model uses a tree structure
to make decisions based on input data. For the decision tree evaluation service,
high-tech companies can collect extensive training datasets and leverage their
strong computational and storage resources to train a large decision tree model
with high accuracy. Then, they can provide decision tree evaluation services for
clients, who have their inputs and wish to obtain the classification results for
the inputs, and gain benefits from clients.

Using the decision tree evaluation service, clients can obtain high-quality
classification results from a model owner at a low cost. However, there are some
privacy issues during the service. A client’s input may contain its sensitive infor-
mation such as health conditions and financial status, thus, it is reluctant to
send its private input to the model owner to obtain the classification result.
Meanwhile, the result can also contain private information of the client that
it prefers not to disclose to the model owner. On the other hand, the owner
cannot just send the model parameters to clients due to the following reasons:
First, the model is acquired after significant resource consumption and belongs
to the owner’s intellectual property; Second, through the model’s parameters,
one could potentially deduce sensitive information of the training dataset by
launching model inversion attacks [4]; Third, once the model is leaked or pub-
lic, the owner cannot consistently gain benefit from the model. Therefore, it is
desired to attain the classification result without leaking a client’s input and
output to the model owner and the owner does not need to share the original
model parameters with clients.

In recent years, there has been a few research work on privacy-preserving deci-
sion tree evaluation. Most of the work utilizes homomorphic encryption and the
garbled circuit [5–7]. The basic idea is that considering that there are many com-
parisons in a decision tree, the authors first design a secure integer-comparison
protocol based on homomorphic encryption, and with the comparison protocol
and public key encryption, a client can interact with the model owner to obliv-
iously obtain the classification result for its input without knowing the model
parameters. For methods using homomorphic encryption, there are usually mul-
tiple rounds of communication between the model owner and a client to ensure
that the client can decrypt the result on the correct path. Different from the
schemes that adopt public-key cryptographic techniques, Banerjee et al. [8] pro-
posed a privacy-preserving decision tree evaluation scheme, where the authors
first design an encoder that can hide parameters in an interval membership func-
tion, and then they utilize the encoder to construct an obfuscator for a decision
tree. The model owner publishes the obfuscator to enable privacy-preserving
decision tree evaluation by clients. However, there is a false positive problem in
their scheme. That is, in their encoding scheme for an interval, a value that is
not in the interval can be judged to be in this interval, resulting in the accuracy
problem for the decision tree evaluation. Moreover, once the obfuscated decision
tree model is public, the model owner cannot gain benefit from each client that
accesses the model.
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In this paper, we improve the scheme [8] by solving the accuracy problem in
it, and a model owner does not publish its model parameters. Instead, for each
client, it can generate a set of encodings for the decision tree model and gain
benefit from the client. An eavesdropping attacker cannot utilize the decision
tree evaluation service. To be specific, we consider a full binary decision tree,
i.e., the classification label can be 1 or 0, and there are two phases in our deci-
sion tree evaluation scheme. In the pre-processing phase, based on our modified
encoding method for an interval, a model owner can generate pre-encodings for
each leaf node with label 1. In the evaluation phase, a client sends its public key
to the model owner, who generates a secret key based on the Diffie-Hellman key
agreement protocol [9]. Then, the owner generates encodings for the decision
tree based on the results in the first phase and the secret key, and sends the
encodings of the tree to the client. The client also generates the secret key and
generates encodings for its input based on the key and our improved encoding
scheme. Then, the client can check whether there is any intersection between the
two encoding sets to attain the final classification result. The main contribution
of this work can be summarized as follows:

– We propose a privacy-preserving decision tree evaluation scheme where there
is only one round of communication between a model owner and a client, and
no complicated cryptographic operations such as homomorphic encryption is
involved.

– We provide a formal proof for the proposed scheme in the random oracle
mode. We demonstrate that an adversary cannot distinguish whether it inter-
acts with a model owner or with a simulator. Thus, model privacy is preserved.
Moreover, the model owner has no knowledge of clients’ inputs and outputs.

– We analyze the computational and communication overhead for our scheme,
and compare its performance with the scheme in [8] and PDTC [10]. The
results show that our scheme is more practical.

The rest of the paper is organized as follows: We review the related work
in Sect. 2, and we define the system model, the threat model, and design goals
in Sect. 3. In Sect. 4, we introduce the necessary preliminaries for designing our
scheme. In Sect. 5, we present the overview of our scheme and the detailed con-
struction. In Sect. 6, we provide a formal security proof for the proposed scheme,
followed by the performance evaluation in Sect. 7. We give conclusions in Sect. 8.

2 Related Work

In this section, we briefly review the existing literature pertaining to privacy-
preserving decision tree evaluation.

Bost et al. [5] first proposed three major classification schemes for hyperplane
decision, Naive Bayes, and decision trees respectively. For a decision tree, they
assign a boolean variable for each node of the tree and construct a polynomial
for the tree. The polynomial is a sum of terms, where each is a multiplication of
the decision value on a leaf node and boolean values related to the passing nodes
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that can lead to the leaf node. Moreover, fully homomorphic encryption (FHE)
is involved to preserve the privacy of clients. To avoid expressing a decision tree
as a high-degree polynomial, Tai et al. [6] proposed a privacy-preserving deci-
sion tree evaluation scheme where each path of a decision tree is represented as
a linear function. They exploit the structure of decision trees and put forward a
concept called path cost. The idea is as follows: Let b ∈ {0, 1} be the comparison
result as an internal node. The cost of the left (right) edge of the node is set to
be b (1−b) such that the sum of the edge cost along the correct path for an input
should be 0. The decision value of each leaf node is added to its randomized path
cost and the results are sent to a client. Wu et al. [7] first constructed a decision
tree evaluation protocol under a semi-honest model, and then they extended the
protocol to provide robustness such that it can defend against malicious attack-
ers. In their scheme, a model owner first permutes the decision tree, and then the
owner and a client engage in a secure comparison protocol such that the client
learns each comparison result in the permuted tree. In the end, the client can
obtain the classification result by executing an oblivious transfer protocol with
the owner. Liu et al. [11] proposed a privacy-preserving and practical decision
tree training and evaluation scheme in a twin cloud architecture. They improve
a secure comparison scheme proposed by Damgard et al. [12], and express a deci-
sion tree as a polynomial. A classification result can be derived by calculating
the polynomial. Xue. et al. [10] proposed a secure and privacy-preserving scheme
based on additively homomorphic encryption and the secret sharing technique.
In their secure two-party comparison protocol, the inputs of a client and a model
owner can be compared efficiently instead of in a bit-by-bit manner. Banerjee et
al. [8] proposed a non-interactive and privacy-preserving prediction scheme for
decision trees. They first designed a new technique for encoding interval mem-
bership functions, and applied the technique to the privacy-preserving evasive
decision tree evaluation. Hao et al. [13] proposed a privacy-preserving decision
tree evaluation protocol based on a lattice-based fully homomorphic encryption
scheme. The designed integer-comparison algorithm can resist quantum attacks.

3 Models and Goals

In this section, we first define our system model and the threat model, then we
give the design goals of this work.

3.1 System Model

As shown in Fig. 1, in our system, there are two types of entities: a decision
tree model owner (MO) and clients. MO collects training data and trains a
decision tree model for a specific application, for example, diagnosis of diseases.
MO can provide the decision tree evaluation service to different clients. Clients
can use the service provided by MO and pay to MO. However, MO is reluctant
to share its model with clients, and clients would like to preserve their data
privacy for both inputs and returned results. Thus, it is desired that at the end



404 L. Xue et al.

Fig. 1. System model

of the service, a client can learn the classification result without leaking both
the input and the result. Considering that clients may have limited computation
and communication resources, the overhead for clients should be small.

3.2 Threat Model

We assume both MO and clients are honest but curious, which means both par-
ties will correctly execute the protocol, but try to learn as much information as
possible during the protocol execution. The server wants to protect the decision
tree model, which includes the comparison function at each internal node, the
structure of the model, and the decision label at each leaf node. The data that
a client wants to protect are its input and the corresponding model output.

To avoid the model extraction attacks, we consider the evasive decision tree
model [8]. A decision tree model C is evasive if for every λ ∈ N and an input
x = (x1, . . . , , xn), Pr[C(x) = 1] ≤ ρ(λ), where ρ is a negligible function for
λ. For the evasive decision tree models, an adversary cannot extract the model
except with a negligible probability. In our system model, adversaries can be
clients, MO, or an external attacker, who can eavesdrop on the communication
channel.

3.3 Design Goals

There are two design goals for privacy-preserving decision tree evaluation, which
are security and efficiency.

– Security: A secure decision tree evaluation scheme should ensure the confiden-
tiality of decision tree model parameters and the privacy of clients, i.e., the
input vectors and model outputs are concealed from MO. Meanwhile, clients
can obtain accurate classification results.

– Efficiency: Clients may be resource-constrained and MO also wants to reduce
the overall protocol run time. Thus, the interaction between MO and clients
as well as the computational cost of them should be small.
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Fig. 2. A decision tree

4 Preliminaries

4.1 Decision Tree

A decision tree is a popular machine learning algorithm and is usually used for
classification tasks. Given an input and a decision tree model, one can get the
corresponding classification result for the input after the decision tree evaluation.
A decision tree has an inverted tree structure, where each internal node is related
to a comparison function. For simplification, we consider a full binary tree T of
depth d as shown in Fig. 2. The root node is at level 0, and leaf nodes are at level
d. There are 2d leaf nodes (l1, . . . , l2d) and 2d − 1 internal nodes (v1, . . . , v2d−1),
where v1 is the root node. Let {n, l} ∈ N and [n] denote {1, . . . , n}. An input is
of the form X = (x1, . . . , xn), where xi ∈ [0, 2l). Each internal node vj is related
with an index i of xi (i ∈ [n]) and an integer tj , where tj ∈ [0, 2l) and is an
integer. For each internal node vj , where j ∈ [2d − 1], comparison function gj

outputs 1 if xi ≤ tj , and the left branch of vj is taken. Otherwise, it outputs
0, and the right branch of vj is taken. Each leaf node {lk}k∈[2d] is related to a
specific class or a decision label, which is denoted as zk.

For the evaluation of an input X, the decision tree algorithm traverses the
decision tree from the root node and follows the appropriate path based on
the comparison results at the internal nodes. The classification result of X is
the decision label of the reached leaf node. In this work, we only focus on the
prediction phase of a decision tree model and how the model is trained is out of
the scope of this paper.

4.2 Obfuscator

An obfuscator is a probabilistic polynomial-time algorithm that makes a pro-
gram difficult to understand or reverse engineer while preserving its function-
ality. Barak et al. [14] provide the definition of an obfuscator O, which is an
efficient “compiler" that takes as input a program P and outputs a new program
O(P ) that satisfies the subsequent two properties.

– Functionality: O(P ) performs the identical function as P .
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– “Virtual black box" property: Anything that can be efficiently derived from
O(P ) can also be efficiently derived when provided with oracle access to P ,
i.e., one can only have input-output access to the program.

4.3 Computational Diffie-Hellman (CDH) Problem

For a multiplicative cyclic group G of order q and g is a generator of the group.
Given (g, ga, gb) for some a, b ∈ Zq, a probabilistic polynomial-time (PPT) adver-
sary A is required to output gab. The success probability of A in solving the CDH
problem is defined to be:

SucCDH
A,G = Pr[A(g, ga, gb, gab) = 1 : a, b ∈R Zq]

The CDH assumption [15] is that for every PPT A, SucCDH
A,G is negligible.

5 Our Constructions

5.1 Overview

Let the input of a client (C) be a vector X = {x1, . . . , xn}, where xi ∈ [0, 2l).
At an internal node vj , an {xi}i∈[n] is compared with tj , where tj ∈ [0, 2l) and
is related to vj . If xi ≤ tj , the left branch of vj would be taken. Otherwise, the
right branch would be taken. We assume that each xi is compared at most twice
during the decision tree evaluation. Thus, after going through a path, each leaf
node corresponds to n intervals {Ii}i∈[n] for each {xi}i∈[n], and the intersection
of these intervals represents a leaf node, which has a decision label. Without
loss of generality, we consider a full binary decision tree, i.e., the decision label
can be 0 or 1. To avoid the model extraction attacks, we focus on the evasive
decision tree model [8].

There are two phases in our scheme: the preprocessing phase and the evalu-
ation phase. To reduce the interactions between MO and C, in the preprocessing
phase, for each leaf node with label 1, MO first encodes each interval {Ii}i∈[n],
and then it encodes the intersection of the intervals. In the second phase, C
requests the decision tree evaluation service with an input X, and C sends its
public key pkC to MO. Based on pkC , MO generates the encodings of leaf nodes
with label 1, which we call the encodings (EM ) of the decision tree model, and
sends them to C. C also generates the encodings (EC) of its input. Then C can
check whether there is intersection between EM and EC . If an intersection exists,
the evaluation result for the input is 1. Otherwise, the result is 0.

5.2 Detailed Scheme

Notation: Let λ be a security parameter. A function ρ : R → R is negligible
in λ if for any b > 0, we have |ρ(λ)| < 1/λb. In our scheme, a client’s input is
X = (x1, . . . , xn) where xi ∈ [0, 2l) and are integers, and n, l are polynomials in
λ. The depth of the decision tree is d. The internal nodes and the leaf nodes are
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represented as V = {v1, . . . , v2d−1} and S = {s1, . . . , s2d}. Each internal node
is related with a comparison function gj , whose inputs are tj ∈ [0, 2l) and an
{xi}i∈[n], and the output is bj ∈ {0, 1}. |X | denotes the number of elements in a
set X . Table 1 lists some important parameters in our scheme.

Table 1. System parameters

Acronym Definition

X Input vector; X = (x1, . . . , xn)

Ii Interval of xi for a leaf node; i ∈ [n]

u, u′ Hamming weights
H Hash function; H : {0, 1}∗ → {0, 1}w

EI A set of encodings of an interval I

In the following, we first introduce our improved interval encoding method,
which is a building block for our privacy-preserving decision tree evaluation
scheme. Then, we present our detailed scheme, which includes the pre-processing
phase and the evaluation phase.

Interval Encoding. In the decision tree evaluation with an input X = (x1, . . . ,
xn), the comparisons on an xi along each path such as xi ≤ tj and xi > tj′ form
an interval Ii. Following the idea of [8], an interval can be encoded as some
sub-intervals of the form [a, a + 2ζ), where a ∈ [0, 2l) and ζ ∈ {0, . . . , l}. To be
specific, a comparison x ≤ t, where x, t ∈ [0, 2l), can divide the interval [0, 2l)
into two parts: X ∈ [0, t + 1) and X ′ ∈ [t + 1, 2l).

For the interval X = [0, t+1), we can split it into several sub-intervals based
on the binary representation of |X |. Specifically, we first calculate the hamming
weight of |X |, which is the number of 1 in the binary representation of |X |,
and we denote it as u = hw(|X |). Then, we record the bit positions of 1 in the
binary representation of |X |, which are p1, . . . , pu, where p1 > · · · > pu, and
the bit positions can be {0, . . . , l}. Interval X can be divided into u disjoint
sub-intervals [aj , aj + 2pj ) where j ∈ [u] and a1 = 0. Take X = [0, 38) and
l = 6 as an example, where |X | = 38 and the binary representation of |X |
is 100110. p1 = 5, p2 = 2, and p3 = 1. Thus, a1 = 0, a2 = a1 + 25 = 32,
a3 = a2 + 22 = 36, and a4 = a3 + 21 = 38. The sub-intervals for X = [0, 38) are
IX = {[0, 32), [32, 36), [36, 38)}.

For the interval X ′ = [t′ + 1, 2l), we can also divide the interval into several
intervals based on the binary representation of |X ′|. Let u′ be the hamming
weight of |X ′| and p1, . . . , pu′ denote the bit positions of 1 in the binary encoding
of |X ′|, where p1 < · · · < pu′ . Then, the interval X ′ can be partitioned into u′

sub-intervals [aj , aj + 2pj ), where j ∈ [u′] and a1 = t′ + 1. Take X ′ = [24, 64) as
an example. For interval X ′, |X ′| = 40, and its binary representation is 101000.
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p1 = 3 and p2 = 5. Thus, a1 = 24, a2 = a1 + 23 = 32, and a3 = a2 + 25 = 64.
The sub-intervals for X ′ are IX ′ = {[24, 32),[32, 64)}.

Based on IX and IX ′ , one can obtain the intersection (I) of the two intervals
X and X ′, which is also a set of sub-intervals of the form [aj , aj + 2t) for some
t ∈ {0, . . . , l} and aj ∈ [0, 2l). Let k = |I|, which is the number of the sub-
intervals in I. To encode these sub-intervals, we first define a family of functions
F = {f0, . . . , fl−1}, where fi(y) : {0, 1}l → {0, 1}l−i is defined as fi(y) = � y

2i �.
Let H : {0, 1}∗ → {0, 1}w be a hash function such that l < w and w is polynomial
in λ. Moreover, H is injective on all the strings of length less or equal to 2l. With
F , H, and I, we can encode the interaction I as several hash values as below:

– I can be represented as a set of {[aj , aj +2t)}j∈[k]. For each j ∈ [k], compute
ηj = ft(aj).

– Calculate hj = H(2t||ηj), where 2t ∈ {0, 1}l. If the length of 2t is less than l,
prepend some 0s to the string.

– The encodings of I are {h1, . . . hk}, which we denote as a set EI .

To check whether an element x ∈ [0, 2l) belongs to one of the sub-intervals
of the intersection I, one can first calculate fi(x) and H(2i||fi(x)), where i ∈
{0, . . . , l − 1}, and check whether H(2i||fi(x)) ∈ EI .

We can see that if x is in I, there exists an i ∈ {0, . . . , l − 1} and a j ∈ [k]
such that fi(x) = ηj and hj = H(2t||ηj) = H(2i||fi(x)). With the input being
the concatenation of 2t and ηj , the output hj fixes an interval of I. For x that
does not belong to I, there is no intersection between H(2i||fi(x))i∈{0,...,l−1} and
the encodings of I.

Pre-processing Phase. In this phase, MO generates pre-encodings for its
decition tree model. For decision tree evaluation, since each {xi}i∈[n] is com-
pared at most twice in a path, xi > ci and xi ≤ (ci + wi) generates an interval
xi ∈ (ci, ci + wi], where ci, ci + wi ∈ {tj}j∈[2d−1]. Thus, each leaf node can be
represented by the intersection of n intervals, as the result of a conjunction of
comparisons.

MO encodes each leaf node with label 1 as follows:

1. For i ∈ [n], generate the encodings for the corresponding interval of xi. That
is, MO first generates a set of sub-intervals (Ii

X) for the interval [0, ci+wi+1),
and then generates a set of the sub-intervals (Ii

X′) for [ci +1, 2l). After that,
MO determines the intersections of these two sets, which is denoted as Ii.
Then, MO uses functions F and H to obtain the encodings of Ii, which is
denoted as a set EIi

= {hi
1, . . . , h

i
ξi

} and ξi is |EIi
|, where ξi ≤ l.

2. For i ∈ [n] and j ∈ [ξi], generate strings with the form ||ni=1h
i
j . That is, for all

i ∈ [n], MO chooses an element in EIi
and concatenates n entries in different

EIi
in order. The resulting strings are the pre-encodings of the leaf nodes

with the decision label 1, which is denoted as a set A. Denote γ = |A|.
In the pre-processing phase, MO also generates its private-public key pair.

Let G be a multiplicative group of integers modulo p, where p is a prime and g
is a primitive root modulo p.
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MO randomly chooses an skM ∈ Z∗
p , and computes pkM = gskM mod p. The

private-public key pair for MO is (skM , pkM ). Let Hd : {0, 1}∗ → {0, 1}κ be
a hash function, where κ is polynomial in λ. MO publishes public parameters
pp = {G, p, g, pkM , l, n, F,Hd, γ}.

Evaluation Phase. In this phase, a client C requests the decision tree model
evaluation service from MO and obtains the classification result for its input.

C first creates its private key and public key as follows: it chooses a random
skC ∈ Z∗

p , and computes pkC = gskC mod p. The private-public key of C is
(skC , pkC). Then, C with input Y = {y1, . . . , yn} generates the encodings for its
input as follows:

1. For each {yi}i∈[n], C computes Eyi
= {H(20||f0(yi), . . . , H(2l−1||fl−1(yi))},

which are denoted as Eyi
= {hi

1, . . . , h
i
l}.

2. C calculates s = pkskC

M mod p, which can be seen as a secret shared by MO
and C.

3. For each i ∈ [n] and j ∈ [l], C computes Hd((||ni=1h
i
j)||s), and for each i, the

input can only contain one element in Eyi
. That is, for each i ∈ [n], C chooses

one of the hashes in Eyi
, concatenate them together in order of i, and add s

at the end of the string. Then, C put the string into hash function Hd. The
resulting hash values, which we denote as a set B, are the encodings of C′s
input Y .

To obtain the evaluation result for input Y , C initiates a connection to MO,
and sends pkC to MO. MO then computes s′ = pkskM

C mod p. After that, for
each string s̄i ∈ A, where i ∈ [γ], MO calculates h̄′

i = Hd(s̄i||s′). The set of all
h̄′

i is denoted as a set A′. MO sends set A′ to C.
We can see that if Y belongs to the class with label 1, there is a hash value

α in B such that α ∈ A′, as Y would reach one of the leaf nodes with label 1
in the decision tree. Thus, the client can check whether there is an intersection
between set A′ and set B. If that is the case, the classification result for input
Y is 1. Otherwise, the result is 0.

6 Security Proof

In this section, we prove that the proposed privacy-preserving decision tree eval-
uation scheme is secure in the random-oracle model.

In our scheme, client C does not need to send its input to MO. MO sends
a set of encodings of its decision tree model to C, who compares the elements
in sets A′ and B to obtain the model output. Thus, C′s inputs and outputs are
not leaked to MO. We will prove that set A′ does not leak the parameters of the
model, which include the comparison functions at each internal node and the
labels at each leaf node. Set A′ can be seen as an obfuscator of the decision tree
model. We follow the definition of the security model in [8], where an obfuscator
scheme is secure if it achieves the property of virtual block-box, i.e., anything
that can be efficiently computed by O(C) can also be efficiently computed only
given oracle access to C. The formal definition of the security model is as follows:
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Definition 1. Let λ be a security parameter. Denote C = {Cλ} be a family
of polynomial-size programs with input of length n(λ). Let D = {Dλ} be a set
of distribution ensembles, in which Dλ is a distribution over Cλ. Virtual black-
box obfuscation for the family C and the distribution D satisfies that: For a
probabilistic polynomial-time (PPT) adversary A, there exists a polynomial size
simulator S with oracle access to C such that

|PrC←Cλ
[A(O(C)) = 1] − PrC←Cλ

[SC(1λ) = 1]| ≤ ε(λ)

where ε(λ) is a negligible function.

Next, we prove the security of our scheme based on the security model.

Theorem 1. The proposed scheme securely executes the decision tree evaluation
under random oracle model, provided that the two hash functions H : {0, 1}∗ →
{0, 1}w and Hd : {0, 1}∗ → {0, 1}κ are collision-resistant [16] and the CDH
problem is hard.

Informally, we prove that the advantage of an attacker, who can access the
obfuscated decision tree model (O(M)), in obtaining the parameters of the model
is not larger than a simulator which can access an oracle of the decision tree
model, which can be proved by construct a simulator such that the adversary
cannot distinguish whether it is interacting with O(M) or the simulator. The
detailed proof is as follows.

Proof. We model the hash function H : {0, 1}∗ → {0, 1}w and Hd : {0, 1}∗ →
{0, 1}κ as random oracles. Let Cλ be a family of full binary decision trees. For
every C ∈ Cλ, each leaf node with label 1 is parameterized by (c1, . . . , cn) and
(w1, . . . , wn), where for i ∈ [n], ci, wi ∈ [0, 2l). C evaluates whether an input
x = (x1, . . . , xn) reaches one of the leaf nodes with label 1.

Let (pkS , skS) and (pkA, skA) be public-private key pairs for S and A, respec-
tively. For the encodings of the decision tree model, given γ and pkA, S randomly
chooses γ elements {h′

1, . . . , h
′
γ} from the co-domain of Hd as the simulated

encodings for the model.
A simulator S can simulate the oracles H and Hd as follows: S maintains

two tables T1 and T2 to record the inputs and outputs for H and Hd. Initially,
T1 and T2 are empty. For the encodings of A′s inputs, we assume that A needs
to first access random oracles H and Hd, and A can make polynomially many
queries to the oracles. For oracle H, we denote (u, v) to be a query submitted
by A and the result returned to A respectively. When oracle H receives a new
query u′, it first checks whether u′ exists in table T1. If u′ is in T1, S returns the
corresponding v′. Otherwise, S randomly choose a value v′ from the co-domain
of H, adds (u′, v′) to T1, and returns v′.

For oracle Hd, in our scheme, A can access Hd with an input of form
(||ni=1h

i
j)||s, where s is a secret key owned by A and O(M). When a new Hd

query is submitted, S first checks whether the query exists in T2. If that is the
case, S returns the same output to A. Otherwise, an input s∗ should be a con-
catenation of n outputs of oracle H followed by a secret s. S parses the input
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as two parts. The first part is a sequence of n strings (si)i∈[n] and is of length
nκ bits. The second part should be the binary representation of pkskS

A . S first
checks whether the second part (s) is correct based on its private key and A′s
public key. If s is not correct, S randomly chooses a value val from {0, 1}κ, and
adds (s∗, val) to table T2. Otherwise, for the first part, S searches table T1 to
check whether all {si}i∈[n] are in T1. If not, S randomly chooses a val ∈ {0, 1}κ,
and assigns val as the output of hd for s∗. Otherwise, for each si which is an
output of oracle H, S finds the input ui such that (ui, si) is in T1. Then, based
on {ui}i∈[n], which is in the form of 2ti ||ai and 2ti ∈ {0, 1}l, S recovers xi as
xi = 2t × ai. With the recovered x∗ = (x1, . . . , xn), S submits x∗ to an oracle
(O(C)) of the decision tree model.

If O(C) returns 0, S randomly chooses a value val from {0, 1}κ, and adds
(s∗, val) to table T2. Otherwise, based on x∗ and O(C), S determines (c1, . . . , cn)
and (w1, . . . , wn) using Binary search such that if xi ∈ (ci, ci +wi] for all i ∈ [n],
the decision tree output is 1. Based on (ci, ci+wi], S can calculate the encodings
of these intervals, and obtain a set of pairs of (u, v). S adds the pairs of (u, v)
in T1. If there exists (u′, v) in T1, and u′ �= u, S aborts. Based on the set of
inserted v, S calculates the inputs for Hd, where each input is a concatenation
of n hash values followed by the correct s, as described in our scheme. S also
marks these inputs with flag 1. For an input with flag 1, S assigns a value from
the set {h′

1, . . . , h
′
γ}, which is chosen initially by S, as its output, and adds this

input and its output to table T2.
We can see that the probability of S aborts is equal to the conflicts that

occur in T1, which is negligible if H is collision-resistant. Thus, the simulated
view provided by S is identical to the real view, and A cannot differentiate
between them. Therefore, the advantage of A is no larger than the simulator S
that can only access an oracle of C. Furthermore, since the intractability of the
CDH problem, an adversary without the secret s cannot obtain the encodings
of the decision tree model.

7 Performance Evaluation

For the performance of our scheme, since MO can calculate pre-encodings for
its decision tree model in the pre-processing phase, the computational cost for
MO in the evaluation phase is small. To be specific, in the first phase, we omit
the computation cost to generate a set of intervals (Ii) for each xi ∈ X, where
i ∈ [n] and the intervals are fixed for each leaf node with label 1. To generate
the encodings (EIi

) for each Ii, at most l hash operations, i.e., H evaluation,
are needed. For the pre-encodings of the decision tree model, MO only needs to
generate concatenations of n encodings from EIi

in order, where i ∈ [n]. Thus,
in the preprocessing phase, the computational overhead for MO is ln · T (H),
where T (H) denotes the time cost for a hash evaluation on H.
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For the evaluation phase, client C needs to execute an exponentiation oper-
ation in group G to obtain the secret s. We denote T (EXP ) as the time cost
for the exponentiation operation. To compute the encodings (B) of its input
Y = {y1, . . . , yn}, C would execute ln hash operations on H for Y and at most
ln hash operations on Hd. Thus, the computation overhead for C is ln · T (H)
+ln · T (Hd) +T (EXP ). For MO, if the number of leaf nodes with label 1 is
a, MO needs to execute an exponentiation operation in group G and aln hash
operations on Hd. Let T (Hd) denote the time cost for a hash evaluation on Hd.
In this phase, the computation overhead for MO is aln · T (Hd) +T (EXP ). For
the communication overhead, there is only one round of communication between
MO and C, and the communication overhead is |p|+κaln. Note that since pkMO

is public, only C needs to transmit its public key pkC to MO. When |p| = 1024,
κ = 256, and a = 1, two example parameters [8] for decision tree models and the
communication overhead of our scheme are shown in Table 2. Since we assume
that an {xi}i∈[n] can be compared at most twice, d should be less than 2n.

Table 2. Communication overhead in two examples

d l n λ Communication cost (bits)

5 64 4 128 1024 + 644

3 64 2 64 1024 + 642

To evaluate the computational cost of our scheme, we first test the time
cost for the hash operation and the exponentiation operation in group G on a
notebook with Intel(R) Core(TM) i5-1135G7 @ 2.40GHz and 16 GB RAM. In
the simulation, the Miracl library [17] is invoked. When |p| = 1024 and w =
κ = 256, the average time cost for a hash operation and an exponentiation
operation is 0.006 ms and 0.56 ms. Compared with the scheme in [8], the overall
computational overhead of our scheme is around 1 ms higher. However, there is
no false positive problem in our scheme.

Considering that a client may have limited computational resources, we com-
pare the computational cost on the client side with PDTC scheme [10] when the
decision nodes in a tree range from 32 to 512, where a = 1, l = 16, and n = 5.
The computational results are shown in Fig. 3.

We can see that when n and l are small, the computational cost of the client
in our scheme is fixed while for the PDTC scheme, the computational cost of
the client increases with the number of decision nodes in the tree. From Fig. 3,
when the number of the decision nodes is larger than 350, our scheme has a less
computational cost for the client than PDTC [10].
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Fig. 3. Computational cost on a client vs. the number of the decision node

8 Conclusions

In this paper, we proposed a new privacy-preserving decision tree evaluation
scheme, where based on the improved interval encoding method and a negotiated
secret key, a model owner can create an obfuscated decision tree model and send
the encodings of the tree to a client, who can also encode its input and compare
the two set of encodings to attain the final classification result for its input.
No complex cryptographic operations needs to be performed by two entities,
and they only require a single round of communication. Formal security proof
demonstrates that our scheme can achieve model privacy for the model owner
and data privacy for clients. In future work, we will focus on further improving
the efficiency of the evaluation for the decision tree models and other machine-
learning models.
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Abstract. Education 4.0 provide strong talents for Industry 4.0. To bettermeet the
needs of enterprises for talents, higher education needs to formulate corresponding
education measures. Using the Internet of things technology combined with the
concept of education 4.0 to provide a guarantee for industry 4.0 is a useful solution,
this paper makes relevant research and discussion on this issue, including what
are the technical challenges faced by higher education under the requirements
of education 4.0, and how to match university education and social needs under
the requirements of Education 4.0.According to the proposed problem statement,
this paper proposed a based concept of OBE education educational framework
4.0, expecting to set up the cultivation of the enterprise associated indicators,
drawing portraits method, assisting the talent demand of college and enterprise
and establishing a good educational circle. The designed framework and indicators
have been demonstrated and analyzed through research and investigation and have
certain pertinence and typical significance.

Keywords: Industry 4.0 · Education 4.0 · Portrait drawing · Talent cultivate ·
University Innovation

1 Introduction

1.1 A Subsection Sample

A highly industrialized and data-intensive advanced society requires a highly skilled
workforce, and the requirement of digital transformation reshaping the way industrial
business processes, just as the current Industry 4.0 transformation, also requires a higher
quality workforce. The concept of Education 4.0 is to solution of this situation, which
focused on securing the future workforce of Industry 4.0-a conception that emerged
from the German Industrial Revolution with a scientific, technological, and industrial
base [1] and was framed by DIN [2]. Among them, digital education Ecosystem (DEEs)
is the result of education digitization and digital technology promotion. DEE refers to the
structure connected to each other in educational activities and different geographically
distributed e-learning information and communication technology (ICT) infrastructure,
information systems which connected through the Internet of Things (IoT) and cyber-
physical systems (CPS) [3]. Education 4.0 is a guarantee to serve Industry 4.0. Figure 1
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illustrates these concepts and illustrates theflowof data and information among the devel-
opment of the Education 4.0 ecosystem (e.g., students, educators, universities, schools,
enterprises). The information exchange of technology and knowledge is to ensure the
availability of the high-quality workforce required for Industry 4.0. It is essential to
ensure interoperability across the industry 4.0 ecosystem [4]. To solve this future labor
demand, the demand for education is constantly increasing, and the concept of Education
4.0 has also emerged. Different from the high attention and maturity of Industry 4.0, the
topic of Education 4.0 is still in the early stage, and the research work does not have
a very clear direction. Establishing the link between the necessity of Industry 4.0 for
workforce skills and capabilities and exploring the cooperation between the emerging
digital education ecosystem and Education 4.0 are the topics of high concern at present.

Fig. 1. DEE and Industry 4.0

1.2 Problem Statement

The importance of Education 4.0 has been gradually recognized in recent studies, and it
is also a newly emerging hot research field [5]. Education 4.0 combines many emerging
technologies. For example, students can use artificial intelligence (AI), cognitive tech-
nology, data analysis, Internet of Things (IoT) and other methods to make their learning
more suitable for their needs, and teachers can combine traditional classrooms and vir-
tual classrooms for various training activities [6]. The research focusing on education 4.0
is still relatively scattered and has not formed a coherent view for the time being. How
IoT technology combined with the concept of education 4.0, and to provide protection
for industry 4.0 is a problem statement that worthy of study. This paper makes relevant
research and discussion on this issue, including:

(1) What are the technical challenges faced by higher education under the requirements
of Education 4.0?

(2) How to match university education and social needs under the requirements of
Education 4.0?
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This paper introduces the technical challenges in Education 4.0. Then, with the
help of OBE concept, the education 4.0 framework based on the IoT is proposed. The
designed framework set effective university education goals based on enterprise needs,
and effectively assists both schools and enterprises in quality assessment. Finally, the
paper concludes with a summary and future prospect.

The organization structure of this paper is as follows; the relevant literature review is
carried out on the next chapter. The technical challenges faced by the education model of
Education 4.0 are expounds, and the OBE concept is introduced. Then the framework of
higher education under Education 4.0 is designed and explained in the scheme. Finally,
is the summary and prospection.

2 Recent Research

2.1 Education 4.0

Education 4.0 is a new paradigm in the field of teaching, which aim to help students and
new generation learners for the upcoming industrial experiment revolution [7], which
requires new skills, including but not limited to advanced robotics, industrial Internet of
Things (I-IoT) technology, 3D printing technology and other cutting-edge technologies.
In addition, after the impact of the COVID-19 epidemic, the traditional education indus-
try has also found that it needs to accelerate the transition of personalized education,
which is also part of the connected digital ecosystem. Traditional education relies on
face-to-face teaching with hard copy materials, and all assessments and examinations
are paper based, limiting space and time for teaching and training. The connection of
digital information brings a new dawn to this situation. Through a variety of digital
technologies, many learning materials, such as video lectures, audio books, etc. can be
more effectively. With the help of it, electronic handouts can be widely used at anytime
and anywhere. It is also easy to obtain any type of information in a short period, such as
computer-based examinations can provide results and feedback to students immediately.
In addition, Education 4.0 also looks forward to the use of AI to assist self-regulated
learning, with smart sensors and wearable devices, AR/VR can assist distance learn-
ing facilities to enhance the remote presence and distance learning experience [8]. This
AI-based assessment and early progress recognition system, enabling students to learn
at their own pace and supporting student success [9]. Furthermore, a flexible and more
immersive learning environment is expected to be provided in the future, such as the facil-
ities of smart campus. The description above is the potential development of education
4.0 content, and IoT devices will make a great impacted in education 4.0.

In the self-adaptive framework of Education 4.0, [10] introduced the benefits of
information obtained through intelligent devices, including biofeedback information of
students’ physiological data. AI algorithms can improve self-regulated learning, provide
suggestions to improve teaching effects and protect students’ health.UsingAI algorithms
education 4.0 can improve the well-being and health of students [11]. Through big
data collection, groups with strategic importance to students’ success can be identified,
supervision and reminder can be maintained when students are at risk [12]. Also using
“intelligent” remote tutors in Education 4.0 to answer simple questions with expertise
from lecture manuscripts through Natural Language processing (NLP), text mining, and
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biofeedback [13]. These are the requirements that traditional education cannot provide,
and the advances brought by technology will continue to widen the gap between this
two, which lead to an increasing difference between the requirements of academia and
industry.

2.2 Opportunities and Challenges

Education 4.0 is the future of the education system. Future education will create ubiq-
uitous, immersive, adaptive, and personalized learning experiences, which imposes
requirements for the rapid delivery of information. For example, students and researchers
need to connect and control physics university laboratories remotely, which was previ-
ously difficult to ensure due to the bandwidth limitations of mainstream communication
networks (e.g., remote handling of robots located in university laboratories requires very
high communication performance), but with the development of 5G communication
technology, these challenges will continue to be solved. Article [14] provides a vision of
Education 4.0 by emphasizing the key role of 5G as an enabler. Key enabling technolo-
gies and use cases for Education 4.0 are also investigated, especially for remote labor
and training cases. In addition, the technical challenges of Education 4.0 are identified
and potential 5G solutions are evaluated. Finally, the remote circuit design laboratory
prototype is used as a case study to discuss teaching and learning perspectives, and to
emphasize the necessity of 5G for education 4.0, which will bring new development
opportunities to more traditional industries.

However, the research field of education 4.0 is expanding, there are still facing many
challenging. For example, the security link of hardware resources. There is no clear
agreement on how ICT infrastructure, e-learning systems, devices, sensors, and data
information should be related to each other, and the implementation of interoperableDEE
is still not realized. In addition, there is the issue of resource provision and distribution.
For educational institutions, educational resources are limited within the management,
such as the shortage of teaching staff, the high cost of acquiring and implementing
new technologies, the difficulty of curriculum redesign, and some other problems of
educational institutions themselves.

The protection of data and information flow in Education 4.0, and the execution
of DEE are also a key factor to be considered. For example, to avoid unauthorized
access to stored information, security attacks and misuse of data. It is important to have
regulations and appropriate tools or mechanisms in place to ensure security and privacy,
especially when educational institutions collect or store private identity information.
It is also mentioned in [15] that the challenges faced by Education 4.0 include: lack
of technology infrastructure and technical support, reluctance of educators to adopt
Industry 4.0-compliant technologies in teaching, and lack of legislation and regulations
for data protection and privacy. In addition, digital infrastructure, effective financial
planning, revised curriculum are all challenges that must be faced. In addition to the
above problems, how to improve the problems in traditional education is also a problem
in the development of Education 4.0.
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Ananalysis of the relevant literature identifiedfive technical challenges forEducation
4.0 and DEE that have not yet been adequately addressed:

a. ICT infrastructure [16, 17]. Realizing the vision of Education 4.0 requires the design
of adequate architecture and ICT infrastructure.

b. Interoperability. DEE and digital factories embed heterogeneous ICT infrastructures,
(e-learning) systems, sensors, and devices that need to exchange data and interpret
data in the same protocol.

c. Developing AI methods and algorithms for education [18, 19].
d. Implement the Education 4.0 vision to use and provide the latest technologies in

educational activities.
e. Security, data protection, and privacy [14].

2.3 OBE

Outcomes-based education (OBE),which is an educational concept, should be paid atten-
tion to in the research of Education 4.0. This concept originates from the engineering
education accreditation (EEA) system, which is an important direction of engineering
higher education reform. OBE is output oriented education, which is an advanced con-
cept, followed by the reform and practice of higher education at home and abroad. The
OBE concept, first introduced by Spady in 1981, advocates that everyone can succeed
and focuses on the achievement, maintenance, and assurance of student learning. In
the teaching field, teachers and students must be familiar with their learning outcomes,
encourage students to achieve higher standards than before through deep learning, and
emphasize that teachers should continuously improve teaching conditions to facilitate
students to achieve learning outcomes. This concept proposes a higher standard for
improving the quality of higher education, requiring all educational activities and cur-
riculum design around learning outcomes. At the same time, it also shown a certain
direction for the reform and practice of higher education, that is we must pay attention
to the training mode of students ‘post-education ability with special emphasis on ability
training and learning output. The OBE concept emphasizes outcome orientation, which
requires teachers to incorporate training objectives, work needs and practical ability into
the course design, which can improve the teaching effect and the quality of talent training
[20].

OBE is a performance-based approach to education for the development of advanced
higher education curricula and is becoming the de facto standard in many established
and emerging education systems, such as Europe, USA, Australia, Malaysia, India. This
approach focuses on developing applied skills rather than emphasizing eloquence in the
educational process. The applied learning or skill development of students in OBE is
defined by the result, and the process development is defined by implementing the goal,
which promotes the definition of the course and its organization, the selection of course
content, teaching methods and assessment process. Thus, OBE is an outcome education
approach in which decisions about courses are driven by the learning outcomes that
students should demonstrate at the end of each course and at the end of graduation.
This OBE mechanism is essential to produce knowledgeable, creative, highly skilled,
flexible, innovative engineering graduates with critical thinking, problem solving, and
entrepreneurial spirit to meet the challenges of the fourth industrial revolution [21]. OBE
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creates an atmosphere where students are driven by what they can learn and use to solve
real life problems. Therefore, OBE is inductive teaching, which many scholars believe
it is a better way to motivate students to learn. In inductive teaching, the teacher presents
students with a specific challenge at the beginning, such as a complex problem. OBE
defines the process and practice of engineering education the real-world problem to be
solved, the data to explain a particular research phenomenon, or the case study to be
analyzed. The learning process is supported by high quality shared resources, teaching
and assessment and follows standards. In a nutshell, OBE is a combination of three
capabilities:

a. Practicality: the ability to know how to do things and make decisions.
b. Fundamentals: Understanding what you are doing and why.
c. Reflective: learning and adaptation through self-reflection; Apply knowledge appro-

priately and responsibly. Learners take responsibility for their own learning and are
motivated by feedback and affirmation of their own worth [22].

