q

Check for
updates

Compactness and Separateness Driven Fuzzy
Clustering Validity Index Called TLW

Yiming Tang'>®9, Xiang Wang!, Bing Li!, Xianghui Hu', and Wenjun Xie!

I Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine,
School of Computer and Information, Hefei University of Technology,
Hefei 230601, Anhui, China
tym608@163.com
2 Engineering Research Center of Safety Critical Industry Measure and Control Technology,
Ministry of Education, Hefei University of Technology, Hefei 230601, Anhui, China

Abstract. The design of validity index of fuzzy clustering has always been a
historical problem in fuzzy clustering field. When the distribution of cluster cen-
ters is very close, it is difficult for the existing fuzzy clustering validity indexes
to obtain a reasonable cluster number, and the separation mechanism of these
indexes is too simple. In order to solve the above problems, we propose a novel
fuzzy clustering validity index called TLW (Tang-Li-Wang) index. Firstly, com-
pactness is expressed as the ratio of the membership weighted distance value to
the sample variance of the dataset. Secondly, the sum of the maximum distance
between cluster centers and the mean distance is used in separateness, and the
sample variance of cluster centers is introduced, and the two are multiplied to
describe the separateness. Thirdly, on the basis of considering compactness and
separateness, the introduction of cluster number can alleviate the phenomenon that
the index value may change monotonically with the increase of cluster number.
Finally, the classical FCM (Fuzzy C-Mean) algorithm is used to conduct experi-
ments on indexes. Comparative experiments and analyses were carried out on 17
typical datasets and 12 clustering validity indexes. From the experimental results
of normal simple datasets and high-dimensional difficult datasets, the proposed
index shows some advantages. All in all, these results verify that the proposed
TLW index has better accuracy and stronger stability.

Keywords: Fuzzy clustering - clustering validity index - compactness -
separateness - fuzzy c-means algorithm

1 Introduction

Clustering is an unsupervised machine learning method [1-4], which has been widely
applied and studied in various fields. Cluster verification is an important method to
evaluate the quality of clustering [5, 6] and plays a vital role in clustering analysis.
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Clustering validation is a quantitative evaluation of clustering results, which is called
clustering validity index (CVI) [7]. The function of CVI is to judge the optimal number
of clusters and the optimal partition result. For the results divided by clustering algo-
rithm, we calculate the corresponding index, and analyze the quality of clustering results
according to the CVL

Nowadays, many CVIs [8] have been proposed for various clustering algorithms, but
after a lot of research, it is found that there is no effective index for all types of datasets.
CVIs mentioned here are mainly internal validity indexes, most of which are based on
the fuzzy c-means (FCM) algorithm. For the optimal number of clusters determined
by FCM, the Calinski-Harabasz index (CH) [9], partition coefficient (PC) [10], Dunn
index (Dunn) [11], standard separation coefficient (NPC) [12], Fuyama-Sugeno index
(FSI) [13], Xie-Beni index (XBI) [14], Davis-Bouldin index (DBI) [15], WLI index [16],
IMI index [17], and Mittal Saraswat index (SMI) [18] were proposed. The VCVI index
[19] was based on the initial center selection method of the density parameter, rather
than randomly selecting the initial center. Secondly, Maulik and Bandyopadhyay [20]
proposed MB index after comparing the hard clustering algorithm (K-means), the single
link algorithm and the simulated annealing algorithm. Some complex CVIs considered
the distance between the data objects and the cluster centers, or the distance between the
cluster centers, and calculated the average of these distances, such as the CH index and
the FSI index, and used them as key components of the CVI formula. However, using
these factors as key components leaded to CVIs that only produced better results for
specific datasets. There were also some indexes that referred to some combinations of
the maximum, median, average and minimum values of the above distances, such as the
WLI and IMI indexes. It improved the robustness of the index, but the computation is
more complex.

The existing indexes still have problems that cannot be ignored [21]:

1) The basic principle of clustering is that data objects with homogeneous characteristics
are grouped into the same cluster, while data objects in different clusters are heteroge-
neous. This is usually achieved by considering compactness and separateness between
clusters. Compactness measures the concentration of data objects within a cluster.
The distance between objects with homogeneous features should be relatively small.
However, this processing strategy goes wrong when dealing with intensive datasets.

2) The separateness is used to measure the degree of separation between clusters, so that
the data with heterogeneous characteristics should be as different as possible. This can
be evaluated by calculating the distance between each pair of cluster centers, or by the
distance between two heterogeneous objects from two different clusters. The greater
the distance, the better the separation effect of clusters. Most of the existing indexes
express the degree of separation too simply, leading to inadequate characterization
of the dataset. Hence we need a more comprehensive CVIL.

