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Abstract. PET/CT is the preferred device for lung cancer and lymph node metas-
tasis diagnosis, andmining effective features fromPET/CT images to identify lung
lymph node metastasis has important research significance and application value.
Multi-phase PET/CT has temporal properties that can better represent changes in
lesions’ structural and metabolic properties. Early-phase PET images can show a
wide range of lesion areas. Delayed-phase PET images can show the high uptake
properties of 18F-FDG in malignant tumor cells. Thus, multi-phase PET repre-
sents the variability of benign/malignant lesions better in the temporal dimen-
sion. This paper first proposes a metabolic enhancement method for lung lymph
nodes and their microenvironment, a lymph node metastasis recognition network
(LNMER-Net). The network has three branches: multi-modal early-phase feature
fusion channel, multi-modal delayed-phase feature fusion channel, and single-
modal metabolic decay channel. To enhance the feature of the lymph node region,
a multi-receptive field-based feature extraction and feature space optimization
(MRFO)method is proposed to extract lymph node features by multi-scale convo-
lution operations and embed them in themulti-modal fusion channel. To exploit the
information on the metabolic changes of the lesion in the early-phase and delayed-
phase, differential results of the multi-phase PET images are fed into the single-
modal metabolic decay channel to enhance the microenvironmental features. To
verify its effectiveness, a multi-phase PET/CT dataset from China Medical Uni-
versity is used. The proposed method achieves 84.5%/82.9% in Accuracy/Recall,
which is better than SOTA methods such as Res2Net, Comformer, and NextViT.
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1 Introduction

Lung cancer is one of the most common malignancies worldwide and has a high mor-
tality rate among cancers [1]. Cancer can metastasize to nearby lymph nodes, tissues,
organs, and other parts of the body, and metastasis is a common cause of death from
cancer [2, 3]. Early detection of lung lymph nodes and rapid identification of their benign
and malignant nature is crucial for patient survival [4]. Currently, in clinical practice,
Computed Tomography (CT) and Positron Emission Tomography (PET) are important
and advanced imaging tools for the diagnosis of cancer. CT imaging extracts detailed
anatomical high-resolution information, and PET imaging extracts metabolic and func-
tional information about organs [5]. Due to the variable signs and small diameter of lung
lymph nodes [6], they are more disturbed by other normal tissues. Moreover, the amount
of slice data obtained from PET and CT is huge, and it is time-consuming and difficult
to ensure that small nodes are not missed if physicians directly analyze and identify the
lesion areas in each slice [7]. Therefore, it is worthwhile to diagnose the lung lymph
nodes accurately identified by computer based on PET/CT images.

Currently, the existing classification algorithms related to lung lymph nodes and
pulmonary nodules can be divided into two main categories. One is based on traditional
feature descriptors to extract shallow manual features to identify malignant and benign
nodules; the other is to design various deep learning methods to extract deeper abstract
semantic features of images for classification. The traditional methods extract features
(including texture, shape, intensity, and morphological features) from nodules manually,
reflecting the heterogeneity of nodules. Then feed the features into a classifier to predict
the class of nodules. Many experimental results demonstrate that traditional methods
can obtain good classification results [8–14].

Despite the popularity of handcrafted features for classification, many limitations
remain. For example, handcrafted features cannot fully characterize heterogeneous lung
lymph nodes, and it can be difficult to filter key features among the numerous feature
information. Researchers have recently started utilizing convolutional neural networks
(CNNs) for medical image tasks. Compared with traditional methods, CNNs are auto-
matic and adaptive models that learn highly discriminant features from various image
data for classification, and omit feature design and other processes. Initially, Hua et al.
[15] showed that the classification of nodules in CT images using CNNs and deep confi-
dence networks (DBNs) both outperformed traditional methods. He et al. [16] proposed
a deep residual network (ResNet), which introduced shortcut connections in deep learn-
ing models to alleviate the problem of excessive depth of neural networks. Huang et al.
[17] created dense convolutional networks (DenseNet) that can enhance feature propa-
gation, generalize better, and prevent overfitting. Chen et al. [18] proposed a dual path
network (DPN) that incorporates ResNet, which focuses on feature reuse, andDenseNet,
which focuses on feature generation. Gao et al. [19] designed Res2net based on ResNet,
which extracts global and local features of imagesmore comprehensively and effectively
throughmulti-receptive fields. In addition to CNNs, other neural network structures have
been used in image classification studies, and Vaswani et al. [20] proposed the Trans-
former method that relies on an attention mechanism to accomplish the classification
task. Peng et al. [21] fused CNN and Transformer models and proposed the first par-
allel hybrid network of the two, which combines the advantages of both and improves
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the classification effect without adding more computation. Li et al. [22] designed a new
hybrid model of CNN and Transformer, which model can achieve significant advantages
in the classification task.