With the development of education 4.0, the OBE concept can better carry out its
results-oriented goals and use digital means to assist in talent training education, which
will be a big integration opportunity of education 4.0 and OBE concept.

3 Framework of University Talent Portrait for Industry Demand

The digitalization of the economy and the transition to Industry 4.0 requires creation of
an educational system that not only creates professional competencies for future engi-
neers, but also enhances their creativity. At the same time, incentive systems play an
important role, as personal interest in your future career allows you to make informed
choices, ensuring future career development and job satisfaction in this respect. The
implementation of a progressive learning approach will provide synergies that improve
the quality of processes in transportation, production, education, and other systems. The
accumulated experience shows that the use of modern learning methods in engineer-
ing education contributes to the development of engineering competencies, which are
necessary for high-tech companies and industries. The engineering education system
needs to be improved so that the educational environment motivates students to pursue
engineering majors [23].

To ensure it, [24] describes a framework for the deployment of new teaching and
learning systems for the industry 4.0 vision, based on three dimensions: technology,
teaching, and organization. The authors also introduce two case studies involving col-
laborative networks and open innovation to demonstrate the use of the proposed frame-
work. Education 4.0 needs to guarantee six dimensions: knowledge, skills, and qualifi-
cations; Teaching; Learning; Implement the vision and teaching method of Education
4.0. Electronic assessment and quality assurance. Some researcher discusses different
technologies for education 4.0 that can be realized through 5G communications:
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The digitization of educational systems cannot be limited to the creation of digital
copies of familiar textbooks, the digitization of documents, and digital teacher training.
The digital economy requires a comprehensive approach to education systems that will
set new goals and change the structure and content of the education process. One such
promising area of activity is to enhance the use of resources. The decision-making
system based on the data processing results of learners’ digital twins will not only help
to improve the informatization of the educational process, but also to improve the entire
educational institution [25].

Combined with the OBE concept, colleges carry out oriented talent training accord-
ing to the needs of the industry, aiming to cultivate talents with the needs of the industry.
Therefore, it is necessary to keep close to the latest industry trends, collect data in stages,
and customize the final data evaluation project.

SDLC is a process to generate high quality and low-cost applications in minimum
time. It provides a well-structured step flow that helps businesses easily produce high-
quality, well-tested, ready-to-use software products [26]. SDLC’s goal is to produce
quality software that meets and exceeds all customer expectations and needs. The SDLC
defines and outlines a detailed plan containing various stages, each of which contains its
own processes and deliverables. Compliance with SDLC increases development speed
and minimizes project risks and costs associated with alternative production methods.

As described in article [27], in terms of requirements analysis and management.
Waterfall attempts to analyze the requirements from the beginning and not implement
them until they are fully understood, documented, and almost frozen. Unlike waterfall
methods, agile methods accept the fact that requirements may not be detailed enough
at the beginning of the project, but they will evolve over time and stakeholders and will
have more insight into what they need. Thus, agile welcomes requirements change but
focuses on handling them correctly. It allows the customer to be continuously involved
in the project and evolve requirements. In this study, the goal is clear, but in the design
process, the feedback collected from the industry is used to adjust the teaching strategy
and evaluation index in time, so the researcher adopts the Agile Model based on the six
stages of SDLC to carry out the project, to obtain a more perfect and accurate Frame-
work. Therefore, this paper proposes a method to summarize each student’s specific
college portrait based on daily collection data, as a method for enterprises to observe the
performance of students in school. In Requirement analysis, it mainly takes the devel-
opment of times and the needs of the industry as the starting point. In the framework
design, testing is based on the analysis and comparison of the collected data. Deploy-
ment says to analyze the data and industry requirements for a certain period. In addition,
the education 4.0 framework proposed in this study is based on the OBE concept, which
means that in the implementation process, it will be improved and modified according to
the needs, so the needs that may be generated in each process and the overall education
framework are shown in Fig. 2.
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Fig. 2. Framework of Education 4.0

Based on this framework, the process of education 4.0 covered by AI technology
described by [28], it can be known in [29, 10] that AI technology and wearable device
assistance can cover the process of education 4.0, and the data generated by the education
process can be obtained through the following seven aspects:

1) Orientation: an entrance test that assesses students’ prior knowledge of the subject
(passive adaptation) [30]; An overview of course content, motivation for activity dia-
grams showing exam scores, and strategic planning with inherent learning objectives;
Biometric registration and authentication methods.
2) Digital preparation: Personalized content according to the type of learning (interactive
books or videos), self-monitored learning control for students through adaptive quizzes
and self-assessments (continuous adaptation) [31] Biofeedback.
3) Interactive presence: teachers discuss case studies and act as coaches; AR/VR expe-
rience; Students work in groups; Hands-on experimentation and creating Spaces such
as the Education 4.0 Learning Lab (E4LL).
4)Collaboration: “Communities of practice”with studentmaterials for students, students
engage in so-called assignments for short-term projects - with increasing difficulty and
enhanced problem-based tasks, such as the Digital Technology Learning Lab (LL4DT)
[32].
5) Follow-up and performance: Feedback - self-assessment, in which correct solutions
and answers are explained and studied; Recognize the level of learning material covered
and assess the evolution of knowledge.
6) Reflection and motivation: The “Early Recognition System” applies neural networks
for self-monitoring and self-observation to continue the educational process. A future
scenario could be an extension of the learning analytics cockpit based on online and
physiological activity data [33].
7) Assessment and examination: Electronic assessment - Part of the examination is an
automatically assessed competency test.We conducted experiments with latent semantic
Analysis (LSA) and Word2Vec [34].
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Through these dimensions, data of various indicators can be obtained. Due to the pro-
motion of Industry 4.0, most colleges are equipped with various intelligent devices and
constantly transforming to smart campus. The large amount of data generated and col-
lected can be used as the basis for students ‘daily life and learning habits. Extensive use of
online platforms, introduction of personalized educational trajectories and courses, new
spatial opportunities, and formats. With the help of the IoT and AI, teachers, classmates,
and other administrative can score through different dimensions, which was used as the
basis for the multi-dimensional portrait of the student. [35] shows the modular construc-
tion of a ubiquitous monitoring framework for relevant personnel (including students,
teachers, and other administrative personnel), and sets up a framework for self-realizing
dynamic data collection, monitoring, classification, and prediction in the education 4.0
environment. The proposed framework is very useful for automatic real-time assessment
and certification in the education 4.0 environment. Combined with the assimilation of
IoT sensors, effective data collection can be carried out in the environment of smart
campus, and the information flow contained in the collection in smart campus is shown
in Fig. 3.

Fig. 3. Framework of Information Collection

Before designing the portrait data of students, according to theOBEconcept, we need
to master the dynamics of the industry and the required talents to get the key points.With
the help of expert system, industry expert team are evaluated to design our framework,
set reasonable enterprise indicators according to the characteristics of the industry, set
secondary indicators according to the enterprise indicators and the characteristics of the
school as the evaluation standard of the school, and then classify each daily indicator as
the evaluation standard. The structure is shown in Fig. 4.

Through the results of each layer of indicators by importing the daily data of each
student as the evaluation standard, the exclusive portrait data is generated, and the data
required for the portrait is generated. Finally, a more authoritative portrait proportion
mapwill be obtained. Asmentioned above, Industry 4.0 needsmore “innovative talents”,
and “innovative talents” embody their social value in more fields, avoiding becoming
“craftsmen” with narrow knowledge, single skills, and narrow employment. Engineer-
ing innovation talents are “architects” who can cope with the challenges of globalization
and systematically construct complex social, economic, and political environments. The
connotation of engineering innovation capability includes engineering knowledge appli-
cation, innovation research, problem analysis and solution, team cooperation, etc. CDIO
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Fig. 4. Framework of the Indicators

(Conception, Design, Implementation, Operation), international engineering education
model is the latest achievement of international engineering education reform in recent
years. The key to improving the practical ability of engineering talents in China is to cul-
tivate innovative thinking, to realize the goal of cultivating personalized and innovative
emerging engineering talents. Based on the environment of new engineering construc-
tion in colleges and universities, the article [36] puts forward the talent training mode of
“orderly” learning, diversified learning, innovative learning, and international learning.
This model meets the talent goals in the era of Industry 4.0, improve engineering practice
ability, and shape the core competitiveness of the industry. In the era of artificial intel-
ligence, emerging engineering education should strive to cultivate innovative practice
ability through the whole process of engineering education [37]. Therefore, considering
various aspects, the following talent demand indicators are designed. This paper designs
six indicators for student portraits as reference standards to draw portrait radar charts as
it shown in Table 1.

Fig. 5. Portrait Radar of Electronics Company

For each reference index, students’ daily activities in school are used as the secondary
index to calculate the score, as shown in the table.
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Table 1. 6 indicators of electronics company.

Indicators Creativity Discipline Positive Compliance Cooperation Friendly

Score 1–10 1–10 1–10 1–10 1–10 1–10

Table 2. 5 Details of Creative Indicators.

Indicators Project Article Schemes Performance Creative Idea

Score 1–10 1–10 1–10 1–10 1–10

Table 3. Details of Discipline Indicators

Indicators Classes
Attendance
Rate (AR)

Appointment
Activities AR

Campus
Activities AR

Social
Activities AR

Corporate
Activities AR

Score 1–10 1–10 1–10 1–10 1–10

Table 4. Details of Positive Indicators

Indicators Interaction Competition Campus
Activities

Social Activities Enterprise
Activities

Score 1–10 1–10 1–10 1–10 1–10

Table 5. Compliance

Indicators Examination
Rules

Classroom
Rules

Dormitory
Rules

Practical
Activities

Enterprise
Rules

Score 1–10 1–10 1–10 1–10 1–10

Table 6. Cooperative

Indicators In Team
Projects

Assisting
Classmate

Assisting
Teachers

Social
Activities

Enterprise
Practice

Score 1–10 1–10 1–10 1–10 1–10

Each indicators continue to set several indicators,which contain daily data collection,
the specific index block diagram is shown in Table 2, 3, 4, 5, 6, 7 and Fig. 6.
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Table 7. Friendly

Indicators Interactivity in
Classroom

Participation
Rate in
Competition

Expressive
Force in
Campus
Activities

Evaluation of
Social Practice

Evaluation of
Enterprise
Practices

Score 1–10 1–10 1–10 1–10 1–10

Fig. 6. Specific Index of the Creative Indicator

By integrating these data, the portrait of a student can be portrayed from multiple
dimensions as is shown in Fig. 7.

Fig. 7. Portrait Radar of Students

The portrait radar data will be continuously improved with the accumulation of
data of students in school. Finally, a portrait of its own four years will be drawn upon
graduation. Enterprises can better understandwhether itmeets their own needs according
to such a portrait. In addition, colleges and universities also comprehensively judge
their own teaching arrangements according to the characteristics of students ‘portraits,
and whether the teaching meets the needs of it. In addition, the reference indicators
should also be periodically adjusted according to the needs and characteristics of the
industry, and timely adapt to the industry update. The adoption of digital measurement
standards can make talent training more accurate and efficient, and more in line with the
characteristics of education 4.0.
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4 Conclusion

Based on the OBE concept, this paper focuses on cultivation of applied talents, which
requires colleges and universities to make innovation and reform in education, teaching,
scientific research, and social services. An education 4.0 education framework inspired
by the Internet of things and industry needs is proposed. The following work has been
done:

1. Designed an education framework based on education 4.0 for college students to enroll
and graduate.
2. A data collection and application method is proposed, which uses the data generated
by the daily behavior of students to draw portraits.
3. The importance of the framework is discussed.

The future work of this paper will track the implementation efficiency of the frame-
work, improve the running efficiency, and improve the accuracy of portrait rendering.
In addition, when establishing data samples, how to set more targeted indicators, how
to reasonably protect information data collection, and ensure the accuracy, security and
privacy of information are also an important direction of this paper’s future research.
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Abstract. This research proposes a multi-agent reinforcement learning
framework as a home energy management algorithm that focuses on user
needs and preferences as well. The proposed method aims to secure the
smart grid from power outages due to overloading. The system predicts
appliance-level load demand for the following day using non-intrusive
load monitoring (NILM) and four neural network-based supervised learn-
ing methods to pick the more accurate forecasting method. The Python-
based NILM toolkit is utilized to analyze disaggregation methods on
the forecasted demand to obtain appliance-level energy consumption.
The user feedback and time-based price values are employed to optimize
appliance scheduling. The simulation results of each stage of the algo-
rithm are presented. The results demonstrate a 15% reduction in the
electricity cost.

Keywords: Demand Response · Home Energy Management ·
Non-Intrusive Load Monitoring · Reinforcement Learning

1 Introduction

The idea of Demand-Side Management (DSM) was first established in order to
achieve the equilibrium of supply and demand for electricity [1]. The prior strat-
egy of just expanding energy generation to keep up with demand growth was
criticized due to various factors such as heavy financial investments, environ-
mental concerns, and optimization theory. The DSM substantially transformed
this paradigm. Demand Response (DR) program, as a class of DSM, allows for
minimized electricity demand during peak periods in order to balance supply and
demand and secure the grid from power outages due to overloading. A uniform
and balanced energy profile also improves the robustness of the power system.

On the other hand, DR programs encourage users to save more energy, con-
sume various renewable energy sources, save money on bills, and earn subsi-
dies for selling surplus production back to the grid. Home Energy Management
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(HEM) as a DR program schedules the consumption pattern of residential users
to off-peak hours to smooth the load profiles and increase energy efficiency [1,2].
Customers make smart decisions while operating appliances to modify load pro-
files and lower peak energy consumption to achieve more financial savings.

A DR technique can be designed according to incentive-based programs or
price-based programs [1,3]. The incentive-based programs reward or penalize the
consumers’ consumption pattern during on-peak. In the price-based programs,
consumption adapts according to the time-based tariffs. Despite all the benefits
of DR, such as financial savings for both consumers and the utility and the
increased stability and capacity of the grid, some challenges need to be addressed
with the DR policies.

One of the most critical challenges is the user’s dissatisfaction [4,5]. Many
factors affect the comfort level and satisfaction of the users. The users have
to adapt their electricity usage behavior to reduce some loads or shift loads to
off-peak time intervals. The waiting time may lead to their dissatisfaction. Ther-
mal comfort can be another criterion for the users’ comfort level. A successful
DR scheduling considers users’ preferences to increase human consent. Despite
the importance of user satisfaction, it is not considered in some designed DR
algorithms [6] or is addressed with a few constraints in the problem formulation
[7].

The designed DR solution needs to know about the interactions in the envi-
ronment. The traditional model-based methods require extensive knowledge of
the environment [5,8]. Many optimization-based solutions have been proposed in
the literature, which uses the Hyper-Spherical Search algorithm [9], genetic algo-
rithm [2], and ant colony algorithm [10]. However, uncertainties, unpredictable
situations, missing information, etc., might make the designed model imprac-
tical. On the contrary, as a model-free approach, the Reinforcement Learning
(RL) algorithm is a machine learning with highly intelligent decision-making
capability. The RL process includes agents and their interaction with an envi-
ronment. At each time step, the agents take actions according to the state of
the environment and receive rewards if the chosen action is correct; otherwise,
they are penalized. The RL algorithms have also been applied in various activ-
ities in the energy sector. For example, the authors of [1] use a single-agent
Q-learning algorithm with a fuzzy reward function optimizing consumption and
consumer satisfaction. In [8], price uncertainty is addressed by an NN-based
extreme machine learning (EML), and DR is addressed by Q-learning.

A DR program design requires load forecasting [11,12]. Based on the user’s
consumption history, their required power in the future is predicted. The prior
prediction of the demand level increases the effect and efficiency of the opera-
tor. A variety of methods have been used to solve the load forecasting problem
accurately and efficiently, such as support vector machines (SVM) [13], fuzzy
logic [11], cascaded Neural Networks (NN) [14], flower pollination algorithm
(MOFPA) [12], clustering-based Seq2Seq LSTM [15], etc. In order to predict a
home energy demand, load monitoring is required to measure the electricity con-
sumption. The load monitoring methods are divided into two groups: intrusive
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and non-intrusive. The intrusive load monitoring (ILM) [16] uses separate smart
sensors for each household appliance, which is costly and intrusive to the user’s
privacy and security [17,18]. To solve this issue, non-intrusive load monitoring
(NILM), a single smart sensor method, is applied. NILM uses a single-point
sensor system to measure the aggregated energy consumption.

The aggregated energy consumption in a home needs to be disaggregated into
appliance-level power consumption, which is required for the HEM system. Many
NILM algorithms have been designed [19] such as frequency-domain template
filtering proposed in [20], and a technique based on support vector regression
(SVR) and Elman Neural Network (ENN) in [21]. Besides all, the disaggregation
problem is addressed by the non-intrusive load monitoring toolkit (NILMTK)
based on Python [22,23]. It offers several disaggregation algorithms that make
it possible to compare energy disaggregation strategies in a repeatable way. The
toolkit consists of many reference benchmark disaggregation methods, a set of
accuracy metrics, a collection of statistics for creating data sets, and parsers
for various existent datasets. The toolkit made it possible to examine several
publicly accessible data sets and compare the disaggregation methods used in
these data sets. The development of NILMTK has simplified NILM research and
diversified the study of multiple methods over diverse datasets. The NILMTK
toolbox includes capabilities for dataset conversion and several operations for
data modification, extraction, and displaying statistics and energy percentages.

This paper uses the data related to aggregated energy consumption for pre-
dicting the one-day-ahead load requirement. The Supervised Learning technique
takes advantage of the Nonlinear Auto Regression with External Input (NARX)
neural, Recurrent Neural Network (RNN), Regression Tree (RT), and Long-
Short-Term Memory (LSTM) methods are evaluated, and the one with more
accurate results is chosen. To obtain per-device energy usage, different NILM
algorithms, including the Mean algorithm, Edge Detection (ED), Combinato-
rial Optimization (CO), and the Factorial Hidden Markov Model (FHMM), are
evaluated. The algorithm with a higher precision is selected. Then, Multi-Agent
Reinforcement Learning (MARL) is used to plan the energy consumption of the
appliances. The appliances are divided into three groups: non-shiftable, power-
shiftable, and time-shiftable, and for each group, a representative reinforcement
learning agent is considered. The agents choose the actions for their group based
on the Q-learning algorithm to get a higher reward. The agents make decisions
regarding the electricity price and users’ satisfaction at each time step. The
REFIT dataset is applied to evaluate the proposed method. The results indicate
that the LSTM-based forecasting method and the CO disaggregation have lower
errors. The rescheduling of appliance usage using multi-agent Q-learning shows
a significant decrease in home electricity consumption during on-peak, which
results in more secure smart grids from overloading.

The contributions of this paper are as follows.

– A comparison between the accuracy of four electricity usage prediction meth-
ods based on supervised learning, including Nonlinear Auto Regression with
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External Input (NARX) neural network, Recurrent Neural Network (RNN),
Regression Tree (RT), and Long-Short-Term Memory (LSTM) methods.

– Using a Python-based NILMTK to disaggregate the energy consumption
– A comparison between four different disaggregation algorithms, including

Mean algorithm, Edge Detection (ED), Combinatorial Optimization (CO),
and Factorial Hidden Markov Model (FHMM)

– Designing a multi-agent Q-learning price-based HEM algorithm for lower con-
sumption during on-peak and higher user satisfaction

The rest of the paper is organized as follows. Section 2 and Sect. 3 describe
load forecasting and load disaggregation techniques, respectively. Section 4 gives
information about the evaluation metrics used in this paper. Section 5 explains
the MARL algorithm and the way it is used in this paper. Section 6 presents the
simulation results. Finally, Sect. 7 concludes the paper.

2 Load Forecasting

The Nonlinear Auto Regression with External Input (NARX) neural network,
Recurrent Neural Network (RNN), Regression Tree (RT), and Long-Short-Term
Memory (LSTM) are the four widely utilized machine learning techniques for
forecasting electrical load and are presented in this section.

2.1 Neural Network Model

Given a sufficient number of neurons, a Neural Network model can learn the
input and output relationship, which can be utilized in the future. Dynamic feed-
back (recurrent) neural network called a nonlinear autoregression with external
input (NARX) [8] employs a time series as the exogenous input and a delayed
output value as the endogenous input to provide feedback. As a result, output is
regressed on both the previous values of the independent variables and the prior
values of the input signal. A NARX neural network is suitable for describing a
nonlinear dynamic system and can be utilized in time series modeling.

2.2 Recurrent Neural Network

Recurrent neural networks (RNNs) use the output from a previous step as the
input for the current step. The hidden layers, which retain some information
about a sequence, are the primary and most crucial components of RNNs. Some
of the points why RNN should be used are mentioned below [24]:

1. In time series predictor, the RNN model, with its ability to retain information
over time, helps the model to perform better and give more accurate results

2. The model complexity does not grow even for a high input.
3. At each time step, the weights are updated.
4. RNNs have internal memory that they can use to process any set of inputs,

which is not the case with feedforward neural networks
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2.3 Regression Tree

Regression Tree (RT) is a nonlinear predictive model that employs a tree struc-
ture to describe the results of recursive partitioning [25]. A regression model
is difficult to fit when there are several two-way interactions between the inde-
pendent variables and a high number of parameters in a multiple regression.
It is therefore necessary to develop a method to measure interactions’ impact.
A recursive partition is employed to handle complex non-linear interactions
between all factors. It repeatedly partitions the covariate space into smaller areas
to fit a straightforward model to a cell. A partitioned region’s cell is represented
by each node and leaf of the tree. A decision will be made in every node, known
as a level. The bottom leaves are the fitted result, the mean estimation of the
load utilization that applies to that specific location under the decisions made.
We used the Regression Tree method available in MATLAB regression learner.

2.4 Long Short-Term Memory

In deep learning, the Long Short-Term Memory (LSTM) method is a synthetic
Recurrent Neural Network (RNN) architecture that can learn order dependency
[26]. The LSTM includes connected feedback neurons, which are utilized to
reduce or remove severe instability difficulties generated by RNN effectively,
referred to as vanishing gradient problems. This is different from ordinary feed-
forward neural networks. An LSTM is a good fit for classifying sequence and
time-series data where the prediction or output of the network must be based
on a recalled sequence of data points.

3 Non-intrusive Load Monitoring

The NILMTK is used to disaggregate the home energy into appliance-level
energy consumption. The disaggregation methods of the toolkit, including the
Factorial Hidden Markov Model (FHMM), Combinatorial Optimization (CO),
Edge Detection (ED), and Mean algorithm, are evaluated in this research.

3.1 Mean Algorithm

The Mean algorithm is built to provide a clear benchmark against which more
complex algorithms may be assessed. The trained mean model calculates and
stores just the mean power state for each device. Despite its simplicity, the
Mean method beats more complicated disaggregation algorithms on a number
of metrics, making it a solid baseline.

3.2 Edge Detection

The Edge Detection approach divides the time series into steady and transient
periods. A change in the status of an appliance (such as turning on or off)



Multi-agent Reinforcement Learning 435

frequently correlates to an edge, which is the magnitude difference between two
stable states. Even though the method is ostensibly unsupervised and does not
require appliance-level data for training, the output must be mapped to appliance
categories. In our solution, which uses the best case mapping, the algorithm
outputs are assigned to the appliance categories that maximize the method’s
accuracy [23].

3.3 Combinatorial Optimization

Combinatorial optimization (CO) uses supervised learning in the context of real
load disaggregation, which necessitates using signature libraries of appliances to
train the model. The purpose of the CO approach is to reduce the inaccuracy
between the total energy consumption of all considered individual appliances
and the aggregated power demand of the home. Constructing the CO model to
restrict the contributions of other household appliances that are not necessities
or consume the same amount of power is necessary. The objective function is
the minimization of the difference between the aggregate and sum of appliance
power demand [22].

min|ŷ(t) −
N∑

i=1

yi(t)| (1)

where ŷ(t) is the aggregated household power demand, yi(t) is the power demand
of appliance i, and N is the number of appliances that are present in the house.

3.4 Factorial Hidden Markov Model

For training and testing, NILMTK separated the data into continuous sets and
then used the hidden Markov models to simulate each appliance. This technique
simulates the reliance between time slices to replicate each device’s operating
state. The total active or reactive power is the observation sequence for the
NILM problem, and it is uncertain what state each piece of equipment is in or
how much power it uses. For a Markov chain, all appliances are considered as
HMMs. A FHMM made up of many HMMs is described as having a total power
equal to the sum of the powers of all the appliances.

4 Model Performance Evaluation Metrics

Considering the advantages and disadvantages of statistical evaluation metrics,
we employed various measures to evaluate the effectiveness of load prediction
and disaggregation approaches. The metrics assessed how well the model can
categorize and identify the appliance incident. The mean absolute error (MAE)
indicates the relative error of the real and predicted energy. It is easy to interpret
and provides information about the magnitude of the errors.

MAE =
1
N

N∑

i=0

|Yreal − Ypredicted| (2)
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Fig. 1. Multi-Agent Reinforcement Learning Process

The root mean square error (RMSE) indicates is calculated as follows.

RMSE =
1
N

√√√√
N∑

i=0

(Yreal − Ypredicted)2 (3)

It is a dominant metric in regression and forecasting algorithms. The RMSE
gives more emphasis to larger relative errors. The mean absolute percentage
error (MAPE) is expressed in percentage which makes it easily compared across
different datasets and models. However, it does not work for zero values and
places more emphasis on close to zero values.

MAPE =
1
N

N∑

i=0

|Yreal − Ypredicted|
Yreal

× 100 (4)

The standard deviation (SD) metric measures how spread out the numbers are.
It is a measure of how much confidence can be placed in a model’s performance
on different datasets.

SD =

√√√√ 1
N

N∑

i=0

(Ypredicted − Ymean)2 (5)
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Fig. 2. Schematic Diagram of NILM-based MARL-based HEM System

5 Multi-agent Reinforcement Learning Demand Response

The designed HEM system includes multiple agents to enable decentralized con-
trol of different smart home items. This study takes into account three agents
in a typical HEM system, characterizing appliances namely into non-shiftable
appliances (Agent 1), power-shiftable appliances (Agent 2), and time-shiftable
appliances (Agent 3), as shown in Fig. 1. All appliances must receive energy
according to their priority. The non-shiftable appliances are of high priority
because they always use fixed energy and are crucial to maintaining the comfort
and safety of the living space. Then, the energy is provided to the other agents
(appliance categories) in declining order of the dissatisfaction coefficients (Diss.
Coef.)).

Each agent monitors the current state st at time slot t and then, according
to the system, selects an action at. Then, it checks for the new state, st+1, and
determines a new action, at+1, for the subsequent time period, t+1. This problem
is formulated as a Factored Markov Decision Process (FMDP). The FMDP of
this study has five tuples, i.e., (S,A,R, γ, θ), where we denote S as the state
space, A as the actions space, R as reward function, γ discount factor, and θ as
learning rate.

5.1 State Space

The state st formulates the present situation in FMDP. In this paper, the state
st in time slot t is defined as the price of electricity at time t.

st = {η1, η2, ηt, ..., ηT } (6)

5.2 Action Space

The action space of each agent is related to the category of the appliances it rep-
resents and the features of those appliances. To provide everyday convenience and
safety, non-shiftable appliances, including fridges, microwaves, kettles, toasters,
and televisions, can only take one action: ON. Power-shiftable equipment such
as overhead fans functions flexibly within a specified power range. Therefore,
the power-shiftable agent can select various power levels represented as discrete
actions. Time-shiftable loads, such as the dishwasher and washing machine, can
be planned from peak to off-peak times. This group of the appliance has two
operating points: ON and OFF.
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5.3 Reward

Since the non-shiftable loads are immutable, their negative reward is their power
costs.

rNS
i,t = −ηt [ENS

i,t ]+, i ∈ ΦNS , t = 1, 2, ..., T . (7)

where ENSj,t] is the energy consumption of non-shiftable appliance i at time t
and PhiNS is the set of non-shiftable appliances. The reward function of power-
shiftable appliances’ agent is

rPS
j,t = −λt [EPS

j,t ]+ − αPS
j (EPS

j,max − EPS
j,t )2, j ∈ ΦPS , t = 1, 2, ..., T . (8)

where EPSj,t] is the energy consumption of power-shiftable appliance j at time
t with the upper boundary of EPS

j,max and PhiPS is the set of power-shiftable
appliances. The first term of the reward function is the power cost and the dissat-
isfaction cost due to variation in the power level of the appliance is represented
by the second term. The dissatisfaction cost αPS

j , can be changed to accomplish
a trade-off between the price of electricity and the degree of satisfaction. The
reward of time-shiftable appliances’ agent is

rTS
k,t = −λt [uk,tE

TS
k,t ]+ − αTS

k (tsm − tinit
m )2, j ∈ ΦTS , t ∈ [tinit

k , tend
k ]. (9)

where uk,t has only two states, i.e., the operating state of time-shiftable appliance
k in time slot t, i.e., uk,t = 1 (ON) or uk,t = 0 (OFF). The first term of
the reward function determines the price of electricity and the second term
is the dissatisfaction cost caused by the waiting period. The waiting period
dissatisfaction cost comes with the coefficient αTS

k . The time-shiftable appliance
k ought to begin functioning at its typical working hour [tinit

k , tend
k ]. The total

reward at each time step is formed based on Eqs. 7 to 9.

Rt = rNS
i,t + rPS

j,t + rTS
k,t (10)

5.4 Action-Value Function

The selected action for each state is evaluated by the action-value function which
is defined as the expected sum of rewards for all the future time steps. In this
study Q-learning is used to train the agents.

Qπ(st, at) = Eπ[
K∑

k=0

γkrt+1|st = s, at = a] (11)

where the action-value function is represented by Qπ(s, a) and π is the policy
mapping between a system state to an energy consumption schedule. The dis-
count rate γ ∈ [0, 1] indicates how important future benefits are in comparison
to the current reward. Finding the best policy, π∗, is the goal of the energy con-
sumption scheduling problem. In order to maximize the action-value function,
the policy takes a series of optimized actions for all appliances. The algorithm
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builds a Q-table by updating each state-action pair’s Q-value Q(st, at) after each
iteration until the convergence condition is met. The best action at each itera-
tion has the maximum Q-value. The optimal Q-value Q∗

π(st, at) can be obtained
by using the Bellman equation, described as follows.

Q∗
π(st, at) = r(st, at) + γ ∗ max(Qπ(st+1, at+1)) (12)

At each time step the Q-value is updated as follows.

Qπ(st, at) ← Qπ(st, at) + θ[Q∗
π(st, at) − Q(st, at)] (13)

where θ ∈ [0, 1] is the learning rate. If θ = 0, the agent exclusively uses the
previous information. If θ = 1, the agent ignores the earlier information and just
considers the present information. Therefore, a value of θ between 0 and 1 is
selected, balancing the new Q-value and old Q-value.

Fig. 3. The REFIT actual vs. forecasted load using NARX, LSTM, SVM, and RT
methods

5.5 Structure of Proposed Multi-agent Q-Learning DR

The framework of the proposed HEM algorithm is demonstrated in Fig. 2. The
components of the structure are (i) Receiving past 24-hour data of aggregated
energy demand by NILM as the input, (ii) predicting the energy demand for the
next day, (iii) load disaggregation and finding appliance level power demand, (iv)
forming a multi-agent Q-learning algorithm for optimal load scheduling, and (v)
obtaining the optimal power consumption schedule as the output.
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Table 1. Errors of Load Forecasting

MAPE MAE RMSE SD

NARX 0.98 207.47 24.04 596.94

LSTM 0.18 39.35 0.93 123.13

RNN 0.77 149.02 9.50 346.86

DT 1.60 197.41 21.43 563.37

Table 2. List of Appliances and their Power Consumption in the Second Household

Appliance Power Consumption (W)

Fridge-Freezer 95

Washing Machine 2000

Dishwasher 2250

Television 30

Microwave 1200

Kettle 2700

Toaster 950

Overhead Fan 400–800

6 Simulation and Results

The proposed method in this research is evaluated on the REFIT dataset, which
is the household power consumption data of 20 houses in the UK for two years.
The data collected has active power readings at the appliance level and the
aggregated power consumptions at 8-sec intervals. Different appliances can be
identified. This dataset has households that used gas central heating systems.
None of the houses used an HVAC system for heating. The chosen house in this
paper is house number 2.

Table 3. Disaggregation RMSE

Appliance CO FHMM EDGE Mean

Fridge-Freezer 159.06 31.27 51.98 41.29

Microwave 138.88 69.20 89.08 29.62

Kettle 302.92 436.81 86.47 209.27

Toaster 125.29 109.94 95.57 55.44

Television 27.34 41.30 81.43 19.73

Audio System 2.53 36.97 84.05 2.53

Washing Machine 258.38 199.92 304.09 53.43

Dishwasher 356.54 389.55 131.44 351.13

Overhead Fan 25.79 37.25 84.02 1.04
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Fig. 4. Appliance-Level Power Consumption Obtained by CO Disaggregation Method

6.1 Load Forecasting Results

The power consumption of the second house in the REFIT dataset is forecasted
using the NARX, LSTM, RNN, and RT algorithms trained using the data of
September 16, 2013. Figure 3 the actual load versus forecasted load of four differ-
ent prediction methods, NARX, LSTM, RNN, and RT, with a period of 1440 min,
i.e., one day. The red line represents the actual aggregated data of house 2 in
the REFIT dataset on September 27, 2013. As shown in Fig. 3, the blue line,
which represents the LSTM method, follows the red line more accurately. The
metrics in Eqs. 2–5 evaluate the prediction methods’ effectiveness. The results
are demonstrated in Table 1. The LSTM method has the lowest errors in com-
parison to other methods. It has a MAPE of 0.18, MAE of 39.35, RMSE of 0.93,
and SD of 123.13. Therefore, the LSTM method is chosen to predict the next
day’s aggregated power. The experimental details of the LSTM method consist
of a learning rate of 0.001, data size of 1440, 512 hidden units, Adam optimizer,
and 1000 epochs.
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6.2 Non-intrusive Load Monitoring Results

The REFIT dataset was first converted into the hierarchical data format (HDF5)
to allow data analysis using the NILMTK. The CO, FHHM, ED, and Mean
models are trained using appliance-level data. The trained models are used to
disaggregate the aggregated house power demand to obtain each appliance’s
state and energy consumption, listed in Table 2, in the second building of the
REFIT dataset on September 27, 2013. Finally, different metrics are used to
evaluate the disaggregation performance of the methods. Table 3 represents the
disaggregation RMSE. According to the results, the CO approach performed well
for most appliances, including the fridge, washing machine, television, toaster,
fan, audio system, and microwave. Still, it showed high disaggregation errors on
the kettle and dishwasher. This paper chooses the CO method for disaggregation
purposes, and the appliance-level power demand at each time step is represented
in Fig. 4.

Table 4. Initialization for Appliances’ Parameters, Operation Time Slots

Appliance Type Dissatisfaction
Coefficient

Power Rating (kWh) Time Slot

Fridge-Freezer NS 100.0 0.08 [1,24]

Microwave NS 100.0 1.2 [20,21]

Kettle NS 100.0 2.5 [20,21]

Toaster NS 100.0 1.2 [20,21]

Television NS 100.0 0.05 [20,21]

Washing Machine TS 0.10 2 [20,22]

Dishwasher TS 0.06 2 [20,21]

Overhead Fan PS 0.05 [0.04, 0.06, 0.08] [1,24]

Table 5. Electricity Cost Comparison with and without DR

Appliance Cost without DR (cents) Cost with DR (cents)

Fridge-Freezer 40.248207 40.248207

Microwave 32.730943 32.730943

Kettle 68.189464 68.189464

Toaster 32.730943 32.730943

Television 1.363789 1.363789

Washing Machine 30.885735 14.988352

Dishwasher 30.885735 23.665837

Overhead Fan 40.248207 20.124103

Total 277.283023 234.041639
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Fig. 5. Electricity Cost with and without DR

6.3 Multi-agent Reinforcement Learning Demand Response Results

At first, parameters are initialized. The discount factor γ is set to 0.9, so the
obtained strategy is foresighted. To ensure that the agent can call all state-action
pairs and learn new knowledge from the system, the learning rate θ is set to
0.1. Table 4 indicates the appliance list, including their type, the dissatisfaction
coefficients, power ratings, and time slots. The three agents are trained using
the Q-learning algorithm, the state space shown in Eq. 6. Agent 1 represents the
non-shiftable appliances with an action set of {ON = 1}. Agent 2 represents
the power-shiftable appliance, which is the overhead fan with the action set
of {0.04, 0.06, 0.08}. Agent 3 is the representative of time-shiftable appliances
with the action set of {ON = 1, OFF = 0}. The energy cost with and without
DR is represented in Table 5 and in Fig. 5. The results demonstrate that the
costs are decreased with the presence of the proposed energy scheduling method.
There is a 15 percent drop in energy costs. Figure 5 illustrates that most of the
energy is consumed during off-peak and the proposed DR algorithm has avoided
energy consumption during on-peak period. The results prove that the proposed
algorithm has a desirable performance.
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7 Conclusion

This study demonstrated the integration of data analysis and multi-agent RL
method for residential households to effective demand response. We evaluated
the future demand prediction with multiple algorithms, amongst which LSTM
was chosen for its greater accuracy. This prediction helped us to model a def-
inite picture of residential aggregated power consumption. The predicted data
was then analyzed to obtain appliance-level operation time and power using
the NILMTK and its built-in disaggregation methods. Then, a multi-agent RL
algorithm was designed to efficiently schedule home appliances’ operation time
and/or power. The proposed method used Q-learning with the price-based DR
approach and considered three agents to represent the non-shiftable, power-
shiftable, and time-shiftable categories of appliances. The algorithm aimed to
minimize the electricity bill and users’ dissatisfaction. The results of the study
demonstrated that the suggested approach can reach a high level of performance
by reducing daily home electricity costs by 15 percent.
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experimental implementation of optimum energy management system in stan-
dalone Microgrid by using multi-layer ant colony optimization. Int. J. Electr. Power
Energy Syst. 75, 265–274 (2016)



Multi-agent Reinforcement Learning 445

11. Chenthur Pandian, S., Duraiswamy, K., Christober Asir Rajan, C., Kanagaraj, N.:
Fuzzy approach for short term load forecasting. Electr. Power Syst. Res. 76(6–7),
541–548 (2006)

12. Xiao, L., Shao, W., Yu, M., Ma, J., Jin, C.: Research and application of a combined
model based on multi-objective optimization for electrical load forecasting. Energy
119, 1057–1074 (2017)

13. Chen, B.-J., Chang, M.-W., lin, C.-J.: Load forecasting using support vector
Machines: a study on EUNITE competition 2001. IEEE Trans. Power Syst. 19(4),
1821–1830 (2004)

14. Kouhi, S., Keynia, F.: A new cascade NN based method to short-term load forecast
in deregulated electricity market. Energy Convers. Manage. 71, 76–83 (2013)

15. Masood, Z., Gantassi, R., Ardiansyah, Choi, Y.: A multi-step time-series clustering-
based Seq2Seq LSTM learning for a single household electricity load forecasting.
Energies 15(7), 2623 (2022)

16. Murray, D., et al.: A data management platform for personalised real-time energy
feedback. In: Proceedings of the 8th International Conference on Energy Efficiency
in Domestic Appliances and Lighting. IET (2015)

17. Yang, L., Chen, X., Zhang, J., Poor, H.-V.: Cost-effective and privacy-preserving
energy management for smart meters. IEEE Trans. Smart Grid 6(1), 486–495
(2015)

18. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The ECO data
set and the performance of non-intrusive load monitoring algorithms. In: Pro-
ceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings (BuildSys 2014), pp. 80–89. Association for Computing Machinery, New
York (2014)

19. Zeifman, M., Roth, K.: Nonintrusive appliance load monitoring: review and out-
look. IEEE Trans. Consum. Electron. 57(1), 76–84 (2011)

20. Xin, W., Han, L., Wang, Z., Qi, B.: A nonintrusive fast residential load identifica-
tion algorithm based on frequency-domain template filtering. IEEJ Trans. Electr.
Electron. Eng. 12, S125–S133 (2017)

21. Iliaee, N., Liu, S., and Shi, W.: Non-intrusive load monitoring based demand pre-
diction for smart meter attack detection. In: International Conference on Control,
Automation and Information Sciences (ICCAIS), pp. 370–374, Xi’an, China (2021)

22. Batra, N., et al.: NILMTK: an open source toolkit for non-intrusive load monitor-
ing. In: Proceedings of the 5th International Conference on Future Energy Systems
(e-Energy 2014), pp. 265–276. Association for Computing Machinery, New York
(2014)

23. Batra, N., et al.: Towards reproducible state-of-the-art energy disaggregation. In:
Proceedings of the 6th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation (BuildSys 2019), pp. 193–202. Asso-
ciation for Computing Machinery, New York (2019)

24. RNN. https://www.educba.com/recurrent-neural-networks-rnn/
25. Ding, Q.: Long-term load forecast using decision tree method. In: 2006 IEEE PES

Power Systems Conference and Exposition, pp. 1541–1543, Atlanta, GA (2006)
26. LSTM. https://notesonai.com/LSTM

https://www.educba.com/recurrent-neural-networks-rnn/
https://notesonai.com/LSTM


Decision Poisson: From Universal
Gravitation to Offline Reinforcement

Learning

Heqiu Cai1, Zhanao Zhang2, Zhicong Yao1, Kanghua Mo1, Dixuan Chen1,
and Hongyang Yan1(B)

1 Guangzhou University, Guangzhou 510006, China
chqstudy@gmail.com

2 Nanjing University, Nanjing 210093, China

Abstract. Viewing offline reinforcement learning (RL) through the lens
of conditional generative modeling has gradually become more accepted
by researchers as a novel sequence modeling approach. Diffusion models
have many advantages as state-of-the-art methods, but their repeated
forward and reverse diffusion steps can be computationally demanding
for large, high-dimensional data. Here we develop a new policy for offline
RL based on Poisson flow generative modeling that does not rely on
Gaussian assumptions. Our method achieves improved evaluation met-
rics, faster sample generation, and increased robustness to hyperparam-
eters and model architectures. This also enables probing the significance
of the underlying framework for offline sequence modeling. Ultimately, on
D4rl and Minari benchmarks, our method matches state-of-the-art per-
formance with fewer resources, further validating conditional generative
modeling for decision tasks.