Therefore, in this study, a new clustering validity index called the Tang-Li-Wang
(TLW) index is proposed based on the above factors.
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2 The TLW Index for Fuzzy Clustering

2.1 Compactness Analysis

The TLW index consists of three factors. The first part is the number of clusters K, which
can alleviate the phenomenon that the value of the index may change monotonically with
the increase of K. In addition, separateness and compactness are described in the other
two factors of the index.

The first factor is K, as shown in (1):

Ci =K. (D

In TLW index, we retain the advantages of the WLI index, but also increase the sample
variance of the dataset. Therefore, we can have a macro grasp from the compactness of
individual clusters to the compactness of the whole dataset. We add new elements to
the compactness of TLW index, and also consider the possible drawbacks of traditional
indexes in the past. The TLW index reduces the complexity of E} and effectively reduces
the operation time. Finally, the TLW index can get satisfactory results when dealing with
complex datasets of different data distributions.

To sum up, we give a new fuzzy compactness expression, as follows:
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Here K is the number of data clustering categories. N is the sum of the samples of the
dataset. m is the index of membership matrix and represents the fuzzy weighting index.
x; is a data object in all datasets and its subscript represents the i-th data object. v is
a cluster center and the subscript represents the k-th cluster center. u;;, represents data
membership. Zf’z 1 Ml — Vi |2 is called the sum of squared errors within the class.
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2.2 Separateness Analysis

The TLW index uses the maximum distance of cluster centers, the mean distance of
cluster centers and the sample variance of cluster centers to represent the separateness.
Therefore, the TLW index can better control the separateness of each pair of cluster
centers and the separateness of the whole cluster centers, and can achieve almost unbiased
evaluation. Adding the mean distance of cluster centers to the separateness can make the
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index have a better result in evaluating the data cluster with dense cluster centers. The
third factor Dy, which measures the maximum degree of separation between the two
clusters in all possible cluster pairs, will increase as the value of K increases. This value
is the upper bound on the maximum separation between two points in the dataset. This
ensures that we do not over-partition data that belongs to a cluster. The experiment also
proves that the combination of the minimum distance of cluster centers and the mean
distance of cluster centers is worse than the combination of the maximum distance of
cluster centers and the mean distance of cluster centers.

Secondly, the index adds the sample variance of the cluster centers. The new
separateness measure is obtained as follows:

2 2

C3 = (maxixj|[vi — vjl|” + meanj;||vi — vj[|7)
1 K —
X — Vi — V .
7 2y el

According to the above formula, it can be seen that the third factor of the index
considers the maximum distance between cluster centers and the mean distance between
cluster centers. It makes TLW index have better results in the evaluation of the dataset
with intensive structure, and avoids excessive division of clusters that originally belong
to one class.

(6)

2.3 Function Expressions

Based on the above, we can get the TLW index, and its formula is as follows:
TLW ) = C) x Cy x C3 (7

The TLW index consists of three factors. The first factor is used to avoid the mono-
tonicity of the index as the number of clusters increases. The second factor is a char-
acterization of compactness and the third factor is the characterization of separateness.
The third one restricts and balances each other. Meanwhile, the smaller the index, the
better the clustering result.

The evaluation of an CVI is to see whether it can adapt to more kinds of datasets, and
try to exclude the influence of clustering algorithms. The TLW index adds the variance of
the whole sample dataset and the sample variance of the cluster centers for compactness
and separateness, respectively. This increases the grasp of the overall separateness of
the data and can better adapt to different structured datasets. At the same time, the TLW
index not only considers the compactness and separateness of the whole dataset, but also
considers the compactness and separateness of each cluster. The evaluation of the effect
of clustering division is more refined.

The following is the calculation process of Table 1, which is the clustering validity
index TLW.