At present, the above studies are mainly based on single-phase CT images, and
the existing works lack multi-modal multi-phase studies. To make lung lymph node
identification more accurate and efficient, this paper combines the advantages of multi-
modality and multi-phase, digs deeper into the temporal information, and introduces
metabolic decay information into the network to better assist the network in diagnosis.
The contributions of this paper are mainly in the following three aspects:

1. A novel model is proposed for multi-modal multi-phase data, involving three input
channel branches, namely multi-modal early-phase feature fusion channel, multi-
modal delayed-phase feature fusion channel, and single-modal metabolic decay
channel.

2. A single-modal metabolic attenuation channel is proposed for PET images imaged
using 18F-FDG as a tracer, which is the first current branch of application for tumor
characterization of multi-phase PET images.

3. A multi-receptive field-based feature extraction and feature space optimization
method is designed, using convolutional blocks of multi-scales for feature extraction,
and then filtering out the feature information that is more decisive for classification
after corresponding operations.

2 Recognition of Lung Lymph Node Metastasis

CT images contain textural information about the lesion area, and PET images with
18F-FDG as a tracer have metabolic information. Early-phase imaging and delayed-
phase imaging have a temporal relationship, and the PET images showing metabolic
information are significantly different.

Fig. 1. Schematic diagram of lung lymph nodes in different cases. (a) The diagram shows an
example of non-metastatic lymph nodes in lung lymph nodes (benign). (b) The diagram shows
an example of metastatic lymph nodes in lung lymph nodes (malignant). (a)(b) Each row of both
figures shows the lymph nodes area of different patients (Case1–4), and each column from left to
right shows the early-phase CT image, delayed-phase CT image, early-phase PET image, delayed-
phase PET image, and early-phase PET - delayed-phase PET difference image, respectively, and
the rectangular box indicates the lymph nodes area, blue is benign and red is malignant.
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The difference between the early-phase image and the delayed-phase image is
obtained as a differential image. Some of the lymph nodes are shown in Fig. 1. The
different images visualize themetabolic differences in time series and show themicroen-
vironmental information of metabolic decay. To better extract the lymph nodes and
their surrounding features, this paper uses multi-modal multi-phase PET/CT images and
multi-phase PET differential images.

2.1 LNMER-Net

To enhance the metabolic characteristics of lung lymph nodes and their microenviron-
ment, this paper proposes theLNMER-Net, a lymphnodemetastasis recognition network
model involving three channel branches. The network architecture is shown in Fig. 2
and is described as follows:

Fig. 2. Architecture of metabolically enhanced lymph nodemetastasis recognition network based
on lung lymph nodes and their microenvironment (LNMER-Net)

➀ The first channel is called the multi-modal early-phase feature fusion channel, and
the input of this channel is the fused image (IWB) of early-phase PET (PETWB) and early-
phase CT (CTWB). At first, this branch extracts the underlying anatomical features by the
multi-receptive field-based feature extraction and feature spatial optimization method
(MRFO) proposed in this paper. The shape features and texture features are extracted
using multi-scale convolution blocks, and the features are spatially optimized by the
corresponding operations. Then the deep semantic features are extracted after residual
blocks, and flattened after compressing features in pooling layers to obtain early-phase
lymph node features, denoted as FWB.
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➁ The second channel is the multi-modal delayed-phase feature fusion channel,
and the input of this channel is the fused image (ID) of delayed-phase PET (PETD) and
delayed-phase CT (CTD). Similar to themulti-modal early-phase feature fusion channel,
the input is flattened after the MRFO block, residual block, and pooling layer to obtain
the delayed-phase lymph node feature, which is noted as FD.