Keywords: Offline RL · Poisson flow generative modeling ·
Classifier-Guidance

1 Introduction

One consistent trend in deep reinforcement learning is that model performance
improves with more parameters, effectively expanding training data requirements
[1]. Rather than acquiring costly new human demonstrations or risking uncer-
tain simulation-to-real transfers, leveraging readily available low-quality datasets
is an appealing option [17]. Empirical evidence shows reinforcement learning
algorithms’ generalization ability tends to improve with larger model size [16].
However, for applications involving complex, real-world problems, simply scal-
ing data quantity may not suffice due to data collection bottleneckscir [2]. To
maximize information gained from limited high-quality data sources, offline rein-
forcement learning aims to augment training with vast amounts of unsupervised
interactions [5].
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Offline reinforcement learning algorithms face significant stability challenges
stemming from their reliance on temporal difference (TD) learning combined
with function approximation [21], off-policy training, and imperfect behavior
priors. In particular, the deadly triad of non-linear function approximation,
updating policies with off-policy data, and incorporating prior bias can readily
cause divergence during value learning [20]. Operating solely on static interaction
logs further complicates algorithms, requiring careful regularization and heuris-
tics to constrain policy updates to the support of the logged data distribution
[7]. Addressing convergence and stability issues when incorporating non-linear
function approximation has remained an active area of research [15]. The com-
pounded effects of these factors pose substantial difficulties to reliably extending
state-of-the-art offline RL methods [8].

Conditional generative modeling shows promise for circumventing issues with
model-free value function learning. However, offline reinforcement learning (RL)
planning poses unique challenges that have not been fully addressed by existing
generative models. In this work, we develop a novel class of generative models
directly suited for offline RL planning algorithms [23]. A key consideration for
offline RL planning is that it requires optimal action sequences rather than just
single-step predictions, as the model should represent long-horizon action distri-
butions rather than solely state transitions [14]. Additionally, to generalize across
different tasks, the model should remain reward-agnostic. By following offline
planning principles over causal environment dynamics learned from logged data
[24], we aim to develop a reward-agnostic generative model whose samples can
be evaluated by a planner without distribution shift. Specifically, sampling from
the model would produce trajectories that are directly evaluable by a planner,
eliminating mismatches hindering policy optimization from logged data alone.

Inspired by planning diffuser [11], we instantiate this idea with a state-
sequence based Poisson Flow Generative Model [22]called Decision Pois-
soner(DP). Compared to prior work, our main contributions are as follows:

1. We optimize trajectory fidelity over single timesteps: Our approach, referred
to as DP, directly optimizes the fidelity of full generated trajectories as
opposed to errors at each timestep. This circumvents compounding predic-
tive mistakes seen in one-step models, improving scalability for long-term
planning.

2. We produce globally coherent plans: By substituting the conventional U-Net
with a retention mechanism for iterative local refinement, we are able to
produce globally coherent trajectories by stitching together consistent subse-
quences. This endowed ability of DP allows it to synthesize novel long-term
plans by recombining familiar motion patterns.

3. We conduct extensive experiments on benchmark tasks which demonstrate
that our approach achieves markedly better performance than alternatives
in terms of accuracy, rewards, and time efficiency - especially on long-range
and complex scenarios. Our flexible integration of constraints and reward
functions during sampling enables us to apply our approach to a broader
range of tasks, including those unseen during our training.
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2 Related Work

Conditional generative models have shown promising results for offline RL.
Prominent examples include PETS [4] and MOReL [12], which learn compact
latent dynamics models to plan online. SceneDiffuser [10] incorporates model
uncertainty while planning. However, most methods focus on modeling state
transitions rather than full action sequences [16].

Some recent works adopt sequential modeling. Decision Transformer [3]learns
return-conditioned policies with transformers. Trajectory Transformer [8] models
sequence probabilities via transformers. While powerful, transformers have high
computational costs.

Diffusion models have shown remarkable image generation capabilities.
Denoising diffusion probabilistic models (DDPM) [9] models noise-to-data tran-
sitions. D3P [18] improves sampling efficiency. GLIDE [25] generates images
from text. Recent works apply diffusion models to RL [10]. Our work explores
an alternative generation process based on Poisson flows.

3 Methodology

Leveraging offline data to solve RL problems is highly meaningful, but we do
not auto regressively predict states and actions in temporal order. We also
avoid reliance on TD learning or risking distribution shift. Instead, we formu-
late sequential decision making as a standard conditional generative modeling
problem guided by classifiers: We choose a Poisson gravitational field model as a
goal-conditioned trajectory generator, with states and actions at each timestep
over a planning horizon H jointly generated for entire trajectories, so generated
actions can directly inform planning. A function R(τ)can guide the generator
to find trajectories conforming to both the target distribution pθ(τ) and con-
straint conditions under R(τ)using expected returns or cumulative discounted
rewards. To prevent overly aggressive guidance by high-reward goals, condition-
ally generated trajectories may not always obey dynamics constraints, causing
difficulties for a planner trying to follow the envisioned trajectory when interact-
ing with the environment. First, in Sect. 4.1 we discuss the Poisson generative
modeling choice. Next, in Sect. 4.2, we describe how goal-conditioned guidance
is inc orporated to capture optimal trajectories. Then in Sect. 4.3, we discuss
replacing the commonly-used U-Net backbone with a Retnet using a retention
mechanism more suitable for sequence modeling. Finally, Sect. 4.4 covers the
practical training details of our method (Fig. 1).

3.1 Constructing Trajectory Generation Model

The gravitational force between two point masses is directly proportional to the
product of their masses and inversely proportional to the square of the distance
between them. Due to the linear additivity of gravitational fields, if there are
multiple sources of gravity, each representing a point where a real sample should
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Fig. 1. Planning with Poisson Decision. Given the current state and action, Poisson
Decision uses Classifier-Guidance generate a sequence of future states and action, It
then extract the best trajectory by modifying the means µ of the reverse process
according

be generated, then any distant point that moves along the field lines can evolve
into a real sample point. We learn normalized Poisson fields from data by sim-
ulating a forward ODE, anchored by an equivalent backward ODE in the extra
dimension. Generative modeling then proceeds via the reverse ODE, implying
a certain “backwardness” in time during decision-making and dynamics predic-
tion. Specifically, dynamics predictions follow causal relationships, treating the
current state as determined by past states. But decision generation cannot be
determined solely by the past and present; This approach considers multiple
timesteps and future goal state constraints jointly during planning. Specifically,
it generates the full sequence across the planning horizon in a reverse Marko-
vian fashion. Additionally, it leverages Poisson fields to enable local consistency
between neighboring states within the sequence. These locally consistent groups
of states are then hierarchically stacked to gradually expand the scope of con-
sistency approximation, aiming to finally achieve global consistency across the
entire generated sequence over the full planning horizon.

In offline RL, predicting states alone may be easier, but to prevent generated
state trajectories from departing physical realities and becoming unbridgeable
by actions, we jointly predict actions as an extra state dimension. Concretely,
with each time-step as a column within the planning horizon, the generator input
and output are represented as 2D arrays. We introduce s(x, t) to train the vector
field function, with the training objective as follows.

Ex0∼p̃(x0)

[∥∥∥∥sθ(x, t) +
(x − x0, t)

(‖x − x0‖2 + t2)(d+1)/2

∥∥∥∥
2
]

(1)

We construct (x, t) samples for each real trajectory by perturbation:

x = x0 + ‖εx‖(1 + τ)mu, t = |εt|(1 + τ)m

(2)

Among them:(εx, εt) ∼ N(0, σ2I(d+1)×(d+1)), m ∼ U [0,M ], u is a unit vector
uniformly distributed on the d-dimensional unit hypersphere, andτ, σ,M are
constants
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3.2 Reward-Guided Planning

In the offline setting, we reformulate the RL problem as a conditional sam-
pling problem. We introduce the concept of rewards and approximate values
by tracking reward signals in the dataset. Considering long-term effects, we use
reward-to-go to evaluate policy quality. First, we train a trajectory generative
model pθ(τ) on all samples, which can generate multiple trajectory samples fol-
lowing the data distribution as a sampling basis. Concurrently, we train a value
prediction modelJφ that can assess the cumulative reward achievement of each
sample trajectory τ .

Connecting the generator and classifier, we utilize the classifier’s gradient
signals to modify parameters inside the generator model. Based on value ratings
fromJφ, we modify the mean parameters μ of the reverse process in pθ. The
gradient guidance steers pθ to produce new samples biased toward high-value
regions. We repeat sampling until acquiring a high-quality trajectory τ . Inte-
grating the generator and classifier provides an effective approach to solving RL
sampling and optimization problems in an offline manner.

Algorithm 1. Learning Normalized Poisson Field
Input: Training iteration T , initial model fθ, dataset D, constant ε, learning rate η
1: Initialize fθ with random weights θ
2: for t = 1 to T do
3: Sample a large batch BL from dataset D
4: Simulate the ODE
5: Calculate the normalized field
6: Compute loss function: L(θ) = 1

|B|
∑|B|

i=1 |fθ(y
∼
i ) − vBL(y∼

i )|22
7: Update model parameters: θ ← θ − η∇θL(θ)
8: end for
9: return fθ

3.3 Strategies for More Robust Neural Network Architecture

To benefit from recent architectural trends through inheriting best practices and
training methods from other domains, while retaining advantageous properties
like scalability, robustness, and efficiency, we explored the impact of generator
backbone networks on model performance. We found that the inductive bias of
common U-Net architectures is not critical for generative model performance.

Considering our desire for better global influence, we adopted retentive net-
works (RetNets) [19] with multi-scale retention mechanisms in place of Trans-
former multi-head attention. Multi-scale retention enables efficient parallel com-
putation, eliminating RNN dependence on sequence path lengths to fully utilize
GPUs. Each position’s token can directly interact and exchange information with
the global context, allowing more thorough learning of global feature represen-
tations, superior to U-Nets’ hierarchical aggregation through layers.
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Secondly, the recursive representation achieves efficient O(1) inference in
memory and computation. Deployment costs and latency can be significantly
reduced. Moreover, no key-value caching techniques greatly simplify implemen-
tation. Chunk wise recursive representation enables efficient long sequence mod-
eling. We encode local blocks in parallel to capture local neighborhood informa-
tion, and more importantly can model longer-range dependencies, while recur-
sively encoding global blocks to save GPU memory. This allows us to attain
strong performance at lower cost, faster speed.

4 Experiments

4.1 Environments Settings

we first comprehensively evaluate how well each method performs when learning
from different types of offline data which consist of three environments - half chee-
tah, hopper and walker2d. Each environment has three datasets collected using
different data collection policies. Medium policy: A suboptimal policy whose per-
formance is about one third that of the expert policy. Medium-expert mixture:
A dataset containing a mix of transitions from both the medium and expert
policies. Medium-replay: The replay buffer collected when training a policy to
reach the performance level of the medium policy [6].

We also conducted experiments on more complex Minari Adroit tasks, which
require controlling a 24-DoF robotic hand to perform tasks such as aligning a
pen, hammering a nail, or opening doors. We use two types of datasets for each
environment: human datasets, which contain 25 trajectories demonstrated by
humans; and cloned datasets, which are a 50–50 mix of demonstration data and
trajectories from a cloned policy of the demonstration (Fig. 2).

We evaluate long-horizon planning in the Maze2D environments. Maze2D
is a 2D navigation task where the goal is for an agent to traverse from a ran-
domly designated start location to a fixed goal location in the map. The reward
scheme is: 1 if the agent succeeds in reaching the goal, 0 otherwise. Maze2D
can evaluate the ability of RL algorithms to stitch together previously collected
sub-trajectories to find the shortest path to evaluation goals. We use the agent’s
scores as the evaluation metric. So Maze2D tests both the planning and navi-
gation abilities of the agent, as well as the agent’s ability to leverage the offline
dataset for online planning.

4.2 Baseline

We compare our method against existing offline RL algorithms, including model-
free methods like CQL [14] and IQL [13], as well as model-based methods like
trajectory transformers [8]and MoReL (Kidambi et al., 2020). We also compare
against sequence models like decision transformers (DT) [3]. In order to ensure a
fair evaluation across all methods, we tried to keep the general hyperparameters
consistent as much as possible while tuning method-specific hyperparameters.
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Fig. 2. Performance of AsyDyn and HoneyBadger BFT

Table 1. Normalized average returns on D4RL Gym tasks, averaged over 3 random
seeds.

Environment Dataset BC CQL IQL DT TT MOPO MBOP DP(ours)

Halfcheetah Med expert 55.2 91.6 86.7 86.8 95.0 63.3 105.9 93.7 ± 0.6

Hopper Med expert 52.5 105.4 91.5 107.6 110.0 23.7 55.1 109.2±0.3

Walker2d Med expert 107.5 108.8 109.6 108.1 101.9 44.6 70.2 108.4±1.2

Halfcheetah Medium 42.6 44.0 47.4 42.6 46.9 42.3 44.6 48.2±1.2

Hopper Medium 52.9 58.5 66.3 67.6 61.1 28.0 48.8 76.2±1.4

Walker2d Medium 75.3 72.5 78.3 74.0 79.0 17.8 41.0 81.2±0.7

Halfcheetah Med Repaly 36.6 45.5 44.2 36.6 41.9 53.1 42.3 42.6 ± 0.2

Hopper Med Repaly 18.1 95.0 94.7 82.7 91.5 67.5 12.4 97.3±0..5

Walker2d Med Repaly 26.0 77.2 73.9 66.6 82.6 39.0 9.7 72.4±0.3

Specifically, when benchmarking our proposed approach against existing offline
RL algorithms like CQL, IQL, trajectory transformers, MoReL [12], as well as
sequence models like decision transformers and diffusion models like Diffuser, we
used the same general experimental settings, dataset splits, and evaluation pro-
tocols. The hyperparameters we tuned in a method-specific manner were those
intrinsically tied to each algorithm’s internal workings, such as the Lagrangian
multipliers in CQL. But aspects like the network architecture, batch size, dataset
splits, and evaluation metrics were kept identical wherever possible for an apples-
to-apples comparison. This consistent and fair experimental setup allows us to
make meaningful comparisons between our proposed approach and the state-of-
the-art in offline RL. The results thus accurately highlight the relative strengths
and weaknesses of each method.

4.3 Results

We compared the performance of Poisson Decision Process (DP) against base-
line methods on the Halfcheetah, Hopper, and Walker2d environments under
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the single-task setting. The results, summarized in Table 1, demonstrate that
DP achieves competitive performance compared to the other baselines, outper-
forming model-based methods like MOReL and MBOP.

Table 2. Normalized average returns on Minari Adroit tasks, averaged over 3 random
seeds.

Enviroment Dataset BC SAC CQL DP(ours)

Adroit Pen Expert 25.8 ± 8.8 4.3 ± 3.8 35.2 ± 6.6 55.3±2.6

Adroit Hammer Expert 3.1±3.2 0.2 ± 0.0 0.6 ± 0.5 2.6±1.5

Adroit Door Expert 2.8 ± 0.7 −0.3 ± 0.0 1.2 ± 1.8 13.8±1.7

Table 3. Normalized average returns on Maze2D task, averaged over 3 random seeds.

Enviroment Dataset MPPI CQL IQL DP(ours)

Maze2D U-Maze 33.2 5.7 47.4 109.3±1.6

Maze2D Medium 10.2 5.0 34.9 117.3±3.3

Maze2D Large 5.1 12.5 58.6 121.3±2.7

Compared to other sequence modeling approaches such as Decision Trans-
former and Trajectory Transformer, which are both based on Transformer archi-
tectures, DP performs on par without any significant difference. The former mod-
els a mapping from past data and value estimates to actions (return-conditioned
policy), while the latter models sequence probabilities autoregressively in a dis-
crete space, searching for higher-value sequences. However, unlike their expensive
computational complexity and decision times often in the order of seconds or tens
of seconds, DP enjoys a huge advantage with average decision times less than
one-tenth of a second In the more complex Adroit Hand tasks, the results are
summarized in Table 2. The high-dimensional control problem leads to increased
data complexity, the high-dimensional action space causes difficulties in explo-
ration and policy optimization, and the sparse reward functions make effective
learning signals hard to obtain. The complex, multi-stage behaviors pose even
greater challenges for offline RL to grasp. Compared to the mediocre performance
of previous algorithms, DP results are exciting. We hypothesize this stems from
the parametric benefits of replacing the backbone with Retnet.

Finally, in the Maze2d task, the results are summarized in Table 3. The
Maze2d dataset covers different planning paths, allowing the algorithm to effec-
tively generalize using this data, finding feasible solutions for new start points as
well. This demonstrates decent generalization capabilities. DP stitches together
previously collected sub-trajectories to find the optimal path, and the longer
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horizon enables it to handle long-term planning and reasoning. This advantage
in credit assignment allows DP to trace back and associate the final results with
its earlier decisions. Ultimately leading to outstanding performance.

5 Conclusion

We have introduced DP, a new strategy representation for goal-conditioned
behavior generation using a Poisson flow model. We leverage the expressive-
ness of PF and the outstanding efficiency of the Retnet backbone to learn task-
agnostic behaviors from offline, reward-less game datasets, without the need for
hierarchical structures or additional clustering. Additionally, we have validated
the effectiveness of classifier guidance in simultaneously learning goal-dependent
and goal-agnostic strategies in sequential settings. Experiments on multiple D4rl
benchmarks demonstrate that DP significantly improves several state-of-the-art
algorithms, as well as the foresight planning capability under long horizons. Our
ablation studies confirm that the key components
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Abstract. Recent research work has shown that self-supervised train-
ing encoders are susceptible to backdoor attacks. When the attacker is
an untrusted service provider or a malicious third party, the attacker
can manipulate the training process of the encoder at will. By adding
specific patches or noise to the training dataset, the attacker successfully
injects a backdoor into the image encoder and shares the backdoored
encoder with downstream clients. While there have been many exist-
ing works on backdoor removal for supervised learning, most of them
require labeled datasets and are not suitable for self-supervised training
scenarios. Our work considers how to successfully remove the backdoor
from the backdoored encoder when the defender has limited available
training data. In this work, we propose SSL-ABD. The key idea behind
our method is to formulate it as a min-max optimization problem: first,
adversarially simulate the trigger pattern, and then remove the backdoor
from the backdoored encoder through feature embedding distillation. We
conducted experiments against various self-supervised attack algorithms
such as CTRL [1] and SSL-Backdoor [2], and successfully removed the
backdoor.

1 Introduction

Self-supervised learning (SSL) [3,4] has been widely applied in various fields and
has made revolutionary advances, particularly in computer vision applications.
SSL is an unsupervised learning method that trains models using the inherent
structure and statistical information of the data, without the need for manually
labeled annotations. SSL performs well in scenarios where labeled examples are
scarce. Compared to supervised learning, SSL can avoid the expensive annota-
tion costs by training on custom prediction tasks that can generalize to many
downstream tasks. Several studies have shown that SSL can achieve compara-
ble or even better performance than supervised learning in few-shot learning
scenarios. This means that SSL can leverage unlabeled data to improve model
performance when only a few labeled samples are available.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Recent research has indicated that self-supervised learning is vulnerable to
data poisoning attacks, where attackers inject carefully crafted samples, also
known as “poisoned” samples, into the unlabeled training dataset. These samples
often belong to a specific class and contain “triggers” chosen by the attacker,
which can be specific patterns, colors, or hidden features. The inclusion of these
poisoned samples during the training of image encoders introduces backdoor
behavior, which means that when using the pretrained encoder for downstream
tasks such as classification, incorrect predictions may occur. This is advantageous
for attackers, as the backdoor behavior only manifests under specific trigger
conditions, while the encoder behaves normally at other times, making the attack
difficult to detect.

In recent years, significant progress has been made in defending against
backdoors [5] in supervised models. These efforts can be broadly categorized
into the following aspects: (1) Backdoor detection and removal [6,7]: This app-
roach aims to detect and remove existing backdoors in models. It often relies
on model auditing and analysis to identify potential backdoor trigger conditions
and eliminate them. (2) Training data filtering [8,9]: This method involves filter-
ing and cleaning the training data to remove potentially compromised samples
containing backdoors. This helps reduce the available information that attackers
can exploit. (3) Defense algorithm design: Some researchers are exploring the
design of more robust and secure learning algorithms to defend against back-
door attacks. These algorithms can automatically identify and resist potential
backdoor attacks during the training process. (4)Ensemble of multiple mod-
els [10,11]: Utilizing multiple independently trained models for inference and
decision-making can enhance system robustness. This approach can identify
inconsistent predictions and reduce erroneous outputs caused by a single model
compromised by a backdoor. Due to differences in training data, training pro-
cesses, and model structures between SSL and supervised models, most defense
techniques developed for supervised models cannot be directly applied to SSL.

Recently, some research studies have started exploring backdoor defense in
SSL. These works primarily focus on training data filtering and detecting back-
doored models. For instance, [12] proposes a method to detect training samples
containing triggers. It trains a backdoored encoder using poisoned data and then
clusters the feature vectors of a subset of the training data based on the back-
doored encoder. Poisoned samples are selected from each cluster. [13] introduces
a method to detect if an encoder contains a backdoor. It utilizes trigger inversion
to obtain an optimal trigger from the detected encoder and determines if the
encoder contains a backdoor based on the trigger size. [14] also presents a trigger
inversion-based detection method and designs a backdoor removal method using
the detected backdoor trigger. However, this backdoor removal work requires the
defender to have access to a significant amount of training data.

In this paper, we propose SSL-ABD, which aims to enable defenders to
quickly remove backdoor patterns from backdoored encoders using a small
amount of unlabeled data. Firstly, we attempt to mimic backdoor behavior by
adding small perturbations to the inputs to make them as different as possible
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from the original features, creating adversarial examples. Then, we employ a min-
imax approach to decrease the weights of the encoder model’s neurons that are
associated with the backdoor trigger. Drawing inspiration from self-supervised
model knowledge distillation methods [15] and model compression [16], we use
a student model to extract benign knowledge from the suspicious teacher model
while simultaneously eliminating the student model’s own backdoor behavior.

2 Related Work

2.1 Self-supervised Learning

Self-supervised learning is a machine learning method that trains models by
generating targets or tasks from the input data itself, without the need for man-
ually labeled annotations. Unlike traditional supervised learning, self-supervised
learning does not rely on externally provided human labels. Instead, it leverages
the intrinsic information present in the input data for training. In self-supervised
learning, algorithms perform some form of transformation or prediction task on
unlabeled data. These tasks can include tasks such as filling in missing parts,
image rotation recovery, colorizing black and white images, and more. By com-
pleting these tasks, the model can learn features such as the structure, semantics,
and contextual relationships in the data, thereby obtaining useful representa-
tions. Once the model has learned good representations through self-supervised
training, these representations can be transferred to other specific supervised
tasks for fine-tuning, aiming to improve performance and generalization. Self-
supervised learning has been widely applied in computer vision, natural lan-
guage processing, speech recognition, and other fields. It provides an effective
way to leverage unlabeled data for pretraining, overcoming the limitations of
traditional supervised learning that requires a large amount of annotated data.
SimCLR (Simple Contrastive Learning) and MoCo v2 (Momentum Contrastive
Learning) are two common SSL methods. These SSL techniques rely on instance
discrimination, where models learn competitive visual representations by train-
ing with contrastive losses.

2.2 Backdoor Attack on Self-supervised Learning

In neural networks, a backdoor attack refers to the manipulation of a trained
model to trigger pre-defined malicious behavior under specific conditions. This
attack method aims to introduce hidden vulnerabilities or malicious function-
alities without affecting the normal performance of the model. One common
approach for backdoor attacks is to embed a backdoor by intentionally modify-
ing the training data or labels. Attackers can insert specific patterns, symbols,
or noise into the training data or change the labels of training samples. Another
method for backdoor attacks is to embed a backdoor by adjusting the weights
or structure of the neural network. Attackers may utilize specific optimization
algorithms or objective functions to incorporate the backdoor characteristics
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into the model during the training process. Backdoor attacks can pose a serious
threat to the security and trustworthiness of neural network models, especially
in scenarios involving sensitive data or critical tasks.

Recently, [2] proposed for the first time that self-supervised model training
can be vulnerable to backdoor attacks. They suggested pasting triggers selected
by the attacker at random positions in a small number of training samples.
After data processing, some data still contain triggers, successfully injecting a
backdoor into the encoder during training. However, triggers pasted at random
positions may be partially filtered out after data processing, resulting in a low
poisoning rate that affects the success rate of the backdoor attack. To address
this issue, [17] proposed adding triggers after data augmentation to ensure a
higher poisoning rate. Additionally, the authors suggested performing data aug-
mentation three times for each image, with two augmentations used to train
the model for high accuracy on clean samples, and the third augmentation used
to train the correlation between the trigger and the target image. Furthermore,
[1] introduced a covert backdoor attack scheme by adding the backdoor in the
frequency domain of the image, making it invisible to the human eye. To ensure
that triggers can bypass data augmentation operations, the authors used global
triggers. The aforementioned scenarios consider attackers poisoning the data
before or during encoder training. In addition to these scenarios, [18] assuming
the attacker can obtain a pre-trained clean encoder, they can conduct a backdoor
attack on it and then share the backdoored encoder with downstream clients.
The success rate of this attack in their work can reach 99%.

2.3 Backdoor Defence on Self-supervised Learning

Recently, researchers have been investigating defense mechanisms against back-
door attacks in self-supervised model training. Among them, [12] focuses on
detecting poisoned samples in the training dataset. They train a self-supervised
learning (SSL) model on poisoned data and use it to identify poisoned samples.
[19] accomplishes the detection of poisoned samples by computing the differential
behavior of the model on poisoned samples and benign samples. [13] proposes
a scheme for detecting whether an encoder contains a backdoor. The authors
observe that the feature representations of poisoned samples exhibit higher sim-
ilarity compared to clean samples. They leverage this observation by adding
initialized triggers to a portion of the training data as poisoned samples and
optimizing the triggers through the encoder to maximize the similarity between
their feature representations until the triggers reach a minimum size. Backdoored
encoders tend to have smaller reversed triggers compared to clean encoders, and
the authors exploit this characteristic to detect backdoored encoders. Similarly,
[14] proposes trigger reversal as a method to detect backdoored encoders. They
first cluster a portion of the training data into k clusters using the encoder. For
each cluster, they reverse multiple candidate triggers using data from other clus-
ters. Finally, they check if there exists a trigger that is significantly smaller than
the other triggers, indicating the presence of a backdoor in the encoder. Addi-
tionally, this work suggests using the reversed triggers and a subset of training
samples to mitigate the impact of the backdoor.
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Fig. 1. Weight mask and feature embedding distillation

3 Methodology

In this section, we will introduce the method we propose. Inspired by adversarial
work [20], we present Self-Supervised Adversarial Backdoor Defense (SSL-ABD)
to remove backdoors from self-supervised training image encoders, even with
limited available training data. Our approach consists of two steps: first, using
adversarial perturbations, we find a “channel” from the feature space of clean
samples to the feature space of backdoor samples, and then we use perturbations
to break the boundary between these two feature spaces.

3.1 Simulating the Backdoor Trigger Pattern Using Adversarial
Perturbations

[21] proposed a method for simulating the backdoor trigger pattern in a super-
vised learning scenario by adding small perturbations to inputs to mimic back-
door samples. The goal is to manipulate the predicted labels to deviate as much
as possible from the true labels, thereby identifying the trigger pattern that clas-
sifies the backdoor samples into the target class. In contrast to the supervised
learning scenario, self-supervised training data is unlabeled, and the injection
of backdoors relies on establishing a relationship between the trigger pattern
and the target class features. In Fig. 2, we can observe a significant difference
in the features extracted by the backdoored encoder between clean samples and
backdoor samples. Two views that originally had high similarity experience a
reduction in feature similarity when one of them is augmented with a trigger
pattern. Based on this observation, we attempt to simulate the backdoor trigger
pattern using adversarial perturbations. By adding small perturbations to one of
the views of a benign sample, we gradually reduce the feature vector similarity
between the two views extracted by the backdoored encoder, thereby simulating
the gap between the feature spaces of clean samples and backdoor samples in the
presence of the backdoor model. Specifically, for an existing backdoored encoder
fθ, given a sample xi that undergoes data augmentation to obtain different views
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xi1 and xi2, we can optimize the following objective to adversarially recover the
trigger pattern:

min
||δ||≤ε

Lsimilarity(fθ(xi1), fθ(xi2 + δ)) (1)

|| · || is L1 regularization, and δ represents the disturbance budget.The main
objective of Equation (1) is to find an L1 regularized perturbation that signifi-
cantly deviates the features extracted by the encoder from the desired features.

Algorithm 1. Self-supervised Learning Adversarial Backdoor Defence(SSL-
ABD)
Input: Infected Encoder f with θ; Clean dataset D = {xi}n

i=1; Batch size b; Learning
rate η1, η2; Hyper-parameters α, Epochs E; Inner iteration loops T , L1 norm bound
τ ; Queue Z;

Output: masks m for weights in encoder θS

1: Initialize all elements in m as 1,Z
2: for i = 1 to E do
3: Initialise δ as 0
4: for t = 1 to T do
5: x1 = aug(x), x2 = aug(x)
6: Linner = similarity(fθ(x1),fθ(x2 + δ))
7: δ = δ + η1 �δ Linner

8: Clip δ : δ = δ * min(1, τ
||δ||1 )

9: Initialize θT =θS=θ
10: for t = 1 to T do
11: x1 = aug(x), x2 = aug(x)
12: ST (x1; θT ; Z) = similarity(fT

θ (x1), Z)
13: SS(x2; θS ; Z) = similarity(fS

θ (x2), Z)
14: SS∗(x2 + δ; θS ; Z) = similarity(fS

θ (x2 + δ), Z)
15: Louter = αLMSE(ST , SS) + (1 − α)LMSE(ST , SS∗)
16: m = m + η2 �m Louter

17: Clip m to [0,1]
18: Enqueue(Z, fT

θ (x1))

3.2 Weight Mask and Feature Embedding Distillation

Our work is similar to some research in the field of self-supervised knowledge
distillation [15]. Our main objective is to remove the backdoor pattern from an
existing backdoor model while preserving its feature extraction capability.We
establish a queue to store the output features of a teacher encoder for the data.
As shown in Fig. 1, given a data sample, we first perform data augmentation to
generate two different views. For one of the views, we use the teacher encoder to
calculate its similarity scores with all samples in the queue. For the other view,
we create two copies and apply perturbations to one copy while leaving the other
copy unchanged. Then, we use the student encoder to compute similarity scores
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between the two copies and the samples in the queue. We aim for the similarity
scores computed by the student encoder to match those computed by the teacher
encoder, thereby minimizing the discrepancy between the similarity scores of the
student and teacher encoders.

Specifically, for an existing backdoor encoder fθ, we set fT
θ = fS

θ = fθ, where
fT

θ acts as a teacher encoder and fS
θ acts as a student encoder. Given a sample

xi, we perform data augmentation to obtain two different views, denoted as xi1

and xi2. We input xi1 and xi2 separately to fT
θ and fS

θ , resulting in feature
vectors zT

i = fT
θ (xi1) and zS

i = fS
θ (xi2). Additionally, we apply an adversarial

perturbation δ to xi2 and input it to fS
θ , resulting in zS∗

i = fS
θ (xi2 + δ).Let

Z = [z1, z2, ..., zk] denote the instance queue, where k represents the queue length
and zi represents the feature vector obtained from fT

θ . The existence of Z is
similar to the queue in contrastive learning algorithms like Moco, where the
queue stores the feature vectors obtained by inputting given samples xi1 to fT

θ .
During the distillation process, the content of Z is dynamic, with the earliest
stored feature vectors being cleared as we enqueue the feature vectors of the
current batch of samples.We calculate the similarity scores of zS∗

i , zS
i , zT

i and
the samples in the queue Z respectively. Then, by minimizing the similarity
scores between zS∗

i and zT
i , as well as zS

i and zT
i , we update fS

θ to ensure
the successful removal of the backdoor from fS

θ without causing a significant
decrease in accuracy. Let ST (xi1, θ

T , Z) denote the similarity score between the
feature vector zT

i extracted by the teacher encoder and the instance feature
queue Z = [z1, z2, ..., zk], defined as

ST (xi1, θ
T , Z) = [sT

1 , sT
2 , ..., sT

k ], sT
j =

exp(zT
i · zj/T )

∑k
d=1 exp(zT

i · zd/T )
(2)

T represents the temperature parameter. Similarly, let SS(xi2, θ
S , Z) and

SS(xi2 + δ, θS , Z) denote the similarity scores of the student-extracted clean
sample features and perturbed sample features to the instance cohort, respec-
tively, defined as

SS(xi2, θ
S , Z) = [sS

1 , sS
2 , ..., sS

k ], sS
j =

exp(zS
i · zj/T )

∑k
d=1 exp(zS

i · zd/T )
(3)

SS∗(xi2 + δ, θS , Z) = [sS∗
1 , sS∗

2 , ..., sS∗
k ], sS∗

j =
exp(zS∗

i · zj/T )
∑k

d=1 exp(zS∗
i · zd/T )

(4)

Our backdoor removal formulation can be expressed as computing the sum of
losses between ST (xi1, θ

T , Z) and SS(xi2, θ
S , Z), ST (xi1, θ

T , Z) and SS∗(xi2 +
δ, θS , Z) over all samples. We use the mean squared error to evaluate the loss
value between the two. The model parameters of the teacher encoder fT

θ are
fixed, while the loss value is used to train the student encoder fS

θ . For fS
θ , we

add an additional mask to all network weights. Instead of updating the weights
of fS

θ directly during training, an appropriate mask value is learned for each
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parameter weight. The formula is as follows:

min
m∈[0,1]

Exi∼DαLMSE(ST (xi1, θ
T , Z), SS(xi2,m � θS , Z))

+(1 − α)LMSE(ST (xi1, θ
T , Z), SS∗(xi2 + δ,m � θS , Z))

(5)

where α represents a hyperparameter. m represents the weight mask, the value
range is [0,1], and the initial value is 1.

4 Experiments

In this section, we conduct experiments to verify the effectiveness of our proposed
SSL-ABD method.

4.1 Experimental Settings

Datasets and Pre-training Image Encoders. We conduct experiments on
three datasets: CIFAR10, CIFAR100 and Imagenet100. CIFAR10 includes 50,000
training images and 10,000 test images, the images are divided into 10 classes,
and each image has a size of 32 × 32 × 3. CIFAR100 includes 50,000 training
images and 10,000 testing images of 100 classes, and each image has a size of
32 × 32 × 3. Imagenet100 randomly selects 100 classes of data from the Imagenet
dataset, including about 127,000 pieces of data. We pre-train the image encoder
with all training images from the above dataset. By default, we use an encoder
with ResNet18 [22] as the backbone and a two-layer MLP projector to map
representations to a 128-dimensional latent space; moreover, we use a two-layer
MLP with a hidden layer size of 128 as the downstream classifier. We use two
representative contrastive learning methods: SimCLR [23] and MoCo [24].

Attacks. For the backdoor attack baseline, we considered 1) SSL − Backdoor
with square trigger; 2) BadEncoder; 3) stealth-shaped attack CTRL. Specifi-
cally, SSL-Backdoor randomly selects 50% of the images from the specified cate-
gory, applies square triggers at random positions to poison the training data set,
and then uses the Moco v2 method to train for 500 rounds to obtain the poisoned
encoder. Since there are only 500 images of each category in the CIFAR100 data
set, in order to increase the success rate of the attack, we poison all images of
the specified category. CTRL selects 1% of all training data images for poison-
ing in each attack, and then uses the SimCLR method to train for 500 rounds.
BadEncoder first trains on clean samples for 1000 rounds to obtain a usable
clean encoder, and then trains on the poisoned data set for 200 rounds to inject
backdoors, also using the SimCLR method.

Evaluation Metrics. We employ two metrics: Accuracy Rate (ACC) and
Attack Success Rate (ASR). ACC is the predictive accuracy of the model on
a clean dataset, and ASR is defined as the ratio of the number of samples that
divide samples containing triggers into the target class to the total evaluation
images.
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Fig. 2. The first row and second row respectively display the visualizations of features
for clean and poisoned samples before(left) and after(right) the defense of poisoned
encoders trained using SSL-Backdoor and CTRL attack methods on CIFAR10.

4.2 Defense Effectiveness

We studied the backdoor cleaning performance of SSL-ABD on various available
data sizes. Table 1, Table 2 and Table 3 respectively list the defense effects on
three different data sets. Specifically, we tested the defense effect on available
data samples of different sizes in each defense, ranging from 500 to 100. For each
dataset, we use all training data to train poisoning encoders. At the same time,
we use 5000 training data to train downstream classifiers. For the CIFAR100
and Imagenet-100 data sets, we only select 10 categories of data for downstream
classifier training and testing of various evaluation indicators.
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Table 1. Backdoor removal results with various available data sizes on CIFAR10
dataset

Attack Metric Origin Available Data Size

500 300 200 100

CTRL ACC 85.18 84.44 84.30 85.22 83.60

ASR 74.64 1.36 1.16 1.78 2.83

SSL-Backdoor ACC 84.23 80.03 80.12 79.52 80.23

ASR 93.74 3.48 5.46 7.38 7.45

BadEncoder ACC 86.17 80.52 83.46 79 80

ASR 99.14 9.24 7.76 8.56 6.43

Table 2. Backdoor removal results with various available data sizes on CIFAR100
dataset

Attack Metric Origin Available Data Size

500 300 200 100

CTRL ACC 87.69 86.6 86.2 86.3 86.8

ASR 92.56 0.89 0.67 0.78 0.56

SSL-Backdoor ACC 85.9 86.2 85.1 84.3 84.5

ASR 25.67 0.89 1 1 2.11

BadEncoder ACC 86.9 83.2 83.46 81.5 83.1

ASR 99.3 12.67 9.5 9.67 12.11

Table 3. Backdoor removal results with various available data sizes on Imagenet-100
dataset

Attack Metric Origin Available Data Size

500 300 200 100

CTRL ACC 78.2 76.8 75.6 75 77.8

ASR 17.11 1.78 1.58 1.78 2

SSL-Backdoor ACC 85.6 85 83.6 83.2 84.4

ASR 69.78 5.11 6.67 4 7.11

5 Conclusion

In this work, we proposed SSL-ABD, a novel approach for clearing backdoors
in SSL encoders when there is limited available data. In this work, we used
adversarial perturbations to recover the backdoor trigger’s activation behav-
ior. Then, we added weight masks to the encoder parameters and reduced the
weights associated with the backdoor behavior using feature embedding distil-
lation. Through experimentation, we demonstrated that our SSL-ABD method
effectively clears the backdoor in the encoder in scenarios where only a few
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hundred clean unlabeled data samples are available. Currently, our method still
requires a small amount of training data, which means that the defender needs
to have some knowledge about the training dataset. However, in certain scenar-
ios, the defender may not have any knowledge about the training set. In such
cases, how to clear the backdoor in the encoder without any knowledge about
the training set will be the focus of our next stage of work.
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Abstract. Personalized local differential privacy is a privacy protection
mechanism that aims to safeguard the privacy of data by using person-
alized approaches, while also providing practical data analysis results. It
offers more flexible and precise privacy protection capabilities compared
to traditional local differential privacy. By employing distinct privacy
protection strategies for different users, it can better meet users’ privacy
requirements while minimizing the impact on data. However, existing
mechanisms for personalized local differential privacy suffer from issues
such as low query accuracy and poor data utility. These issues need to be
addressed to improve the effectiveness and practicality of personalized
local differential privacy.

In this work, we have proposed a framework of personalized differential
privacy in the shuffle model. This framework introduces individualized
perturbation to the data locally and then reshuffles the records in the
dataset, disrupting the original order of the data and breaking the corre-
lations between data points. This approach aims to achieve a higher level
of privacy protection. We have validated the practicality and superiority
of this framework on four different types of real-world datasets.

1 Introduction

With the rapid advancement of technology and the emergence of a data-driven
economy, a vast amount of personal information is being collected and stored for
various commercial purposes, such as personalized advertising, market research,
and user behavior analysis. However, this widespread collection and utilization
of data has also given rise to concerns regarding personal information leakage,
identity theft, and infringement upon individual rights. Furthermore, significant
events have further emphasized the need for privacy protection. For instance, the
disclosure of the surveillance program conducted by the US National Security
Agency, exposed by Edward Snowden, highlighted the government’s capability
to extensively monitor citizens’ communications and personal data, triggering
a debate on the delicate balance between privacy rights and national security.
Similar incidents, coupled with data breaches, cyber attacks, and other related
issues, have intensified people’s focus on the security of personal information and
the necessity for safeguarding privacy.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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In recent years, local differential privacy(LDP) [1,2] has emerged as a privacy
protection mechanism based on individual privacy. It requires each participant
to locally perturb or process data to enhance privacy. This approach allows for
the protection of individual data privacy while enabling the server to analyze and
utilize the uploaded data. Currently, local differential privacy has been applied in
many real-world scenarios and has shown excellent performance. For example,
Chrome by Google [3] and Windows 10 by Microsoft [4] use it for user data
collection, and there have been numerous research outputs and explorations
related to it in the scientific community. [5] applied LDP to frequency and mean
estimation.