Next, we describe the reasons why the TLW index is better than previous indexes.
The composition of the index is divided into three factors. The first factor is the number
of clusters, which can alleviate the monotonicity of the index caused by the increase of
the number of clusters. The second factor is compactness, which consists of the ratio
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of the weighted distance of cluster membership to the variance of the sample points in
the datasets. The advantage of this is that the index can handle datasets with different
structures well, and the overall separateness of the dataset can also be included in the
consideration of index compactness. The third factor is separateness, which is the sum
of the maximum distance of the cluster centers and mean distance of the cluster centers,
then multiplied by the sample variance of the cluster centers. The mean distance allows
the TLW index to handle intensive datasets and the maximum distance prevents the
index from over-partitioning when dealing with datasets that already belong to the same
cluster. The sample variance of cluster centers refers to the deviation degree of cluster
centers. Therefore, when classifying clusters, the TLW index not only considers the
overall separation degree of cluster centers, but also involves the relationship between
each pair of cluster centers. Finally, the TLW index not only considers the compactness
and separateness of the whole dataset, but also the compactness and separateness of
each cluster. All these make the evaluation of the TLW index on the effect of data
agglomeration analysis more refined.

Table 1. The calculation process of TLW.

Algorithm 1. The calculation process of TLW.
Input: Input hyperparameter: Maximum iterations /ter, threshold for stopping iteration & ,

membership matrix U = [u[.l. ], the minimum number of clusters K, and the maximum number

of clusters K .

Output: The index value of TLW under different cluster number.

procedure
Pl: Set Iter, & and Kmax ; initializes the membership matrix U = [uy] (satisfy
C

Zuij =1); let the number of initial iterations be 0, K . =2, K=K ., m=2;
i=1

P2: Update membership matrix U;

P3: Update cluster center V;

P4 k=k+1;

P5:If || ph _p® |> & and k < [ter , return Step2; else, continue;

P6: Calculate C2 using (2);

P7: Compute C3 using (6);

P8: Figure out the value of TLW using (7);
Po: K=K+1;
Pl0:If K <K return P2; else, continue;

max
P11: Find the minimum value of TLW(K) and the corresponding number of clusters K (opti-
mization fraction);

end procedure
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3 Experiments and Analysis

We adopted the FCM algorithm for verification. We used Intel(R) Core(TM)i7-8700
CPU @ 3.20 GHz 3.19 GHz, and Windows 100S. Employed programming software
was MATLAB 2018b.

A total of 17 datasets are used in the comparative experiment. Firstly, we run the
FCM algorithm with different K values, and get the clustering results on some datasets.
Then we calculate the value of the index in each round to find the best value. When the
index value obtains the optimal result, the corresponding cluster number is the obtained
cluster number. In this experiment, 12 indexes are used for comparative experiment. The
specific experimental results and analyses are as follows.

3.1 Datasets and Comparison Indexes

Three types of datasets are used in this experiment, namely the UCI datasets [17], the
artificial datasets and the Olivetti face dataset.

Eight UCI datasets are used in the experiment, including six normal datasets and two
high-dimensional datasets. Normal UCI datasets include SPECTF-heart, Monk, Hayes-
Roth, Seeds, Glass and Zoo. The SPECTF-heart dataset collects diagnostic information
from patients’ heart scan (SPECT) images, which are divided into two categories: normal
and abnormal. The SPECTF-heart dataset contains 267 patients’ diagnostic information
samples with 44 dimensions, and the number of clusters is 2. The Monk dataset has 432
data samples with a 6-dimensional data dimension, and the number of clusters is 2. The
Hayes-Roth dataset has 132 data samples with a 5-dimensional data dimension, and the
number of clusters is 3. The Seeds dataset has 210 samples with a 7-dimensional data
dimension, and the number of clusters is 3. The Glass dataset has 214 data samples with
9 dimensions, and the number of clusters is 6. The Zoo dataset has 101 data samples with
a 16-dimensional data dimension, and the number of clusters is 7. The other two high-
dimensional datasets are Libras and Letter. The Libras dataset has 360 data samples with
a 90-dimensional data dimension, and the number of clusters is 15. The Letter dataset
has 20000 data samples with 16 dimensions, and the number of clusters is 26.

While real datasets can make our conclusions more convincing, real datasets are too
homogeneous. In order to avoid this problem, we should select other types of datasets to
enhance the strength of experimental persuasion. Eight artificial datasets are used in the
experiment, including six normal datasets and two high-dimensional datasets. Normal
artificial datasets include Data_60, Data_11, E6, X8D5K, Fc1 and Sn. The Data_60
dataset has 60 data samples with a 2-dimensional data dimension, and the number of
clusters is 3. The Data_11 dataset has 150 data samples with a 2-dimensional structure,
and the number of clusters is 3. The E6 dataset has 8537 data samples with 2 dimensions,
and the number of clusters is 4. The X8D5K dataset has 1000 data samples with a 8-
dimensional data dimension, and the number of clusters is 5. The Fc1 dataset has 1035
data samples with 2 dimensions, and the number of clusters is 5. The Sn dataset has 513
data samples with 2 dimensions, and the number of clusters is 5. The other two high-
dimensional datasets are Dim_128 and Dim_256. The Dim_128 dataset has 1024 data
samples with 128 dimensions, and the number of clusters is 16. The Dim_256 dataset has
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1024 data samples with a 256-dimensional data dimension, and the number of clusters
is 16.

