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Abstract. Automatic and accurate instance segmentation of teeth from
3D Cone-Beam Computer Tomography (CBCT) images is crucial for
dental diagnose. Although Convolutional Neural Networks (CNNs) are
widely used for tooth instance segmentation, the limitations of CNNs
in capturing global image information can impact model performance.
Recently, Transformer models leveraging the Self-Attention mechanism
have exhibited exceptional capabilities in modeling global relationships
in images. In this paper, we propose a fully automated tooth instance
segmentation model utilizing the Self-Attention mechanism. The model
is primarily based on the Self-Attention UNETR++ network and con-
sists of three stages. In the first stage, a V-Net is employed to identify
the region of interest (ROI) containing the teeth. In the second stage,
a multitask UNETR++ network is utilized to extract the centroid and
skeleton of the teeth. In the third stage, another multitask UNETR++
is employed to simultaneously learn the tooth mask and boundary, lead-
ing to accurate tooth instance segmentation. Experimental results on a
dataset consisting of 98 CBCT images demonstrate the efficacy of our
method. It achieves a Dice score of 95.1% and reduces the average surface
distance (ASD) to 0.14 mm.
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1 Introduction

Currently, there is an increasing demand for dental health. Dental health issues
mainly include dental diseases, dental implants, orthodontics. Although the
growing number of patients seeking dental diagnoses contributed to the rapid
development of the dental healthcare market, there is a significant shortage of
dentists per million population, which poses a substantial burden on dentists.
In clinical diagnosis, Cone Beam Computer Tomography (CBCT) is widely uti-
lized for acquiring high-resolution 3D images of teeth, thereby offering accurate
representations of dental crowns, roots, and bones. Additionally, CBCT offers
the advantages of low Radiation exposure and short scanning time. On the other
hand, the voxel information in CBCT images is highly complex, necessitating
extensive manual segmentation to extract vital information. Therefore, this pro-
cess becomes time-consuming and labor-intensive for clinicians and researchers.
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Thus, the development of digital dentistry and fully automated tooth segmen-
tation methods is crucial for tooth analysis from 3D CBCT scans.

Computer vision technology has found widespread applications in the field
of medical imaging. Driven by computer vision technology, digital oral cavity is
rapidly developing. Automatic tooth segmentation is a primary step for tooth
image analysis, and has attracted more and more research attention. Existing
tooth instance segmentation methods can be categorized into two types: tradi-
tional methods and deep learning-based methods. Traditional methods, such as
level set [1,14,15,20], graph cut [18,21], and template fitting [2,29]. However,
these method rely on manually designed features, which are highly sensitive to
complex dental situations, requiring tedious manual initialization and correction.
They often lead to suboptimal segmentation performance in complicated cases.
Deep learning methods, on the other hand, are known for their automatic fea-
ture extraction, strong adaptability, and high accuracy. They have been widely
adopted in medical image segmentation.

Deep learning-based tooth instance segmentation methods [7–12,19,22,31]
generally achieve better performance than traditional methods. However, nearly
all deep learning-based methods rely on convolutional neural networks (CNNs)
to extract features from CBCT images and achieve tooth detection and segmen-
tation. None of these methods introduce attention mechanisms. CNNs’ limita-
tions in obtaining global image information to some extent lower the model’s
performance. Overcoming these limitations and improving the performance of
tooth segmentation models pose challenging tasks. The widespread applica-
tion of Transformers [5,13,25,33] indicates that Self-Attention can effectively
obtain global information of images. This makes the model based on the Self-
Attention mechanism have certain advantages in the field of image segmentation.
In recent years, several outstanding neural networks using Self-Attention mech-
anisms [4,6,16,32,34] have emerged in the medical image segmentation field.
Therefore, this paper aims to construct a fully automatic tooth instance seg-
mentation method incorporating Self-Attention mechanisms.

Inspired by the above work, we propose a fully automated tooth instance
segmentation model that utilizes the Self-Attention mechanism. The model has
three stages: First, we use V-Net [24] to extract tooth ROI. Next, we use a multi-
task UNETR++ network [28] to predict the centroids and skeletons of teeth.
This step localizes teeth, detects tooth shapes, and represents teeth. Finally, we
further segment teeth within the tooth ROIs using the multi-task UNETR++
network. By combining the centroids and skeletons of teeth, we achieve tooth
instance segmentation. To evaluate the performance of our method, our fully
automatic tooth segmentation achieved a Dice similarity coefficient of 95.1%
and an Average Surface Distance of 0.14mm in tooth segmentation.