However, Local Differential Privacy (LDP) sacrifices data utility while pro-
tecting privacy. Hence, the concept of Shuffle model emerged. This mechanism
shuffles the perturbed data with the help of a third party before it is sent to the
server. The purpose of this operation is to disrupt the original order between the
data and break the correlation between them, thereby achieving a higher level of
privacy protection. The exist works such as Amplification-by-shuffling lemmas
quantify how well the privacy parameters are improved [6,7], the single-message
protocol [8,9] and m-message Shuffle Privacy [10,11]. But, the characteristic
of shuffle model and LDP, which requires the same level of privacy protection
for each individual, is not suitable for the majority of real-world scenarios. In
real-world situations, due to different backgrounds of individuals, the privacy
preferences for the same type of information vary among different users. For
example, celebrities have much stricter privacy protection requirements for their
flight information compared to ordinary people.

Based on the different privacy needs of individuals, the concept of person-
alized differential privacy(PDP) has emerged [12,13]. Personalized local differ-
ential privacy(PLDP) [12] allows for the development of different data pertur-
bation strategies based on the characteristics and requirements of individual
users. Compared to traditional shuffle model and LDP, personalized local differ-
ential privacy offers more flexible and precise privacy protection capabilities. By
adopting different privacy protection strategies for different users, it is possible
to better meet their privacy needs while minimizing the impact on data. This
approach can to some extent improve data availability and the accuracy of data
analysis. Individual users can choose the appropriate level of privacy protec-
tion based on their privacy preferences, thereby customizing more suitable per-
sonalized privacy protection solutions. [14] proposed a histogram optimization
strategy based on personalized differential privacy. [15] presented a perturbation
algorithm (PDPM) that satisfies personalized local differential privacy (PLDP),
addressing the problem of inadequate or excessive privacy protection for certain
participants caused by using the same privacy budget for all clients.

Although the PLDP model avoids the risk of storing all data centrally on
a single server and enhances the security of data privacy, it has a significant
gap in terms of data availability compared to the central differential privacy
model. The main challenges of personalized local differential privacy currently
are: (1) How to accurately model users’ characteristics and privacy preferences



470 R. Yang et al.

in order to generate appropriate personalized perturbations. (2) Balancing the
level of privacy protection among different users, avoiding excessive protection
or exposure of certain users’ privacy. (3) Striking a balance between individual
data privacy protection and data utility.

Based on the above challenges, in this paper, we propose several different
privacy budget levels for users to choose from freely in order to meet the privacy
preferences of different individuals and find the most suitable privacy protection
strategy. We also separate the privacy budget parameters from the perturbed
data during transmission to enhance the level of privacy protection. In addi-
tion, to further address the impact of local data perturbation on server-side
data analysis, we have introduced the shuffle model. Finally, in the data aggre-
gation phase on the server side, we assign fixed weights to each perturbed data
for more accurate unbiased estimation. In this article, we investigated the fre-
quency estimation problem in the context of personalized differential privacy in
tne shuffle model. We improved the impact of noise perturbation on data avail-
ability by using a shuffling model and extended it to the multi-message shuffling
model scenario. A large number of experimental results showed that our method
significantly outperformed personalized local differential privacy.

In summary, we have made several contributions to this paper:

1. We have improved the basic framework of PLDP by separating the privacy
parameters and perturbed data for enhanced privacy protection. Additionally,
we have assigned fixed weights to each user to obtain more accurate unbiased
estimates.

2. The first application of shuffle model in the PDP problem was introduced, and
it was demonstrated that multi-message shuffling differential privacy method
improve the utility of data statistics.

3. To demonstrate the effectiveness of our approach, we applied it to multiple
real-world datasets of different types. The experimental results consistently
showed that our method outperformed PLDP model, and we provided insights
into the impact of certain parameters on utility.

2 Preliminaries

2.1 Differential Privacy

Differential Privacy(DP) is a privacy-preserving method that aims to minimize
the risk of individual privacy disclosure during the analysis or processing of indi-
vidual data. The core idea of differential privacy is to hide the specific informa-
tion of individual data by introducing noise or randomness, allowing meaningful
analysis of data while protecting privacy.

Definition 1. Differential Privacy(DP) [16]: A random algorithm R : R(D) →
S satisfies (ε, δ)-DP, where ε ≥ 0 and 0 ≤ δ ≤ 1, if and only if any Neighboring
datasets D,D′, for any possible of outputs z ⊆ S, it has

Pr[R(D) ∈ z] ≤ eε · Pr[R(D′) ∈ z] + δ (1)
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where S represents the set of values output by R. If δ = 0, random algorithm R
satisfies pure DP(ε-DP), if δ > 0, R satisfies approximate DP((ε, δ)-DP).

2.2 Shuffle Model

To address the issue of low utility in LDP models, some researchers have pro-
posed Shuffle Differential Privacy(shuffle model) [6,8]. The shuffle model pri-
marily provides privacy protection by introducing a semi-trusted third-party to
reorganize or shuffle the perturbed data. The shuffle model serves as a compro-
mise between central differential privacy models(CDP model) and LDP models.
It neither relies on trusted servers nor requires excessive noise addition locally
like the LDP model. Therefore, it can effectively enhance data utility in specific
application scenarios.

Definition 2. Shuffle model [17]: A shuffling model consists of three compo-
nents: Randomizer, Shuffler and Analyzer.

1. the Randomizer R: R(a, ·) → ym: The randomizer R perturbs the input
real data a and output ym. When m = 1, it is referred to as a single-message
protocol, and when m > 1, it is referred to as a multi-message protocol.

2. the Shuffler S: S(ym) → ym: By recombining the attribute values of records
or exchanging them with other records, the shuffler makes the correlation and
individual information of the dataset more obscure and indistinguishable.

3. the Analyzer A: A(ym) → Z: The analyzer is responsible for collecting and
processing the messages, as well as conducting subsequent analysis tasks.

If we use protocol P(R ◦ S ◦ A) to describe the above process, we define this
process as:

P(a) = A(S(∪n
i=1Ri(ai, ·)) (2)

Based on the above content, we can derive the following definition 3.

Definition 3. Differential Privacy in shuffle model(shuffle DP). the protocol P
satisfies (ε, δ)-DP, where ε ≥ 0 and 0 ≤ δ ≤ 1, if and only if S(∪n

i=1Ri(ai, ·))
satisfies central (ε, δ)-DP where S(·) is the shuffle operation.

Definition 4. Hockey-stick divergence. The hockey-stick divergence between two
random variables P and Q is defined by:

Deε(P‖Q) =
∫

max

{0, P (x) − eεQ(x)} dx (3)

iff max{Deε(P‖Q),Deε(Q‖P )} < δ that P and Q are (ε, δ)-indistinguishable.

2.3 Personalized Differential Privacy

Personalized Differential Privacy(PDP) is an extended form of differential pri-
vacy that aims to provide more precise privacy protection while maintaining the
availability and utility of individual data. Personalized differential privacy allows
data processors to customize privacy protection mechanisms for each user based
on their privacy requirements and data characteristics.
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Definition 5. Personalized Differential Privacy [12]. Given the local user sets
U = {u1, u2, . . . , un} and ε = {ε1, ε2, ..., εn}, where each user ui ∈ U has a
privacy preference εi ∈ ε, and a random mechanism R : R(D) → S satisfying
(ε, δ)-PDP where 0 ≤ δ ≤ 1,0 ≤ εi ≤ 1 . if and only if any Neighboring datasets
D,D′, for any possible of outputs z ⊆ S, it has

Pr[R(D) ∈ z] ≤ eεi · Pr[R(D′) ∈ z] + δ (4)

where S represents the set of values output by R and εi is the user ui’s privacy
preference.

3 System Overview

3.1 Problem Definition

In a distributed scenario, data is typically stored across different nodes or partici-
pants, and it may involve multiple privacy-sensitive data owners. Frequency esti-
mation can potentially leak information about individuals. Even without directly
disclosing sensitive data, attackers may be able to infer individual attributes or
behavioral patterns through analyzing frequency estimation results. Therefore,
privacy concerns are an important consideration. In the case of an untrusted
server, we typically employ the PLDP mechanism to provide personalized pri-
vacy protection for local users.

We use ε = ∪n
i=1εi to define the set of privacy budget values, where εi repre-

sents the privacy preference of local user ui. Smaller values of εi indicate stronger
privacy. Suppose there is a local user population where each user holds an ele-
ment ai ∈ T , where T = {t1, t2, t3, ..., tk}. And let

ft =
1
n

n∑
i=1

1(ai=t) (5)

ft denotes the frequency of a specific element t in the entire population. n rep-
resents the total number of users. This method is commonly used in fields such
as analyzing user behavior, conducting statistical surveys, and data mining.

Although PLDP improves certain limitations of the application scenarios,
such as the single-purpose nature and limited privacy protection strength of LDP
mechanisms, there still exists a significant gap in terms of accuracy compared to
the CDP. Our goal is to maximize the statistical utility of server-side data while
achieving personalized privacy protection.

3.2 Muti-messages Personalized Differential Privacy in Shuffle
Model

We achieve this goal by introducing the shuffle model. Shuffle model is simi-
lar to LDP that perturbs individual data locally. However, unlike LDP, shuffle
model enhances privacy protection by introducing a third-party shuffler that
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anonymizes and randomly reorders the perturbed data. Therefore, when both
mechanisms provide the same level of privacy protection, the shuffle DP allows
for the addition of less noise locally, resulting in a significant improvement in
statistical utility at the server-side.

In this paper, we have introduced a scenario of Muti-messages personalized
differential privacy in shuffle model(Muti-messages PSDP). We specify that in
addition to the privacy budget εi, each user can send m messages, among which
only one is a true message, and the rest are false messages sampled from a
random uniform distribution. All messages are then sent to a random shuffler
for shuffling before being sent to the server for data aggregation(see Fig. 1).

Fig. 1. The framework of multi-PSDP

The Local Randomization Perturbation(Randomizer). The local ran-
domization perturbation (Randomizer) and server-side aggregation analy-
sis(Analyzer). The local Randomizer perturbs the original data by modifying
it with a certain probability or adding random noise to increase the indistin-
guishability between two pieces of data. The most commonly used mechanism is
the random response mechanism [18] and its generalized versions [3]. General-
ized Randomized Response (GRR) [19,20] is more suitable for situations where
k > 2. Therefore, we have chosen GRR as the local randomizer to perturb the
real data. The workflow is as follows:

P [R(a) = a∗] =
{

eε

eε+k−1 , a∗ = a
1

eε+k−1 , a∗ 
= a
(6)
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The local users ui input their data ai and the selected privacy budget εi into the
local randomizer. The randomizer perturbs the real data and uniformly sample
m−1 false messages from T , then send the perturbed m messages and the privacy
budget εi to the shuffler. The specific details are described in Algorithm 1.

Algorithm 1: the local random perturbation mechanism
Input: ai: a ture value of local user

T : the dataset of total values
m:The number of messages sent by local users.

Parameter: εi: the local privacy budget satisfy shuffle (ε, δ)-PDP
k: the cardinality of total values

1 ρ = eεi−1
eεi+k−1

2 y = Ber(ρ)
3 if y = 1 then
4 âi = ai

5 end if
6 else
7 choose âi from T uniformly
8 end if
9 Si ← Si

⊎
âi

10 ρ = (m − 1) − �m − 1
11 y = Ber(ρ) + �m − 1
12 for j ← 1 to y do
13 choose âj

i from T uniformly
14 Si ← Si

⊎
âj

i

15 endfor
16 Send Si, εi to shuffler separately

Third-Party Shuffler. At this stage, Shuffler shuffles the perturb values
dataset S and privacy budget dataset ε to remove the correlation between data
and send them to server.

Data Aggregation and Estimation(Analyzer). In the frequency estimation
problem, the server needs to aggregate the received data and perform unbiased
estimation to leverage the statistical utility of the data. he specific details are
described in Algorithm 2. Since the correspondence between messages and pri-
vacy budgets is disrupted after being randomly shuffled, we simplify the data
aggregation and unbiased estimation calculations by assigning a fixed weight wi

to each user.
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The process of aggregation and unbiased estimation is as follows:

f̂t =
1
W

(
n∑

i=1

(
âi − m−1

k − qi

pi − qi
· wi))

=
1
W

(N̂t − n · m − 1
k

−
n∑

i=1

qi)

(7)

We set wi = pi − qi, W =
∑n

i=1 wi and N̂t be the total number of received value
t after aggregation, the estimated frequency of value t is f̂t.

Algorithm 2: Server-side data aggregation and estimation
Input: S: the perturb dataset

ε: privacy budget dataset
Parameter: N : total numbers of user

k: the cardinality of total values
Output: f̂t

1 for εi ∈ ε do
2 pi = eεi

eεi+k−1

3 qi = 1
eεi+k−1

4 W = W + (pi − qi)
5 endfor
6 get N̂t =

∑n·m
i=1 1ŝi=t from any data ŝi ∈ S

7 f̂t = 1
W (N̂t − n · m−1

k −
∑n

i=1 qi)
8 Return f̂t

3.3 Privacy Analysis

To analyze the privacy of the recommended method, we introduce the concept
of personalized differential privacy in shuffle model and prove the privacy ampli-
fication effect of our method.

According to Definitions 3, 2 and 5, we have formalized the definition of
personalized differential privacy in shffle model.

Definition 6. Personalized differential privacy in shuffle model(shuffle-PDP):
Given the sets U = {u1, u2, . . . , un}, and ε = {ε1, ε2, ..., εn}, where each user
ui ∈ U has a privacy preference εi ∈ ε and a value ai ∈ D, and a shuffle protocal
P : R ◦ S(D) → T satisfying ε-PDP ,if and only if any Neighboring datasets
D,D′. Then the algorithm :

R ◦ S(·) = S(R1(a1, ε1,m), R2(a2, ε2,m), ..., Rn(an, εn,m)) (8)

is satisfies (ε, δ)- shuffle PDP, where the T is the output dataset, m represents
the number of messages sent by each user.
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Here, to further enhance the privacy amplification effect, we employ the
framework of the Variation-ratio [21], a unified, efficient, and comprehensive
framework, to analyze privacy amplification in shuffling models. Therefore, we
are given two neighboring datasets A and A′. i.e. A =

{
a1 = a0

1, a2, a3..., an

}
,

A′ =
{
a1 = a1

1, a2, a3..., an

}
where A,A′ ⊂ A.

These two datasets differ only in the first data entry, we defined some param-
eters p > 1, β ∈ [0, p−1

p+1 ], q > 1 on local randomzer {Ri}i∈[n]:

1. (p, β)-variation property: for all possible a0
1, a

1
1 ∈ A that satifies the formula

Dp(R1(a0
1)‖R1(a1

1)) = 0 and De0(R1(a0
1)‖R1(a1

1)) ≤ β.
2. q-ratio property:for all possible a1, a2, a3..., an ∈ A and all {Ri}i∈[2:n] that

satifies Dq(R1(a1)‖Ri(ai)) = 0 .

Lemma 1. (Variation-ratio reduction [21]) For p > 1, β ∈ [0, p−1
p+1 ], q > 1,let

C ∼ Bin(n − 1, 2βp
(p−1)q ), A ∼ Bin(C, 1

2 ) and Δ1 ∼ Ber( βp
p−1 ) and Δ2 ∼ Ber(1 −

Δ1,
β

p−1−βp );let P q
β,p denote (A+ δ1, C −A+Δ2) and Qq

β,p denote (A+Δ2, C −
A + Δ1). Given any a1, a2, a3..., an ∈ A,if {Ri}i∈[n] satisfy the (p, β)-variation
property and the q-ratio property, then for any measurement D satisfying the
data-processing inequality:

D(S(R1(a0
1), ...,Rn(an))‖S(R1(a0

i ), ...,Rn(an)) ≤ D(P q
β,p‖Qq

β,p) (9)

Now, we are attempting to prove that our method satisfies Definition 6 within
the framework of the Variation-ratio.

According to the GRR mechanism used in our method, we convert the param-
eters p′, β′, q′ in the framework of the Variation-ratio, where the privacy prefer-
ence ε ∈ ε .The process is as follows:

First, according to the Lemma 1, given the randomizer R satisfy the (p′, β′)-
property and q′-ratio property that:

Dp′(R(a0
1)‖R(a1

1)) = 0

The application of Definition 4 can transform the above equation into:
∫

max

{
0,R(a0

1) − p′ · R(a1
1)

}
da = 0

therefore:
R(a0

1) − p′ · R(a1
1) = 0

so,we can get a p′ satisfy the above conditions when the GRR mechanism is used
in R:

p′ =
R(a0

1)
R(a1

1)
=

eε

eε+k−1
1

eε+k−1

= eε

Similarly, we can obtain a suitable β′ according to the (p′, β′)-variation prop-
erty:

D(R(a0
1)‖R(a1

1) ≤ β′
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The application of Definition 4 can transform the above equation into:
∫

max

{
0,R(a0

1) − R(a1
1)

}
da ≤ β′

so,we can get the β′ be bound by [0, eε−1
eε+k−1 ].

And in multi-message scenario, we get false messages from T uniformly. Sim-
ilarly, we get the parameter q′ when Ri∈[2:n] satisfy q′-ratio property as follow:

Dq′(R(a1)‖Ri(ai)) = 0

Similarity,wo can get the q′ which satisfy the above conditions that: q′ = k·eε

eε+k−1
if there are n′ users and each user contributes m−1 fake messages, the value

of n − 1 in Defintion 1 becomes n′ · (m − 1). Therefore, by applying Definition
1, our method satisfy:

D(R ◦ S(R1(a
0
1, ε1, m), ∪n

i=2Ri(ai, εi, m))‖R ◦ S(R1(a
1
1, ε1, m), ∪n

i=2Ri(ai, εi, m)) ≤ D(P
q′
β′,p′ ‖Q

q′
β′,p′ )

are (ε1, δ)-indistinguishable according to Definiton 4, where ε1 ∈ ε. So, our
method satisfy (ε, δ)-shuffle PDP in framwork of the Variation-ratio.

4 Experiments

In this chapter, we evaluate and compare the performance of our proposed meth-
ods, single-message PSDP and multi-message PSDP, through extensive experi-
ments. Since there is no existing work specifically addressing frequency estima-
tion in the PSDP scenario, we compare our work with frequency estimation in the
PLDP scenario. We conduct tests on various types of real data to demonstrate
the impact of personalized perturbation and different hyperparameter settings
on performance through experiments.

4.1 Datasets

Four commonly used datasets will be used in our experiments. These datasets are
widely used for training and testing frequency estimation problems. The specific
information about the datasets is provided in Table 1. The Adult dataset [22],
which was extracted by Barry Becker from the 1994 Census database, contains
48,842 instances. For our dataset, we extracted a subset of 32561 samples from
it. Bank Marketing [23] is related to a direct marketing campaign conducted
by a Portuguese banking institution. We extracted a subset of 10,000 samples
from this dataset to create a new dataset. Abalone [24] is derived from physical
measurements of abalone (a type of sea snail). Car Evaluation [25] contains
several basic parameters of cars and is derived from a simple hierarchical decision
model.
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Table 1. Dataset

Datasets Feature Sample numbers dimension

Adult education 32561 16
Bank marketing job 10000 12
Abalone sex 4177 3
Car evaluation buy 1728 4

4.2 Performance Metrics

In this study, we use the Mean Squared Error (MSE) evaluation method to
assess performance. The MSE is a commonly used evaluation metric to measure
the degree of difference between predicted values and true values. It calculates
the squared difference between predicted values and true values, and then takes
the average. A smaller MSE indicates a smaller difference between the predicted
results and the true values, indicating a better performance of the model. MSE
is widely used in many machine learning and statistical fields.

MSE =
k∑

i=1

(ft − f̂t)2 (10)

4.3 Experimental Performance

In this section, we compare our method with PLDP and single-PSDP on four
real datasets under two different scenarios of privacy distributions (see Table 2).
We further investigate the impact of message quantity and privacy distribution
on experimental performance and present the results using line graphs for better
visualization.

Table 2. Experimental parameter settings

Scenario 1 Scenario 2

ε allocation 0.2,0.4,0.6,0.8,1.0 0.3,0.5,1.0
User ratio 0.25,0.25,0.25,0.25,0.25 0.33,0.33,0.34

PLDP allows users to freely choose the level of privacy protection according
to their preferences, providing flexibility to adapt to various complex privacy-
security scenarios. Although personalized local differential privacy partially
addresses the limitations of LDP mechanisms, such as limited applicability and
limited privacy protection strength, there is still a significant gap in accuracy
compared to the CDP model. As shown in the Fig. 2, regardless of the scenario,
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the performance of the PLDP method is the worst. Both single-PSDP and local
differential privacy perturb the local individual data items. However, unlike local
differential privacy, single-PSDP further enhances privacy protection by intro-
ducing a third-party shuffler to anonymize and randomly reorder the perturbed
data. When the privacy protection strengths of both mechanisms are the same,
the single-PSDP mechanism allows for less noise to be added locally. There-
fore, as shown in the graph, the results of single-PSDP have improved signifi-
cantly compared to PLDP, but there is still a considerable gap compared to Our
method.

Fig. 2. Comparison of experimental results

Impact of the Dataset. We tested our method using four datasets of vary-
ing sizes and dimensions. Regardless of whether it was in scenario 1 or scenario
2, our method performed the best on the Adult dataset and the worst on the
Car Evaluation dataset. The results indicate that with an increase in the num-
ber of samples, the experimental performance significantly improves. It can be
observed that our method performs better and demonstrates its advantages more
effectively on large-scale datasets.
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Impact of Message Quantity. We explored the impact of the quantity of
fake messages on the experimental performance. Although increasing the quan-
tity of fake messages can amplify the privacy budget disturbance of the GRR
mechanism on real data, excessive fake news still introduces a significant amount
of noise to the aggregated results. Therefore, we set several reasonable message
numbers(msg) to find the optimal parameter for the quantity of messages. In
theory, as the quantity of messages increases, the MSE value initially decreases
before increasing, with the rate of decrease gradually slowing down. From the
Fig. 2, it can be observed that the optimal number of messages are as follows:
Adult: msg = 2 (Scenario 1), msg = 1.4 (Scenario 2). Bankmarketing: msg=3
(Scenario 1), msg = 2 (Scenario 2). Analone: msg = 3 (Scenario 1), msg = 1.8
(Scenario 2). Car evaluation: msg = 5 (Scenario 1), msg = 3 (Scenario 2). Tak-
ing all factors into consideration, a reasonable range for the message number in
[1.4, 3].

Impact of Privacy Parameters ε. We have also explored the impact of privacy
partition granularity on experimental performance. Generally, a finer granularity
of privacy preference partitioning can flexibly address more complex privacy and
security scenarios but may have an impact on experimental performance. In
Fig. 2, in all datasets, in the single-PSDP method, the experimental results for
Scenario 2 consistently outperform Scenario 1. In the multi-PSDP method, the
experimental results for Scenario 2 are generally better than Scenario 1 within
a certain range, and gradually converge as the number of messages increases.

5 Future Work

This work focuses on personalized differential privacy. To strike a balance
between privacy and utility, we propose a personalized shuffling differential pri-
vacy framework for multi-message scenarios. Under this framework, we evaluate
multiple different types of real datasets, and the results show that our approach
outperforms existing methods signif- icantly, effectively improving centralized
privacy protection. In the future, our work will focus on the following aspects
of expansion: (1) Maintaining utility in more complex privacy protection sce-
narios for data analysis. (2) Exploring more efficient coding techniques or data
sparsification tech- niques to balance communication costs and statistical utility.
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Abstract. Machine learning models are susceptible to member inference
attacks, which attempt to determine whether a given sample belongs to
the training data set of the target model. The significant privacy con-
cerns raised by member inference have led to the development of various
defenses against Member Inference Attacks (MIAs). Existing techniques
for knowledge distillation have been identified as a potential solution
to mitigate the tradeoff between model performance and data privacy,
demonstrating promising results. Nonetheless, the limitations in perfor-
mance imposed by the teacher model in knowledge distillation, along with
the scarcity of unlabeled reference data, present a challenge in achiev-
ing high-performance privacy-preserving training for the target model.
To address these issues, we propose a novel knowledge distillation based
defense method, i.e., Mutual Knowledge Distillation (MKD). Dividing
the training set into subsets for the teacher and the student models, MKD
trains them through mutual knowledge distillation for mitigating MIAs.
Extensive experimental results demonstrate that MKD outperforms sev-
eral existing defense methods in improving the trade-off between model
utility and member privacy.

Keywords: Knowledge Distillation · Member Inference Attack · Data
Partitioning

1 Introduction

Recently, The developing machine learning (ML) models, especially the deep
learning based ones, have achieved considerable performance gains in areas such
as image recognition [11], speech recognition [8,22], and natural language pro-
cessing [5]. These substantial developments have successfully enhanced people’s
willingness to use ML in real-world scenarios [18,29]. Nowadays, even with the
considerable progress of machine learning algorithms, a large amount of data is
still needed for training to achieve the expected results. This source data may
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come from confidential industries such as finance and healthcare, causing con-
cerns about the privacy and security of machine learning algorithms. However,
recent research [24,27] indicates that the situation is not very promising. One
critical flaw of machine learning models is that a large amount of training data
could be unintentionally saved or leaked, making them susceptible to privacy
attacks. These attacks include attribute inference attacks [12], dataset recon-
struction attacks [23], and MIA [27]. Among them, MIAs have sparked intense
discussions due to their ability to accurately infer whether a data sample is
part of the target model’s training dataset. MIA can accurately judge whether
the current sample is part of the training sample through features such as out-
put confidence [27,28], predictive entropy [24,28], predictive loss [32], and data
robustness [4,31]. In a black-box ML situation, an attacker can easily obtain the
previously mentioned features, making MIAs a significant threat to the privacy
and security of data.

To prevent ML services from causing data leaks, current research on privacy
and security is primarily focused on MIAs. Current countermeasures are based on
changing the output of the ML model to interfere with the attacker’s data clas-
sification judgment. This interference can be achieved in two dimensions: first,
by affecting the training process of the model with techniques such as differen-
tial privacy [1], relaxed loss [2], adversarial regularization [20], and knowledge
distillation [26]. Second, by affecting the model’s inference process with methods
like confidence score masking [13]. These techniques aim to affect the model’s
output or behavior, leading to security improvement. However, while enhancing
security, these defensive techniques are also caught in the awkward dilemma of
balancing privacy and utility. It is also undeniable that unpredictable attacks
may still occur even with these measures in place.

In this paper, we introduce a novel framework, Mutual Knowledge Distil-
lation (MKD), to defend against membership inference attacks. Most of the
existing state-of-the-art knowledge improvement techniques use a teacher model
to filter private training data and train a protected target model. These tech-
niques reduce the risk of membership inference attacks by preventing the target
model from remembering too much training data. However, these techniques
often require additional training data [26] or fail to achieve promising task per-
formance in environments without defense mechanisms [21]. The reason is that
the teacher model creates a bottleneck in the distillation system and cannot
provide additional representative information to the target model. Meanwhile,
Fig. 1 clearly illustrates the significant distinction between MKD and the previ-
ous knowledge distillation technique known as Distillation for Membership Pri-
vacy (DMP) [26]. MKD overcomes the limitations of teacher model distillation
and achieves improved privacy protection and data confidentiality. MKD differs
from this series of techniques in that it innovatively references the training of
mutual guidance between models. The teacher model and the student model are
trained in different training sets, and the knowledge of the model is distilled from
each other. This work helps to avoid the risk of privacy disclosure and improve
the quality of model training. At the same time, MKD constantly iterates the
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interactive training process, which makes both the teacher model and the target
model fully trained. The main contributions of this paper can be summarized as
follows:

– We propose Mutual Knowledge Distillation (MKD) to defend against black-
box membership inference attacks. MKD alternates the knowledge distillation
learning process between the student model and the teacher model, leading
to better privacy preservation during model training without additional data.

– Our innovation lies in the training stage of the student and teacher models.
Instead of the teacher model directly acquiring knowledge from the training
set, both the student and teacher models are trained using the same data,
which effectively mitigates the need for excessive storage of member data.

– We extensively evaluate MKD to demonstrate the state-of-the-art tradeoffs
between data privacy and model accuracy. For instance, when aiming at
increasing member privacy, MKD exhibits a better testing performance com-
pared to several state-of-the-art defense methods for various classification
tasks.

Teacher Model Target ModelTraining Training
Student

Membership Data
Teacher

Membership Data
Knowledge

Distillation Data

MKD

Teacher Model Target Model

Training Training

Unlabeled
Reference Data

Labeled
Membership Data

Knowledge
Distillation Data

State-of-the-art Knowledge Distillation Techniques

Fig. 1. The discernible dissimilarities between MKD and previous knowledge distilla-
tion techniques [26].

2 Related Work

2.1 Membership Inference Attack

The goal of MIA is to determine whether a piece of data belongs to the training
set of a model. If it belongs, it is considered a member; otherwise, it is a non-
member. Various types of MIA techniques have emerged, which can be roughly
categorized into three types of attacks based on the information dimension of
the model:
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Label Information-Based Method. The label information-based method is
an attack based on label information, which is more likely to occur in the real
world. Previous research efforts [4,31] have designed a series of MIA attacks in
this scenario. For example, Li et al. [19] designed a member inference attack that
solely utilizes label information. In this attack, an adversary can make inferences
and judgments about membership by analyzing partial data. This technique fur-
ther demonstrates that machine learning models are more vulnerable to privacy
attacks than previously expected.

Partial Output Information-Based Method. Shokri et al. [27] have designed
effective membership inference attacks by utilizing partial output data to classify
members and nonmembers. These attacks rely on the confidence of the predic-
tions made by shadow models. A year later, Salem et al. [24]strengthened this
attack by relaxing the constraints on architecture, training data, and the num-
ber of shadow models. This approach also provides a new method for inferring
membership relationships by using the maximum output confidence. Song et al.
[28] further enhanced this attack by designing thresholds based on different class
labels.

Total Output Information-Based Method. In this attack, an adversary can
perform MIA by accessing the statistical data of the target model. One popular
attack is based on prediction loss, proposed by Yeom et al. [31] Shokri et al. [27]
further demonstrated the effectiveness of using predictive entropy in launching
attacks. In recent years, Song et al. [28] have designed an enhanced attack that
considers predictive entropy, the training correlation of data points in the victim
model, and their distances in the feature space.

2.2 Defense Against Membership Inference Attack

Noise Disturbance-Based Method. Noise Perturbation is a commonly used
privacy protection method that aims to achieve differential privacy and confi-
dence perturbation. Differential privacy ensures individual sample privacy and
defends against MIA [1,3,6]. However, striking a balance between privacy and
utility is challenging. To address performance issues, defense mechanisms intro-
duce noise perturbation into the confidence score vector [13,14,30], making con-
fidence score perturbation easier to implement. It has been demonstrated to be
feasible in practical applications, even though it may not defend against certain
attacks.

Suppressing Overfitting-Based Method. Overfitting in ML models poses a
certain difficulty and increases the risk of membership inference attacks. Over-
fitting suppression is an exploratory approach for MIA defense, and its imple-
mentation is based on regularized training and relaxed learning. Adversarial reg-
ularization techniques [9,20]enhance generalization by incorporating adversarial
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examples. Relax loss [3] enhances generalization by using a new loss function.
These methods improve the resilience of ML models against MIA, although strik-
ing a balance between privacy and utility remains challenging.

Knowledge Distillation-Based Method. Knowledge distillation is a model
compression technique that aims to transfer knowledge from a higher-accuracy
model (teacher model) to a smaller model (student model), reducing computa-
tional costs while maintaining accuracy. Zhang et al. [33] recognized that this
technique can reduce the risk of MIA. Virat Shejwalkar et al. [26] proposed an
innovative defense mechanism called DMP. DMP combines knowledge distilla-
tion strategies and uses partial member data to train the teacher model. The
pre-trained teacher model is used to train the target model in an unlabeled man-
ner. The practical performance of these techniques demonstrates the effectiveness
of knowledge distillation-based defense.

3 Our New Method

In this paper, we propose Mutual Knowledge Distillation (MKD), a novel train-
ing framework designed to enhance privacy during training and mitigate the
risk of member inference in the target class classifier model. The main steps of
MKD, illustrated in Fig. 2, include an initial pre-training stage denoted as PTM,
followed by two model knowledge distillation stages referred to as mutual distil-
lation learning, i.e., KDS and ADT. It is worth noting that in order to meet the
needs of knowledge distillation training, MKD also reserves the data partitioning
step TSDP. All stages of MKD are introduced in Sects. 3.1, 3.2, 3.3, and 3.4.

This chapter introduces a simplified notation for clarity and analysis pur-
poses. The teacher model will be denoted as θt, while the student model, will be
denoted as θs. Next, the pre-training training set is represented by D, the dataset
for training θs is represented by Str, and the dataset of the θt is represented by
Ttr. Furthermore, θs serves as the target model in the MKD algorithm. The
input data samples for all models are denoted as x, while their corresponding
ground truths are labeled as y. In the implementation of MKD, the two dis-
tillation stages are interactive and iterative, and multiple exchanges of training
sets improve the performance of θt and θs and reduce the data sensitivity of the
direct learning from the dataset.

3.1 Pre-training of Teacher Model

The primary goal of Pre-training of Teacher Model (PTM) is to obtain high-
quality initial parameters of θt so that it can better guide the learning of θs. To
this end, PTM uses D to train θt before officially starting distillation training,
so that θt can learn more discriminative feature representation capabilities in
the initial stage. In this step, we minimize the loss objective, which can be
represented by Eq. 1.
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Fig. 2. Mutual Knowledge Distillation (MKD) defense. (1) In pre-distillation phase,
MKD trains a θt on the full training set. (2)Then, the training set is divided into two
parts for θt and θs in the distillation phase. (3) In distillation phase, MKD not only
adopts the hard labels of Str, but also the soft labels generated by θt from Str to train
θt. (4) In the same way as (3), the training of the θt comes from the soft labels of θs
and the hard labels of Ttr. (5) Ttr and Str are exchanged, and then continue to execute
the MKD process (3), (4).

lptm(θt,D) =
∑

x,y∈D

θt(x) · log(y) (1)

3.2 Training Set Data Partitioning

Inspired by [31], directly training model parameters using all available training
data increases the risk of overfitting and membership inference. To solve this
problem, we propose the Training Set Data Partitioning (TSDP) step to reduce
the sensitivity of the target model to the training set data by partitioning the
training set. This method can achieve effective privacy training.

Before implementing the knowledge distillation training of MKD, we need
to equally divide the original training set D to generate two dedicated training
sets, called Ttr and Str respectively. These two training sets maintain the same
size and content as the original training set D and will be used to train the θt
and θs respectively.

The practical significance of TSDP is that it can change the data source of θs.
Instead of directly utilizing the entire training data D to train model parameters,
θs uses an alternative method of knowledge distillation for feature learning.
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3.3 Knowledge Distillation of Student Model

The task of Knowledge Distillation of Student Model (KDS) is to train θs using
a distillation learning approach with a pre-defined dataset Str and θt.

At each epoch, we use Str as the training set of θs. In this step, the real
labels of Str are not used as the fitted labels of θs. Instead, the soft labels θt(x)
obtained by accessing θt using inputs belonging to Str is used as the learning
target. The purpose is to prevent θs from overmemorizing membership data,
which is achieved by avoiding over-convergence on the real labels [26]. Finally,
we minimize the loss function to the Eq. 2.

ltkd(θs, Str) =
∑

x∈Str

θs(x) · log(θt(x)) (2)

Furthermore, KDS also incorporates real labels from Str during the train-
ing process, allowing it to provide enhanced guidance for θt. In this step, it is
necessary to express the objective of minimizing the loss as Eq. 3.

lsh(θs, Str) =
∑

x,y∈Str

θs(x) · log(y) (3)

KDS uses the weighted sum of the loss functions ltkd and lsh, combined with
the hyper-parameters α and β, to calculate the final loss of the target model.
This weighted loss function design effectively balances the impact between the
real labels and the soft labels in θt, thereby facilitating the target model to
obtain knowledge from θt. In this step, it is necessary to express the objective
of minimizing the loss as Eq. 4.

ls(θs, Str) = α ∗ ltkd + β ∗ lsh (4)

3.4 Anti-knowledge Distillation of Teacher Model

After performing knowledge distillation on θs, the Anti-knowledge Distillation
of Teacher Model (ADT) is trained with the help of θs and Dataset on Ttr

to enhance the guidance ability of θt. ADT contains two basic components:
distillation learning of θs and label learning based on Ttr. This training method
is similar to 3.3. These components work together to minimize losses by utilizing
Eq. 5 and Eq. 6 respectively.

lskd(θt, Ttr) =
∑

x∈Ttr

θt(x) · log(θs(x)) (5)

lth(θt, Ttr) =
∑

x,y∈Ttr

θt(x) · log(y) (6)

In the ADT, the loss Equation lskd and lth are weighted by hyper-parameter
α and β to compute the final loss of θt. This weighted loss function design
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effectively balances the influence between the real labels and the soft labels from
θs. Equation 7 represents the weight relationship between the two loss functions.

lt(θt, Ttr) = α ∗ lskd + β ∗ lth (7)

In the implementation of MKD, we introduce an important mechanism to
enhance the model’s adaptability and learning ability. After θt and θs complete
a round of training, we exchange Str and Ttr and restart knowledge distilla-
tion learning. This mutually guided knowledge distillation process enables the
model to learn different data distributions and tasks at different stages, thereby
improving its generalization ability and adaptability.

4 Experimental Setup

4.1 Datasets

In our study, we perform classification tasks on three different datasets that
are representative of previous classification efforts: the main benchmark dataset
in the machine learning domain CIFAR100 [15] and two auxiliary validation
datasets namely Texas100 and Purchase100. It is worth noting that these two
auxiliary validation datasets are simplified versions provided by the author [27]
and were used for the first membership inference attack on machine learning
models. Table 1 shows the recorded results of the data partitioning process.

The CIFAR100 dataset is widely accepted and serves as a benchmark for
evaluating the effectiveness of image recognition algorithms. This dataset com-
prises 60,000 images, each measuring 32 × 32 pixels. It is divided into 100 distinct
categories, each representing a unique object class.

The Texas100 dataset consists of hospital discharge data. This dataset con-
tains records containing inpatient information obtained from multiple healthcare
providers, and this information is made publicly available by the Texas Depart-
ment of State Health Services. Data records include information about the exter-
nal cause of the injury, diagnosis, and procedure collected by the patient, as well
as general information such as gender, age, race, hospital ID, and length of stay.
This dataset consists of 67,330 records representing the 100 most common medi-
cal procedures and 6,170 binary features. These records are categorized into 100
classes, each representing a different type of patient.

The Purchase100 dataset is based on Kaggle’s Identify Valuable Shoppers
challenge. This dataset consists of the shopping records of thousands of indi-
viduals. The purpose of this challenge is to identify discounts to attract new
shoppers to purchase new products. The dataset contains 197,324 data records.
Each data record corresponds to a customer and consists of 600 binary features.
Each feature corresponds to a product and reflects whether the customer pur-
chased that product. The data is grouped into 100 categories and the task is to
predict the category for each customer.
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Table 1. The setting of data sample numbers used in the experiment. The privacy
data consists of datasets D and D′. The shadow data consists of datasets DA and
DA′

. D is used to train the target classifier models, and DA is used to train the
shadow models. D′ is considered non-membership data in the privacy data, and DA′

is considered non-membership data.

Dataset Private Data Shadow Data
D D′ DA DA′

CIFAR100 25,000 5,000 25,000 5,000
Texas100 10,000 5,000 10,000 5,000
Purchase100 10,000 10,000 10,000 10,000

4.2 Models

To ensure a fair evaluation of the effectiveness of various defense mechanisms, we
have separately created baseline classifier models for each dataset. Referring to
Table 1 contains the data sample quantity settings used in the experiments. In
these experiments, we use the privacy datasets D and D′, as well as the shadow
datasets DA and DA′

. Specifically, dataset D is used to train S and T , while
dataset DA is used to train the shadow model. The dataset D′ is considered
non-member data within the privacy data, while dataset DA′

is considered non-
member data within the shadow data.

Taking this into consideration, we utilize different classifier models for var-
ious datasets. In specific, for the CIFAR100 dataset, we select AlexNet [16]
and DenseNet [10] as classifier models. For the Texas100 dataset, we employ
a 4-layer fully connected neural network (NN Net), while for the Purchase100
dataset, we use a 3-layer NN Net. Additionally, when dealing with image datasets
(CIFAR100) and other datasets (Texas100, Purchase100), we also employ ResNet
[7] and a 4-layer NN Net, which serve as adaptive noise generation models within
MKD.

4.3 Attack Methods

To evaluate the effectiveness of multiple defense techniques, we employ four
distinct membership inference attack methods. Below, we briefly introduce the
four distinct membership inference attack methods we employ for validation:

Attack 1 (Icorr): Leino et al. [17] introduced a MIA method based on pre-
diction accuracy. This occurs when the target model fails to generalize well,
whereby it makes correct predictions on training data but performs poorly on
test data. This method can infer whether a sample is a member or non-member
based on whether it can be correctly predicted.

Attack 2 (Iconf ): Song et al. [28] introduced a method that sets different
thresholds for different categories to enhance the success rate of MIA. They
assumed that the dataset might exhibit class imbalance, resulting in varying
confidence levels among different categories. A sample is considered a member
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if its predicted confidence exceeds the previously set threshold. Otherwise, it is
considered a non-member.

Attack 3 (Ientr): Song et al. [28] introduced a prediction-based entropy-driven
MIA, similar to confidence-based membership inference attacks. Samples are
considered members if their predicted entropy falls below a specific threshold,
and non-members if it exceeds the threshold.

Attack 4 (Imentr): Song et al. [28] discovered limitations in directly using
predicted entropy. Therefore, they developed a method to compute prediction
entropy correction by considering actual class labels.

4.4 Settings of MKD

Before proceeding to comparative experiments, we investigate different parame-
ters for various data formats when aiming for excellent training outcomes (Table
2).

Table 2. Parameter settings for MKD. lrs and lrt are the learning rates of the student
and teacher model, Ep denote the pre-training epochs of the teacher model, Et and Es

are the training epochs of the student and teacher model.