➂ The third channel is a single-modal metabolic decay channel, where the input is
the difference image (IWB-D) between the early-phase PET (PETWB) and the delayed-
phase PET (PETD), and the microenvironmental features are highlighted by metabolic
decay. This metabolic decay branch focuses more on minute detail information, so
MRFO containing multiple large convolutional blocks is not used. Structural features
are extracted using a 7 × 7 convolution kernel, and deep semantic features are extracted
using residual blocks, which are subsequently pooled and then flatten to obtain lymph
nodemicroenvironment features, denoted asFWB-D. The featuresFWB,FD, andFWB-D of
the three channels are concatenated to obtain the region of interest enhancement features,
denoted as FAug. The cascade is augmented by setting learnable adaptive weights in the
network for the three features. The weights of FWB and FD are λ and the weight of
FWB-D is (1 − λ). The FAug goes through the fully connected layer, resulting in the
prediction Pred1. The FWB-D alone goes through the fully connected layer, resulting in
the prediction Pred2.

In this paper, the base-stem networks of all three paths use ResNet50 [16], which is
the mainstream model in current classification networks with a wide range of applica-
tions and strong applicability. However, its receptive field is small and the long-distance
dependence of spatial pixels is lost. Therefore, this method improves the lung lymph
node classification task to make the network achieve better results.

2.2 Multi-receptive Field-Based Feature Extraction and Feature Space
Optimization Method (MRFO)

Compared with small convolution kernels, large convolution kernels have larger recep-
tive fields, and using large receptive fields has an irreplaceable effect compared to super-
imposing multiple small receptive fields. There is a higher shape bias and a stronger
dependence on the target shape using large receptive fields, and a stronger texture bias
and a higher dependence on the image texture for small receptive fields [23]. CT images
can show clear texture information and PET images can show metabolic range. For
the complex features of PET/CT fusion image information, this paper designs a fea-
ture extraction and feature space optimization module based on multi-receptive fields,
denoted as MRFO. The architecture diagram is shown in Fig. 3.

The PET images (IPET ) and CT images (ICT ) are fused and inputted, and the image
shape features and texture features are first extracted by a multi-receptive field-based
feature extraction module, i.e., five convolutional blocks of different scales (C1–5) and
a dilation convolution (DC). The large convolution kernel has a large effective field of
perception, can examine the feature map of a wider area, and the obtained features have
global characteristics and pay more attention to the shape features of the fused image;
the small convolution kernel is less computationally intensive, less likely to ignore local
features, and focuses on the image texture information.Usingmulti-scale receptivefields,
the original image is probed with multiple filters with complementary effective fields of
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view to obtain useful image contextual information at multiple scales, allowing feature
extraction of regions of interest to ensure both shape features and texture features. Then
the feature information extracted by multi-scale convolution is concatenated to obtain
the feature FC , as in Eqs. (1)–(3).

Fig. 3. Multi-receptive field-based feature extraction and feature space optimization module
(MRFO) architecture diagram

TheFC enters the feature space optimizationmodule and performs the corresponding
operations in the spatial dimension to extract the spatial relationship features. The FC

is first convolved by 1 × 1 convolution (C1×1) to obtain feature FC1 and by 3 × 3
convolution (C3×3) to obtain feature FC2, respectively. Feature F2 is again convolved
by 3× 3 transposition (TC3×3) to obtain feature FC3, as in Eq. (4). The FC2 is multiplied
with the FC3 and then passed through Softmax and then multiplied with the difference
between the FC1 and the FC2 to output feature Fout , as in Eq. (5). Among them, C1×1

serves to reduce the dimensionality and perform the convolution operation only in the
channel direction to achieve the reduction of the number of channels and reduce the
number of parameters without changing the other dimensional information. After C3×3,
TC3×3 and their multiplication operations, the features are further extracted and the
planar correlation of the features is found at the same time. The difference operation
is performed between the FC1 and the FC2 to find the different features and filter out
the features that are more decisive for subsequent image recognition. The MRFO is
calculated as follows:

FD = Pmax(σ (BN (DC(IPET + ICT)))) (1)

Fn = Pmax(σ (BN (Cn(IPET + ICT)))) (2)

FC = Cat(F1,F2,F3,F4,F5,FD) (3)

FC1 = C1×1(FC),FC2 = C3×3(FC),FC3 = TC3×3(FC2) (4)

Fout = (FC1 − FC2) � Softmax(FC2 � FC3) (5)

where Cn(·), C1×1(·), C3×3(·) denote convolutional operations, DC(·) denotes dilated
convolutional operation, BN denotes batch normalization operation, σ (·) denotes ReLU



LNMER-Net: A Metabolically Enhanced Lymph Node 17

function,Pmax(·) denotesmaximumpooling,Cat(·) denotes concatenate operation,TC(·)
denotes transposed convolutional operation, + denotes addition of the corresponding
elements of an array, and � denotes multiplication of the corresponding elements of an
array, n ∈ [1,5].

3 Results and Discussion

3.1 Dataset and Preprocessing

The private dataset contains 99 lung lymph nodes from 51 patients from the Department
of Nuclear Medicine, The First Hospital of China Medical University. All lung lymph
node regions are manually outlined by experienced radiologists as the ground truth, and
all lymph node metastases are determined by pathological puncture examination. The
age of the patients ranged from 38 to 75 years, and the number of men and women
was 28 and 23 cases, respectively. The PET image planar voxel size is 2.03642 mm
× 2.03642 mm × 5.00 mm, the planar resolution is 400 × 400; the CT image planar
voxel size is 0.976563 mm × 0.976563 mm × 2.00 mm, the planar resolution is 512
× 512. Each case had early-phase PET images and CT images, and delayed-phase PET
images and CT images. The early-phase images were taken normally after the patient
was injected with 18F-FDG, and the delayed-phase images were taken about two hours
after the early-phase medical images were taken.

The data is preprocessed, and the CT images are converted to Hu value truncation
and then normalized. For PET images, resampling is first performed to rigidly align
with CT images, which are truncated to SUV values and then standardized. PET and CT
slices containing the lymph nodes are cropped to 64 × 64 centered on the lymph nodes
according to the ground truth. A total of 959 sets of images (each set includes 4 images)
are finally used for the experiments. 720 sets are used for the training set and 239 sets
for the test set in the experiments. And data enhancement is performed on the data in
the training set, with horizontal and vertical flips and random rotation of the images at
certain angles.

3.2 Experimental Details and Evaluation Metrics

This work is conducted on an NVIDIA GeForce RTX 3060 12G server under Windows
11 operating system, based on the PyTorch framework. The Adam optimizer is set with
a learning rate of 0.0001. The batch size is set to 8. The image data are preprocessed as
described in Sect. 3.1. The network input size is 64× 64, the network task is to determine
whether the region is a lung lymph node metastasis, and the network output results in
probability values for both categories. The experiments use loss functions including
BCELoss, KLDivLoss, and total Loss, see Eqs. (6)–(8).

LBCE = yn × ln(xn) + (1 − yn) × ln(1 − xn) (6)

LKLD = yn(logyn − xn) (7)

LTotal = α ∗ LBCE + (1 − α) ∗ LKLD (8)
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where xn denotes the predicted value, and yn denotes the actual label. In the network,
the enhancement feature FAug enters the fully connected layer to get the prediction
result Pred1 which is used with the true label to calculate LBCE using Eq. (6). The
microenvironmental feature FWB-D enters the fully connected layer to get the prediction
result Pred2 which is used with Pred1 which is treated as a weak label, to calculate LKLD
using Eq. (7). LBCE and LKLD set weights and sum to get LTotal, see Eq. (8). The network
works best when α = 0.7 by experiment.