In addition, 12 indexes are selected for comparative experiment. Some indexes have
the best clustering result with maximum values, such as CH, PC, Dunn, NPC and MB.
While others have the best clustering result with minimum values, such as FS, XBI, DB,
WLI, VCVI, IMI and SMI.

3.2 Experiments

In our experiments, the optimal number of clusters in some datasets is less than 10. We
repeat the datasets for 10 rounds, with the number of clusters in each round ranging from
2 to 10. For other datasets, the optimal cluster number is greater than 10. These datasets
are run for 30 rounds, with the number of clusters per round ranging from 2 to 30. At
the end of each round, each index will have a maximum or minimum value, and then
the optimal index value of each round is calculated. In this case, the number of clusters
corresponding to the most optimal index values is the number of optimal clusters we
seek. We make use of CVI* to denote a larger-the-better index, and CVI~ to stand for
a smaller-the-better one. The experimental results on the high-dimensional and normal
datasets of UCI datasets are shown in Table 2.

Table 2. Results of experiments on the UCI datasets.

Spectf-heart | Monk | Hayes-Roth | Seeds | Glass | Zoo Letter Libras
CH* 233641 1010 210 210 210 210 2183119l 3030
pPC* 210 210 210 210 210 210 230 230
Dunn* 210 210 210 210 210 2238 2203545 230
NPC* 210 210 210 210 210 210 230 230
FSI= | 100 210 11010 31001410 11010 | 303 30%
XBI- | 273} 8298 | 310 3100 2468 | 2781 | 26245261 5'14215°191228430?
DB™ 243442 2733 210 210 210 410 212394653 230
WLI- | 2733 8298 | 410 3100 13862 | 3476 | 292422672282 | 3315'8274202
VCVI- | 526°8° 210 | 3644 310 12465 210 267495147188 | 769%10911415718*
M- | 2543 8892 | 22374 310 1291|2436 | 852313265307 | 4915'°17°18320" 21!
MB* | 2%9! 2793 | 3°10! 310 16%10° | 7010* | 26'930"! 1521299
SMI— 210 210 3892 310 210 2238 2167787 230
TLW- | 210 21013941 310 16872 | 677 | 20'126'° 1115%

In Table 2, for the Zoo dataset, the optimal cluster number of CH after 10 rounds
is 2, so the optimal cluster number determined by CH is 2. In fact, the result is wrong.
The WLI index produced two results after 10 rounds, which were 3 and 7. Among them,
3 appeared 4 times, and 7 appeared 6 times, so the index finally determined that the
best cluster number was 7. It can be seen that the WLI index get the correct result. The
meanings of other indexes in the table are the same as those described above.
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K is taken as the optimal cluster number when the index obtains the most times, as

shown in Table 3, in which * indicates that the obtained result is inconsistent with the
correct result.

Table 3. The optimal value of the index on the UCI datasets.

Spectf-heart | Monk | Hayes-Roth |Seeds |Glass |Zoo |Letter |Libras
Best 2 2 3 3 6 7 26 15
cH* 3% 10* 2% 2% 2% 2% 2% 30%*
PC*t 2 2 2% 2% 2% 2% 2% 2%
Dunn*t |2 2 2% 2% 2% 3% 2% 2%
NPC* 2 2 2% 2% 2% 2% 2% 2%
FSI™ 10* 2 10%* 3 4% 10* | 30* 30%*
XBI™ 2 9% 3* 3 6 2% 26 19*
DB~ 2,3% 2 2% 2 2% 4% 2% 2%
WLI™ 2 9% 4% 3 3% 7 26 15
VCVI~ | 5% 2 3 3 6 2% 18%* 15
IMI™ 2.4% 8* 3 3 2% 3% 23% 15
MB* 2 2 3 3 6,10% |7 26 15
SMI— 2 3 3 2% 3% 2% 2%
TLW™ |2 3 3 6 7 26 15