Dataset Model lrs lrt Ep Es Et α β

CIFAR100 AlexNet 0.0001 0.0001 20 20 20 0.25 0.75
DenseNet 0.0001 0.0001 15 30 30 0.3 0.7

Texas100 NN Net 0.0001 0.0001 10 10 10 0.3 0.7
Purchase100 NN Net 0.0001 0.0001 8 10 10 0.4 0.6

4.5 Methods of Comparison

To evaluate the superiority of MKD in privacy protection, we select various
MIA defense methods from different defense perspectives as comparative meth-
ods. These methods encompass noise-based approaches such as Differential Pri-
vacy Stochastic Gradient Descent (DP-SGD) [1] and MemGuard [13], overfitting
suppression methods like Adversarial Regularization (AdvReg) [20], as well as
knowledge distillation-based methods like DMP [25].

Defense performance comparison with other competing methods on different
datasets is shown in Table 4. All accuracy values in the table are expressed as
percentages. In Table 4, we use our method’s defense performance as the baseline,
highlighted in gray. Additionally, Test+ indicates the percentage gain of MKD
relative to other methods in terms of test accuracy, while Avg.− represents the
average percentage decrease of MKD relative to other methods in terms of the
membership inference attack accuracy, with positive aspects marked in green
and negative aspects marked in red.
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5 Result and Discussion

5.1 Training Effectiveness of MKD

To validate the effectiveness of MKD, we conduct experiments using both MKD
(represented as “w” in the Table 3) and without MKD (represented as “w/o” in
the Table 3) on multiple datasets and classification models.

Table 3 displays the differences in classifier model performance and privacy
inference risk before and after implementing MKD. The application of MKD
significantly reduces the risk of privacy leakage, leading to a significant decrease
in the accuracy of attackers in multiple membership inference attacks, dropping
to a level as low as 50%, which is equivalent to random guessing. Additionally,
while the application of MKD has some negative impact on model performance,
it improves classification performance in CIFAR100 and Texas100 classification
tasks. These findings demonstrate the superior capabilities of MKD as a defense
mechanism in terms of both performance and privacy protection. Based on the
overall experimental results, MKD achieves a favorable trade-off between mem-
ber inference attack protection and model accuracy.

Table 3. The training and testing accuracy and member inference risk changes of
models with or without MKD. All accuracies in this table are in %. The performance
metrics of MKD are highlighted in gray . Moreover, we marked the optimal classifica-
tion task accuracy in blue, as well as the change in member inference attack accuracy
after defense in green.

Task Accuracy Membership Inference Attack
Dataset Model Defense

Train Test ↑ Avg. ↓ Icorr↓ Iconf↓ Ientr↓ Imentr↓
w/o 99.3 32.7 78.8 83.3 80.2 80.3 71.4

AlexNet
w 50.4 30.4 54.7-24.1 60.0 53.2 53.2 52.4

w/o 98.0 50.3 75.3 73.8 74.5 74.5 78.2
CIFAR100

DenseNet
w 68.0 46.3 55.6-19.7 61.9 52.3 52.3 55.8

w/o 92.4 56.3 65.4 68.0 62.5 61.7 69.2
Texas100 NN Net

w 55.5 52.1 54.5-10.9 51.7 57.1 56.4 53.1
w/o 96.3 70.1 65.6 66.1 63.8 63.7 68.9

Purchase100 NN Net
w 81.6 74.8 53.6-12.0 53.7 53.6 56.0 51.2

5.2 Comparative Analysis of the Noise-Based Methods

In Table 4, we compare MKD with noise-based defense methods (DP-SGD and
MemGuard). The evaluation of DP-SGD is constrained by differential privacy
theory and is limited to the application of AlexNet in the CIFAR100 classification
task.
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DP-SGD effectively reduces its test accuracy to approximately 50% in defend-
ing against membership inference attacks, significantly compromising the classi-
fication accuracy of the target model. On the other hand, MemGuard does not
impair classification accuracy and performs well in preventing confidence-based
membership inference attacks. However, it encounters difficulties when dealing
with attacks that rely on model output labels.

Table 4. Comparing the defense performance with different data and under different
attacks, all accuracies in this table are in %. In this table, the defensive effectiveness of
our methods is set as a baseline, which is highlighted in gray . Meanwhile, the Test+

shows the % increase in Test of MKD over various methods, and Avg.− shows the %
trimming in Avg. of MKD over them, whose positive aspects are delineated in green,
and negative aspects are marked in red.

Dataset Model Defense
Task Accuracy Membership Inference Attack Accuracy

Train Test↑ Test+ Avg.↓ Avg.− Icorr↓ Iconf↓ Ientr↓ Imentr↓

CIFAR100

AlexNet

DP-SGD 28.1 20.2 +50.5% 52.0 +5.1% 53.0 50.1 50.1 54,7
MemGuard 99.3 32.7 -7.0% 58.4 -6.3% 83.3 50.0 50.0 50.1

AdvReg 76.4 32.5 -6.4% 56.6 -3.3% 71.9 50.1 50.1 54.3
DMP 50.4 30.4 +0.0% 55.2 -0.9% 60.0 54.2 54.2 52.4

MKD(ours) 50.4 30.4 54.7 60.0 53.2 53.2 52.4

DenseNet

MemGuard 98.9 50.3 -7.9% 55.9 -0.5% 72.6 50.0 50.0 51.1
AdvReg 71.7 40.8 +13.5% 55.1 +0.9% 65.4 51.0 51.8 52.0
DMP 89.5 49.5 -6.4% 58.9 -5.6% 65.1 51.2 59.6 59.8

MKD(ours) 68.0 46.3 55.6 61.9 52.3 52.3 55.8

Texas100 NN Net

MemGuard 82.2 56.3 -7.4% 53.7 +1.4% 64.5 50.0 50.0 50.6
AdvReg 76.0 50.1 +4.0% 57.0 -4.4% 61.6 54.4 53.8 58.3
DMP 71.1 51.9 +0.4% 56.9 -4.2% 59.6 55.0 55.1 57.9

MKD(ours) 55.5 52.1 54.5 51.7 57.1 56.4 53.1

Purchase100 NN Net

MemGuard 97.7 70.1 +6.7% 53.0 +1.1% 60.6 50.0 50.0 51.3
AdvReg 95.3 70.3 +6.4% 56.6 -5.3% 60.9 55.1 55.2 55.2
DMP 87.3 72.4 +3.3% 56.2 -4.6% 57.5 55.0 54.5 57.7

MKD(ours) 81.6 74.8 53.6 53.7 53.6 56.0 51.2

In contrast, MKD significantly reduces the accuracy of all metrics for mem-
bership inference attacks while preserving or improving classification results.
These results further confirm the superior effectiveness of MKD in balancing
membership inference and classification task accuracy.
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Fig. 3. The evolution of training and testing accuracy versus epochs using NN Net
in the Purchase100 classification task. (a) MKD defense is not adopted in the target
model. (b) The target model is incorporated with MKD defense. (c) The test accuracy
of the student and teacher models evolves over epochs.

5.3 Comparative Analysis of the Suppressing Overfitting Methods

We process to compare MKD with the overfitting suppression-based defense
method, i.e., AdvReg is based on suppressive overfitting, which effectively
reduces the risk of member inference attacks by reducing overfitting, although
the cost is a significant reduction in classification accuracy compared with the
original model. It is ready to see that up to 18.8% of performance, degradation is
achieved with AdvReg when adopting DenseNet on the CIFAR100 dataset. How-
ever, such defenses may overly depend on attack models, leading to an imbal-
anced trade-off between defense effectiveness and classification accuracy. This
is demonstrated in the Test+ column of Table 4. Specifically, in DenseNet on
CIFAR100, MKD achieves a classification accuracy that outperforms AdvReg
by a clear margin (13.5%). In the case of relatively small datasets, such as
Texas100 and Purchase100, MKD demonstrates superior performance compared
to AdvReg in terms of model test accuracy and defense against MIA work.

Furthermore, MKD excels in combating overfitting, which is evident from
the improvement in training and validation accuracy in Figs. 3a and 3b.

The observed result stems from the effective guidance provided by the teacher
model, as illustrated in Figs. 3b and 3c. Mutual learning enables both the teacher
and the target model to uphold remarkable anti-overfitting effects.

5.4 Comparative Analysis of the Knowledge Distillation Methods

Table 4 demonstrates a comparison between MKD and the defense method DMP,
which utilizes knowledge distillation. DMP operates by utilizing the teacher
model to transfer member data features, aiming to prevent the target model from
retaining unnecessary details that may negatively impact classification accu-
racy. DMP ensures privacy effectively and maintains MIA accuracy below 60%,
with a maximum classification accuracy degradation of 5% compared to unde-
fended models. In contrast to DMP, MKD offers additional benefits through an
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inter-distillation process involving both the teacher model and the target model.
Table 4 clearly demonstrates that MKD outperforms DMP in all four methods
against member inference attacks. Additionally, the test accuracy of MKD in
the four models rivals DMP, providing further evidence.

6 Conclusions

We proposed Mutual Knowledge Distillation (MKD), a novel training frame-
work that utilized data partitioning and data exchange to independently train
the student and teacher models, thereby improving the performance of the mod-
els through mutual distillation. By conducting empirical evaluations, we have
verified the effectiveness of MKD in mitigating member inference attacks. Our
method achieved an improved trade-off between model utility and member pri-
vacy in comparison with several existing defense methods.
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Abstract. As drones are becoming widely used in various fields, drone secu-
rity is a growing challenge nowadays. Drone control systems use various con-
figuration parameters to control their positions and attitudes. If these parameters
are misconfigured, drones will fall into abnormal flight states, such as trajec-
tory deviation and crash to the ground. Existing works mainly focus on system
memory errors which lead to obvious system failure but don’t apply to drone
flight state anomalies. This paper focuses on abnormal drone flight states caused
by configuration parameter errors. We propose a novel state-guided fuzzing sys-
tem called APFuzzer, which searches for incorrect configuration parameter values
that would trigger abnormal flight states. To enhance the capability of searching
for multiple optimal solutions, we design a quality-diversity enhanced genetic
algorithm (QDGA) to mutate configurations to search for incorrect configura-
tion parameter values and consider the effects of environmental factors and flight
missions on the flight states. We evaluated APFuzzer on the drone control system
ArduPilot and successfully searched 3389 incorrect configuration parameter val-
ues and triggered all predefined five abnormal flight states. In addition, APFuzzer
automatically analyzed the fuzzing results and found five software bugs related
to configurations.

Keywords: Drone security · Configuration parameters · Fuzzing · Quality
diversity · Genetic algorithm

1 Introduction

Drones are unmanned aerial vehicles operated by radio remote control equipment and
self-contained programmed control devices. The drone is a type of Autopilot and there
are various airframes of drones, which can be divided into unmanned fixed-wing air-
craft, unmanned multicopter, etc. Compared with manned aircraft, it has the advantages
of small size and high maneuverability. Drones have been widely used in the world,
such as cargo delivery, photography, etc.

In order to control drones for various missions, hundreds of configuration parame-
ters have been designed to adjust the flight state of drones, such as yaw angle and flight
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14509, pp. 499–512, 2024.
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speed. Although a large number of configurations bring flexibility to drone control, it
also makes drone operation more complicated and error-prone. Incorrect configuration
parameters can cause abnormal flight states, such as trajectory deviation and crash to
the ground, which greatly threaten flight safety. In this paper, we focus on abnormal
flight states caused by incorrect configuration parameters in the control system.

Existing techniques [11,25,30] are unable to detect errors in drone configuration
parameters. Static program analysis methods [25] locate the root cause of a bug by
analyzing the control dependencies of the data. However, the drone control system has
over 100K+ lines of code and the time cost of program analysis is too huge. Techniques
such as taint analysis [15,22] and symbolic execution [12,31] have been proposed to
address the poor scalability of static analysis. However, searching the configuration
space remains challenging due to the large space of values taken for each configuration
parameter, and these techniques cannot handle this problem very well.

Fuzzing techniques [2,5,6,16] have proven to be effective methods for searching
program vulnerabilities in many previous works. However, traditional coverage-guided
fuzzing techniques are not applicable to drone control systems [18]. The drone control
system is a stateful system and the coverage will quickly reach saturation and thus
cannot continue to guide the mutation to find more errors. In addition, unlike traditional
software, most drone flight state anomalies do not lead to obvious system failures like
memory errors (e.g., buffer overflows). In this paper, we aim to design a fully automatic
test framework to generate realistic inputs (including configuration parameters, flight
missions, and environmental factors) to test drone control systems comprehensively.

Contributions. We propose APFuzzer, a state-guided fuzzing framework to search
for incorrect configuration parameter values that could cause abnormal flight states.
APFuzzer consists of three modules: (1) Flight State Detector. By analyzing official
documents and source code, we define five abnormal flight states of drones and for-
mulate accurate test oracles to detect them. (2) State-Guided Mutator. APFuzzer uses
a quality-diversity enhanced genetic algorithm (QDGA) to mutate the configurations
to drive the system into abnormal flight states, thereby finding incorrect configuration
parameter values. In addition, APFuzzer considers the impact of flight missions and
environmental factors on the correctness of configuration parameters. (3) Bug Ana-
lyzer. APFuzzer automatically analyzes the fuzzing results to locate the configuration
parameter names and root causes of abnormal flight states.

We implemented the prototype of APFuzzer and applied it to ArduPilot [1], a
mature and widely used autopilot control system. We fuzzed 46 configuration parame-
ters related to flight state control, 16 flight mission commands, and 2 types of environ-
mental factors. APFuzzer eventually found 3389 configuration parameter values that
caused abnormal flight states within 6 h. Then, we systematically analyzed misconfigu-
ration cases and found 5 software bugs.

To sum up, this paper makes the following novel contributions:

– We propose a fuzzing framework called APFuzzer which can automatically search
for incorrect configuration parameter values of the drone control system.
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– We design a quality-diversity enhanced genetic algorithm and a novel flight state
metric to guide the mutation process to efficiently search for more configuration
errors.

– We evaluated APFuzzer on ArduPilot and searched for 3389 incorrect configuration
parameter values. We found 5 software bugs related to configuration parameters.

Fig. 1.Workflow of the drone control system.

2 Preliminaries

2.1 Drone Control System

Drones are typical cyber-physical systems that control the movement of drones in phys-
ical space through the interaction of multiple cyber and physical components. Drone
control can be divided into three parts, shown in Fig. 1: (1) Ground Control System
(GCS), where the user sets the drone configuration parameters, sends the flight mission
and monitors the flight states of the drone in real-time. (2) Flight state control system,
including many control functions, such as attitude control, position control and motor
control, which accepts flight commands from GCS and data from sensors, and con-
trols the movement and operation of the vehicle during the mission through a series of
control algorithms. (3) Power system, which receives the regulation from the control
system and drives the motors, propellers, and other components that make the drone
move in the physical environment. In addition, configuration parameters are designed
to control the flight state of the drone, such as flight speed, angular velocity, etc.

2.2 Attack Model

Similar to RVFuzzer [19], we assume that the adversary’s goal is to stealthily drive the
drone into an unstable flight state by manipulating configuration parameters, sending
malicious missions or exploiting external environmental factors. We assume that the
adversary has the following capabilities:

– Manipulating configuration parameters and missions before the drone takes off or is
in flight by exploiting the vulnerabilities in Mavlink, a commonly used communica-
tion protocol [20].
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Fig. 2. Overview of APFuzzer

– The adversary is aware of a configuration vulnerability in the control program [19]
and knows the exact value of the incorrect configuration parameters.

– The adversary is aware of the environmental conditions, such as wind speed, and
can skillfully take advantage of them to attack the drone.

– The adversary’s attack is stealthy and does not want to be detected by the real-time
detection system or the post-incident investigation system [14].

In addition to the four capabilities above, the adversary does not need domain knowl-
edge about the drone control system. The adversary would like to be able to stealthily
launch an attack on the drone instead of directly sending malicious commands (e.g.,
closing the throttle) to directly drive the drone to crash, which can be easily detected by
the log analysis tools [7,10].

3 System Design

In this section, we present the design of APFuzzer. We first give an overview of
APFuzzer’s architecture and then present a detailed design of each component.

3.1 Overview

Figure 2 presents an overview of APFuzzer. APFuzzer first analyzes the official docu-
mentation and source code to select the test targets and then generates mutators based
on the target characteristics (①②③). The output of the mutators is used as input to the
drone control system, and then the simulations are further executed (④). The flight state
detector detects the flight states of the drone in real-time during the simulation (⑤)
and calculates the flight quality score to guide the mutator (⑥). APFuzzer uses a state-
guided fuzzing approach to search for incorrect configuration parameter values, and
the mutation method is based on QDGA (①②③④⑤⑥). Then, we analyze the results
of fuzzing results. We first locate which configuration parameters caused the abnormal
flight states and then search for the root cause to discover drone control system bugs
(⑦⑧).
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3.2 Flight State Detector

By analyzing the physical state of the drone and flight logs, we define five abnormal
flight state types and design precise test oracles to detect each of them. We propose the
flight state score as the fitness evaluation score of the QDGA to guide the mutation of
configuration values. We define the flight state score as the sum of five abnormal state
scores, represented as Eq. 1:

fitness score =
Ns∑

i=1

ti ∗ scorei (1)

Here, ti denotes the measure of the importance assigned to each state, scorei repre-
sents the score associated with each state and Ns represents the total number of abnor-
mal flight states. Next, we will introduce the definitions of five abnormal flight states,
their corresponding test oracles, and the method of calculating fitness scores.

(1) PreArm Failed. Before the drone takes off, the flight control system performs a
range check on some of the configuration parameter values. However, many configura-
tion values are not checked or are incorrectly checked in the source code, resulting in
inconsistencies between the official documents and the source code.

Test Oracle. We identify the error by monitoring the log for error messages such as
“PreArm: Bad Parameter” and “pre-arm fail”. If such a flight abnormal state occurs, we
define scorepf = 1.
(2) Thrust Loss. The drone relies on the throttle of the motor to control the thrust. If it
is not correctly configured, even if the throttle is saturated, the drone will not be able to
achieve the power required to maintain altitude and attitude, and a crash may occur.

Test Oracle. If the drone is under attitude control, the throttle is close to saturation, and
the flight altitude is descending, we consider that Thrust Loss has occurred. If such
an abnormal flight state occurs, we define scoretl = 0.5.
(3) Stuck. Incorrect configuration values can cause the drone to accidentally get stuck
at a certain point, unable to continue driving or make a circular movement around a
certain point.

Test Oracle. If the position of the drone in the flying state (non-hovering state) does
not change for a long time or the change range is too small, it is determined that a stuck
has occurred. If such a flight abnormal state occurs, we define scorest = 1.
(4) Crash. If the drone is unstable in flight and does not take emergency protections,
the drone may crash on the ground.

Test Oracle. We check drone flight logs in real-time, and if we detect logs con-
taining “Crash: Disarming”, it means that this error has been caught. Also, we have
observed that incorrect configuration can cause drones to land at excessive speed.
With the community’s help, we define that a crash is considered to have occurred if
the landing speed is greater than 2 m/s when landing. According to our observation,
the crash speed of drones generally does not exceed 20 m/s at most, so we define
scorecr = crash speed/20.
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(5) Deviation. The goal of the drone control system is to minimize the deviation
between the observed state and the reference state. Incorrect setting of the configu-
ration parameters will cause the control algorithm cannot drive the drone close to the
reference state.

Test Oracle. The drone’s position can be determined by longitude, latitude, and altitude.
We calculate the distance of deviation of the drone from the reference position in real-
time. The distance between any two waypoints of the flight mission we generated is less
than 100 m. We define that if the deviation distance exceeds 10 m, it is considered that
an abnormal flight state occurred. We define scorede = distance/10.

3.3 State-Guided Mutator

Fuzzing Targets. We mutate three input types to the drone control system: (1) Config-
uration parameter. The drone has six degrees of freedom (6DoF) in space, including the
x-axis, y-axis, and z-axis for controlling linear movement, pitch, yaw, and roll for con-
trolling rotation. We selected 46 configurations directly related to the drone’s 6DoF as
test targets. We use the official documents to get all the configuration parameter infor-
mation, such as parameter type, value ranges, default values, etc. (2) Environmental
factor. The drone system is a typical cyber-physical system, and environmental factors
have a significant effect on the physical flight states. Especially, wind and obstacles are
two important factors that affect the flight of drones. (3) Flight mission. Flight missions
are used to plan the trajectory of the drone and what operations to perform during the
flight. Each flight mission contains multiple flight commands and we chose 16 types of
fight mission commands as test targets.

State-Guided Mutator Base on QDGA. Traditional fuzzing uses genetic algo-
rithms [21,24] to heuristically mutate seeds to search for software bugs. However, the
genetic algorithm is only suitable for searching one or a group of optimal solutions in
the input space, and it is easy to fall into a local optimum. We aim to fully explore
configuration space and find more optimal solutions that lead to abnormal flight states.
Therefore, we use the quality-diversity [26,28] to enhance the searchability of the
genetic algorithm to the solution space. Introducing the quality-diversity metric helps
maintain the diversity of the population, makes the distribution of individuals within the
population more even and prevents the algorithm from getting trapped in local optimum.
This enhances the algorithm’s exploration capabilities and contributes to discovering
more software bugs.

We present our improved genetic algorithm in Algorithm 1. First, we use the
function init pop to randomly initialize the population popg (g=0) (line 2). Each
individual in the population represents the combination of configuration parameters
pi, environmental factors ei and flight missions mi so that the individual can be
expressed as xi = {pi, ei,mi} and be encoded as a bit vector (e.g. 10111101001...).
We use the function eval fitness and eval diversity to calculate each indi-
vidual’s fitness and quality-diversity scores in the popg , respectively. The function
eval fitness is obtained by Eq. 1 and the function eval diversity is obtained
by Eq. 2. Next, we enter the main loop: (1) Using the function select parents to
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Algorithm 1. State-guided fuzzing.
Input: PC - Configuration parameters, PM - Flight missions, PE - Environmental factors, T -

Maximum iterations, NP - Population size
Output: Incorrect configuration parameter values
1: g ← 0
2: popg ← init pop(PC , PM , PE , NP )
3: eval fitness(popg)
4: diversityg ← eval diversity(popg)
5: while g < T do
6: parents ← select parents(popg)
7: popg+1 ← crossvoer(parents)
8: popg+1 ← mutate(popg+1)
9: eval fitness(popg+1)
10: diversityg+1 ← eval diversity(popg+1)
11: if diversityg+1 < diversityg then
12: pop′

g+1 ← best m(pop′
g+1)

13: pop′′
g+1 ← init pop(PC , PM , PE , NP − P ′

g+1.size)
14: popg+1 ← pop′

g+1 ∪ pop′′
g+1

15: end if
16: eval fitness(popg+1)
17: g ← g + 1
18: end while

select individuals with higher fitness scores from popg as the parent of the next gen-
eration population (line 6). The function select parents is implemented by the
tournament selection operator [27]; (2) Using the function crossover
to generate new candidates (line 7). We use the two-point operator for the func-
tion crossover. We randomly select two points in the bit vectors of two parents and
then swap the sub-vectors in the two points to generate new children; (3) Using the
function mutate to mutate the candidate individuals (line 8). The function mutate
is implemented by the bit flip operator which randomly flips a bit with a spe-
cific probability in the bit vectors; (4) Recalculating the fitness score of the individual
of popg+1 (line 9); (5) Recalculating the quality-diversity score of the population of
popg+1 (line 10). We use Euclidean distance [13] to evaluate the diversity of individu-
als. Finally, we calculate the population average distance as a diversity metric, as shown
in Eq. 2.

diversity score =
NP∑

i=1

NP∑

j=i

d(pi, pj)/(NP ∗ (NP − 1)) (2)

Here, d(pi, pj) represents the Euclidean distance between i and j, and NP repre-
sents the size of the population. If the diversity of the offspring is smaller than that of
the parent, we select m individuals with the highest fitness scores, discard other indi-
viduals, and regenerate individuals to fill the population; (6) Updating the fitness score
of the new population (line 16). When the population iterates T times, the algorithm is
terminated.
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3.4 Bug Analyzer

The target of the fuzzing includes 46 configuration parameters and each configuration
parameter has hundreds of values. Exploring the root causes of configuration errors is
highly time-consuming. First, we test each configuration parameter one by one to locate
the configuration parameters that are most likely to cause abnormal flight states. After
identifying the wrong configuration parameter name, we further analyze the wrong con-
figuration parameter values and the root cause of the abnormal flight states.

4 Evaluation

We implemented a prototype of APFuzzer and verified our system on the open source
control programArduPilot. First, we verify the effectiveness and efficiency of APFuzzer
to search for configuration errors and compare the performance of APFuzzer with the
genetic algorithm (GA) and random algorithm. Then, we verify the impact of environ-
mental factors and flight missions on flight states. Finally, we analyze the configuration
errors and explore the root causes of the abnormal flight states caused by the configura-
tion errors.

4.1 Experiment Setup

Flight Control System. We chose ArduPilot [1] flight control system as our test target,
which is an open source and widely used system. We chose ArduCpoter as the target
drone type.

Simulator. We chose mature and widely used Gazebo [4] to simulate the drone and
physical environment. We validate it in one real drone with Pixhawk [23] (AMOVLab
P450 [3]).

Experimental Machine Performance. All experiments are performed using a desktop
PC with sixteen-core 3.2 GHz Intel Core i9 CPU and 32 GB RAM running Ubuntu
64-bit. We use QGroundControl [9] as the ground control station to manipulate the
drone and MAVLink [8] as the communication protocol to interact with the drone. We
implemented APFuzzer using 1472 lines of Python.

4.2 The Effectiveness and Efficiency of APFuzzer in Searching for Incorrect
Configuration Parameter Values

Effectiveness. We select 46 configuration parameters directly related to the drone atti-
tude control, 2 environmental factors and 16 flight mission commands as the test targets.
In our QDGA implementation, we set the population size (NP ) to 50, the crossover
probability to 0.5, and the mutation probability to 0.01. We use average Euclidean dis-
tance to measure the quality diversity of the population and use the method of Sect. 3.2
to measure the fitness score of the population.
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As shown in Fig. 3, we evaluate the performance of APFuzzer when m = 25, 35
and 45, and the test time is 6 h. When m = 25, APFuzzer completed 4788 simulations
and found 2682 configuration errors, and when m = 35 and m = 45, APFuzzer searched
for 3389 and 2633 configuration errors respectively. It can be seen that when m = 35,
APFuzzer completes the most simulations, searches for the most configuration errors,
and has the highest abnormal rate of search results. Additionally, Fig. 4(a) illustrates that
when m = 35, APFuzzer searches for misconfigurations with the fastest growth rate and
the best search performance. Figures 4(b) and 4(c) show the trends of average quality
diversity and average fitness of populations with different values of m, respectively.
Based on the comparison, APFuzzer performs best whenm equals 35.

Fig. 3. Fuzzing results of APFuzzer with different parameter values ofm.

Furthermore, we counted the number of each abnormal state caused by misconfig-
urations searched by APFuzzer when m = 35. APFuzzer completed 5262 simulations
within 6 h, of which 3389 simulated flight results were abnormal. APFuzzer searched all
five pre-defined abnormal states. Of all configuration errors, 3130 cases caused Crash,
215 cases caused Stuck, 37 cases caused Deviation, 6 cases caused PreArm
Failed and 1 case caused Thrust Loss.

Fig. 4. The performance of APFuzzer with different parameter values ofm.
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Efficiency. To evaluate the efficiency of the QDGA in the fuzzing of drone control sys-
tem configuration parameters, we implemented comparative experiments and compared
it with the traditional genetic algorithm (GA) and random algorithm. We set the value
of m to 35 in QDGA and set the parameters of the genetic algorithm to be the same
as QDGA, except for not using the quality diversity metric. The fuzzing time was set
to 6 h. Figure 5 shows the fuzzing results of the three algorithms. APFuzzer completed
5262 simulations within 6 h, while the random algorithm and GA completed only 3677
and 958 simulations, respectively. GA only searched for 821 configuration errors and
the abnormal rate was 86%, random algorithm found 939 configuration errors, but the
abnormal rate was only 26%. Obviously, as the population evolves, GA falls into a
local optimal solution, and the ability to explore the solution space becomes worse and
worse. Although the random algorithm can better explore the solution space, the ability
to search for the optimal solution is poor, reflected in the low abnormal rate. APFuzzer
takes advantage of GA and random algorithm and has the ability to search for multiple
optimal solutions. As a result, APFuzzer found 3389 configuration errors with a 64%
abnormal rate.

Fig. 5. Fuzzing results of APFuzzer, genetic algorithm and random algorithm.

Table 1. Fuzzing results with the impact of environmental factors and flight missions.

Factor Crash Deviation Stuck

Environment 638 36 72

Flight Mission 994 2 69

4.3 The Influence of Environmental Factors and Flight Missions on Flight State

Environmental Factors. We assume that environmental factors have an important
effect on the flight state of drones. Attackers can use specific environmental conditions
to attack drones. In our experiments, we only consider the influence of wind speed and
wind direction. We set the wind speed between [0,10] m/s and the wind direction
between [0,360] degrees. We selected 600 correct configuration parameters from
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APFuzzer’s fuzzing results, and for each configuration parameter, we randomly intro-
duced environmental variations ten times. In the end, we completed 6000 simulations
in approximately 9 h. Table 1 shows the number of flight abnormal states caused by
configuration errors, including 638 cases of Crash, 36 cases of Deviation and 72
cases of Stuck. Our experiment demonstrates that environmental factors can affect the
correctness of configuration parameters, thereby influencing the flight state of drones.

Flight Mission. Unlike previous work LGDFuzzer, which only tested a single mission,
we assume that the missions directly affect the correctness of the configuration val-
ues. We selected 600 correct configuration parameters from APFuzzer’s fuzzing results
and regenerated 1000 new missions as the mission seed pool. For each correct config-
uration, we randomly selected ten missions to run the simulation again. As shown in
Table 1, after performing 6000 simulations, we found 994 cases of Crash, 2 cases of
Deviation and 69 cases of Stuck. The test results show that the correctness of the
configuration parameter values is related to the flight mission and prove that different
mission scenarios change the range of incorrect configuration parameters.

4.4 Bug Analysis Result

APFuzzer searched for a total of 3389 configuration errors within six hours. To explore
the root cause of configuration errors, we test each configuration parameter one by
one to locate the specific configuration parameter name of each error, and then further
analyze the specific reasons that lead to abnormal flight states. Table 2 shows our search
results. After manual inspection, we confirmed 5 software bugs. Among them, 2 is
related to PreArm Failed, 1 is related to Stuck and 1 is related to Crash.

Table 2. Bug analysis result of APFuzzer. The description presents the root cause of bugs caused
by configuration errors.

No. Flight State Configuration Description

01 PreArm Failed PSC ACCZ I p ∈ [0, 3.0], p = 0 leads to floating-point exception

02 PreArm Failed ATC RAT PIT D p ∈ [0, 0.03], p = 0 leads to floating-point exception

03 PreArm Failed ATC ANG PIT P p ∈ [0, 12], p < 1 violates the constraint in program

04 Crash ATC RAT PIT D p ∈ [0, 0.05], p > 0.42 causes the drone to hit the ground at high speed

05 Stuck PSC ACCZ D p ∈ [0, 0.4], p > 0.13 causes the drone to get stuck in climbing motion

Bug No. 01 and Bug No. 02 are floating point overflow vulnerabilities caused by a
lack of range checking in the source code. Bug No. 03 is caused by the inconsistency
between the source code and official documentation. The value range of the configu-
ration parameter in the official documentation is [0,12], but configuring the value
less than 1.0 will violate program constraints. Bug No.04 is caused by the value of the
configuration parameter ATC RAT PIT D being too large. When its value is between
[0.042,0.05], the drone will crash on the ground at high speed due to losing con-
trol. Bug No.05 is similar to Bug No.04, in which configuration parameter values within
a specific range will cause the drone to get stuck in an endless climbing motion.
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5 Related Work

The traditional fuzzing methods [2,5,6,16,29] are used to find program memory vul-
nerabilities (e.g., buffer overflow) guided by code coverage. These methods improved
the mutation algorithm and seed selection algorithm or used techniques such as taint
analysis and symbolic execution to improve code coverage to search for more vulnera-
bilities. Still, they are unsuitable for searching for control system vulnerabilities caused
by incorrect configuration parameters.

In recent years, a small amount of work has focused on vulnerabilities caused by
configuration parameters. RVFuzzer [19] applies control-guided mutation to search
for unsafe configuration parameter ranges called input validation bugs. However, this
method has a high false positive rate and cannot accurately detect configuration errors.
LGDFuzzer [17] applies a machine learning-guided fuzzing approach that uses a pre-
dictor and a genetic search algorithm to detect incorrect configurations. However, this
predictor relies on specific flight logs, which is unsuitable for new flight missions, and
the accuracy of the state predictor is not high. APFuzzer applies a QDGA and considers
environmental factors and flight missions’ impact on flight states. It efficiently searches
for configuration errors and identifies the root causes of these errors.

6 Conclusion

In this paper, we design and implement a state-guided fuzzing system called APFuzzer,
which is effective in searching for incorrect configuration parameter values that would
trigger abnormal flight states on drones. We design a quality-diversity enhanced genetic
algorithm to mutate configurations to detect incorrect configuration parameter values.
We consider the effects of environmental factors and flight missions on the flight states
and evaluate their effects on flight states. We implemented our system on ArduPilot,
successfully detected 3389 incorrect configuration parameter values, and triggered all
five predefined abnormal flight states within 6 h. Furthermore, APFuzzer can automat-
ically analyze the fuzzing results and locate the root causes of configuration errors. In
the end, we found five software bugs and fed them back to the developers.
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Abstract. In recent years, the rapid proliferation of Brain-Computer
Interface (BCI) applications has made the issue of security increas-
ingly important. User authentication serves as the cornerstone of any
secure BCI systems, and among various methods, EEG-based authenti-
cation is particularly well-suited for BCIs. However, existing paradigms,
such as visual evoked potentials and motor imagery, demand signif-
icant user efforts during both enrollment and authentication phases.
To address these challenges, we introduce a novel paradigm–Keystroke
Evoked Potentials (KEP) for EEG-based authentication, which is secure,
user-friendly, and lightweight. Then, we design an authentication sys-
tem based on our proposed KEP. The core concept involves generat-
ing a shared cryptographic session key derived from EEG data and
keystroke dynamics captured during random button-pressing activities.
This shared key is subsequently employed in a Diffie-Hellman Encrypted
Key Exchange (DH-EKE) to facilitate device pairing and establish a
secure communication channel. Based on a collected dataset, the results
demonstrate that our system is secure against various attacks (e.g.,
mimicry attack, replay attack) and efficient in practice (e.g., taking only
0.07 s to generate 1 bit).

Keywords: User Authentication · EEG · BCI · Diffie-Hellman ·
Keystroke Evoked Potential · KEP

1 Introduction

The field of Brain-Computer Interface (BCI) is undergoing rapid development,
with an increasing number of applications in areas such as neural engineering,
robot control, gaming, entertainment, and security sectors [42]. These advance-
ments significantly improve the quality of life for individuals, particularly those
living with chronic disabilities and their caregivers. However, as the technol-
ogy gains traction, it becomes increasingly vulnerable to newly emerging forms
of attacks [43]. Several studies have explored the potential risks associated with
BCI applications, identifying cybersecurity as a significant concern. For instance,
Bhalerao et al. [3] has indicated that wireless BCI systems are susceptible to EEG
signal tampering or attacks during transmission, potentially leading to system
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Vaidya et al. (Eds.): AIS&P 2023, LNCS 14509, pp. 513–530, 2024.
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malfunctions. In the context of EEG-based authentication, tampered EEG data
could deceive the authentication system, posing a critical security risk [11].

Surprisingly, this crucial issue has largely been overlooked in existing stud-
ies on EEG-based authentication systems [47]. These studies often replicate the
workflow of traditional biometric authentication systems, which involves collect-
ing EEG data from subjects and using machine learning algorithms for classi-
fication. However, such approaches fail to account for the unique cybersecurity
challenges associated with BCIs. For example, BCI devices often lack a shared
secret with users’ laptops or smartphones, making them susceptible to Man-in-
the-Middle (MITM) attacks during device pairing [46].

Another point worth noting is the limitations of current EEG-based authen-
tication methods. The majority of these approaches rely on the detection and
classification of motor imagery, which can be spoofed [7]. Also, utilizing intrin-
sic oscillatory brain signals and motor imagery for authentication necessitates
several seconds to establish Event-Related Desynchronization (ERD) patterns.
Moreover, users often require training to become accustomed to this method
[34]. This contradicts one of the primary advantages of biometric systems over
password-based systems: the elimination of the need to remember passwords
[5]. For instance, current methods often require individuals to engage in imag-
ined movements, increasing both cognitive workload and the time required for
authentication, which can last up to 10 s. Therefore, there is a pressing need for
alternative approaches that can enhance the Information Transfer Rate (ITR),
ideally requiring less time and mental effort [34].

Another major type of BCI systems measures the P300 component of a Visual
Evoked Potential (VEP), which occurs in response to flashed columns or rows of
letters [9,23]. One major drawback of these ‘visual’ methods is that they require
subjects to maintain gaze control for an extended period during the enrollment
phase. Another significant limitation is the variability of EEG wave features,
which can change over time due to many factors such as health, emotional state,
and age. Consequently, these methods are inherently unreliable for high-security
applications.

Contributions. In this work, we propose a novel paradigm for EEG-based
authentication, termed Keystroke Evoked Potential (KEP). To circumvent
the downgraded user experience associated with prolonged and high concentra-
tion required in other methods, KEP only necessitates that users continuously
keystroke a dedicated button randomly for 2 min using one fingertip, with any
posture they prefer. During this process, a shared secret key is generated without
communication and stored in both the device and the BCI system. Then, when
users want to authenticate, they simply need to band the BCI device; no further
action is required, making the process similar to token-based authentication.
While this new approach can offer enhanced security compared to token-based
methods. That is, even if the BCI device is stolen and used by someone else, the
system can identify that the user is not the originally registered individual by
analyzing the features of the EEG wave.
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Research Scope. The primary goal of this work is to explore the viability of
Keystroke Evoked Potential (KEP) as a foundation for EEG-based authentica-
tion. Specifically, we aim to address the following questions:

– Are the features of KEP both temporally consistent and sufficiently strong
in amplitude?

– Can brain waves accurately reflect the dynamics of keystrokes?
– What is the time required to register a new user?

Paper Structure. The organization of this paper is shown as follows: Sect. 2
provides the background on KEP. Section 3 outlines our system design. Section 4
evaluates the security, effectiveness and practicability of our system, and Sect. 5
introduces related studies on biometric authentication and EEG. Finally, Sect. 6
offers a conclusion regarding our proposed system.

2 Background

In this section, we provide the essential background knowledge needed to under-
stand the principles behind the Keystroke Evoked Potential and Autonomic Key
Generation methods.

2.1 Keystroke Evoked Potential (KEP) Principle

Electroencephalography (EEG) is a medical imaging technique used to record the
electrical activity of the brain. It is a non-invasive method in which electrodes
are placed on the scalp to detect and measure the minute electrical voltages
generated by brain cells (neurons) during communication. As illustrated in Fig. 1,
when a charged button is touched by a person’s finger, it induces changes in the
body’s electrical potential. This, in turn, leads to variations in the steady-state
voltage observed in the EEG data.

This electrified button does not actually require specialized design. A com-
mon example encountered in daily life is the keyboard of a charging laptop. A
Switching Mode Power Supply (SMPS) is an efficient method for power conver-
sion that controls voltage output by switching the current at high frequencies.
This switching operation can generate harmonics, which are integer multiples
of the original switching frequency. While these dominant harmonics typically
manifest in the high-frequency range, there are instances such as when an SMPS
is designed to operate at 100 kHz where harmonics or intermodulation products
may appear in lower frequency ranges, such as between 100 Hz and 120 Hz, as
shown in Fig. 2.

2.2 Autonomic Device Pairing

Autonomic Device Pairing leverages a shared secret observation between commu-
nicating parties to independently generate matching keys, eliminating the need
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Fig. 1. Observed Potential Change in EEG

Fig. 2. Observed harmonics in EEG

for third-party intervention [44]. In recent years, researchers have explored var-
ious contexts for this secret observation, including vibrations from handshakes
[8,12], user heartbeats [24,37], and user gait [39,45]. Although the specific algo-
rithms for key extraction from these observed signals differ, all these techniques
share a similar foundational model and signal processing pipeline, as illustrated
in Fig. 3.

A workstation refers to a computing device such as a laptop or smartphone,
while a BCI device can be a headset or headband capable of collecting and trans-
mitting EEG data to the workstation. The device pairing process, as illustrated
in Fig. 3, begins with the workstation sending a request to the BCI device to
initiate pairing. Upon confirmation from the BCI device, a 30-second data col-
lection phase commences. During this phase, users are instructed to randomly
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Fig. 3. General pipeline of device pairing

and continuously keystroke a designated button on the workstation. The BCI
device records EEG data, while the workstation captures keyboard data.

In the preprocessing phase, both devices independently perform data align-
ment, scaling, and segmentation without inter-device communication. The EEG
data is then fed into a transformer auto-encoder, followed by a hash function, to
generate a session key. On the workstation side, key generation is more straight-
forward. It involves analyzing the segments of button states: ‘0’ is output if the
button is consistently released, ‘1’ is output if the button state changes (i.e., from
released to pressed or vice versa), and ‘2’ is output if the button is consistently
pressed. After analyzing all segments, the workstation hashes the resulting string
to obtain its session key. If key generation is successful, fully matched symmetric
session keys should be generated. Otherwise, the device pairing process restarts,
looping through the pipeline until a symmetric key is successfully generated.

3 System Design

In this section, we provide a detailed overview of the key technological modules
of KEP, ranging from identical sequence generation to identity verification.

3.1 Adversary Model

– Man-In-The-Middle-Attack (MITM): A Man-in-the-Middle (MITM) attack
is a type of cyber attack where an unauthorized actor intercepts, relays, and
may alter communications between two parties who believe they are directly
communicating with each other. The attacker can capture and store any trans-
mitted data, such as login credentials, personal information, and sensitive
business data.