3.3 Comparison with Other Methods

The lymph node metastasis recognition model based on the metabolic enhancement of
lymph nodes and their microenvironment proposed in this paper is compared with other
advanced networks. In ResNet50 [16], Densenet121 [17], DPN92 [18], Res2Net50 [19],
Conformer [21] and Next-ViT [22] methods, multi-modal early-phase fusion images
are concatenated with multimodal delayed-phase fusion images using a single branch
channel input network for experiments. The results are shown in Table 1.

Table 1. Comparison with other advanced methods.

Method Accuracy F1-score Precision Recall

ResNet50 [16] 0.741 0.740 0.750 0.757

Densenet121 [17] 0.745 0.729 0.738 0.725

DPN92 [18] 0.778 0.768 0.771 0.766

Res2Net50 [19] 0.741 0.725 0.733 0.721

Conformer [21] 0.766 0.752 0.760 0.747

Next-ViT [22] 0.766 0.764 0.767 0.777

LNMER-Net (Ours) 0.845 0.836 0.848 0.829

Note: The best results are shown in bold black font

As can be seen in Table 1, our proposed network can achieve the best results in
terms of Accuracy, F1-score, Precision, and Recall, whether compared with ResNet50
[16], Densenet121 [17], DPN92 [18] base network, or Res2Net50 [19], Conformer [21],
Next-ViT [22] the latest methods are improved compared with each other. The proposed
method deeply explores the data features of the multi-modal single-phase and single-
modal multi-phase and designs multi-modal feature extraction modules and metabolic
attenuation channels that facilitate lesion identification and enhance lymph node features
andmicroenvironmental features closely around lesion features. The current SOTAmeth-
ods are poorly adapted to the data characteristics and lesion features and thus perform
generally in the problem of lung lymph node metastasis identification.

3.4 Ablation Experiments

In this paper, a multi-channel branching network is designed to input multi-modal
early-phase fusion images, multi-modal delayed-phase fusion images, and single-modal
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metabolic attenuation information into the network separately, and the extracted early-
phase lymph node features, delayed-phase lymph node features, and microenvironmen-
tal features are enhanced in cascade. The early-phase and delayed-phase images extract
information to enhance the lymph node features, and the multi-phase PET image dif-
ference highlights the lymph node metabolic attenuation information to enhance the
microenvironmental features. For multi-modal images, PET images contain metabolic
information but have low resolution, while CT images can more clearly represent the
lymph nodes and the surrounding texture information, and the two are fused and input
to the network to enhance the lymph node features. So, the MRFO is proposed to extract
the shape and texture information from the corresponding fused images by using multi-
scale receptive fields and to obtain the underlying anatomical structure features and
enhance the lymph node features by filtering the feature information that is more deci-
sive for classification through spatial optimization of the corresponding operations. In
this paper, ablation experiments are performed on the network model, and the results
are shown in Table 2 and Table 3.

Multi-channel Ablation Experiment. In this section, this work performs experimental
comparisons by varying the number of branches of the input network, with the network
branches cascaded before the fully connected layer. The experimental results for the
single-branch network are shown in the first three rows of data in Table 2, the data for
the two-branch network results are shown in rows 4–6 of Table 2, and the last row shows
the experimental results using three channels.

Table 2. Ablation experiments of LNMER-Net under different channel inputs

Method Channel Accuracy F1-score Precision Recall

WB D WB-D

1 Channel
√

- - 0.766 0.759 0.757 0.760

-
√

- 0.736 0.713 0.735 0.708

- -
√

0.669 0.592 0.697 0.609

2 Channels
√ √

- 0.828 0.814 0.839 0.805
√

-
√

0.770 0.744 0.785 0.736

-
√ √

0.791 0.772 0.800 0.764

3 Channels (Ours)
√ √ √

0.845 0.836 0.848 0.829

Note: The best results are indicated in bold black font,
√

indicates that the branch is added to the
network, and - indicates that the branch is not used

From the data in the table, we can see that the network simultaneously sets up
a multi-modal early-phase feature fusion channel, multi-modal delayed-phase feature
fusion channel and single-modal metabolic decay channel to extract and enhance lymph
node features and microenvironmental features to make the network fit better, and the
best results can be obtained with Accuracy reaching 0.845 and F1-score reaching 0.836.
Using the single-modal metabolic decay channel alone is the least effective, which
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indicates that the lymph node features extracted from multi-modal fused images are
essential for image classification and that the network is not sufficient to accurately
classify images by considering only learning the metabolic decay information in single-
modal. The experimental results using dual channels show that enhancing lymph nodes
or microenvironmental features improves the network effect.