In summary, the main contribution of this study are as follows:

1. We propose a multi-stage model that is capable of fully automatic tooth
instance segmentation on input 3D CBCT images.
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2. By introducing a self attention mechanism, we have effectively improved the
segmentation accuracy of our model which surpasses the performance of other
comparative models.

3. By using multitasking learning, we successfully reduced the error in tooth
surface segmentation while maintaining a high level of mask segmentation
accuracy.

4. By evaluating our model with other CNN based models through experiments,
we have demonstrated that introducing self attention mechanism can improve
the performance of tooth segmentation models.

2 Related Work

Tooth Segmentation Based on Deep Learning. Inspired by 3D Mask R-
CNN [17], Cui et al. [11] introduced ToothNet, an automatic tooth instance
segmentation method in CBCT images. ToothNet employs 3D Region Pro-
posal Network (RPN) [26] for tooth detection, recognition, and segmentation.
Chung et al. [8] proposed the PATRCNN+TSNet method, which addressing
metal artifacts in CBCT images using pose-aware techniques. Chen et al. [7] pre-
sented 3D FCN+MWT, a method that combines deep learning and traditional
methods. They utilized a multi-task 3D fully convolutional network (FCN) to
simultaneously predict tooth masks and surfaces. They then employed marker-
controlled watershed transform (MWT) for tooth recognition and segmentation.
Wu et al. [31] incorporated a center-sensitive mechanism into their method to
guide tooth localization, thus avoiding the computational burden of numerous
anchors generated by RPN in 3D CBCT images. Additionally, they employed
DenseASPP-UNet for tooth segmentation and added boundary loss to reduce
prediction errors on tooth boundaries. Jang et al. [19] proposed PanoramicNet,
a novel tooth instance segmentation method. This method first expands the 3D
tooth image into a 2D Panorama by calculating the dental arch curve. Then, it
detects the teeth on the 2D Panorama images and completes instance segmen-
tation by combining the 2D and 3D results. To address the diverse and com-
plex tooth morphologies and reduce computational complexity, Cui et al. [12]
extended their previous work [11] and introduced Hierarchical Morphology-
Guided Network (HMGNet). The HMGNet utilizes tooth centroids to represent
tooth positions and introduced tooth skeletons to depict the tooth’s morpholog-
ical structure, which can significantly enhance tooth segmentation accuracy in
complex cases.

Self-attention. The Self-Attention mechanism calculates the similarities
between different positions in the input sequence, assigns weights to each posi-
tion, and then uses these weights to compute the output for each position. Specif-
ically, given an input sequence X, it first performs linear transformations to
obtain three matrices Q,K, V . Next, it calculates the similarity matrix QKT by
taking the dot product of each row vector in matrix Q and matrix K. Finally,
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Fig. 1. The overall architecture of our method for fully automatic tooth instance seg-
mentation.

these similarities are normalized into a probability distribution using the soft-
max function. The result is multiplied with matrix V to obtain the Self-Attention
representation [30]:

Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
× V, (1)

where dk represents the dimension of the key vector for stabilizing the learning
process. Self-Attention allows the model to capture long-range dependencies and
global information from the input sequence, which can lead to improved perfor-
mance in various tasks. In this paper, we introduce the Self-Attention mechanism
in tooth instance segmentation for improving the accuracy.

3 Method

The overall architecture of our method for fully automatic tooth instance seg-
mentation is shown in Fig. 1, which mainly consists of three stages. In the first
stage, V-Net [24] is employed for coarse binary segmentation of teeth to obtain
the teeth Region of Interest (ROI). In the second stage, a muti-task UNETR++
is used to extract teeth centroids and skeletons. These provide a rough rep-
resentation of the morphological structure of teeth. The third stage involves
utilizing an another muti-task UNETR++ for tooth segmentation with the guid-
ance of the tooth skeleton. This stage simultaneously generates teeth masks and
boundaries.
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Fig. 2. The architecture of Multi-task UNETR++.