– Mimic Attack: In a mimic attack, adversaries observe the entire process of
user enrollment and then attempt to imitate the user’s actions. Their goal
is to regenerate a key that closely resembles the original, thereby gaining
unauthorized access.

– Replay Attack: In a replay attack, an unauthorized attacker intercepts and
records a legitimate message exchanged between two devices that are in the
process of pairing. The attacker then replays this captured message at a later
time, either to gain unauthorized access to the system or to initiate actions
that the original message was intended to trigger.
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– Brute Force Attack: In a brute-force attack targeting an encrypted mes-
sage intercepted during an MITM attack, the attacker systematically tries all
possible decryption keys or passwords until the correct one is found. Rather
than exploiting any specific vulnerabilities in the encryption algorithm, the
attacker relies on sheer trial and error, testing every conceivable key until the
original message is successfully decrypted.

3.2 Design Goals

To address the threats and challenges we have identified, we have set the fol-
lowing goals that our proposed KEP-based authentication system should aim to
achieve in practice:

– Security: All transmitted data should be encrypted and designed in such a
way that attackers cannot easily decrypt it. Additionally, the scheme should
have the capability to detect any tampering with the transmitted data.

– Usability: The time required for both the enrollment and authentication
stages should be minimal, and the process should demand a low effort from
the user side.

– Lightweight: The scheme should be resource-efficient and lightweight,
requiring minimal computational resources, as part of the system will be
integrated into BCI devices.

3.3 Data Collection

After receiving an authentication request, the user types randomly on the key-
board with one fingertip, which serves as the source of a shared secret to estab-
lish the initial secure session. The workstation records the timestamps of button
presses and releases, while the BCI device captures variations in voltage potential
over time.

Temporal Alignment. Given that the devices independently sample EEG and
keyboard data, temporal alignment becomes necessary. We employ an event-
based approach where both devices detect the onset of the first pressing event
and use this as a basis to segment the data. This approach eliminates the need
for explicit time synchronization between the devices, under the assumption that
they are equipped with sufficiently accurate real-time clocks to ensure alignment
within the detected active segments.

Entropy of Sensor Data. During the enrollment phase, the workstation con-
tinuously calculates the resulting entropy of the collected keyboard data. If the
entropy is found to be insufficiently high at the end of the enrollment process,
users will be prompted to undergo the enrollment process again.

3.4 Data Processing

– Scaling: The EEG data is scaled within a specific range (e.g., 0 to 1) to
reduce computational resource consumption during model training.
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– Segmentation: The continuous EEG data is divided into segments, each with
a specific window size (W). Each segment or window is then decoded into a
number belonging to the set {0, 1, 2} by our transformer auto-encoder.

Unlike traditional EEG-based authentication approaches, we do not require
the filtering of artifacts caused by eye blinks or facial muscle movements, nor
require the noise filtering of irrelevant brainwave bands. According to our exper-
imental results, the changes in brainwaves induced by KEP are sufficiently dis-
tinct to allow for accurate decoding.

3.5 Auto-encoder Training

We employ the standard transformer model, as described by Vaswani et al. [41],
to serve as our auto-encoder. The structure of the model is depicted in Fig. 4.

Fig. 4. The flowchart of the Transformer Auto-encoder.

In our configuration, we set d model to 4, as the BCI device is limited to
detecting data from four channels: AF7, AF8, TP9, and TP10. The architecture
comprises four main layers: the Encoder Layer, the Decoder Layer, the Fully
Connected Layer, and the Sigmoid Layer. The Encoder Layer processes the input
sequence to create a ‘memory’ that encapsulates the contextual information of
the input. This memory is subsequently utilized by the Decoder Layer. The
Encoder Layer is composed of multi-head self-attention mechanisms and feed-
forward neural networks. We set the number of attention heads to 2, as it must
be a factor of d model, which in this case is 4.

The Decoder Layer receives the ‘memory’ from the Encoder Layer and gen-
erates the output sequence. During the training stage, it can also accept an
additional ‘target’ sequence as input. The Fully Connected (FC) Layer serves to
map the output of the Decoder Layer to the desired output shape. In this case,
it maps each position in the sequence to a single value (scalar). The Sigmoid
Layer then maps any real-valued number to the range of {0,1,2}. Finally, the
hash module takes the tensor output from the transformer model and generates
the session key.
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3.6 Encrypted Key Exchange

If both devices require the key for secure communication, they can utilize a key
agreement protocol to ensure that both possess the same key without having to
transmit it directly. Specifically, we employ the Diffie-Hellman Encrypted Key
Exchange [2], which is an example of a Balanced Password-Authenticated Key
Exchange (PAKE) protocol (as illustrated in Fig. 5).

Fig. 5. Diffie-Hellman Encrypted Key Exchange

Following parameters are used for key generation:

– p: a big prime, called “modulus”
– q: a divisor of p − 1, called “subgroup order”
– g: “generator” an integer modulo p of order q (this means that the smallest

integer k > 0 such that gk = 1 mod p is k = q)
– X and Y : random numbers chosen separately by the two parties

The basic idea is to use the shared secret key ssk to protect the public key
swap of Diffie-Hellman Key Exchange. Only the one who possesses the key ssk



KEP: Keystroke Evoked Potential for EEG-Based User Authentication 521

can encrypt and decrypt the ciphertexts. If A and B pass key verification suc-
cessfully, then a secure channel can be established between A and B. Otherwise,
the device pairing process restarts, looping through the pipeline until a shared
secret key is successfully generated.

4 Evaluation

In this section, we introduce our goals and evaluation methodology. Then we dis-
cuss the security aspect of our system, and analyze the results of Bit Agreement
Rate and Bit Rate.

4.1 Goals

In this section, we assess the performance of the proposed key generation scheme.
The objectives of the evaluation are threefold: 1) assess the scheme’s security
against various types of adversarial attacks and evaluate the length of the gen-
erated keys; 2) determine the optimal key parameters, including the length of
the input data and the window size (W); and 3) identify the optimal hyperpa-
rameters, including the number of attention heads, encoder layers, and decoder
layers.

4.2 Methodology

Data Collection: The dataset used for evaluating the performance of the pro-
posed system comprises 10 subjects (5 males and 5 females). As illustrated in
Fig. 6, we collect EEG data from the following channels according to the EEG
10-10 system: AF7, AF8, TP9, TP10. The default sampling rate of the MuseS
headband is 256 Hz.

During the data collection phase, participants were instructed to wear the
BCI device and type randomly on the keyboard for approximately 30 s at a
normal speed (fewer than 10 keystrokes per second). Data collection was con-
ducted under both reasonable and slightly unreasonable wearing conditions to
capture different scenarios in practical usage. Each subject was asked to repeat
the random typing process five times.

4.3 Security Discussion

Man-In-The-Middle (MITM) Attack: The primary security concern in wireless
communication over a public channel is the risk of an MITM attack during the
session key exchange protocol. In our system, an MITM attacker cannot intercept
the data from the communication channel because the secret travels through the
user’s body, from their fingertip to their brain. Attackers are unlikely to guess the
‘secret,’ as its length can be set to be sufficiently long (e.g., 256 bits) to ensure
high entropy. Therefore, an MITM attack is highly improbable, given that the
attacker would need access to the recorded data to derive the temporary key
ssk, which the device uses to authenticate the BCI device.
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Fig. 6. EEG channels for data collection

Mimicry Attack: Our basic assumption is that the adversary would need to
observe the entire process of user enrollment. However, most people have two
hands. If users suspect that their environment is unsafe, they can register using
one hand while using the other hand to completely cover the actions of the
registering hand. As a result, an attacker attempting to derive the key solely
from recorded videos would find it nearly impossible.

Replay Attack: In this type of attack, an intruder replays messages from a previ-
ous session key establishment procedure between two devices, A and B. By doing
so, the intruder could potentially impersonate Device B to communicate with
Device A, or vice versa. However, in our system, all transmitted messages are
encrypted based on a shared secret, and timestamps are included in every mes-
sage for data alignment. As a result, intruders are unable to execute a meaningful
replay attack.

Entropy and Brute Force Attack: The success of a dictionary attack depends on
the entropy of the shared secret, which measures the level of uncertainty or ran-
domness associated with the generated bit strings. To validate the randomness of
these bit strings, we can employ the NIST suite of statistical test algorithms [38].
If the entropy is found to be insufficient, users can be prompted to re-register.

Diffie-Hellman key exchange protocol has two key sizes, the discrete log group
size, and the discrete log key size. More specifically, the discrete log group size
is the length of the modulo p, while the discrete log key size is the length of the
exponents, X or Y, chosen by Alice or Bob. The recommended value of the two
sizes is 256-bit for key size and 2048-bit for group size. This ensures a 128-bit
security level [1]. Note that to ensure this bit security level, it is required that
the order of g is a prime q of at least 256 bits; which can be ensured by using a
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Fig. 7. Total loss values during training time with different depth

modulus p, which is a “safe prime” (prime integers p such that (p− 1)/2 is also
a prime) (Fig. 7).

4.4 Bit Agreement Rate

The bit agreement rate represents the percentage of bits that match in the secret
keys generated by both parties. This metric is used to evaluate the likelihood
of Alice and Bob agreeing on the same key. In our experiments, we set the key
length to 256 bits and aim to train the transformer auto-encoder to identify the
simplest model that can achieve a validation loss lower than 0.001.

Results show that even with just one layer of encoder and one layer of
decoder, the loss can converge to zero. However, the model’s performance con-
verges very quickly when there are two layers of encoder and two layers of
decoder.

4.5 Bit Generation Rate

The bit generation rate refers to the average number of bits generated from the
acceleration samples per unit time, typically measured in bits per second (bps).
This metric aims to assess the speed at which Alice and Bob can generate shared
secret bits.
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Fig. 8. Total loss values during training time with different window size

The Window Size (W) directly influences the bit generation rate. We inves-
tigate the impact of W on the generated key through a systematic exhaustive
search. The objective of this search is to identify the optimal W that both max-
imizes the agreement rate and converges quickly. After selecting the appropriate
hyper-parameters, we vary the window size within a specific range, i.e., W =
6, 12, 18, 24, 30, 36. This range is selected based on the sampling frequencies
of EEG data (256 Hz) and keyboard data (21 Hz). The ratio is computed as:
256/21 ≈ 12.19. Therefore, when the window size is larger than 12, the model
will learn the features of changes in keystrokes between two adjacent periods
(i.e., from press to release or vice versa) (Fig. 8).

Results show that when W = 18, the performance of the model converges
the most quickly. With W = 18, it takes approximately 18

256 ≈ 0.07 seconds to
generate 1 bit. Therefore, to generate a 256-bit key, it would take around 18 s,
which falls within an acceptable range for the data collection phase.

Summary and Discussion. Based on our experimental results, we can answer
our research questions proposed in the beginning. (a) First, the features of KEP
are consistent across different subjects and are sufficiently distinct to be utilized
in training transformer-based deep learning models. (b) Despite not perform-
ing a frequency domain transformation on the brainwave data, the transformer
model was able to accurately decode the dynamics of keystrokes, namely the
moments, when a button was pressed down and released. (c) In terms of gener-
ating a 256-bit secure session key, it takes approximately 18 s to register a new
user, with a remarkably high success rate exceeding 99.99%. Since these results
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are based on a limited dataset consisting of 10 subjects, future research will inves-
tigate potential demographic biases and the generalizability of our approach for
EEG-based user authentication.

5 Related Work

In this section, we introduce the related studies on biometric authentication and
EEG-based authentication.

Biometric Authentication. Different from password-based or token-based
authentication, biometric authentication takes use of a person’s biological
or behavioral features to verify the identity [31]. It includes various data
sources such as face, eyes, palm, keystroke, mouse dynamics, touch dynam-
ics, etc., and diverse platforms such as smartphones, tablets, laptops, etc. It
is believed that biometric authentication can complement the existing authenti-
cation approaches, by deploying an additional layer of security [32].

Generally, there are two types of biometrics: physiological biometrics (based
on features from a person’s body) and behavioral biometrics (based on features
from a person’s action). To improve the authentication performance, one option
is to select the high-quality features for authentication. Li et al. [15] explored
the features of touch behavioral relating to a particular application–social net-
working applications on smartphones. They found that the authentication sta-
bility can be greatly enhanced. Meng et al. [27] proposed a cost-based intelligent
mechanism that can be used to select a less costly learning algorithm for user
authentication, thereby maintaining the authentication performance. More sim-
ilar studies can refer to [25,28–30].

In the literature, there are many hybrid (multimodal) system through inte-
grating biometric characteristics with other biometrics. Casanova et al. [6] intro-
duced a multimodal biometric recognition system by verifying touch dynamics
and the characteristics extracted from the periocular area related to the pupils,
blinks and fixations. Meng et al. [26,33] introduced a method by checking multi-
touch behaviours when a user creates a graphical password. They developed a
multi-touch enabled authentication on smartphones and indicated multi-touch
can make a positive impact on creating graphical passwords. Li et al. [18,19]
presented a double-cross-based unlock scheme (Double-X ), which requires users
to unlock the device by inputting two cross shapes on the selected dots and
verifying the relevant touch movement actions. More similar studies can refer to
DCUS (Double-Click) [20,22], shape drawing [21], swiping action [16,17], hand
gesture [40] and ZoomPass [10,14].

EEG-Based Authentication. Such kind of authentication can verify a per-
son’s identify by observing and analyzing the brainwaves under some given tasks
or reactions. EEG still can be considered as a relatively new factor in user authen-
tication, so most existing studies focus on hybrid schemes in the literature [36].
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For instance, Klonovs et al. [13] introduced an EEG-based authentication system
for mobile devices, in combination with facial detection and nearfield commu-
nication (NFC). Nakamura et al. [35] introduced an EEG-based system based
on a “one-fits-all” viscoelastic generic in-ear EEG sensor. Bialas et al. [4] intro-
duced a hybrid authentication system (NeuroSky MindWave device) by using
the EEG signal combined with user image verification, which could provide a
high accuracy and a low false rejection rate.

EEG-based authentication is developing very fast, but it may also suffer
cyber-attacks. Chiu et al. [7] identified a kind of reaction spoofing attack, in
which an attacker can imitate the mental reaction (either familiar or unfamil-
iar) of a legitimate user. This attack is particularly effective to an EEG-based
computer-screen unlock mechanism. In this work, we follow the literature and
develop a multimodal EEG-based authentication system by checking both EEG
data and keystroke dynamics. Our results indicate that the combined system
can defeat various attacks in practice.

6 Conclusion and Future Work

In this work, we proposed a concept of Keystroke Evoked Potentials and devel-
oped a KEP-based authentication system that can offer security, usability, and
lightweightness. In particular, this paper presented the design and evaluation
of a KEP-based authentication system using BCI devices. The core idea is to
first generate a shared cryptographic session key from EEG and keyboard data
collected during random button-pressing motions with a user’s fingertip. This
key is then employed in the Diffie-Hellman Encrypted Key Exchange (DH-EKE)
to complete device pairing and establish a secure communication channel. Our
results indicate that our approach successfully meets the requirements for secu-
rity, usability, and lightweight.

Compared with existing authentication approaches, our system can provide
many benefits. 1) Unlike traditional password-based authentication, our system
eliminates the need for users to remember keys. 2) Compared to token-based
authentication, our approach has the potential to prevent identity theft by ana-
lyzing brainwaves to ensure they match those stored signals during the enroll-
ment stage. 3) Unlike traditional biometric systems (e.g., iris or face recognition),
we do not need to worry about the security implications of leaked biometric fea-
tures. 4) Further, our system requires less user effort in both the enrollment
and authentication stages compared to traditional EEG-based authentication
methods such as VEP and motor imagery.

One limitation of our work is that it currently serves as a proof of concept
to validate the feasibility of KEP-based authentication. Further exploration is
needed to assess the performance and resource costs with concrete hardware
implementations. We also plan to extend our experiments to include more sub-
jects with diverse background in our future work.
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Abstract. Federated learning is a new machine learning paradigm used for col-
laborative trainingmodels amongmultiple devices. In federated learning, multiple
clients participate inmodel training locally and use decentralized learningmethods
to ensure the privacy of client data. However, although federated learning protects
the privacy of client data, the update gradients uploaded by clientsmay still contain
sensitive information. To solve this problem, this paper proposes a secure aggre-
gation protocol which can verify the aggregation results under federated learning
and protect gradient privacy. The core idea of this aggregation protocol is to use
encryption technology to achieve secure computation between clients, ensuring
the privacy of gradients during the aggregation process. At the same time, bilin-
ear pairing technology is used to achieve the verifiability of aggregation results,
ensuring the correctness and usability of the model after aggregation. In order to
evaluate the security of the protocol, this paper conducts a detailed security anal-
ysis. The results show that this protocol has higher security properties compared
to the existing related protocols. In addition, the computation and communica-
tion costs of the protocol are analyzed, which show that the protocol has good
credibility and applicability in practical federated learning scenarios.

Keywords: Federated Learning · Secure Aggregation · Privacy Protection ·
Verifiability · Bilinear Pairing

1 Introduction

In recent years, artificial intelligence technology has shown great potential and advan-
tages in various fields such as unmanned driving, smart finance, and healthcare.However,
the development of these technologies typically relies on big data trainingmodels to drive
[1]. In reality, the quantity and quality of data in many industries are limited, making
it impossible to support model training alone. Therefore, is it possible to transmit data
across domains and train together? In fact, in many industries, data often exists in the
form of “islands”. Due to the isolation and security requirements of data, breaking data
barriers across domains has become very difficult. Meanwhile, due to the frequent occur-
rence of various data leakage issues [2], people’s attention to data security is constantly
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increasing. For example, the European Union passed the General Data Protection Regu-
lations (GDPR) in 2018, and a series of strict personal information protection regulations
have also been issued domestically. These regulations have strengthened restrictions on
the collection and use of personal privacy data. Therefore, the development and appli-
cation of artificial intelligence face a dilemma: data is isolated and stored, and in most
cases, data is prohibited from being collected, fused, and used in different places. In
order to solve the problem of “data silos” caused by cross domain training of data, fed-
erated learning [3–5] was proposed and studied, aiming to reduce the risk of client data
leakage.

In federated learning, in order to protect data privacy, data does not leave the local
area, and each client uses local data to train local models. Then, they will periodically
share the trained local model parameters, which are uploaded to the central server for
aggregation to obtain a better global model. Clients can use the global model for the
next round of training. This approach alleviates the privacy leakage issue that may arise
from direct use of sensitive data. However, the model gradients transmitted in federated
learningmay also leak private information [6–8]. To achieve gradient privacy protection,
secure aggregation can be used. The core idea of secure aggregation is that participants
can process local gradients and transmit them to the server for secure aggregation. In
this way, the central server will only learn the aggregated global model and will not
know specific information about the local model. In order to achieve secure aggregation,
Keith Bonawitz et al. [9] designed a secure aggregation protocol that tolerates client
exit. They used double mask technology and secret sharing technology to encrypt the
uploaded gradient and upload it to a central server. This method can both protect local
model gradients and tolerate a certain number of clients exiting at any time. However,
traditional doublemask schemes require keynegotiationbetween clients,which can incur
significant communication overhead. In order to improve communication efficiency,
Kalikinkar Mandal et al. [10, 11] entrusted the work of key negotiation to a trusted third
party (TA), thereby avoiding communication between clients and greatly improving
communication efficiency. The privacy of model gradients is protected through secure
aggregation. The central server cannot directly or indirectly obtain specific information
about any local gradient except for the aggregated gradient.

In addition to the privacy of the model gradient, the verifiability of the aggregation
results from the central server is also an important factor in achieving privacy protection.
Sometimes, due to network limitations or other reasons, aggregation servers may only
aggregate the gradients of some clients. In addition, malicious servers may collude with
clients, forge or tamper with aggregation results to obtain client privacy data. Therefore,
researchers need to verify the correctness and completeness of server-side aggregation
results to prevent server forgery or malicious tampering of data. When designing a
validation plan, two issues need to be considered. The first issue is the complexity of
verification, as verifiable federated learning requires encrypted computation and proof
generation between various participants, which introduces additional computational and
communication overhead. Secondly, the implementation of verifiable federated learning
requires cooperation from all parties to ensure data privacy and the credibility of the
model, so the validation scheme itself cannot directly or indirectly disclose the privacy
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of the data or model. In the current research process, Xu et al. [12] designed a veri-
fication scheme for secure aggregation results by combining the double mask scheme
and homomorphic hash function. This scheme can safely verify the correctness of the
aggregation results, but the verification process uses homomorphic hash functions and
pseudo-random functions, which adds a lot of verification overhead. Guo et al. [13]
improved the above verification scheme by combining the fuzzy commitment scheme
with linear homomorphic hashing to propose a new protocol that reduces communi-
cation overhead. However, in reality, this protocol has security issues and cannot truly
achieve verifiability. In addition, in verifiable federated learning, VERSA [14] adopts a
dual aggregation protocol to achieve the verifiability of secure aggregation. Although it
greatly reduces verification costs by using pseudo random generators, each client must
hide the same secret vector from the server, which poses a serious security threat. In the
verifiable secure aggregation model proposed by Wang et al. [15], a collector is used to
calculate the auxiliary information required for clients authentication and server aggre-
gation, respectively. And use the aggregation server to aggregate the encrypted gradient
and validation labels, and then return the gradient aggregation value and validation infor-
mation to the client. The client uses bilinear pairing method to verify the correctness
of the aggregation results. However, during the verification process, malicious servers
can use real aggregation values to disguise themselves as clients to obtain verification
information, infer key information in the verification information, and forge gradient
aggregation results and verification information.

This paper proposes a verifiable secure aggregation protocol based on bilinear pairing
and aggregator oblivious encryption techniques. Specifically, the main contributions of
this paper are as follows.

1) This protocol implements gradient privacy protection based on aggregator oblivious
encryption [16, 17]. The client uses a key to encrypt the gradient and sends it to the
aggregation server for unified aggregation. This method can complete the update of
gradients without leaking anything about the gradients of each client to the collector
and aggregation server.

2) This protocol achieves the verifiability of gradient aggregation results. Each client
hides local gradients by using its secret key and a shared random array between all the
clients to protect the gradient information in the verification tag. After the gradients
are aggregated, each client can verify the results with the shared random array. Since
the random arrays are kept confidential from the aggregation server, malicious servers
cannot forge aggregation results to deceive clients.

3) This paper provides a detailed analysis on the security of the protocol and evaluates
the computation and communication costs involved. By comparingwith related exist-
ing works, this protocol can effectively ensure the confidentiality of client data and
gradient information. It also minimizes computation and communication overhead
as much as possible, enabling large-scale use in practical applications.
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2 Preliminaries

2.1 Bilinear Pairing

Bilinear pairing [18] is the mapping of elements between two groups into a different
group. It is defined as: for two multiplicative cyclic groupsG1 andG2 of the same prime
order q, satisfying the mapping e : G1 × G2 → GT , where the generators of G1 and
G2 are g1 and g2, respectively. Generally speaking, bilinear pairing e has the following
properties:

(1) Bilinear: Given ∀a, b ∈ Z∗
q , for generators ∀g1 ∈ G1 and ∀g2 ∈ G2, satisfy

e
(
ga1 , g

b
2

) = e(g1, g2)ab;
(2) Non degenerate: e(g1, g2) �= 1, where g1 and g2 are the generators of G1 and G2,

respectively.
(3) Computability: for ∀g1 ∈ G1 and ∀g1 ∈ G2, e(g1, g2) can be effectively calculates.

2.2 Bilinear Computational Diffie-Hellman Assumption (BCDH)

Let g1 and g2 be two generators for cyclic group G1 and G2 respectively, and a, b, c ∈
Z∗
q be random numbers. The BCDH problem is to compute e(g1, g2)abc ∈ GT . The

advantage of a probabilistic polynomial-time adversary A to computing the BCDH
problem is:

AdvBCDH = Pr[A(g1, g2, g
a
1 , g

b
1 , g

c
1, g

a
2 , g

b
2) = e(g1, g2)

abc]
If the advantage AdvBCDH ≤ ε, where ε is a negligible function, it is assumed that

the BCDH problem is a hard problem in polynomial time.

2.3 Aggregator Oblivious Encryption

Aggregator oblivious encryption (AO) [16] requires that aggregators should not learn any
information other than aggregated values from honest clients’ encrypted values within
each time period. This scheme was first proposed by Shi [16]. Without compromising
the privacy of each client, a set of encrypted values of participants are regularly uploaded
to the aggregator, and then encryption technology is used to decrypt the sum of multi-
ple ciphertexts encrypted by the aggregator under different client keys. However, this
approach has certain limitations. That is, it is not conducive to large plaintext spaces
and is only applicable to small pure text spaces. Therefore, Joye et al. [17] proposed a
new aggregator oblivious encryption scheme which is divided into initialization stage,
encryption stage, and aggregation decryption stage, to solve the above problem.

Initialization Stage:
On a certain input security parameter κ , a trusted dealer randomly generates a modulus
N = pq, which is the product of two prime numbers of equal size. In addition, a hash
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function is also defined as H : Z → (Z/N 2
Z)∗. Finally, set s0 = −∑n

i=1 si and
ski = si(i ∈ [0,m]).

Encryption Stage:
During time period t, client i generates:

ci,t = (1 + xi,tN )H (t)simod N 2 (1)

Aggregation Decryption Stage:
The aggregator first calculates Vt := H (t)s0

∏n
i=1 ci,tmod N 2, and then calculates Xt

follows:

Xt = Vt − 1

N
(2)

Joye et al.’s scheme [17] can complete the aggregation of encryption and decryption
with minimal interaction, and can be performed in both online and offline model.

3 System and Security Model

This section introduces our system model and security model of the proposed secure
aggregation protocol under federated learning.

3.1 System Model

In the protocol, there are four types of entities, namely the key generation center KGC,
clients, collector, and aggregation server. The entire process mainly consists of five
stages as follows.

1) Initialization: KGC initializes the system and publishes the system parameters. Then
all the other participants generate their secret keys respectively.

2) Encrypt gradient and generate verification labels: By interaction with the aggre-
gation server and collector, each client encrypts the gradients and generates the ver-
ification labels. Then it sends the encrypted gradients to the aggregation server, and
sends the verification labels to the collector.

3) Collect and aggregate validation labels:After the collector collects the verification
labels from each online client, it aggregates the labels and then sends the result to the
aggregation server.

4) Calculate aggregation results: The aggregation server calculates the aggregated
gradients and proof information, and then sends them to each online client.

5) Verify aggregation results:
Each client verifies the aggregated gradient results by using the proof information

from the aggregation server.
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3.2 Security Model

In our protocol, KGC is assumed to be honest. All clients and the collector are considered
to be honest but curious. They may try to obtain some private information about other
clients. The aggregation server can bemalicious whomay forge the aggregated gradients
for some epoch except for inferring clients’ privacy. We assume that the aggregation
server will not collude with any client to get its secret keys.

Our protocol should achieve these security properties: aggregation unforgeability
and verifiability, client gradient privacy. Client gradient privacy means that the gradients
of each client should be private. Namely, for a client, the collector, the aggregation
server and any other client cannot obtain any information about its gradients. For the
aggregation unforgeability and verifiability, we define a game as follows. An aggregation
protocol is aggregation unforgeable and verifiable if no probabilistic polynomial time
adversary A can win the game below with non-negligible advantage. In the game, C is
the game challenger and A is assumed to be an aggregation server.

Setup: C initializes the system and generates system parameters.
Phase 1: A can make the following queries.

(1) Hash queries: A makes queries for hash functions and C returns the answers.
(2) Encryption and label queries: A makes queries for the gradients in an epoch. C

returns ciphertexts and the verification labels.

Challenge:A forges an aggregated gradient for some epoch. If it is verifiable,A suc-
ceeds. For the aggregation unforgeability and verifiability, we define a game as follows.
An aggregation protocol is aggregation unforgeable and verifiable if no probabilistic
polynomial time adversary A can win the game below with non-negligible advantage.
In the game, C is the game challenger and A is assumed to be an aggregation server.

Setup: C initializes the system and generates system parameters.
Phase 1: A can make the following queries.

(1) Hash queries: A makes queries for hash functions and C returns the answers.
(2) Encryption and label queries: A makes queries for the gradients in an epoch. C

returns ciphertexts and the verification labels.

Challenge: A forges an aggregated gradient for some epoch. If it is verifiable, A
succeeds.

4 Verifiable Secure Aggregation Protocol

In the protocol [15], amalicious aggregation server can forge gradient aggregation results
and deceive the clients. Namely, this protocol cannot achieve aggregation unforgeability
and verifiability as the author claimed. In this section, we will present an improved
verifiable secure aggregation protocol based on [15] and also give the security analysis
for it. In this protocol, the participants consist of the key generation center KGC, clients,
collector, and aggregation server. They conduct the protocol in the following five stages.
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4.1 Concrete Protocol

In this protocol, the participants consist of the key generation center KGC, clients, a
collector and an aggregation server. They conduct the protocol in the following five
stages shown in Fig. 1.

1) Stage 1: Initialization
a) Assuming m clients U = {Ui, i ∈ [1,m]} participate in the training of federated
learning. Firstly, the key generation center KGC will initialize the model’s parameter
w0. It selects two secure prime numbers p and q, and calculates N = p ·q. LetG1 andG2
be two multiplicative cyclic groups with order q, g1 and g2 be the generators of G1 and
G2, respectively. KGC randomly selects a secret value a ∈ Z∗

q , and calculates h1 = ga1
and h2 = ga2 . In addition, KGC also selects a computable bilinear pairing map e :
G1 ×G2 → GT , two single term irreversible secure hash functions H0 : {0, 1}∗ → Z∗

N 2

and H1 : {0, 1}∗ → G1. Then KGC publishes the parameters pm to all the participants:

pm = {N ,w0, g1, g2, h1, h2,G1,G2,GT ,H0,H1}.
b) KGC generates two random numbers r1, r2 ∈ Z∗

N 2 , where r1, r2 are only disclosed
to all clients and kept confidential from the server and collector. The client Ui chooses
private keys{(ski, tki)|ski ∈ Z∗

N 2 , tki ∈ Z∗
N 2}, where ski is used to protect the gradients

of client Ui, tki and r1, r2 are used to generate verification labels.
c) The aggregation server chooses a private key skA ∈ Z∗

N 2 .
Next, the participants conduct multiple rounds. In the following, we use the t-th

round as an example.

2) Stage 2: Encrypt gradient and generate verification labels (Encryption)
The model trained by clientUi for neural network can be defined as y′ = f (x, ω), where
x is the input of the model, ω is the parameter of the model, and y′ is the output of the
model. The loss function on datasetDi = {(xj, yj

)|j ∈ [0,m]} of clientUi can be defined
as:

J (x,W ) = 1

m

∑

j∈[0,m]l(yj, y
′
j) (3)

where l is a specific loss function (sigmod, tanh, etc.). In order to minimize the loss-
function, it is necessary to find the appropriate gradient parameter W , and the random
gradient descent algorithm (SGD) is generally used to update the gradient of the local
model as follows:

ωi,t ← ωi,t − α
∂

∂ωi,t−1
J
(
x, ωi,t−1

)
(4)

where α is the learning rate of the model.
Then the client Ui uses the key ski to encrypt the locally updated gradient parameter

as follows:

Ci,t = (
1 + ωi,tN

)
H0(t)

skimod N 2 (5)
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At the same time, Ui use the verification key tki to calculate the verification label as
follows:

Ti,t = H1(t)
tki h

r1ωi,t+r2
1 (6)

Subsequently, the client needs to send the encrypted gradient parameters and verifi-
cation labels to the server for aggregation. At the same time, the current online client is
recorded as U1, and the online client list is sent to the aggregator.

Stage 1: Initialization

Stage 2: Encrypt 
gradient and generate 

verification labels

Stage 3: Collect and
aggregate validation 
labels

Stage 4: Calculate 
Aggregation Results

Stage 5: Verify 
Aggregation Results

test and verify:

KGC uses safety parameter k
Generate public parameter group pm

pm

Choose(ski,tki) Choose skA

Encryption gradient and computational 
verification labels(Ci,t,Ti,t) Current online users U1

Generate pkA using skA, t
pkA,t

Using pkA, t to generate (Aui, t, Vki, t)
(Aui,t,Vki,t)

List U1

Aggregating Aui, t and Vki, t

(Ci,t,Ti,t)

Vkt Aut and list U2

Aggregated encryption gradient Wt
and calculatE the proof Tt

(Wt,Tt)

pm

Current online users U2

Fig. 1. Protocol Interaction Diagram

3) Stage 3: Collect and aggregate verification labels (Collection)

The server generates two public keys pkA,t =
(
pk1A,t, pk

2
A,t

)
using the private key skA,

where pk1A,t = H0(t)skA and pk2A,t = hskA2 , and sends pkA,t to the client.
Clients use ski and tki to calculate auxiliary information Aui,t and verification

information Vki,t respectively as follows:

Aui,t = (pk1A,t)
ski = H0(t)

skAski (7)

Vki,t = (pk2A,t)
skA = hskAski2 (8)

The client sends
(
Aui,t,Vki,t

)
to the collector and records the online client as U2.

Subsequently, the collector aggregates the collected information to obtain the necessary
information for decryption Aut and verification key Vkt as follows:

Aut =
∏m

i=1
Aui,t = H0(t)

skA
∑m

i=1 ski (9)
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Vkt =
∏m

i=1
Vki,t = g

skAa
∑m

i=1 tki
2 (10)

Subsequently, the collector sends the verification key Vkt to the client, and the
decryption key Aut and the list of current online clients U2 to the server.

4) Stage 4: Calculate Aggregation Results (CalAgg)
The server receives the gradient ciphertext Ci,t and verification label Ti,t sent by the
client, as well as the decryption key Aut sent by the collector. The server first calculates
the aggregation value of ciphertext:

Ct = (
∏m

i=1
Ci,t)

skAmod N 2

= (1 + skA
∑m

i=1
wi,tN )H0(t)

skA
∑m

i=1 skimod N 2
(11)

Subsequently, the aggregation value Wt of the plaintext gradient is calculated using
the decryption key Aut :

Wt = sk−1
A

Ct
Aut

− 1

N
mod N

= sk−1
A

(1+skA
∑m

i=1 ωi,tN)H0(t)
skA

∑m
i=1 ski

H0(t)
skA

∑m
i=1 ski

− 1

N
mod N

=
∑m

i=1
ωi,tmod N

(12)

Then the server aggregates the validation label Ti,t and generates proof Tt :

Tt = (
∏m

i=1
Ti,t)

skA = H1(t)
skA

∑m
i=1 tki g

askA(r1
∑m

i=1 ωi,t+|U2|r2)
1 (13)

Finally, it broadcasts proof Tt and plaintext aggregation result Wt to the client.

5) Stage 5: Verify Aggregation Results (Verification)
Online clients receive (Tt,Wt) and list U2 broadcasted from the server, and the verifica-
tion key Vkt aggregated by the collector. The client determines whether the aggregation
result is correct by verifying whether bilinear is true, that is, whether the equal sign
in Eq. 14 is true. If the equal sign is true, the verification is passed. Otherwise, the
verification fails and the aggregation value is discarded.

e(Tt, h2) = e(H1(t),Vkt) · e
(
hr1Wt+|U2|r2
1 , pk2A,t

)
(14)

If the server honestly calculates and sends the aggregation results, the client
verification process is as follows:

e(Tt, h2) = e(H1(t)
skA

∑m
i=1 tki g

askA(r1
∑m

i=1 ωi,t+|U2|r2)
1 , ga2 )

= e(H1(t)
skA

∑m
i=1 tki , ga2 ) · e(gaskA(r1

∑m
i=1 ωi,t+|U2|r2)

1 , ga2 )

= e(H1(t), g
askA

∑m
i=1 tki

2 ) · e(ga(r1
∑m

i=1 ωi,t+|U2|r2)
1 , gaskA2 )

= e(H1(t),Vkt) · e
(
h(r1Wt+|U2|r2)
1 , pk2A,t

)
(15)
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4.2 Security Analysis

Theorem 1. The proposed protocol is client gradient private.

Proof. In the protocol, the gradient wi,t of the client Ui in the epoch t is hidden in the
stage Encrypt-tag. wi,t is first encrypted by using the client’s secret key ski, to generate
Ci,t = (

1 + ωi,tN
)
H0(t)skimod N 2, and then hidden in the tag Ti,t = H1(t)tki h

r1ωi,t+r2
1

by using the secret key tki. The generation of the ciphertextCi,t is based on the encryption
algorithm of Joye et al. [17] which is proved to be secure. Namely, other than the client,
any participant cannot obtain any information about wi,t . In the tag Ti,t , wi,t is hidden by
using the secret key tki, r1, r2. From a tag Ti,t , an adversary cannot obtain wi,t . For two

gradients w and w′, even if it can compute h
r1(w−w′)
1 , since the privacy of r1, it cannot

obtain w.

Theorem 2. The proposed protocol is aggregation unforgeable and verifiable if the
hash function H1 is collision resistant and the BCDH assumption holds.

Proof. The malicious aggregation server is assumed to be the PPT adversary A. The
challenger is given a BCDH tuple

(
ga1 , g

b
1 , g

a
2 , g

b
2

)
.A interacts with the game challenger

C as follows.

Setup: the challenger C generates the system parameters pm ={
N ,w0, g1, g2, h1, h2,G1,G2,G′,H0,H1

}
, where h1 = ga1 , h2 = ga2 , and sends

pm to A. It also generates the secret key skA ∈ Z∗
N 2 for A, computes

pkA,t =
(
pk1A,t, pk

2
A,t

)
= (H0

(
t)skA , hskA2

)
and Vkt = h

skA
∑

ui∈U2 tki
2 .

Phase 1: A issues the queries as follows.

(1) Hash queries: A makes queries for an epoch t hash functions H1 and C maintains a
list H1-list. C first selects a random number rt ∈ ZN 2 . Then it flips a random coin
bt ∈ {0, 1}. If bt = 0, C setsH1(t) = grt1 and replied toAwith it. If bt = 1, C replied
to A with H1(t) = gc·rt1 . C adds the tuple 〈rt, bt,H1(t)〉 to H1-list.

(2) Encryption and label queries: C select random values r1, r2 ∈ Z∗
N 2 . A makes a

query with
〈
t,Ui,wi,t

〉
. C responds as follows. C initializes an empty list ET-list

and initializes Wt . C first checks 〈rt, bt,H1(t)〉 from H1-list. If bt = 1, it aborts. If

bt = 0, C selects random tki ∈ Z∗
N 2 and computes Ti,t = gbrt tki1 · ga(r1wi,t+r2)

1 =
H1(t)btki ·ga(r1wi,t+r2)

1 . It then selects ski ∈ Z∗
N 2 and computes the gradients ciphertext

Ci,t = (
1 + wi,tN

) · H0(t)ski . C adds < t,Ui,wi,t,Ti,t > to the ET-list and sets
Wt ← Wt +Wi,t . IfA makes query for < t,Ui,wi,t > where wi,t �= wi,t ′, C aborts.

Challenge: A forges
〈
W ∗

t∗ ,T
∗
t∗
〉
for the epoch t∗, where W ∗

t∗ �= Wt∗ . C gets〈
r∗t , b∗

t ,H1(t∗)
〉
fromH1-list. Then it satisfies the equation e

(
T ∗
t∗ , h2

) = e(H1(t∗),Vkt∗) ·
e
(
h
r1w∗

t∗+|U2|·r2
1 , pk2A,t∗

)
. C compute Z = (

T∗
t∗

g
a·skA·W∗

t∗
1

)
1

rt ·skA·∑ tki , then there is e
(
Z, ga2

) =
a(g1, g2)abc. IfA can succeed with a non-negligible probability, then C can break BCDH
assumption with a probability.
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In our protocol, since each client hers secretly r1 and r2, the verification stage can
only be conducted by the clients. The aggregation server cannot forge valid gradient as
in the protocol [15].

5 Theoretical Analysis and Experiments

5.1 Accuracy Comparison

In our protocol, after the client encrypts the gradients and sends them to the aggregation
server, the server calculates the aggregated results. The encryption part of gradients in
our protocol is shown in Eq. (5) in the Sect. 4. It is the same in the protocol [15]. The
experiment results in [15] has shown that their proposed realized similar model accuracy
with plaintext federated learning. Since the model accuracy difference mainly depends
on the encryption method of gradients, our protocol has the same model accuracy with
[15] theoretically. So, we omit the simulation of this part.

5.2 Security Comparison

In the following, we will compare the security of our protocol with the related existing
protocols [5, 9, 13, 15] from the four aspects: data privacy, gradient privacy, verification
and unforgeability as shown in Table 1.

Table 1. Security Comparison

data privacy gradient privacy Verification and unforgeability

FedAvg [5]
√ × ×

Aggregation [9]
√ √ ×

VeriFL [13]
√ √ ×

VOSA [15]
√ √ ×

Ours
√ √ √

In order to protect data privacy, the classic method of federated learning FedAvg
[5], utilizes local data from the client for training and uploads the trained local model
parameters to the server for processing, thereby avoiding privacy leakage caused by
data leaving the local area and protecting data security. However, later it was discovered
that attackers could indirectly disclose the privacy of clients by analyzing sensitive
information through uploaded local model parameters. In order to solve this problem,
researchers such as Google [9] proposed a method of using double mask technology and
Shamir secret sharing technology to protect local model gradients. In addition, in order
to further protect security, clients hope to use a low-cost and secure way to verify the
aggregation results. However, through theoretical analysis, it has been found thatwhether
using homomorphic hashing verification methods [13] or bilinear pairing verification
methods [15], there are security issues with the verification information. To solve this
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problem, in our protocol, a random array r1, r2 is introduced when the client generates
validation labels, which is kept secret from the server. In short, it means using the privacy
of the client to protect verification information. Due to the inability of the random array
to be obtained by the server, malicious servers are unable to obtain critical information
and therefore cannot forge verification information to deceive clients.

5.3 Theoretical Performance Analysis

This part analyzes the performance of our protocol by evaluating computation,
communication.

a) Computation overhead
In the protocol, wemainly consider the computation overhead of the participants: clients,
server and collector in each stage expect Initialization. Since Initialization is a one-
time stage and the keys are all length constant, the computation overheads are very small
compared with the other stages.