In the Letter dataset, there are 20000 16-dimensional samples, and the correct number
of categories is 26. In Table 2, we can see the results of each index on the Letter dataset.
The optimal cluster number of CH obtained for 18 times is 2, and the optimal one for
11 times is 3, and the optimal one for 1 time is 9. The optimal cluster numbers obtained
by the PC and NPC after 30 rounds of operation are all 2. The optimal cluster number
of Dunn obtained for 20 times is 2, and the optimal one for 5 times is 3, and the optimal
one for 5 time is 4. The optimal cluster numbers obtained by FSI after 30 rounds of
operation are all 30. The optimal cluster number of XBI obtained for 19 time is 26, and
the optimal one for 5 times is 24, and the optimal one for 6 times is 2. The optimal cluster
number of DB obtained for 12 times is 2, and the optimal one for 9 times is 3, and the
other outcomes are distributed in 4 and 5 classes. The optimal cluster number of WLI
obtained for 22 times is 26, and the optimal one for 4 times is 2, and the other outcomes
are distributed in 24 and 28 classes. The optimal cluster number of VCVI obtained for 8
times is 18, and the optimal one for 7 times is 14, and the other outcomes are distributed
in 2, 7 and 9 classes. The optimal cluster number of IMI obtained for 13 times is 23,
and the optimal one for 7 times is 30, and the other outcomes are distributed in 8 and 26
classes. The optimal cluster number of MB obtained for 19 times is 26, and the optimal
one for 11 times is 30. The optimal cluster number of SMI obtained for 16 times is 2, and
the optimal one for 7 times is 7, and the optimal one for 7 time is 8. The optimal cluster
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number of TLW index obtained for 19 times is 26, and the optimal one for 11 times
is 20. We find that the result of TLW is correct, and the occurrence of correct optimal
cluster number is the most frequent and relatively stable. Other indexes are inferior to
TLW in terms of occurrence of correct cluster number and stability.

The Best row in the table is the correct number of clusters for the datasets. Taking
the Libras dataset as an example, WLI, VCVI, IMI, MB and TLW all obtain correct
clustering number. However, CH, PC, Dunn, NPC, FSI, XBI, DB, and SMI do not get
clustering number. The changes of the results obtained from K of each index from 2 to
10 on the Libras dataset are shown in Fig. 1. Red marks the optimal number of clusters
for each index.

Figure 1 is a line chart of each index function, representing the different index
function values corresponding to the change of cluster number K from 2 to 30. When
each index in the figure obtains the optimal value, the corresponding number of clusters
is not exactly the same. And the convergence direction of each index algorithm is not
exactly the same when obtaining the optimal result. In the Fig. 1, we can see that the
CH, PC, Dunn, NPC and MB indexes are all the best results when the value of the index
reaches the maximum value, while the remaining indexes are the best clustering results
when the value of the minimum index. By observing the function value graphs of 13
indexes and their performance on UCI datasets, the newly proposed TLW index has high
accuracy and stability.

Table 4 shows the results of the indexes on artificial datasets. We can see the results
of each index on the Dim_128 dataset. The optimal cluster number of CH obtained for
25 times is 2, and the optimal one for 3 times is 4, and the optimal one for 2 time is 6.
The optimal cluster numbers obtained by the PC, Dunn and NPC indexes after 30 rounds
of operation are all 2. The optimal cluster numbers obtained by FSI after 30 rounds of
operation are all 30. The optimal cluster number of XBI index obtained for 18 times
is 16, and the optimal one for 7 time is 30, and the optimal one for 5 times is 25. The
optimal cluster number of DB obtained for 20 times is 2, and the optimal one for 5 time
is 4, and the optimal one for 5 times is 7. The optimal cluster number of WLI obtained
for 18 times is 16, and the one for 8 time is 15, and the one for 4 times is 24. The optimal
cluster number of VCVI obtained for 28 times is 2, and the optimal one for 2 time is 3.
The optimal cluster number of IMI obtained for 12 times is 16, and the optimal one for
10 time is 24, and the optimal one for 8 times is 15. The optimal cluster number of MB
obtained for 22 times is 16, and the optimal one for 8 time is 9. The optimal one of SMI
obtained for 14 times is 6, and the optimal one for 10 time is 2, and the optimal one for
6 times is 8. The optimal one of TLW obtained for 22 times is 16, and the optimal one
for 8 time is 13.

We select the number of clusters with the most optimal values as the final result.
The performance of all indexes is summarized in Table 5. K* indicates a case where the
evaluation is incorrect.