3.1 Multi-task UNETR++

In this paper, the multi-task UNETR++ is employed as the backbone network
for tooth instance segmentation. As depicted in Fig. 2, the network follows a hier-
archical Encoder-Decoder structure. To process the input 3D image, it is first
converted into 3D patches using Patch Embedding [13]. Given an input image
X ∈ RH×W×D, it is partitioned into patches of resolution (Ph, Pw, Pd), resulting
in feature maps of size H

Ph
× W

Pw
× D

Pd
×C. Throughout the experiments, a patch

size of (4, 4, 4) is utilized. The designed multi-task UNETR++ introduces an
additional decoder for the achieving the multi-tasks, such as tooth mask seg-
mentation and tooth boundary estimation. Both decoders use skip connections
to obtain feature maps from the encoder at each layer.

The core design of UNETR++ is the Efficient Pairwise Attention (EPA)
blocks. It can effectively learn spatial and channel features through a pair of
interdependent branches based on spatial and channel attention [28]. According
to Eq. 1, spatial and channel attention can be calculated:

As = Attention(Qshared,Kspatial, Vspatial)
Ac = Attention(Qshared,Kshared, Vchannel)

(2)

In the spatial attention, Vspatial(HWD × C) and Kshared(HWD × C) are lin-
early projected into low-dimensional matrices Vspatial(p×C) and Kspatial(p×C),
respectively. To facilitate communication between the branches of spatial and
channel attention, the weights of the query and key mapping functions are
shared, achieving Paired-Attention. This operation also reduces the total number
of network parameters. Finally, the spatial attention map and channel attention
map are fused through convolutional operations:

X = Conv1(Conv3(As + Ac)). (3)

The Conv3 represents a convolutional block with a 3 × 3 × 3 kernel size, while
Conv1 represents a convolutional block with a 1 × 1 × 1 kernel size.
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Fig. 3. Computing the ROI of teeth from 3D CBCT image.

3.2 Obtaining ROI of Teeth

The first step for the input 3D CBCT image is to obtain the Region of Interest
(ROI) containing teeth. This step can reduce the computational workload for the
subsequent tooth centroid and skeleton extraction phase, as well as the segmenta-
tion phase. Moreover, it has the potential to improving the overall segmentation
accuracy. The specific pipeline of this step is illustrated in Fig. 3. V-Net is used
to perform binary segmentation of the image (without distinguishing individual
teeth), resulting in the tooth’s foreground region. Then, the tooth ROI can be
computed from this foreground region.

In order to accurately compute the ROI, the loss function used for training
in this step is the combination of the Dice loss and the Cross-Entropy loss.

Ls1 = Lseg = α · Ldice + (1 − α) · Lce, (4)

where

Ldice = 1 − 2
∑N

i=1 piqi + ε∑N
i=1 p2i +

∑N
i=1 q2i + ε

, (5)

Lce = − 1
N

N∑
i=1

(qi log (pi) + (1 − qi) log (1 − pi)) . (6)

Here, pi represents the value of the i-th voxel in the predicted result, qi represents
the value of the i-th voxel in the ground truth label, and ε is a very small number
used to prevent division by zero.

3.3 Extraction of Teeth Centroids and Skeletons

The tooth centroid helps determine the tooth’s position and instantiate its label,
while the tooth skeleton provides an approximate representation of the tooth’s
morphological structure. By combining the centroid and skeleton information,
they can provide guidance for the tooth instance segmentation. The process of
this step is illustrated in Fig. 4.

The 3D image is processed by two UNETR++ sub-networks, each contain-
ing two decoders. One decoder predicts the binary segmentation map, while the
other predicts the 3D offset map. The centroid offset map represents the offset
between each voxel and its corresponding tooth centroid, while the skeleton off-
set is the offset between each voxel and the nearest point on the tooth skeleton.
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Fig. 4. Extract the centroid and skeleton of teeth

Fig. 5. Complete instance segmentation of teeth

By adding the tooth centroid offset vector to the current foreground voxel coor-
dinates, the tooth centroid density map is obtained. After obtaining the tooth
centroid density map, a clustering method [27] is applied to cluster the tooth
centroid density map to get tooth instance centroid labels. These labels are then
mapped onto the tooth foreground, resulting in instance-level tooth foreground
images. Similarly, by using the tooth foreground and skeleton offset vector maps
together in the clustering operation, the final instance-level teeth skeleton labels
are obtained.

In this step, the loss function considers both the tooth mask segmentation
and the tooth centroid or skeleton parts,

Ls2 = Lseg + Lcs, (7)

where Lseg represents the loss for tooth mask segmentation, which combines
Dice loss and Cross-Entropy loss. Lcs represents the loss for tooth centroid or
skeleton, using L1 Loss.