Assuming the number of clients participating in the protocol is m and the number of
the total gradients is n. Let M0 represent the time for multiplication in group Z∗

N 2 , M1
represent the time formultiplication in groupG1,MT represent the time formultiplication
in bilinear group GT , e represent the time for bilinear pairing operation, E0 represent
the time for exponential operation in group Z∗

N 2 , E1 represent the time for exponential
operation in group G1, and E2 represent the time for exponential operation in group G2.

The computational costs of the client, server, and collector in each stage are shown
in Table 2. From Table 2, it can be seen that the computation costs of the client increase
linearly with the number of gradients, while the collector’s and the server’s computation
cost both increase linearly with the number of clients and gradients.

Table 2. Computation overhead of the proposed protocol

Encryption Collection CalAgg Verification

Client n(2M0 + E0 + 2E1 + M1) E0 + E2 \ 3e + E1

Server \ E0 + E2 n((m + 2)M0 + E0 + (m − 1)M1 + E1) \

Collector \ (m − 1)(M0 + M2) \ \

b) Communication overhead
For the convenience of analysis and representation, letm represent the number of clients,
n represent the total gradients, G0 represents an element in Z∗

N 2 , and G1, G2, GT respec-
tively represent an element group G1, G2, GT when analyzing communication between
various parties. In order to clearly represent the communication cost of each stage, the
communication status of participants is divided into two aspects: sent and received.

From the analysis in Table 3, it can be clearly seen that in the stage of Encryption
stage, the communication costs between the client and server are proportional to the num-
ber of clients and the total gradients. During the stage of Collection, the communication
costs between the three parties are proportional to the number of clients.
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5.4 Experiments

This article mainly focuses on improving the privacy leakage issue in the verification
process, improving the security of verifiable federated learning. In the experimental
section, the costs are tested under different client and gradient numbers.

Table 3. Communication overhead of the proposed protocol

Participants State Encryption Collection CalAgg

Client sent (nG0 + G1) G0 + G2 \

received \ G0 + 2G2 n(G0 + G1)

Server sent \ G0 + G2 n(G0 + G1)

received mn(G0 + G1) G0 \

Collector sent \ G0 + G2 \

received \ m(G0 + G2) \

The hardware conditions for the experiment are 64-bitsWindows 10 PCwith Intel(R)
Core (TM) i7-7700HQ CPU @ 2.80 GHz, 16 GB RAM, and NVIDIA GeForce GTX
1050 GPU. This article simulates the stages of Initialization, Encryption, Collection
and CalAgg and Verification of the protocol, and uses JPBC library to test the running
time of each stage. To test the impact of different gradients and client counts on com-
putational overhead, we used the control variable method for testing. Firstly, with the
number of clients set to 100, test the computational cost of each participant at each stage
under different gradient numbers; Secondly, set the number of clients to 100, 150, 200,
250, 300, 350, 400, 450, and 500 respectively to test the computational overhead of the
server and aggregator.
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FromFig. 2(a), it can be seen that as the number of gradients continues to increase, the
time for the client to encrypt the gradient in the Encryption stage increases linearly. In
theCollection stage, and Verifications stage, from Fig. 2(b) and Fig. 2(c), it can be seen
that the calculation cost of the above process is independent of the number of gradients,
which can be considered fixed and unchanged. From experimental results, it can be
concluded that the total computational cost of each client is linearly related to the number
of gradients, as shown in Fig. 2(d). Combined with the above experimental process, the
vast majority of the computational cost of the client comes from the computational cost
of encrypting gradients.

The main stages of server participation in computing include the Collection stage
and the CalAgg stage. During the Collection stage, the server calculates the public key
and broadcasts it to the client. In this stage, the cost of calculating the public key is
fixed and does not change with the gradient and the number of clients, as shown in
Fig. 3(a)(b). In the CalAgg stage, the computational cost of the server is related to the
number of clients and gradients. From Figs. 4(a) and Fig. 4(b), it is easy to see that the
computational cost on the server side is linearly related to the number of gradients and
users.

Fig. 2. (a): Time cost of per client in the Encryption stage; (b): Time cost of per client in the
Collection stage; (c): Time cost of per client in theVerification stage; (d): Total computation cost
of per client.

The aggregator mainly participates in the Collection stage. From Fig. 5(a), it can
be seen that as the number of gradients changes, the computational overhead at the
aggregator end remains within a certain range. From Fig. 5(b), it can be seen that the
computational cost of the aggregator is positively correlated with the number of clients.
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Fig. 3. (a): Public key generation time of per 100 clients; (b): Public key generation time for
clients.

Fig. 4. (a): Aggregation time of server for per 100 clients; (b): Aggregation time for different
number of clients.

Fig. 5. (a): Time cost of Collector for per 100 clients; (b): Time cost of Collector for clients.

6 Conclusions

In this paper, we study verifiable secure aggregation under federated learning. Our pro-
tocol can achieve accurate model training while protecting data privacy. Meanwhile, the
aggregated gradients can be verified by the clients. Namely, the malicious server cannot
forge aggregation gradients and proof information to deceive clients. We analyze the
security and performance of the proposed protocol. The experiment results show that
our protocol is efficient and applicable for the real circumstances.

Acknowledgment. This paper is supported by Guangdong Provincial Key Laboratory of Power
System Network Security.
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Abstract. Electronic voting can improve the efficiency, accuracy and
fairness of voting, and save resources and costs. However, the identity
privacy of voters may not be effectively protected during the counting
process of third-party electronic voting. In order to solve the problems
of transparency and identity privacy protection in electronic voting, this
paper combines pseudonym mechanism and digital signature technology
to propose a privacy protection scheme for double signature electronic
voting based on Consortium blockchain. By introducing the Consortium
Blockchain, the voting ciphertext is published on the Blockchain to real-
ize the transparency of electronic voting and ensure the security of the
voting; the introduction of the pseudonym mechanism can effectively pro-
tect the identity privacy of voters; the use of homomorphic encryption
technology to realize ciphertext vote counting, it can effectively resist the
internal attack of electronic voting; through double signature, that is, to
sign the voting ciphertext and pseudonym to ensure the identity of the
voter and the legitimacy of the vote. At the same time, a scoring mech-
anism is introduced to achieve more precise evaluation of candidates by
voters, and the Bulletproof protocol is used to standardize the range of
score. The electronic voting privacy protection scheme proposed in this
paper can also satisfy multi-candidate voting and is applicable to various
voting scenarios.

Keywords: Hyperledger Fabric · Paillier encryption · ECDSA ·
Electronic voting

1 Introduction

In recent years, blockchain technology has developed rapidly and has attracted
the attention of many researchers. The blockchain-based voting scheme can well
solve the problem of lack of security and reliability of third-party Internet elec-
tronic voting. Researchers have analyzed and studied the blockchain voting tech-
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nology [1], conducted in-depth research on its feasibility, and proposed a series
of voting principles [2], voting rules and voting algorithms.

Homomorphic encryption is used in electronic voting systems to allow votes to
be counted without decryption. Yang et al. [3] proposed a homomorphic weighted
electronic voting system based on SEAL, employing the BFV to ensure resistance
against quantum attacks, however, it still relies on proxy servers and trusted
third parties.

Literature [4] optimizes the electronic voting scheme based on homomorphic
encryption by using multi-threading technology, and verifies the validity of votes
by using zero-knowledge proofs, but does not consider the weight of voters, so a
more accurate voting mechanism cannot be realized.

At present, most blockchains are used for voting applications using public
chains [5], such as Bitcoin [6] and Ethereum. Literature [7] proposes an elec-
tronic voting scheme based on blockchain technology, which satisfies the basic
properties of electronic voting while providing a certain degree of decentraliza-
tion.

Literature [8] proposes a blockchain system using fingerprint authentication,
adding fingerprint authentication to the identity authentication link to ensure
that the voter’s identity is legal. Literature [9] proposes a secure online voting
method based on blockchain and machine learning, which uses machine learning
technology to automate the authentication process of legitimate users in the
oracle platform and realize face recognition authentication.

A privacy protection scheme for protecting electronic voting through
blockchain. However, few studies have combined consortium chain and voting,
among which the document [10] proposes to build a scalable electronic voting
system based on Hyperledger Fabric. For the weighted voting scheme, Yang et
al. proposed a homomorphic weighted voting scheme based on the SEAL library
[3] which lacks the protection of user identity information.

The aforementioned research employs blockchain technology to address the
issue of traditional voting; however, there are still several challenges in integrat-
ing blockchain with electronic voting. Firstly, the identity privacy of voters dur-
ing the process of submitting votes has not been effectively protected. Secondly,
the current electronic voting system fails to achieve precise voting. For example,
in an annual election for the most popular celebrity election, voters want to cast
their votes for both Star A and Star B, but have a stronger preference for Star
A. If they want to cast an extra vote for Star A or give Star A higher score,
the current plan can only be achieved through two votes. Unfortunately, such
flexibility is currently unattainable within existing schemes.

The blockchain is divided into permissioned blockchain and non-permissioned
blockchain. Permissioned blockchain, also known as a public chain, allows any
node to join or exit, granting access to data and transactions on the chain for
all nodes. The non-permissioned blockchain can be further categorized into con-
sortium blockchain and private blockchain. Consortium blockchain consists of
multiple organizations joining the same blockchain network and sharing the
blockchain ledger, while private blockchain is usually created and maintained
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by a single participant. Currently, most research combines electronic voting sys-
tems with public blockchain; however, traditional privacy protection methods
without supervision in public blockchain is not well-suited for electronic vot-
ing systems. The endorsement in consortium blockchain provides greater conve-
nience in achieving controllable anonymity of identity and rapid verification of
hidden transactions.

Homomorphic encryption technology enables operations on ciphertexts, so
this paper studies the privacy protection method of hidden votes in electronic
voting based on homomorphic encryption technology. Paillier encryption has
semi-homomorphic characteristics, which is suitable for electronic voting scenar-
ios. Using Paillier homomorphic encryption technology, the scheme can support
multiple candidates and multiple voters while satisfying the privacy protection
of ballots. And in the final ticket stage, only one decryption is required. In order
to protect the identity and privacy of voters, a pseudonym mechanism is used
to hide the relationship between voters and ballots, and double digital signa-
tures are used to ensure the identity of voters and the legitimacy of ballots. The
scheme also includes a voting scoring mechanism, which uses Bulletproof proto-
col [11] to standardize the scoring range and achieve fine voting, which is more
suitable for practical applications. Finally, an optional traceability mechanism
is provided to prevent malicious voters from participating in voting.

2 Background

This section introduces the basic knowledge of ECDSA digital signature, Paillier
homomorphic encryption, Consortium blockchain and so on.

2.1 ECDSA Digital Signature

ECDSA (Elliptic Curve Digital Signature Algorithm, Elliptic Curve Digital Sig-
nature Algorithm) is a secure digital signature algorithm, which uses the discrete
logarithm problem in Elliptic Curve Cryptography to ensure the security of the
signature [12].

ECDSA is a commonly used digital signature technology in blockchain. This
paper will use ECDSA to implement a double signature mechanism. The follow-
ing is a specific description of the ECDSA algorithm:

ECDSA consists of four sub-algorithms, defined as ECDSA = (Setup,
KeyGen, Sig, V er), and its algorithm description is as follows:

1) Initialization Algorithm Setup(1λ) → pp: Given the elliptic curve E on
the field:

E : y3 = x3 + ax + b(mod p) (2.1)

and choose the base point as G, its order is q, H represents the selected hash
function, and set the public parameter pp = (E,G,H, q).
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2) Key generation algorithm KeyGen(pp) → (pk, sk): Pick a random
number d ∈ [1, q − 1] as private key sk, and calculate the public key:

pk = dG (2.2)

3) Signature algorithm Sig(pp, sk, M) → (r, s): Input public parameters
pp, private key sk and message M to be signed, the execution process of the
signer is as follows:
(1) Pick a random number k ∈ [1, q − 1];
(2) Perform scalar multiplication:

R = kG = (x, y) (2.3)

(3) Compute:
r = x(mod q) (2.4)

x is the abscissa of R, if r = 0, return step 1;
(4) Compute hash value H(M) of message M ;
(5) Compute:

s = k−1(H(M) + sk · r)(mod q) (2.5)

if s = 0, return step 1;
(6) Output signature result (r, s);
(7) Check whether

r = x′mod q (2.6)

are true. If established, the signature is legal, otherwise the signature is
invalid.

2.2 Paillier Homomorphic Encryption

The security of Paillier homomorphic encryption [13] can be reduced to the
decisional composite residuosity assumption (DCRA), and its algorithm consists
of three parts (KeyGen,Enc,Dec).

1) Key generation algorithm KeyGen → (pk, sk): Randomly choose two
independent large prime numbers p, q, and

gcd(pq, (p − 1)(q − 1)) = 1 (2.7)

; compute the product
n = p · q (2.8)

of p, q; choose an order to be a large prime number q1 multiplicative group
of G, its generators are g and h, satisfy g < n2; the least common multiple
calculated by the LCM function is

λ = LCM(p − 1, q − 1) (2.9)
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; define the function L as

L(u) =
(u − 1)

n
(2.10)

, calculate the modular inverse element according to the least common mul-
tiple

μ = L(gλmod n2)−1mod n (2.11)

; set the public key to pk = (n, g), private key is sk = (λ, μ).
2) Encryption Algorithm Enc(pk, M) → c: Input the public key pk and

the message to be encrypted M ∈ Zn, select a random number r ∈ Z
∗
n, and

calculate the ciphertext:

E(M) = c = (gMrn)mod n2 (2.12)

3) Decryption algorithm Dec(c, sk) → M : Enter the ciphertext c and the
private key sk, and use the following formula to decrypt the corresponding
plaintext M , the formula is:

D(c) = M = L(cλmod n2) · μ mod n =
L(cλmod n2)
L(gλmod n2)

mod n (2.13)

Let the ciphertexts c1, c2 corresponding to the plaintext m1, m2 product of two
ciphertexts

c1 · c2 = E(m1) · E(m2)

= g(m1+m2)rn
1 rn

2 mod n2

= g(m1+m2)(r1r2)n mod n2

= E(m1 + m2) (2.14)

It can be seen from the above formula, because E(m2) · E(m2) = E(m1 + m2),
so the Paillier encryption algorithm has additive homomorphism.

Paillier homomorphic encryption is a very powerful and secure encryption
technology, which has been widely used in many fields, such as digital signature,
identity verification, key exchange [12] and so on.

2.3 Consortium Blockchain

Consortium blockchain is a special type of distributed ledger based on blockchain
technology. Compared with public blockchain, it has the following characteris-
tics:

1) Efficiency. The participants in the consortium blockchain are usually deter-
mined. Compared with the unlimited participants in the public blockchain,
the confirmation speed of the transaction is faster, so it can support higher
transaction throughput.

2) Scalability. The scalability of the alliance chain is higher than that of the
public blockchain, because the participants of the alliance chain are deter-
mined, and the number of nodes and processing capacity can be expanded
without affecting the entire network.
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2.4 Bulletproof Protocol

The Bulletproof protocol is a zero-knowledge proof protocol utilized for veri-
fying the veracity of a claim while preserving the confidentiality of its exact
content. In 2018, Benedikt Bunz first proposed Bulletproof protocol, an efficient
non-interactive zero-knowledge proof protocol. The basic idea of the Bulletproof
protocol is to convert a declaration into a polynomial and then prove the cor-
rectness of that polynomial using the Pedersen commitment.

3 Scheme Design

3.1 System Composition

As shown in Fig. 1, the privacy protection scheme for double signature electronic
voting based on the consortium chain is mainly composed of three entities: the
chain code in the Fabric consortium blockchain network, the voter (the person
who initiates the vote, the voter) and the regulatory agency. Its specific functions
are described as follows:

Fig. 1. System Model.
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3.2 System Process Design

The double signature electronic voting privacy protection scheme based on Con-
sortium blockchain mainly includes six stages: Initialization, Key Generation,
Registration, Voting, Verification, and Vote Counting. This scheme also designs
an optional malicious voter tracking. The detailed description is as follows:

Initialization. The initiator voter initializes the public parameters (Paillier
homomorphic encryption parameters, ECDSA parameters and Pedersen com-
mitment) through the initialization algorithm.

Key Generation. The voting initiator generates a homomorphic encryption
public/private key. And publish voting information on the blockchain, includ-
ing voting title, candidate list, public key, voting deadline, etc. RA calls the
ECDSA.KeyGen algorithm to generate public and private keys.

Registration. Voters register with RA as pseudonyms with signatures for sub-
sequent anonymous submission of votes. At the same time, RA maintains a
mapping relationship between pseudon-yms and the true identity of voters, facil-
itating subsequent identity tracking. RA send pseudonyms and signatures to
voters, who verify the correctness of the signatures to ensure the legality of the
pseudonyms. Voters call the ECDSA.KeyGen algorithm to generate public and
private keys.

Voting. Voters input the candidate’s plaintext voting score, use Paillier homo-
morphic encryption algorithm to encrypt the score and call Bulletproof to pro-
duce a proof of range for score. Then voters sign the ciphertext, and submit the
ciphertext, signature and proof to the blockchain through anonymous identity.

Verification. The chain code first verifies the legitimacy of the anonymous
identity, that is, the signature of the RA is verified. After, the legitimacy of the
vote is verified, that is, the signature of the voter is verified. Final, the chain
code uses the Bulletproof to verify the validity of the score, that is, to verify the
compliance of the score. Only after passing both signature and score verifications
can we enter the vote counting.

Tally. After the voting deadline, the chain code performs a multiplication oper-
ation, accumulating the voting scores of all voters in ciphertext to obtain the
candidate’s final score in ciphertext, and sending the multiplication result to
the voting initiator; the initiator of the vote performs decryption operations to
obtain plaintext of the final scores of each candidate, and publishes the scores
of each candidate and the chain code of the winning candidate to complete the
electronic voting.
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Optional traceable mechanism. In the verification stage, the chain code
detects malicious voters and publishes their pseudonyms on the blockchain.
Afterwards, RA obtains pseudonym information from the blockchain and track
the true identity of the voters based on the local mapping list, which is then
published on the blockchain.

3.3 Specific Plan

A double signature electronic voting privacy protection scheme based on Con-
sortium blockchain includes six stages: Initialization, Key Generation, Reg-
istration, Voting, Verification, and Tally.

Initialization. During the initialization phase,

(1) The system chooses two safe large primes p, q, calculates n.
(2) The system choose an order to be a large prime number e multiplicative

group of G, its generators are g and h, satisfy g < n2,define the function
L(x).

(3) The system calls ECDSA.Setup(1λ) algorithm, generates public parameters
pp = (E,G,H(x), w) for ECDSA, where G is the base point, its order is w,
H(x) is a hash function.

(4) The public parameter is PP = (pp, n, g, h,L(x), e,G).

3.4 Key Generation

(1) The RA calls the ECDSA.KeyGen algorithm to generate public/private
key (pkRA, skRA).

(2) The voting initiator calls Paillier.KeyGen to generate Paillier pub-
lic/private key (pkP , skP ).

(3) The voting initiator publishes voting information on the blockchain and
generates the current voting ID based on the timestamp and voting title. The
voting information includes the voting title, m candidate lists Candidate =
{cd1, · · · , cdm}, public key pkP , voting scoring range [0, 2l), voting deadline,
etc.

3.5 Registration

During the registration phase, voter sends a request to register their pseudonym
identity with RA and upload parameters such as the voter’s true identity (UID)
and the ID of the current vote. The RA verifies the qualifications of voters
based on their UID and ID, after passing the verification, generates a pseudonym
identity

AID = H(UID‖ID) (3.1)

and calls ECDSA.Sig(pp, skRA, AID) algorithm to generate ECDSA signature
SRA = (rRA, sRA) for AID, then add the pseudonym AID and signature SRA
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returns to the voter. Voters receive pseudonyms AID and signature SRA from
RA, call the algorithm ECDSA.V er(pkRA, AID, SRA), to verify the legitimacy
of pseudonyms. Voter calls the ECDSA.KeyGen(pp) algorithm to generate a
signed public private key pair (pk, sk). Finally, RA retains mapping relation-
ships (AID, ID) to facilitate tracking of users’ true identities in necessary cases,
enabling malicious users to be monitored.

3.6 Voting

In the voting stage, voters rate all candidates and encrypt the score and gen-
erates proof of rang for the score, while signing the ciphertext of the score and
submitting the ciphertext, proof and signature to the blockchain. The specific
steps are as follows:

(1) The voter calls the Paillier.Enc(pkP , vj) algorithm to generate voting score
ciphertext

cj = gvjrn
j mod n2 (3.2)

, where vj represents the voter’s preference for the j-th candidate cdj ’s score,
vj ∈ [0, 2l), j ∈ [1,m], rj is a random number.

(2) The voter calculates Pedersen commitment:

Vj = gvjhrjmod e, j ∈ [1,m] (3.3)

(3) The voter invokes the Bulletproof, using the commitment Vj to produce a
proof proofj of vj , j ∈ [1,m].

(4) Calculate auxiliary data:

Kj,1 = rn
j mod n2,Kj,2 = hrjmod e, j ∈ [1,m] (3.4)

(5) The voter multiplies cj to get

M =
m∏

j=1

cj =
m∏

j=1

gvjrn
j (3.5)

, where rj is the random number selected by voter when encrypting vj .
(6) Voter calls ECDSA.Sig(pp, sk,M) to sign their scores and get signature S.
(7) Let πj = (cj ,Kj,1,Kj,2, proofj). The voter uploads (π1, · · · , πm, S, SRA) to

the blockchain with the pseudonym AID.

3.7 Verification

The voter publishes the voting information on the blockchain, and the blockchain
verifies the legitimacy of the voting information by calling the signature verifi-
cation algorithm and Bulletproof.

(1) Call the ECDSA.V er(pkRA, AID, SRA), verify the legitimacy of voters, if
that fail, abort.
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(2) All ciphertexts of voters are multiplied to get M .
(3) Call the ECDSA.V er(pk,M, S), verify the legitimacy of the ciphertext. If

that fail, abort.
(4) Generate commitment Vj based on cj and auxiliary data Kj,1, Kj,2, calcu-

lated commitment:
Vj =

cjKj,2

Kj,1
(3.6)

(5) Call Bulletproof to verify the correctness of proofj . If this fails, the voter’s
identity is sent to the RA for tracking.

After the two verifications and range proof are passed, the chain code will
store the ciphertext cj of the j-th candidate cdj into the voting list CDj , and
then enter the vote counting stage.

3.8 Tally

After the voting time expires, it is assumed that there are N voters participating
in the voting. In the vote counting phase, the chain code accumulates and counts
the ciphertext ballot tickets obtained by the candidates, and sends the final
result of the ciphertext to the voting initiator for decryption. Specific steps are
as follows:

(1) The chain code performs ciphertext multiplication on the voting score ci
j in

the voting list CDj to obtain the ciphertext of the final voting score of the
candidate cdj . The multiplication operation performed on the chain is as
follows:

Cj =
N∏

i=1

ci
jmod n2 = (gv1

j rn
1 ) · · · · · (gvN

j rn
N )mod n2 (3.7)

, where ci
j represents the ciphertext of the i-th voter’s voting score for the

j-th candidate, and Cj represents the ciphertext of the sum of all voters’
votes for the j-th candidate. The chain code sends the final result of the
encrypted ballot to the voting initiator.

(2) After receiving Cj , he voting initiator calls Paillier.Dec(skP , Cj) to decrypt
and obtain the plaintext v∗

j of the final voting scores of each candidate.
(3) The scores obtained by the candidates are compared and the one with the

highest score is the winner. The voting initiator publishes the voting scores
of each candidate and the final winning candidate to the chain code.

4 Security and Performance Analysis

In this paper, the scheme introduces a scoring mechanism in order to achieve
more accurate and secure electronic voting, and combines electronic voting
with consortium blockchain by taking advantage of the fact that consortium
blockchain is able to achieve identity-controllable anonymity. This section anal-
yses the security of the scheme, the overhead of computation, communication
and storage, and the experimental validation, and the results show that the
scheme can be well applied to the electronic voting scenario.
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4.1 Security Analysis

The double signature electronic voting privacy protection scheme based on the
Consortium block-chain can provide the functions of recording votes and manag-
ing votes, using ECDSA signatures to ensure the legitimacy of voters and voting
scores, and using pseudonym mechanisms to protect the privacy of voters. The
scheme uses the Bulletproof protocol to ensure the compliance of voting scores.
This section will analyze the security of the proposed scheme from the following
aspects.

(1) Correctness. Paillier homomorphic encryption has additive homomor-
phism, so it can guarantee that the final score obtained by the candidate is
the sum of the scores of N voters.

(2) Safety. The security of the Paillier homomorphic encryption algorithm is
based on the difficulty of DCRA, so the attacker cannot obtain any infor-
mation about the voting score from the ciphertext. In generating Paillier
homomorphic encryption parameters, n = p · q, where p, q are large prime
numbers, and if the integer z is called the n-order residual class modulo
n2, then there is an integer y ∈ Z

∗
n2 making z = ynmod n2. It is difficult

to determine whether a given integer z is an n-order residual class modulo
n2. ECDSA digital signature is based on the intractability of elliptic curve
discrete logarithm problem to realize the security of signature.

(3) Anonymity. In the scheme in this chapter, voters use pseudonym identity
AID to submit ciphertext voting scores to ensure anonymity.

4.2 Performance Analysis

The communication, storage, and computation overheads of the proposed scheme
are presented in the Table 1.

Table 1. Communication, Storage, Computation overheads

Communication overheads Storage overheads Computation overheads

Voter O(1) O(1) O(1)

Voter initiate O(N) O(1) O(mN + m)

Communication Overhead and Storage Overhead. For the voter, the
signature key pair is generated locally when each voter registers. During the
voting process, the voter needs to submit their identity (UID) and participating
vote ID to the RA. And, they only once to submit information to blockchain,
which includes the ciphertext, signature, and zero knowledge proof. Thus, the
communication overhead is a constant round, i.e. O(1). The vote initiator collects
the transaction information of all the ballots with a communication overhead
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of O(N), where N represents the number of participating voters. Participating
registered voters store the signed private key locally with a storage overhead
of O(1) and the vote initiator stores the homomorphic encrypted private key
locally with a storage overhead of O(1).

Computational Overhead. For the voter, each user’s pseudonym is generated
by RA. Users only need to verify the validity of the pseudonym once and gener-
ate the signature key pair once. Additionally, they perform ballot encryption and
zero-knowledge proof generation only once. Therefore, the computational over-
head for each voter is O(1). For the vote initiator, the number of candidates is
m. The vote initiator needs to perform mN times of product calculations to gen-
erate the ballot ciphertext for each candidate. Subsequently, they must carry out
m times of decryption operations to obtain the ballot count for each candidate.
Hence, the computational overhead of the vote initiator is o(mN + m).

This section compares the voting time consumption of this scheme with the
scheme given in literature [3,4], typical schemes of electronic voting. All three
schemes use homomorphic encryption. The difference is that literature [3] uses
fully homomorphic encryption. Algorithm BFV, while using the SEAL library to
improve system performance, literature [4] is the same as this scheme, using the
Paillier homomorphic encryption algorithm to calculate the ciphertext of voting
scores.

Table 2. Comparison

Schemes Homomorphic
Encryption
Algorithm

Counting
Time

Difficult
Problem

Safety Anonymity Traceable Score

This plan Paillier 3 ms DCRA Yes Yes Yes Yes

Literature [3] RFV 1 ms RLWE No No No No

Literature [4] Paillier 34 ms DCRA Yes No No No

It can be concluded from Table 2 that this scheme has the following advan-
tages:

1) Compared with literature [3,4], this scheme has the provable characteris-
tics of voting score range, and has a slight disadvantage in terms of time
performance.

2) In terms of identity anonymity, this scheme has the advantage of protecting
the anonymity of the voter’s identity, while literature [3,4] lacks identity
protection measures.

3) This scheme has an openable mechanism, which can be tracked when mali-
cious voting users are found, and the literature [3,4] is also lacking.
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In order to test the performance and energy consumption of this solution,
this article conducted an experimental test. The experimental environment con-
figuration is as follows: Ubuntu 20.04TLS Intel(R) Core(TM) i5-10400 CPU @
2.90 GHz, 24.0 GB RAM, the code used is Golang, the application Part of it is
compiled by Vscode, and part of the chain code is executed by smart contracts.
Assuming that there are 3 candidates and 5 voters, in this scheme, the time
consumption of each stage is mainly evaluated, including six stages of initializa-
tion, key generation, registration, voting, verification, and vote counting. When
shown in Fig. 2.
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Fig. 2. Time Consumption.

At the same time, the scheme of literature [3,4] is compared with the scheme
of this chapter in terms of system vote counting running time. The scheme
of literature [3] has advantages in time performance, but there are problems in
security. Compared with literature [4], this scheme is better than the comparison
scheme in terms of system vote counting running time. The system running time
comparison chart is shown in Fig. 3.
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5 Conclusion

This paper proposes a privacy protection scheme for double signature electronic
voting based on the Consortium blockchain, aiming at the problem that the
identity information of the voter and the ballot information of the vote in the
voting system may be leaked on the alliance chain. The main idea of the solution
is to use Paillier homomorphic encryption technology to encrypt ballots during
the voting process, and use ECDSA signature to ensure the legitimacy of voters
and ballots. More accurate voting is achieved through the scoring mechanism. By
adding regulatory agencies, the open mechanism of the voting privacy protection
scheme can be realized, and malicious voting users can be verified and tracked.

In the future, the double signature electronic voting privacy protection
scheme based on the Consortium blockchain will play a greater role, so as to
ensure the voting security of participants, help improve voting efficiency, and
realize safe voting in the true sense.

We will focus on the privacy protection scheme of electronic voting based
on the Consortium blockchain, aiming to solve the problems of voting security
and reliability, and how to prevent malicious attacks, and vigorously develop
related applications of the voting scheme based on the Consortium blockchain
to enhance voting security, reliability and controllability of the environment.
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Abstract. 5G is the future, regardless of what mobile network technol-
ogy succeeds it, whatever comes will be built upon the 5G technology.
The 5G positioning system in its part will also be the leading naviga-
tion system, once the 5G mobile network potentials are fully deployed
and accessible everywhere and by every user and device. However, 5G
technology needs firstly to be cyber secured, before its benefits and capa-
bilities can be totally explored and reached. Almost the majority of cyber
security experts agree that the 5G technology is vulnerable to various
threats, i.e., the high risk that it brings regarding cyber hacking and data
theft due to the absence of suitable access control and data encryption
during the communication process between the user-end devices and the
5G mobile network. In order to securely benefit from the full potential
and capabilities of 5G network, there is a huge demand to protect the
5G technologies through ensuring the trust factor regarding the access
to the 5G mobile network, in order to achieve a secure 5G positioning
system from start to end. This review paper introduces the background
of 5G and how to secure the 5G positioning system by implementing
zero-trust network access on top of the 5G mobile network combined
with the network overlay virtualization.

Keywords: Cyber Security · 5G Positioning · Trust Management ·
Zero Trust · Overlay Network

1 Introduction

This paper provides a review to discuss how we are able to secure 5G positioning
from many cyber threats by integrating with a zero-trust model solution. This
is to prove that there is a method to make the 5G positioning a secure solution
even though 5G technology is under various security threats.

1.1 Problem to Solve

The main problem to solve in this paper is how to make the 5G positioning a
more secure solution by decreasing any trust effect regarding any access by a
user or any app and making the whole 5G positioning from start to end a secure
solution through implementing a zero-trust model/architecture [5,6].
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Fig. 1. Overview of 5G

1.2 Why Is This Problem Hard to Solve?

The short answer is because the 5G technology increases the risk of hacking and
data theft [1,4]. One of the main weaknesses of the 5G mobile technology is its
potential security vulnerabilities among components and processes [2]. Almost
the majority of cyber security experts agree that 5G technology indeed raises
the risk of hacking due to the absence of suitable encryption during the commu-
nication process between devices using the 5G technology network [3].

1.3 What Is 5G?

New technologies often come with new cyber security vulnerabilities and weak-
nesses. The security vulnerability in 5G positioning will be a huge issue and a
headache to solve if not handled in a proper way [7].

The 5G wireless mobile network technology can promise a gigabyte speeds
with low latency less than 1 millisecond and a huge capability to accommodate
millions or even billions of devices. This capability will provide a huge step
forward for 5G positioning because there would be almost no latency in response
time, which is a huge advantage when considering navigation [8]. The 5G traffic
capacity and the ability to accommodate a huge amount of devices could reach
millions and even billions in the near future, which will help improve and widen
its adoption in positioning systems. Thus, there is a huge demand and need to
ensure the security of data exchanged during 5G positioning operations, and to
ensure the security and safety of users and their equipment [9].

Figure 1 shows a high-level overview of 5G system, including User Equipment
(UE)/User-end Device, the Radio Access Network (NG-RAN) and the Core Net-
work (5GC). It is worth noting that gNB is the main entity of NG-RAN. Here
“g” refers to “5G” and “NB” refers to “Node B”, indicating radio transmitter
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(the same from 3G and afterwards). “NR-Uu” refers to radio interface, “NR”
means “New Radio” and “Uu” is inherited from previous generations. The 5G
core (5GC) can be represented by the AMF/UPF entity–the User Plane Func-
tion (UPF) to manage the user data and the Access and Mobility management
Function (AMF).

When using 5G, we would have to reconstruct our whole telecommunication
mobile network and this will have a huge impact on the way we develop the future
mobile networks. 5G technology is almost a network built of software, resulting
in many cyber-threats and vulnerabilities where software usually come with [10].
So, the main challenge regarding 5G technology including the 5G positioning is
how to make it a cyber-secure mobile technology network [3,5].

As we already know the future is data and with that came the importance
of 5G and this is due to that almost every single process that we perform now
and, in the future, will have a device/app that needs data and a mobile network
to perform the process it needs [11]. Therefore, we need to secure the network
technology we are using. Actually 5G is more vulnerable to a cyber-attack than
the older mobile technologies as in 4G/3G/2G, etc.

This is because its reliance depends more on software than hardware. For
instance, the 5G technology network is totally relied on software, i.e., controlling
its main process. One main issue regarding cyber security is that 5G technol-
ogy including 5G positioning relies on software virtualization in its higher-level
network functions and this is also a big cyber security threat [2,8].

Another problem with 5G is its great expansion in bandwidth, which also
leads to a greater and wider possibilities of network attacks [12]. An additional
cyber security issue or vulnerability regarding 5G is the countless number of IoT
devices that will be connected to the network and in theory if attackers find
any vulnerability in these millions or even billions of devices, then there is a
huge risk that the network will collapse by only disturbing these billions of IoT
devices [14].

1.4 Why Use Zero Trust Model with 5G Positioning?

A zero trust framework operates in a totally different way than many existing
security models, as many of them define or declare that most parties inside an
organization network can be trusted [18]. This is not the case in a zero trust
model (aka. ZT model), which starts with defining trust as a cyber threat and
a vulnerability that should be handled firmly with. It is actually an important
type of trust management [45,46].

Implementing a ZT model on a 5G positioning system means implementing
the principles of a ZT model by making ZT principles more effective regarding
performance execution and security throughout the whole positioning process
from start to end [16]. The best element in a zero-trust architecture is that there
are no assumptions made through software nor hardware regarding security [43].
There are no assumptions made regarding whether a certain device or user is
trustworthy or not.
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There is no trust in a zero-trust model and that is why it is also called a
perimeter less security model [18]. The only way to gain access through a zero-
trust model is: you are who your claim to be. The ZT model decreases the impact
of trust and continuously validates every single step of any interaction within the
network. Thus, the 5G positioning system will gain security through a zero-trust
model by removing the trust risk on the network regardless of the process, user,
location, application or data that 5G positioning is trying to access.

1.5 How Can Secure 5G Positioning System from Cyber Threats?

The use of a ZT model on the 5G positioning system is to protect and secure
critical and sensitive data and applications [15]. The ZT model would actually
change the way how 5G positioning system accesses users, apps and data by
converting the existing solutions to a more secure, reasonable and sustainable
solution, which would be more compatible with the current infrastructure, such
as new cloud solutions, SDN environments and other 5G networks belonging
to different service providers. This can be done by implementing the following
activities on the 5G positioning system:

– Implementing or performing a segmentation on the network.
– Preventing any other outgoing data communication on the network that is

not monitored or continuously validity-checked.
– Providing the highest level of layer threat prevention.
– Monitoring user access control in a more effective manner.

In summary, our review aims to discuss how to secure 5G positioning system
by integrating different kinds of security strategies and solutions in order to
authenticate and protect the access and communications between the user-end
devices and the 5G positioning system (including the 5G core network).

The rest of this paper is structured as follows. Section 2 introduces the back-
ground on 5G and the positioning system. Section 3 introduces the background
on zero trust and its main workflow. Section 4 describes how to secure 5G and
the positioning system with a zero trust architecture. Section 5 provides a dis-
cussion on advantages and limitations of using an Overlay Network solution.
Finally, Sect. 6 summarizes our work.

2 5G Background and Positioning System

There are still some questions when 5G is coming–why do we need 5G? What
can 5G offer to us that 4G could not deliver? Is it all about streaming videos
and games? As 4G with LTE is able to provide a high quality stream and online
video games, what can 5G bring?

To answer these questions, 5G was announced clearly that it will bring a
faster streaming speed, reduce the mobile network response time (also known
as latency), enhance user experience with gaming and cloud applications. In



Securing 5G Positioning via Zero Trust Architecture 567

addition, 5G mobile network promises the stability and speed that none of the
existing mobile network predecessors 2G, 3G and even 4G could provide.

5G is a new kind of mobile network, which is mainly designed to connect
everything to the Internet. The 5G technology is designed to deliver a network
that can provide a higher Gbps speed than 4G LTE and the predecessors net-
works. It is a unified and more capable mobile network. 5G also promises that it
will provide the ability to have all users including their LOT devices connected
at once to the Internet and enable every one and each device to be online without
the problem or the hassle of the network capacity and latency.

It is worth noting that 5G technology is still under development, i.e., 5G net-
works are expanding even further around the world. This next-generation wire-
less communication is partially enhanced by a new technology called mmWave.
we summarize its pros and cons as below.

2.1 5G Pros

1. High speed. 5G brings faster speeds than the predecessors mobile networks,
and can reach up to 10GBPS or higher.

2. Lower Latency. 5G has the lowest latency in all mobile network generations,
e.g., about 1ms.

3. Wide Bandwidth. 5G can provide a wider bandwidth by expanding the usage
of spectrum resources, from sub-3 GHz used in 4G to 100 GHz and beyond.
This allows the connection and the support of a huge amount of devices at
the same time.

4. Smart support. 5G mmWaves can support a narrow bandwidth (in the mil-
limeter range), making it suitable for small cells.

5. Compact antennas. The 5G antennas are more compacts and smaller in size
than the predecessor 4G LTE antennas.

6. Coverage. 5G coverage is limited not only to user-end devices that are in
sight, but also to others that are not direct in sight of the 5G signal.

7. Cloud support. With a high speed, 5G can help business and states, even
single users can easily transmit their data to the cloud.

8. Green solution. 5G can bring a green mobile network, with its high con-
nection capacity and high speeds, users can move local data to the cloud,
resulting in fewer laptops or desktops with less electricity towards a more
green solution.

Overall, the 5G mmWave network signal can support multi-giga-bit (back-
haul); that is, 5G is capable of transmitting data in high speeds because of its
high bandwidth. Thus, 5G has a big future potential, due to its ability to con-
nect a huge number of devices at the same time and the speed it provides. 5G
has the ability not just to connect smart phones but also IoT devies, including
AI devices, self-driving cars, AI technologies and many others.
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2.2 5G Cons

1. Slow replacement. The pace of rolling out to all users is very slow, this
means that 5G may take years and years to overtake the predecessors 4G
LTE place in the mobile network communication.

2. Availability coverage. The 5G network coverage may be limited, e.g.,
within a city zone, a country-side area may have to wait some time until the
5G technology is capable to scale everywhere.

3. Interference issue. The 5G radio signal is weak and could be easily dis-
tracted in urban areas, because of the buildings and many obstacles like trees.

4. Security issues. 5G may suffer many cyber-security vulnerabilities,
because some security features are still missing, e.g., the suitable encryp-
tion of transmitted data in the network, and the absence of access control
system. Also it has many other security weaknesses, e.g., if there is a vulner-
ability found in one type of LOT devices within the network, then the whole
network may be under threat.

5. Environmental interference. The 5G mmWave signal may become weak
in bad weather, it cannot co-exists with rain.

Overall, 5G will cost more than previous predecessor to be available and spread
to all users, because the amount of tower gNB needed in practical implementa-
tion. The distance coverage in 5G network when using the MMWave (high-band)
is only 2 m indoors and up to 300 m outdoors. The 5G cell tower when transmit-
ting via a low- and mid-band spectrum can only reach a coverage distance up
to 600 m. By contrast, 4G LTE, depending on the area it covers, can provide a
coverage from 3–6.5km in radius.

2.3 5G Positioning Security

5G positioning is a natural and necessary component in the expected coming era
of 5G with various industrial use cases, e.g., logistics, smart factories, automo-
tive [13,23]. Such system can have a big chance to handle users’ data, especially
private data. Due to its importance, security and privacy should be the prior-
ity [24]. Below we list a set of security and privacy concerns about the existing
solutions to secure the 5G positioning system.

– What kind of user-end data can be stored? Does it include personal data
like personally identifiable information (PII)? Is there any authority from the
users to store that kind of data or information? Is the solution aligned with
GDPR regulations according to relevant personal data and information?

– Is the solution aligned with the governmental or international regulation,
regarding the collection and storage of personal data?

– Is the user privacy protected in the solution? Is the user consent regularly
updated?

– Is the organization aligned with the governmental and the international reg-
ulation a) Regarding the transporting of users personal data and information
in the cloud? b) Regarding the storage period or retention period? c) Who
has access to the personal data that this organization stores?
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3 Background on Zero Trust

Zero trust indicates a revolution regarding how an organization can protect data,
connect with devices and ensure access control [19,20]. It should implement the
following routine checks:

– It must be applied to every single user and each device including security and
network administrators.