MRFO Ablation Experiment. In this section, ResNet50 with three branch inputs is
chosen as the baseline network (BL) for this work, and the results are shown in row 1
of Table 3. Each channel is selected to add or not an MRFO block before entering the
residual block. Adding one MRFO block to the network results in rows 2–4 of Table 3,
adding twoMRFO blocks results in rows 5–7 of Table 3, and adding threeMRFO blocks
results in row 8 of Table 3.

Table 3. MRFO ablation experiment

Method Channel Accuracy F1-score Precision Recall

WB D WB-D

ResNet50 (BL) - - - 0.749 0.745 0.745 0.753

BL+MRFO (1)
√

- - 0.770 0.744 0.785 0.736

-
√

- 0.799 0.777 0.819 0.767

- -
√

0.766 0.752 0.760 0.747

BL+MRFO (2)
√

-
√

0.762 0.761 0.801 0.794

-
√ √

0.824 0.820 0.818 0.826
√ √

- 0.845 0.836 0.848 0.829

BL+MRFO (3)
√ √ √

0.736 0.724 0.727 0.723

Note: The best results are indicated in bold black font,
√

indicates that the module is added to
the network, and - indicates that no action is taken

As can be seen from the data in the table, using MRFO in the two channels of
multi-modal early-phase feature fusion and multi-modal delayed-phase feature fusion
in the network gives the best results, with a 10.4% improvement in Accuracy and a 9.6%
improvement in F1-score compared to BL. The priority of using MRFO in different
branches also varies, with the most significant improvement in the multi-modal delay-
phase channel. It is worth noting that using MRFO in all three channels becomes less
effective instead. The reason is that for the single-modal metabolic decay channel, small
and fine structural information needs to be learned from the input data, while the multi-
modal early-phase channel and multi-modal delayed-phase channel have complex input
fusion image information and need to extract lymph nodes and their background infor-
mation. MRFO combines large receptive fields with small receptive field convolution
kernels, which is more conducive to the extraction of structural information of complete
large regions, and therefore the use of MRFO in multi-modal early-phase passages and
multi-modal delayed-phase passages is more effective in enhancing the network.
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In summary, the method proposed in this paper has good performance in all metrics,
but there is still some space for improvement before it is put into clinical application.
Therefore, to improve the accuracy and stability of the model performance, we need
to further explore the definition of a priori features, effective feature extraction, and
feature optimization, to build a model with excellent performance and realize intelligent
diagnosis in the real sense.

4 Conclusion

In this paper, based on a multi-phase PET/CT dataset, the proposed network extracts
multi-modal early-phase lymph node features, multi-modal delayed-phase lymph node
features, and microenvironmental features. Applying the multi-modal multi-phase data,
this method enhances the lymph node features while significantly enhancing the tiny
fine microenvironmental features by metabolic attenuation information to assist the net-
work in better classification. The multi-modal data combine the advantages of PET
images containing metabolic information and CT images containing texture informa-
tion to provide the network with more comprehensive and complementary features of
lymph nodes. The proposed MRFO extracts complementary features from multi-modal
fused images uses multi-receptive fields to extract more image contextual features, cap-
tures both global and local information of images, and optimizes shallow features to
extract more effective deep semantic features. The experimental results show that the
method in this paper improves by 6.7%, 6.8%, 7.7%, and 6.3% over the optimal method
in Accuracy, F1-score, Precision, and Recall. In comparison with ResNet50 [16], with
the addition of the proposed metabolic decay channel and MRFO module alone, Accu-
racy is improved by 7.9% and 9.6%, respectively. Therefore, the proposed network is
superior and promising for research in lung lymph node classification.
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