3.4 Tooth Instance Segmentation

The final step for tooth instance segmentation is illustrated in Fig. 5. After
obtaining the tooth ROI and tooth skeleton, each individual tooth can be
cropped around its centroid. The cropped tooth, along with its skeleton, is then
concatenated and used as the input to the multi-task UNETR++ model. The
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model’s output simultaneously predicts tooth masks and tooth boundaries, aim-
ing to maintain accurate tooth segmentation while minimizing errors in tooth
surface segmentation.

The loss function for individual tooth segmentation considers both tooth
mask segmentation (Lseg) and tooth boundary segmentation (Lb):

Ls3 = λLseg + μLb. (8)

Here, Lseg represents the loss for tooth mask segmentation, which combines
Dice loss and Cross-Entropy loss. Lb represents the loss for tooth boundary
segmentation, using L2 Loss. In the experiments, λ = 0.6 and μ = 0.1.

4 Experiments

4.1 Experimental Setup

Dataset. We evaluate the performance of our method on the tooth dataset
from [9]. This dataset consists of 100 three-dimensional CBCT images of teeth.
After excluding two cases where the tooth images did not match the correspond-
ing annotation labels, we were left with 98 valid data cases. Throughout the
experiments, the complete dataset was randomly split into 70 cases for training,
8 samples for validation, and 20 samples for testing.

Data Preprocessing. First, we normalize each CBCT image to the range [0,
1]. The specific data preprocessing at different stages is as follows. (1) Obtain-
ing tooth ROI: Due to the limitations of GPU memory, the input tooth CBCT
images are randomly cropped to a size of 256 × 256 × 256. (2) Extracting tooth
centroids and skeletons: The tooth centroid uses the center of the tooth label.
The distance-transform-based algorithm is used to obtain the tooth skeleton [23],
which iteratively removes voxels from the binary mask until the skeleton is
extracted. After that, the tooth image, tooth label, and tooth skeleton are ran-
domly cropped to a size of 128 × 128 × 128 for training. (3) Tooth instance
segmentation: The tooth boundaries are computed by the Canny edge detection
algorithm [3] on each 2D CT slice of the 3D CBCT image.

Implementation Details. The experiments were conducted using the PyTorch
framework and a GeForce RTX 3090 GPU. The batch sizes for the three stages
are 1, 1, and 4. The initial learning rates are set to 0.001, 0.001, and 0.0001
for the three stages. A polynomial learning rate decay strategy is used, which
continuously decreases the learning rate during training. The Adam optimizer
with a weight decay of 0.0001 is used for optimization. The number of iterations
for the three stages are set as 30k, 60k, and 50k, respectively.

Evaluation Metrics. In this study, multiple metrics are used to assess the
accuracy and surface error of the segmentation model, including Dice similarity
coefficient (DSC), Jaccard Index, Average Surface Distance (ASD), Sensitivity
(Sen), and Hausdorff distance (HD).
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Table 1. Comparison of segmentation accuracy with other models.

Models DSC(%) Jaccard(%) ASD (mm) HD(mm)

MWTNet [7] 89.6± 1.2 82.5± 1.7 0.36± 0.14 4.82± 1.68

ToothNet [11] 91.9± 1.3 84.2± 1.8 0.30± 0.11 2.82± 1.02

CGDNet [31] 93.9± 0.9 89.2± 0.7 0.27± 0.03 1.99± 0.78

HMGNet [12] 94.8± 0.4 89.1± 0.9 0.18± 0.02 1.52± 0.28

Ours 95.1± 0.3 90.8± 0.5 0.13± 0.02 1.39± 0.24

4.2 Experimental Results

Comparison with Other Methods. In order to validate the segmentation
performance of the proposed fully automatic tooth segmentation model based
on UNETR++, we conducted comparison experiments with state-of-the-art
(SOTA) methods for tooth instance segmentation based on CNN. These meth-
ods include MWTNet [7] based on 3D-FCN, ToothNet [11] based on 3D RPN,
CGDNet [31] which utilizes tooth center guidance and DenseASPP-UNet, as well
as HMGNet [12] based on tooth center and skeleton guidance, and V-Net.

In Table 1, we can see that our model can achieve a Dice Similarity Coefficient
(DSC) of 95.1% and a Jaccard index (Jaccard) of 90.8%. These values are higher
than other comparison methods, which indicates that our model performs the
best in terms of accuracy for tooth segmentation. Additionally, our model also
shows the smallest values of Average Surface Distance (ASD) and Hausdorff
Distance (HD), which are 0.14mm and 1.39mm, respectively. These results prove
that the proposed fully automatic tooth instance segmentation method based on
UNETR++ not only exhibits higher overall similarity in tooth segmentation, but
also performs better in tooth edge segmentation.