– The network should be continuously monitored and audited. The audit should
include: a) Users’ or devices’ identities should continuously be checked. b)
Access control should be continuously updated. c) Access polices should con-
tinuously be checked and updated.

– It should continuously update access protocols, by monitoring the network
and gathering audit data in order to understand the users’ and devices’
behaviour.

– The zero-trust related solutions should have a management tool (database)
that contains both users and devices, which have access to the network. Every
user and device should be mentioned in this management tool (database) and
there should also be mentioned to which application the user/device may have
access and how long.

The management tool should also be able to update the access policy of the
company and use this policy to enforce user access within the network [47], e.g.,
how the access is used, when and what for. To sum up, all users’ and devices’ roles
in the database should continuously be checked and updated. Figure 2 depicts
the workflow of a zero-trust strategy.

Fig. 2. Workflow of zero-trust solutions

In practice, a Zero Trust Security Model should consider the following factors:

– User authentication. To examine the identity of users, which is the core
aspect of zero-trust mechanisms.
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– Data integrity. To control the integrity of the device (without location
consideration), as long as the device is authenticated (e.g., based on device
identity, device health, and user authentication).

– Trustworthiness. The reputation about the device and data should be mea-
sured before any access is given. This can be achieved by monitoring and
examining the health signal from a device or user, which at the end will help
in gaining confidence about the user or device (e.g., this information can be
saved in the policy engine in order to make access decision).

4 Securing 5G Positioning with Zero Trust Architecture

There are two main principles of zero trust architecture (ZTA): First, it has to
protect all the services and resources at any time and at any cost. Second, ZTA
always assumes that an attacker existing in the 5G network environment [22].

The 5G core network has a service based architecture (SBA), the provided
services are a main part of 5G core network functions, where each of them
supports a specific service included in the network repository function (NRF).
Every network function service in the 5G core is an asset that needs to be
protected. Hence, identifying these services (e.g., critical network resources) is
the first step of implementing a ZTA on a 5G positioning system [21].

This means that if we want to achieve a zero-trust security model on 5G
positioning system, then there is a need to protect the 5G core network functions
and any services that it runs and meet the other 5G security requirements.

One of the best ways to protect the network function is to implement authen-
tication and authorization processes on the network operators, which is a service
provider that controls the infrastructure of the mobile network. If any network
function is down or compromised, then the whole 5G core network may get com-
promised, e.g., data breaches, DoS attack. In order to achieve a zero-trust model
on the whole network, all assets on the 5G network must implement the same
security requirements as the network function and their services. All communi-
cation from internal or external devices on the network must pass the zero-trust
security processes relating to confidentiality, integrity, and the authentication,
before the access to the network is given and approved.

To sum up, all given access to any device on the network must be monitored at
all times and their authentication and integrity should be checked continuously.
This should also be applied to all the assets on the 5G mobile network. Any
access to the network should only exist to a certain part of the network and in
an estimated time until the session that the access was gained is terminated. All
authentication and authorization processes and checks should be forced on all
assets before the access is gained.

4.1 Implementation of Zero Trust

There are different ways to implement a zero-trust model on the 5G core network
in order to secure the 5G positioning system, depending on different aspects, e.g.,
the organization security policy [18].
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Nevertheless, an organization implementing a ZTA on its 5G mobile network
should have the following systems in place:

– An ICAM system (Identity, Credential and Access Management system).
– An ASSETS management system.
– An Multifactor authentication (MFA) system for accessing the resources/

assets.
– A System for monitoring user authentication and authorization continuously

on the mobile network and checking if the authentication or authorization
steps are successful.

Below is an example of implementing ZTA on the 5G core network to secure
the transport layer: that is, to secure the TLS protocol in the SBI (Service based
Interface) protection, we can build an API-based communication software. This
API software is used to establish communication between 5G Network Functions
within the 5G SBA (Service Based Architecture) framework that lies inside the
5G Core. Here, the 5G architecture is built around an SBA. The services of an
SBA are delivered to the 5G core network by connecting the network function
through APIs and using the authentication security principle to allow network
functions to connect with each other. By using this method, we have to protect
the 5G core network by ensuring integrity and confidentiality at the same time.
This solution works via an authentication method during the TLS session with
the help of certificates. This can be done through a software authentication
token.

4.2 Recommendations and Principles

We also need to address what it needs in order to secure the 5G positioning
system, including the 5G core network, by considering the zero trust principles
as below.

– To check the 5G security requirements of the network when implementing the
zero-trust strategy.

– To continuously check if there are new technical enhancements for zero-trust
strategy.

– To build a procedural security-enhanced program on the 5G network, in order
to always be up-to-date with the latest threat information.

– A monitoring solution should be built in order to continuously check the
trustworthiness, e.g., whether the user is authenticated and authorized to
exchange data and gain access to the 5G network.

– To continuously check the network functions’ activities to determine whether
it has been compromised or not.

– To implement the ZTA on the SBA within the core network to ensure a zero
trust security model.
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4.3 An Overlay Network Solution

Securing 5G positioning with Zero Trust Network Access (ZTNA) could be
depended on the vendors’ network architecture and enterprise use cases. Tech-
nical details for implementing a ZTNA strategy on 5G positioning system may
vary from one network to another, it depends on the specific use case and the
network architecture. ZTNA is a security model based on the standard or strat-
egy Zero trust. The ZTNA used in our case will verify each access request to
the network, regardless whether the request comes from internal or external.
Implementing ZTNA on 5G positioning involves integrating different security
solutions. In order to achieve this, it requires securing an access point to the
5G network by using ZTNA to enforce security policies in order to limit the
legitimate access to only identified, verified, authenticated and authorized users
and devices.

One approach of implementing such a solution is to use an overlay network
that can be built on top of the 5G infrastructure and help to provide an extra
layer of security by granting access to only authenticated and authorized users
and devices. An overlay network can be used here to provide an additional layer
of security by creating a secure and isolated virtual network on top of the 5G
mobile network. The Overlay Network will play a role as a military check, where
it will control the users’ and devices’ identities in order to grant access. When
implementing this kind of checks, the solution will ensure that only authenticated
& authorized users and devices can be granted a secure access to the network.
The goal of using an overlay network is to add a new layer without the need to
redesign the whole network. These additional missing functionalities added to
the overlay network are normally linked to the existing network through virtual
or physical nodes.

An example for an overlay network can be the Internet, VPN, cloud comput-
ing and P2P networks. Administrators monitor and handle the network traffic in
the overlay network without disturbing the traffic on the existing physical net-
work. For instance, an overlay network can consist of an SDN (software-defined
networking) technology [25,26] and virtualization. The SDN here can allow the
creation of a virtual network segments that can be used to isolate traffic and
provide security checks, authentication and authorization. Theses virtual net-
work segments are normally created by using the tunnels. These tunnels are
encrypted connections between the network and devices that allow the commu-
nication traffic to pass securely over the underlying network infrastructure.

To summarize, the 5G positioning system will totally reside on the network
infrastructure to determine the exact positioning of the user equipment/device
on the network. When a user-end device connects to the 5G network, it will
then send multi-signals to nearby cell towers (gNB), which can then determine
the approximate position or location of the user-end device in the 5G network,
based on the signal strength and timing calculations. ZTNA will play a security-
guard role in protecting the connections between the user-end devices and the
5G core network by verifying the identity of the devices and ensuring that only
authorized users and devices can access the network. Once the user-end device is
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connected to the 5G network and its location has been determined, the network
can then provide location-based services (LBS) such as navigation and tracking.

4.4 Implementation of Overlay Network Based 5G

Figure 3 shows the high-level architecture of Overlay Network based 5G system,
including a trust controller and a policy engine. These two components can
enhance the adopted zero-trust strategies with various supports from Overlay
Network. Below are the key steps for implementing an Overlay Network.

Fig. 3. 5G with Overlay Network

– First there is a need to build an Overlay Network by using the SDN and vir-
tualization technologies, which will perform as a virtual network running on
top of the existing physical networks [29,30]. It aims to secure communication
and data transferring in the network. The virtual network segment will cover
the entire network, not just at the boundary and access point to the net-
work, e.g., perimeter and switches will manage the virtual LAN environment.
SDN can use the applications (SDN controllers) [27,28] or APIs (application
programming interfaces) to communicate with the underlying hardware net-
work (the physical network under the overlay network) in order to direct and
manage the traffic on the network.

– The tunnels are then used to create an encrypted communication connec-
tion between the user-end device and the virtual network segmentation. The
next step is to implement the ZTNA model/strategy that the enterprise has
selected on the virtual network segment in order to enforce access control
policies on every network access. When implementing the zero-trust strategy,
the enterprise has the chance to configure their access polices and authenti-
cation strategies. The ZTNA could be included in the 5G core network, in
the radio access network (RAN) and finally in the user-equipment device.

– The ZTNA strategy that is implemented on the virtual network (and the
physical) will enforce the authentication process to every user and device



574 R. Y. Adam and W. Meng

before accessing the 5G positioning system (5G core network). The authenti-
cation could be done in different ways and methods such as using certificates
or even by using biometric methods.

– Once the authentication process is preformed, the user and devices are
authenticated to access the 5G positioning system, they then need to go
through the next security step–authorization process. In the authorization
process the users and devices should check their authorization in order to
ensure only authorized users and devices have access to the 5G positioning
system. For the authorization process, the enterprise needs to define and con-
figure its authorization access polices.

– Once the authentication and the authorization process are checked, the ZTNA
implementation and the overlay network can ensure that all data transmit-
ted between the user-end devices and the 5G positioning system should be
encrypted in order to prevent any unauthorized access to the data in the
communication or in the transmission phase. One thing to note here is that
the encryption of data that is being transmitted between the user-end device
and the 5G positioning system can be done either in the ZTNA or in the
overlay network. It depends on the design of the solution and the network.
The ZTNA acts as a secure gateway between the user-end device and the
5G position system by enforcing a secure access and security policies. The
virtual overlay network could also conduct the encryption process to encrypt
the transmitted data.

– The last step needed, in order to have a secure 5G positioning system and
a secure 5G mobile network from unauthorized users or devices, is to have
a continuous monitoring system in place. This continuous monitoring should
also include detecting and responding to any potential cyber-security threats
or breaches that can occur on the whole network. There are different tools and
systems that could be used to monitor and analyze the data traffic, such as
intrusion detection systems (IDSs) [31,32], collaborative mechanisms [37,39],
and security information and event management (SIEM) systems.

It is worth noting that the continuous monitoring and analyzing process on
the network traffic can be performed by using different security solutions [33,34]
such as firewalls, IPS, IDS and SIEM systems. All these tools can be imple-
mented at a strategic point in the overlay network. By implementing this secu-
rity solution or method, the virtual overlay network will then help implement the
ZTNA security strategy in order to secure the 5G positioning system. In prac-
tice, the implementation can leverage various security-enhancement techniques
such as cloud and edge computing devices [35,40], filtering mechanisms [36,39]
and blockchain technique [38,41,42].

There is a need to clarify that the virtual overlay network is built on top of
the ZTNA solution rather than the other way around. One important point that
needs to be explained and clarified here is that the ZTNA and the overlay net-
work have different roles and functions when being combined together to secure
the 5G positioning system from unauthorized access and malicious attacks. The
ZTNA is a security strategy that provides a secure access mechanism to the 5G
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positioning system by performing the authentication and authorization process
on the user and devices before they gain access to the 5G positioning system.
On the other hand, the overlay network is a virtual network that is build on top
of the existing network to provide additional services and functionalities for the
existing network without the need to redesign the whole network.

5 Discussion

Using the overlay network solution can be an effective method to secure the 5G
positioning system, but it may also encounter some limitations. Below are some
pros and cons when using the overlay network virtualization.

5.1 Pros

– One of the most important advantages of using an overlay network virtu-
alization on the 5G network (including the 5G positioning system) is the
capability of offering an additional (extra) layer of security on top of the
existing network infrastructure.

– The overlay network is very easy to implement since it is a virtualization
solution that does not need any hardware component.

– The overlay network can be implemented without requiring a redesign of
the whole existing network infrastructure. This is because it adds additional
services and functionalities to the existing network.

– The overlay network is a very flexible solution that can be easily customized
and configured. This is an important point since 5G network is a continuously
changing environment and its configuration in the network changes from time
to time depending on what is running and implemented on the 5G network.

– The overlay network can provide improvements regarding the high data-
transferring speeds and reduce latency of data exchange.

5.2 Cons

– The overlay network is an extendable solution, so it may face problems when
the network scale gets larger. That means it has a scalability issue, which
may become an unsuitable and unstable solution for large networks.

– The overlay network is built on top of the underlying infrastructure, so any
performance and security issues from the underlying networks will make a
huge impact on the overlay network.

– The overlay network in some scenarios can have a big impact on performance,
i.e., it may increase data-transfer latency due to communication delay, as it is
an additional layer that is built on top of the existing network infrastructure.

– The overlay network is very complex to implement and needs very experienced
experts to perform implementation and configuration.

Therefore, a well-secured 5G mobile network should be established with the
following three main factors:
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– The first factor includes: a well-defined user awareness program,
– The second factor includes: a well-designed security program for user-

equipment devices
– The third factor includes: a well-defined 5G core security policy and program.

6 Conclusion

5G is the 5th generation mobile network, which is designed to connect virtually
everyone and everything together including machines, objects, and devices. 5G
also leverages time of flight and angular resolution to bring multiple positioning
techniques for different deployment scenarios and use-cases. However, 5G posi-
tioning system is still under threat, and there is a need to protect its practical
implementation. In this work, we provided a review on 5G technology and 5G
positioning system, especially discussing how zero-trust concept can help secure
5G network and the positioning system. We also discussed the advantages and
limitations of one effective solution of using Overlay Networks.
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20. Hireche, O., Benzäıd, C., Taleb, T.: Deep data plane programming and AI for zero-
trust self-driven networking in beyond 5G. Comput. Netw. 203, 108668 (2022)

21. Li, Y., Liu, S., Yan, Z., Deng, R.H.: Secure 5G positioning with truth discovery,
attack detection, and tracing. IEEE Internet Things J. 9(22), 22220–22229 (2022)

22. Liu, S., Yan, Z.: Efficient privacy protection protocols for 5G-enabled positioning
in industrial IoT. IEEE Internet Things J. 9(19), 18527–18538 (2022)

23. Fan, S., Ni, W., Tian, H., Huang, Z., Zeng, R.: Carrier phase-based synchronization
and high-accuracy positioning in 5G new radio cellular networks. IEEE Trans.
Commun. 70(1), 564–577 (2022)

24. Bai, L., Sun, C., Dempster, A.G., Zhao, H., Cheong, J.W., Feng, W.: GNSS-5G
hybrid positioning based on multi-rate measurements fusion and proactive mea-
surement uncertainty prediction. IEEE Trans. Instrum. Meas. 71, 1–15 (2022)

25. Li, W., Wang, Y., Meng, W., Li, J., Su, C.: BlockCSDN: towards blockchain-based
collaborative intrusion detection in software defined networking. IEICE Trans. Inf.
Syst. 105-D(2), 272–279 (2022)

26. Meng, W., Li, W., Zhou, J.: Enhancing the security of blockchain-based software
defined networking through trust-based traffic fusion and filtration. Inf. Fusion 70,
60–71 (2021)

27. Li, W., Meng, W., Liu, Z.G., Au, M.H.: Towards blockchain-based software-defined
networking: security challenges and solutions. IEICE Trans. Inf. Syst. 103-D(2),
196–203 (2020)

28. Sahay, R., Meng, W., Jensen, C.D.: The application of software defined networking
on securing computer networks: a survey. J. Netw. Comput. Appl. 131, 89–108
(2019)

29. Meng, W., Choo, K.K.R., Furnell, S., Vasilakos, A.V., Probst, C.W.: Towards
bayesian-based trust management for insider attacks in healthcare software-defined
networks. IEEE Trans. Netw. Serv. Manag. 15(2), 761–773 (2018)

30. Li, W., Meng, W., Kwok, L.F.: A survey on OpenFlow-based software defined
networks: security challenges and countermeasures. J. Netw. Comput. Appl. 68,
126–139 (2016)

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf


578 R. Y. Adam and W. Meng

31. Meng, W., Li, W., Kwok, L.F.: EFM: enhancing the performance of signature-based
network intrusion detection systems using enhanced filter mechanism. Comput.
Secur. 43, 189–204 (2014)

32. Meng, W., Luo, X., Li, W., Li, Y.: Design and evaluation of advanced collu-
sion attacks on collaborative intrusion detection networks in practice. In: Trust-
com/BigDataSE/ISPA, pp. 1061–1068 (2016)

33. Li, W., Meng, W.: Enhancing collaborative intrusion detection networks using
intrusion sensitivity in detecting pollution attacks. Inf. Comput. Secur. 24(3), 265–
276 (2016)

34. Li, W., Meng, W., Kwok, L.F.: Horace Ho-Shing Ip: enhancing collaborative
intrusion detection networks against insider attacks using supervised intrusion
sensitivity-based trust management model. J. Netw. Comput. Appl. 77, 135–145
(2017)

35. Meng, W., Wang, Y., Li, W., Liu, Z., Li, J., Probst, C.W.: Enhancing intelligent
alarm reduction for distributed intrusion detection systems via edge computing.
In: ACISP, pp. 759–767 (2018)

36. Meng, W., Li, W., Kwok, L.F.: Towards effective trust-based packet filtering in
collaborative network environments. IEEE Trans. Netw. Serv. Manag. 14(1), 233–
245 (2017)

37. Meng, W., Li, W., Jiang, L., Choo, K.-K.R., Su, C.: Practical bayesian poisoning
attacks on challenge-based collaborative intrusion detection networks. In: Sako, K.,
Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 493–511.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0 24

38. Li, W., Tug, S., Meng, W., Wang, Y.: Designing collaborative blockchained
signature-based intrusion detection in IoT environments. Future Gener. Comput.
Syst. 96, 481–489 (2019)

39. Li, W., Meng, W., Kwok, L.F., Ip, H.H.S.: Developing advanced fingerprint attacks
on challenge-based collaborative intrusion detection networks. Clust. Comput.
21(1), 299–310 (2018)

40. Wang, Y., Meng, W., Li, W., Li, J., Liu, W.X., Xiang, Y.: A fog-based privacy-
preserving approach for distributed signature-based intrusion detection. J. Parallel
Distributed Comput. 122, 26–35 (2018)

41. Chiu, W.Y., Meng, W., Li, W., Fang, L.: FolketID: a decentralized blockchain-
based NemID alternative against DDoS attacks. In: ProvSec, pp. 210–227 (2022)

42. Chiu, W.Y., Meng, W., Jensen, C.D.: My data, my control: a secure data sharing
and access scheme over blockchain. J. Inf. Secur. Appl. 63, 103020 (2021)

43. Li, W.W., Meng, W., Yeh, K.H., Cha, S.C.: Trusting computing as a service for
blockchain applications. IEEE Internet Things J. 10(13), 11326–11342 (2023)

44. Li, W., Meng, W., Kwok, L.F.: Surveying trust-based collaborative intrusion detec-
tion: state-of-the-art, challenges and future directions. IEEE Commun. Surv. Tuto-
rials 24(1), 280–305 (2022)

45. Li, W., Meng, W.: BCTrustFrame: enhancing trust management via blockchain
and IPFS in 6G Era. IEEE Netw. 36(4), 120–125 (2022)

46. Li, W., Meng, W., Yang, L.T.: Enhancing trust-based medical smartphone net-
works via blockchain-based traffic sampling. In: TrustCom, pp. 122–129 (2021)

47. Meng, W., Li, W., Zhu, L.: Enhancing medical smartphone networks via
blockchain-based trust management against insider attacks. IEEE Trans. Eng.
Manag. 67(4), 1377–1386 (2020)

https://doi.org/10.1007/978-3-030-29959-0_24


Email Reading Behavior-Informed
Machine Learning Model to Predict

Phishing Susceptibility

Ning Xu1,2 , Jiluan Fan1,2 , and Zikai Wen3(B)

1 Instituite of Artificial Intelligence, Guangzhou University, Guangzhou, China
{xuning,fanjiluan}@e.gzhu.edu.cn

2 Guangdong Provincial Key Laboratory of Blockchain Security, Guangzhou, China
3 Computational Media and Arts Thrust, The Hong Kong University of Science and

Technology (Guangzhou), Guangzhou, China
zikaiwen@ust.hk

Abstract. As phishing threats intensify, incidents like the “COVID-19
vaccination form” phishing website underscore the limitations of rely-
ing solely on traditional firewall-based defenses. Consequently, there is a
growing inclination towards user-centered anti-phishing solutions, exem-
plified by training games such as What.Hack. But could we proactively
notify users in real time when they are on the brink of a scam or when
their attention wanes? Our research explores machine learning and eye-
tracking to identify email-reading weak spots and gauge a user’s risk of
succumbing to phishing lures. We put forth innovative hybrid models,
TransMLP Link and TransMLP Hybrid, melding the strengths of both
Transformer and MLP. Our method also facilitates consistent interpreta-
tion of eye-tracking data across varied email interfaces and displays. Our
TransMLP Hybrid model boasts an 88.75% accuracy rate, outperform-
ing the standard Transformer model. Our research points to the future
of anti-phishing tools that elegantly combine technological advancements
with insights into human behavior.

Keywords: Anti-Phishing · User Modeling · Machine Learning

1 Introduction

Phishing is a growing concern in the digital age. It involves seemingly genuine
emails, messages, and links that trick users into revealing personal data or down-
loading harmful software. The rise of such attacks, especially those leveraging
pandemic themes, has been alarming [2,9]. An infamous example is the fake
“COVID-19 Vaccination Form” site that falsely posed as an official NHS plat-
form, leading users into fraudulent vaccine registrations [19].

Traditionally, firewalls have been used to combat phishing by maintain-
ing updated blocklists and allowlists [7,13,14]. However, they struggled to
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Fig. 1. Overview of the Model Training and Real-World Prediction Process for Phish-
ing Email Detection.

counter new domains that are not yet listed [21]. As a solution, recent meth-
ods stressed the importance of educating users [3,24,30]. Training platforms like
What.Hack [30] have sprung up to strengthen this first line of defense. Nonethe-
less, an unsettling 95% of phishing breaches result from human oversights [1].
This brings forth a question: Can we alert users in real time if they are about
to fall for a scam or if their attention drifts?

To tackle this problem, we employed machine learning and eye-tracking tech-
niques to analyze how users engage with emails, aiming to predict their vulner-
ability to phishing. Our research delved into the Transformer model, assessing
its potential to gauge user focus; the Multilayer Perceptron (MLP) model, fine-
tuned for eye-tracking data; and innovative hybrid models, TransMLP Link and
TransMLP Hybrid, blending the best of both Transformer and MLP.

Moreover, we developed a technique to consistently interpret eye-tracking
data across various devices and email applications, associating specific gaze
points with their meaning in the email’s layout. This approach translated the
raw eye-tracking data into eight key areas reflecting the main regions of an email
interface. A detailed overview of our approach, from data collection to applying
our hybrid model in real scenarios, can be found in Fig. 1.

In our experiment with 25 participants, we gathered eye-gazing patterns and
user interactions while they interacted with genuine and phishing emails and
played the What.Hack anti-phishing game. We utilized the in-game data to train
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our phishing prediction models and the real-world data for testing. While the
Transformer model delivered an 80.63% accuracy, the TransMLP Hybrid model
stood out by achieving an impressive 88.75% accuracy rate.

In essence, our contributions are threefold:

1. The new design of hybrid models, TransMLP Link and TransMLP Hybrid,
synergizing Transformer and MLP.

2. The new approach to uniformly interpret eye-tracking data across diverse
email reading environments.

3. The experiment showcased the outstanding performance of TransMLP Hybrid
with an 88.75% accuracy.

In the evolving landscape of anti-phishing, the dual challenges of innova-
tive phishing tactics and human vulnerabilities necessitate more comprehensive
defense strategies. This paper studies the intricate relationship between email
reading behaviors, eye-tracking data, and their potential to inform machine
learning models that predict phishing susceptibility.

We begin by examining the historical context of phishing attacks and the
defense mechanisms in place, laying the groundwork for our innovative approach.
Subsequently, we elucidate our machine learning models, emphasizing the novel
integration of Transformer and MLP architectures. Following this, we detail our
designed experiment, setting the stage for a thorough analysis of our results and
their broader implications. By evaluating the effectiveness of our models and
examining the underlying factors, we present a feasible strategy that combines
advanced technological methods with deep insights into human behavior, paving
the way for a significantly enhanced anti-phishing defense.

2 Related Work

The related work section explores phishing tactics, human vulnerabilities, and
defense strategies designed to counteract these threats. The limitations of exist-
ing anti-phishing strategies led us to study the ability to leverage email reading
eye-tracking data to train machine learning models to predict phishing suscep-
tibility more effectively.

2.1 Phishing Email Attacks and Defense

Phishing is a cyber-attack where attackers pose as trustworthy entities to steal
credentials or introduce malware. Research has identified three primary human
vulnerabilities in defending against phishing attacks: a lack of system and secu-
rity knowledge [4], challenges in detecting visual deception [10], and inatten-
tion [20]. For example, phishing emails often employ deceptive hyperlinks and
subtle cues, such as spelling mistakes, to mislead users [12].

To address these vulnerabilities, a range of strategies has been developed to
counteract phishing due to user negligence. These include anti-phishing training,
active warning systems, and detection techniques using machine learning [8,16,
24,25,27,30]. Role-playing phishing simulation games [24,30] aim to increase
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users’ security knowledge and awareness, and alert mechanisms were designed to
notify users of potential threats [16]. Therefore, modeling how humans recognize
phishing emails and implementing protective measures are crucial in preventing
successful breaches.

Machine learning models are a mainstay in the detection of phishing
emails [23]. For instance, Shie et al. [25] utilized deep learning and feature
extraction to identify phishing emails. Additionally, Subasi et al. [27] assessed
Adaboost and other boosting algorithms for detecting phishing websites, lever-
aging a dataset from the UCI repository to improve classifier accuracy. Despite
these advances, even the most sophisticated machine learning model occasion-
ally misses phishing threats. Thus, creating automated detection methods for
phishing risks when users access their emails could provide an added layer of
protection, significantly reducing the chances of successful attacks.

2.2 Eye-Tracking for User Intention Prediction

The Eye-Mind Hypothesis (EMH) suggests that during a task, an individual’s
focal point and cognitive thought are intrinsically linked — what they see often
mirrors what they think [18]. In this context, eye-tracking data becomes pivotal
in decoding visual attention and cognitive operations. With this premise, we pos-
tulate that specific eye-tracking patterns might be indicative of an individual’s
vulnerability to phishing emails.

Recent research in intent recognition through eye-tracking [5,15,17,29] pre-
dominantly revolves around predicting the location or object of a user’s atten-
tion. A research direction in this area aims to forecast subsequent attentional
shifts of users [17,29]. For instance, leveraging eye movement patterns from VR
goggles, Nicolas et al. [26] developed a model to predict users’ upcoming focal
points. Deng et al. [11] utilized logistic regression to project user menu selec-
tions. Bhattacharya et al. [6] took a step further to investigate if readers’ eye
movements alone could gauge the authenticity of news headlines. Despite these
advancements, such models remain unable to assess user susceptibility to phish-
ing endeavors.

In a parallel development, Huang et al. [16] designed an array of visual cues
to deter phishing, aiding users in distinguishing malicious emails from legitimate
ones. However, the trigger for these alerts rests upon conclusive firewall detec-
tions. If a firewall deems an email safe, no alert is generated. This underscores
an opportunity: if we can determine a user’s lack of attentiveness while reading
a phishing email, a timely alert could also be triggered.

3 Prediction Models Design

The section explores machine learning models for analyzing email reading behav-
iors using eye-tracking data. We start with the Transformer model, detailing its
mechanics and applications in understanding user attentiveness. We then discuss
the Multilayer Perceptron (MLP) model and how to make it process eye-tracking
statistics. Finally, we introduce two new variant models, combining the best of
both Transformer and MLP, to better predict phishing email susceptibility.
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3.1 Transformer Model

Model Background: The Transformer model, proposed by Vaswani et al. [28],
addresses the performance bottlenecks of recurrent neural networks in processing
long data sequences. It comprises an encoder and a decoder, both stackable with
multiple layers that comprise the self-attention layer and the feed-forward layer.

While the self-attention mechanism of the Transformer model processes data,
it does not inherently consider the order of the input sequence. To enable
sequence processing, positional encoding (PE) is necessary. The formula for posi-
tional encoding is:

PE(pos,2i) = sin(pos/100002i/d), PE(pos,2i+1) = cos(pos/100002i/d), (1)

where d denotes the embedding vector’s dimension, pos signifies the position
in the data processing sequence, and i ∈ [0, d] represents the dimensions of the
positional encoding vector. 2i and 2i+1 designate the even and odd dimensions
of the positional embedding vector respectively.

The Transformer model may employ an h multi-head attention mechanism
to capture richer feature information, which is essential for our application’s
purpose. Within the multi-head self-attention layer, the input vector undergoes
three linear transformations to obtain the query vector Q, key vector K, and
value vector V . The formula for multi-head attention computation is:

MultiHead(Q,K, V ) = Concatenation(head1, . . . , headh)WO, (2)

where each headi represents the output vector of the i-th attention head, and
WO is a linear transformation matrix. The formula for each head is:

headi = Attention(QWQ
i ,KWK

i , V WV
i ), (3)

with the matrices WQ
i , WK

i , and WV
i being linear transformations. The

dimension of each head helps define the scaled dot-product attention:

Attention(Q,K, V ) = softmax

(
QKT√
d/h

)
V. (4)

The feed-forward network within the Transformer model is a two-layer neural
network, which employs residual connections [17] or layer normalization [5] to
facilitate model convergence and prevent gradient disappearance or explosion.

Model Implementation: We trained a series of Transformer-based models
using temporal features to perform binary classification on email reading behav-
ior. The aim is to determine whether users are careless about verifying the
authenticity of emails.
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The eye-tracking data for each user and email serves as a sequence input to
the Transformer model. The eye-tracking data are chronologically organized into
sequences according to the user’s history of processing emails.

To provide consistency in interpreting eye-tracking data, regardless of the
screen size or email application in use, we developed a method to map loca-
tion points from the eye-tracking data to their respective semantic meanings.
The transformed data comprises eight spatial attributes, specifically: Sender-
Information, SubjectText, Reply, ReportPhishing, ContentText, ContentsPanel,
Attachment, and LinkHovering. These attributes align with the core email func-
tions’ UI regions, as depicted in Fig. 2. Furthermore, our model incorporates a
temporal feature. Each feature vector captures the needed eye-tracking informa-
tion during each time step.

Fig. 2. Eye-tracking Mapping for Email Interaction Zones across Two Different Email
Application Interfaces.

Our Transformer encoder consists of two blocks, each containing one multi-
head self-attention layer and one feed-forward layer. Within the self-attention
layer, the input vector is divided into three segments, each of which undergoes a
linear transformation. Subsequently, these transformed segments are subjected
to scaled dot-product attention calculations. The resulting output vectors from
each head are combined and processed through a linear transformation matrix
to produce the final output of the self-attention layer as the input of the feed-
forward layer. The feed-forward layer includes two linear layers with a ReLU
activation function in between them. After the input undergoes transformation
by a fully connected layer, the activation function provides a nonlinear transfor-
mation. A subsequent fully connected layer further modifies the output, produc-
ing a tensor that maintains the input’s dimensions. Within each encoder block,
the input is processed by both the self-attention mechanism and the feed-forward
network, with the output being reintegrated with the original input through a
residual connection.
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3.2 Multilayer Perceptron Model

Model Background: The Multilayer Perceptron (MLP) model [22] employs
multiple layers of neurons to enact nonlinear transformations, facilitating the
extraction of higher-level features from input data. An MLP is composed of
input, hidden, and output layers. Each layer houses multiple neurons, and each
neuron processes the output from the preceding layer. The calculations per-
formed by a neuron involve both a linear transformation that weights the output
of the previous layer by the neuron’s own weights and a subsequent nonlinear
transformation via an activation function. This combination generates the neu-
ron’s final output. The computational formulation for MLP is given by:

r = f(W (L)f(W (L−1)f(W (L−2)...f(W (1)x+B(1))...+B(L−2))+B(L−1))+B(L)), (5)

in this equation, f denotes the activation function, x is the input data, and
W (i) and B(i) symbolize the weights and biases for the i-th layer, respectively.
Generally, the terminal layer of the MLP model uses the sigmoid function to
transform the previous network’s output into two probability values, and the
model picks the higher probability value as the final output.

Model Implementation: We employed an MLP model comprising six fully
connected layers, using ReLU as the activation function and incorporating a
dropout method to combat overfitting. The input to this model is derived from
eye-tracking data, which we processed into 16 statistical features. These features
come from eight previously identified spatial features related to the UI areas of
core email functions. For each spatial feature, we calculated two values: the
count and the total duration of user fixations. This data was then flattened
into a one-dimensional vector. The model produces an output in the form of a
probability value, representing the likelihood of a sample being a phishing email
that successfully deceives the recipient.

For the training phase, we opted for the Adam optimizer over the stochastic
gradient descent algorithm, enabling faster convergence and allowing distinct
learning rates for individual parameters. Furthermore, we set the learning rate
of each parameter group using a cosine annealing schedule to dynamically mod-
ify the learning rate, progressively decreasing it throughout training for better
control and stability.

For the loss function, we used the binary cross-entropy for better training
stability. This function is mathematically represented as:

Loss(y, p) = −(ylog(p) + (1 − y)log(1 − p)), (6)

in this equation, y represents the ground truth, indicating if the user failed to
recognize the deceptive phishing email. Meanwhile, p ∈ [0, 1] denotes the model’s
predicted probability that we aim to align with the y value.
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3.3 TransMLP Model Variants Design

Fig. 3. Architectures of Two Proposed TransMLP Variants.

TransMLP Link : The TransMLP Link model is a new variant that diverges
from the traditional Transformer model. The model integrates a multi-layer
transformer encoder to enhance input data feature extraction, as shown in
Fig. 3(a). In addition to this integration, the model employs an MLP model in
lieu of the standard single fully connected layer to facilitate nonlinear transfor-
mations on the Transformer output. This design choice enables the TransMLP
Link to achieve better nonlinear modeling capabilities relative to ML models
that rely solely on a single fully connected layer.

TransMLP Hybrid : Rather than merely linking the output of the Transformer
directly to the MLP’s input, we designed the TransMLP Hybrid model to har-
moniously integrate the strengths of both Transformer and MLP paradigms, as
shown in Fig. 3(b). This model harnesses eye-tracking statistical features derived
from time series data to train the MLP component. To produce the final output,
an ensemble learning strategy is employed, judiciously weighing the predictions
from both the Transformer and MLP models to optimize performance.

4 Experiment Design

Our experiment centered on leveraging eye-tracking data to enhance the ability
of machine learning models to assess the phishing risk of an email as read by
a user. We also aimed to evaluate the two Transformer model variants that we
proposed, TransMLP Link and TransMLP Hybrid, comparing their performance
to the basic Transformer model.
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4.1 Participant Recruitment

We collected eye-tracking and user interaction data from 25 participants (10
females and 15 males) for model training and testing. Participants were recruited
via social media and snowball sampling. The participants need to be over 18 years
old, have no prior training in anti-phishing, and be affiliated with the first
author’s institution, which was targeted by the collected real phishing emails.

4.2 Experimental Method

First, we gathered data from participants in real-world application settings to
assess their reactions to phishing and legitimate emails while using their every-
day email applications. We designed simulated interfaces mimicking Gmail and
NetEase Mail, which contained 6 phishing emails and 5 safe emails. These email
addresses and contents were sourced from actual reported phishing cases. During
the exercise, participants chose to reply or report the emails while we recorded
their gaze data using the 7invensun A3 eye tracking device.

Then, we captured their gaze behavior while they engaged with the anti-
phishing training game, What.Hack. This game comprises 5 levels, each empha-
sizing different email attributes to identify phishing attempts. In Level 1, volun-
teers inspected the sender’s email address. By Level 3, they were also evaluating
potential phishing links, and by Level 5, they assessed attachments alongside
previous checks. We observed that all participants had completed the game.

We recorded gaze positions, mouse movements, and link-hovering events
throughout these two activities.

4.3 Data Post-processing

For the dataset obtained from participants playing What.Hack, we preserved the
time series data for the Transformer model and computed the accumulated statis-
tical data for the MLP model. We collected a total of 18,720 eye-tracking fixation
events. We processed them into 1,019 events of user reaction to emails. We also
computed the overall fixation duration and the number of event occurrences. All
data has been anonymized. We will release the database1 after implementing
differential privacy measures to enhance user data protection.

5 Findings and Discussions

In our comprehensive analysis of phishing email susceptibility prediction models,
the TransMLP Hybrid model distinctly stood out for its accuracy and adaptabil-
ity to various phishing email challenges. Furthermore, our findings highlighted
that eye movement patterns offer valuable insights into factors that influence
prediction accuracy.

1 https://github.com/zikaiwen/EmailEye-PhishPredict.

https://github.com/zikaiwen/EmailEye-PhishPredict
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In the subsequent discussions, we introduced our novel technique for organiz-
ing eye-gazing data in email interfaces, ensuring consistent data collection across
diverse devices and email applications. Additionally, we discussed the potential of
merging malicious link detection with behavior-driven alerts, providing a robust
defense against phishing attacks.

5.1 Findings

Our three primary findings are the results from the model accuracy comparison,
the relationship between phishing email complexities and model error rates, and
the correlation between saccade counts and model error rates.

Model Accuracy Comparison: We evaluated the performance of three mod-
els: Transformer, TransMLP Link, and TransMLP Hybrid. The Transformer
achieved an accuracy of 80.63% in predicting the phishing email’s susceptibil-
ity. This accuracy saw a slight increase to 80.75% when augmented with MLP
using TransMLP Link. However, the TransMLP Hybrid, which was trained on
both game statistical and time series data, outperformed the others, achieving
an accuracy of 88.75%. This suggests the TransMLP Hybrid is the most effective
model when considering both statistical and sequential data. Detailed outcomes
are provided in Table 1.

Table 1. Accuracy Rates of Transformer, TransMLP Link, and TransMLP Hybrid
Models in Real-World and In-game Scenarios

Model Name Real-World Accuracy(%) In-game Accuracy

Testing(%) Training(%)

Transformer 80.63 80.88 82.58

TransMLP Link 80.75 79.90 82.21

TransMLP Hybrid 88.75 89.82 90.16

Phishing Email Difficulty and Prediction Error Rates: We delved into
the performance of the models as they predicted user intent during the game
What.Hack, which is designed with escalating complexities across its 5 levels to
simulate varying phishing email attributes. Starting at Level 1, participants pri-
marily focused on scrutinizing the sender’s email address. By Level 3, their eval-
uation expanded to include potential phishing links. By the time they reached
Level 5, they were also assessing email attachments in addition to their previous
tasks. Of all the models, TransMLP Hybrid stood out by consistently register-
ing the lowest error rate across every level of difficulty. Conversely, the other
two models struggled more with discerning user intent in the face of complex
phishing emails, as depicted in Fig. 4(a).
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Fig. 4. Model Performance Analysis. (a) represents the prediction error rate of different
models at different difficulty levels, and the vertical ordinate represents the prediction
error rate. (b) represents the statistical data of different saccades when different models
predict incorrectly, and the vertical ordinate represents the number of saccades.

Saccade Counts and Prediction Errors Rates: The average number of
saccades (rapid eye movements) observed when models made inaccurate predic-
tions was 18.37, with a median of 15.00. Notably, TransMLP Link exhibited more
errors when there were fewer saccades. Conversely, as the number of saccades
increased, the accuracy of TransMLP Hybrid predictions appeared to decline.
These trends are illustrated in Fig. 4(b).

5.2 Discussions

Modularizing Eye-Gazing Points in Email UI for Enhanced Feasibility
and Effectiveness: To ensure broader applicability and improved feature learn-
ing for classifying phishing email susceptibility, we developed a modularization
technique for eye-gazing location data. This method divides email application
interfaces into eight specific modules: SenderInformation, SubjectText, Reply,
ReportPhishing, ContentText, ContentsPanel, Attachment, and LinkHovering.
This structure enables the formation of a consistent dataset that is not tied to
absolute coordinate positions. It thus overcomes the challenges posed by differ-
ing screen resolutions and email applications, ensuring the collected data from
mouse and eye-gazing events remains relevant and usable.

Integrating Malicious Link Detection and Behavior Intervention for
Comprehensive Anti-Phishing: Building on our research, there is potential
to merge malicious link detection and behavioral intervention alerts. This holistic
approach, fusing user intent recognition, machine learning classification, and
effective UI warnings, can substantially lower the risk of phishing incidents.

6 Conclusion and Future Work

In our explorative research into machine learning’s capabilities, we honed in on
the Transformer model and its variants, particularly in the context of predicting
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phishing email susceptibility using eye-tracking data. Our ambition was to dis-
cern and understand the nuances of user attentiveness during email interactions,
with the goal of leveraging this information to optimize phishing risk evaluations.

Among the models we evaluated, the TransMLP Hybrid emerged as a clear
frontrunner. Its precision, coupled with its adaptability to diverse phishing sce-
narios, set it apart. Moreover, our study underscored the pivotal role that eye
movement patterns play in determining prediction accuracy. Even though the
TransMLP Hybrid model was exemplary in its performance. There lies an excit-
ing challenge in enhancing this model further by augmenting its model architec-
ture that marries eye-tracking data with other related behavioral indicators.

Looking ahead, our research has paved the way for several promising trajec-
tories. The innovative technique we introduced for standardizing eye-gazing data
in email interfaces marks a substantial advancement in ensuring consistent and
reliable data collection across varying platforms. Furthermore, our discussions
around merging malicious link detection with behaviorally-driven alerts have
underscored a pressing need and significant opportunity for creating comprehen-
sive defense mechanisms against phishing attacks. This multi-faceted approach,
blending technology with human behavioral insights, could form the cornerstone
of next-generation anti-phishing solutions.
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