In Table 5, the FS index gets the correct number of clusters in all normal artificial
datasets, but not in high-dimensional artificial datasets. Another index that performed
well is the XBI index, which gets correct results in all seven datasets. And our proposed
TLW index gets correct results in all datasets. The remaining indexes, such as CH and
Dunn, have many errors and even fail to evaluate a dataset correctly.
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Fig. 1. Comparison of results for each index on the Libras dataset. (Color figure online)

Table 6 shows the clustering results of all indexes on the Olivetti face dataset. The
Olivetti face dataset has a total of 40 sets of photos, and each set contains 10 images.
These 10 images are from the same person’s face information, which is the same person’s
different expressions and images.
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Table 4. Results of experiments on the artificial datasets.

Data_60 | Data_11 | E6 Fcl X8D5K | Sn | Dim_128 Dim_256
CH* 210 510 210|510 510 2109254362 2243551
PC* 310 210 410 310 510 510 |30 230
Dunnt | 210 510 710|510 510 210 | 530 218456582
NPC+ | 310 210 410 310 510 510 |30 230
ESI— 3773 310 410 [ 415762 510 5664 | 3030 3030
XBI~ 310 310 410 1310 510 5100 1618255307 | 1619253308
DB— 210 310 410 310 510 510 | 2204575 21645657292
wLI— 210 210 3446 1310 14258 13100 11581618244 1921618299303
vevi— | 210 210 2248 |10 2357 210 72832 230
- 210 310 2743 223355 3258 13654 15816122410 | 1511166298305
MB* | 210 310 2941 | 5684 5882 5783 981622 9101420
sMI— | 210 3891101 46104 | 5783 2357 3357 210861614 21495161
TLW— | 310 310 410 5892 1510 51001381622 9712216!

Table 5. The optimal value of each index on the artificial datasets.
Data_60 | Data_11 E6 Fcl X8D5K Sn Dim_128 Dim_256

Best 3 3 4 5 5 5 16 16
CH* 2% 2% 2% |2% 2% 2% | 2% 2%
pC* 3 2% 4 3% |5 5|2 2%
Dunn* | 2% 2% 2% |2% 2% 2% | 2% 2%
NPC* |3 2% 4 3% |5 2% 2%
FSI~ 3 3 4 5 5 30% 30%
XBI~ |3 3 4 3% |5 5 116 16
DB~ 2% 3 4 (3% |5 5 |2x 2%
WL | 2% 2% 4 3% |5 3 116 16
A0\ 2% 4 |2t |5 2% | 2% 2%
1Y) e 3 2% |5 5 3116 15+
MB* 2% 3 2% |5 5 16 16
SMI— 2% 3 5 5 16 2%
TLW- |3 3 5 5 16 16
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Table 6. Results of experiments on the Olivetti face data set.

Olivetti face
Best 10
CH* 3030
pC* 230
Dunn™ 230
NPC* 230
FSI~ 3030
XBI~ 10203010
DB~ 2133648773
WLI™ 1020129271
VCVI~ 29541017
IMI— 10123018
MB* 1015246309
SMI~ 213461011
TLW— 821022126

Table 7 provides the number of indexes correctly classified on the three datasets. It
can be seen that the number of datasets with correct classification of TLW is the largest.
It shows that the TLW index has better stability and correctness.

Table 7. Clustering cases of all CVIs.

UCI datasets Artificial datasets The Olivetti face dataset Sum total
CH* 0 0 0 0
PC*t 2 4 0 6
Dunn* 2 0 0 2
NPC* 2 4 0 6
FSI— 2 6 0 8
XBI™ 4 7 1 12
DB~ 2 4 0 6
WLI™ 5 4 1 10
VCVI™ 5 2 1 8

(continued)
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Table 7. (continued)

UCI datasets Artificial datasets The Olivetti face dataset Sum total
MI™ 3 4 1 8
MB* 7 6 1 14
SMI—™ 4 6 1 11
TLW™ 8 8 1 17

4 Summary and Outlook

In this study, we propose a new fuzzy clustering validity index named TLW index. The
TLW index takes the good aspects of previous index and improves them. The TLW index
have three components. On the basis of separateness and compactness, cluster number
K is added to alleviate the problem that the index may change monotonically with the
increase of cluster number. The TLW index also improves separateness and compactness.
The experiment adopts the classical FCM clustering algorithm, 12 comparative indexes
and 17 datasets. The experimental results prove the feasibility and accuracy of the TLW
index.

In recent years, granular computing [22, 23] and logical reasoning [24, 25] have
highlighted great research value in the field of artificial intelligence. We hope that the
proposed TLW index combined with new research theories and directions may bring
new breakthroughs.
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