To summarize, the tooth segmentation model based on UNETR++ proposed
in this study outperforms existing tooth instance segmentation models. This
is attributed to the introduction of Self-Attention, which allows the model to
easily capture the global information from 3D CBCT images. Additionally, tooth
centroids and tooth skeletons contribute to the coarse description of teeth and
help improve the accuracy of our model. And the high segmentation accuracy
achieved for both tooth masks and tooth edges proves that multi-task learning
has shown significant effectiveness.

Ablation Experiment. To better investigate the effectiveness of the proposed
UNETR++-based tooth instance segmentation model, we conducted ablation
experiments while keeping all other experimental conditions the same. In these
experiments, the main backbone networks for all three stages were replaced with
V-Net as a baseline, and then UNETR++ was used in the second and third
stages and compared with the original model. The results are shown in Table 2.

Table 2 shows that using UNETR++ in both the second and third stages led
to improvements in the model’s performance. Replacing the network for tooth
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Table 2. The performance of replacing the UNETR++ with V-Net.

Models DSC(%) Jaccard(%) ASD(mm) Sen(%)

VNet(s1,s2,s3) 93.7 88.2 0.21 95.8

VNet(s1,s3) + UNETR++(s2) 93.9 88.6 0.18 96.6

VNet(s1,s2) + UNETR++(s3) 94.8 90.1 0.13 94.9

VNet(s1) + UNETR++(s2,s3)(Proposed) 95.1 90.8 0.13 96.1

centroid and skeleton extraction with multi-task UNETR++ in the second stage
resulted in a 0.2% increase in DSC and a 0.3mm reduction in ASD. In the third
stage, replacing the network for tooth segmentation with multi-task UNETR++
led to a 1.1% increase in DSC and a 0.8mm reduction in ASD. Lastly, replacing
the backbone networks for both the second and third stages with multi-task
UNETR++ resulted in a 1.4% increase in DSC and a 0.8mm reduction in ASD.

These results indicate that the utilization of the UNETR++ network with
Self-Attention mechanism in this study significantly improved the tooth seg-
mentation performance compared to the V-Net based CNN tooth segmentation
model. This is because in 3D CBCT images, the morphology and positions of
teeth are quite complex, and the images themselves contain massive amounts of
information. Therefore, obtaining the global information of the images can help
improve the model’s performance. The introduction of the Self-Attention mech-
anism in UNETR++ allows for the effective capture of the global information
from 3D CBCT images. The EPA (Efficient Pairwise Attention) blocks play a
key role in this process.

5 Conclusion and Future Work

In this paper, we investigate a tooth segmentation method for 3D CBCT images.
We use UNETR++ as the backbone network due to its low parameter count, low
computational requirements, and state-of-the-art performance in medical image
segmentation. We establish a fully automated tooth instance segmentation app-
roach. It begins by obtaining the tooth’s Region of Interest (ROI) using V-Net.
Subsequently, it represents the tooth’s morphological structure coarsely by pre-
dicting tooth centroids and tooth skeletons. These centroids and skeletons are
then used to guide the tooth instance segmentation process. As a result, the fully
automated tooth instance segmentation method developed in this paper outper-
forms other tooth segmentation methods in terms of both tooth instance seg-
mentation accuracy and tooth boundary segmentation error on CBCT images.
This also indicates that using a network with Self-Attention mechanisms can
achieve excellent segmentation results in tooth segmentation.

Although our method can outperform other comparison methods, some lim-
itations still exist in this research: (1) Despite UNETR++ being a lightweight
model with fewer parameters and computational requirements, the training time
is still longer than that of simple CNN networks. (2) The model requires multiple
steps to provide guidance for the final segmentation, which necessitates training
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multiple networks independently for each step. Future work can be focused on
the following directions: (1) Researching even lighter segmentation networks or
performing data preprocessing to speed up the training process. (2) Refining
the model to combine tasks such as obtaining tooth ROI, tooth centroids, tooth
skeletons, and tooth masks into a single stage, achieving tooth instance seg-
mentation in a one-stage process. By addressing these limitations and exploring
new approaches, the tooth segmentation method can be further improved and
applied more effectively in clinical settings.
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