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Abstract. The computing power and storage requirements of the Inter-
net of Things (IoT) are likely to increase substantially in the future years.
Because of the rapid development of both machine learning (ML) and the
Internet of Things (IoT), vast volumes of data created by edge devices
such as smartphones, laptops, and artificial intelligence (AI) speakers
have been widely used to train ML models. In this study, we used a
cluster-based Blockchain method in the Multi-Access Edge Computing
(MEC, also known as Mobile Edge Computing) for markets and techno-
logical services. We describe a generalized stochastic block model (SBM)
for edge computing applications based on the proposed taxonomy. These
mobile edge wireless devices (WD) provide efficient resource allocation in
mobile network situations. In our studies, we compared the approximate
solutions obtained by the SBM to those generated by the cluster-based
Blockchain algorithm. However, the high latency and low scalability of
traditional blockchain systems limit mobile transactions on the public
blockchain. To reduce the consumption of competitive mobile transac-
tions created by linear sequencing blocks, reconstructed blockchain sys-
tems have been developed. This study’s use of cluster-based blockchain
systems provides speedy confirmation and great scalability without sig-
nificantly compromising security.

Keywords: Machine learning (ML) - cluster-based Blockchain
method - Internet of Things (IoT) - stochastic block model (SBM) -
Multi-Access Edge Computing (MEC)

1 Introduction

Cluster-based blockchain edge computing is a cutting-edge technology that
merges three developing fields: blockchain, edge computing, and cluster com-
puting. Blockchain is a distributed ledger system that enables numerous parties
to share a single source of truth without the need for a central authority. Edge
computing is a computing paradigm that brings computation and data storage
closer to the devices that generate and consume data in order to reduce latency,
bandwidth utilization, and reliance on cloud computing. Cluster computing is a
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technique that allows multiple computers to work together as a cluster to achieve
higher performance, availability, and scalability [15]. Cluster-based blockchain
edge computing aims to combine the benefits of these three technologies to cre-
ate a decentralized and efficient computing infrastructure that can support a
wide range of applications, from IoT devices to artificial intelligence (AI) algo-
rithms. One potential application of cluster-based blockchain edge computing is
in the field of smart cities, where a large number of IoT devices generate data
that needs to be processed in real-time. By using a cluster-based blockchain
edge computing architecture, smart cities can create a decentralized and secure
infrastructure that allows devices to exchange data and compute tasks without
relying on a central authority. Another potential application is in the field of AI,
where large-scale machine learning models require massive amounts of data and
computation. By using a cluster-based blockchain edge computing architecture,
AT algorithms can distribute the computation and storage across multiple nodes
in a decentralized and fault-tolerant manner, while preserving data privacy and
security. This study adopts cluster-based blockchain edge computing, which has
the potential to alter the way we build and implement distributed computing sys-
tems by providing a flexible, scalable, and secure architecture that can support
a wide range of applications and use cases.

Optimally allocating resources in mobile networks is a complex problem that
requires balancing the competing demands of various stakeholders, such as users,
operators, and service providers. Traditional approaches to resource allocation
have relied on centralized control and decision-making, which can be slow, inef-
ficient, and vulnerable to single points of failure. Cluster-based blockchain tech-
nology provides a decentralized and secure architecture for managing mobile
network resources, making it a possible alternative to traditional resource alloca-
tion methodologies. Cluster-based blockchain networks can ensure that resource
allocation decisions are made in a distributed and transparent manner with-
out relying on a central authority by employing a blockchain-based consensus
process (build an SBM). Mobile network resources can be allocated in a cluster-
based blockchain network utilizing smart contracts, which are self-executing com-
puter programs that can autonomously enforce the rules and norms controlling
resource allocation. For example, a smart contract could specify the terms of a
mobile data plan, such as the amount of data allocated per user, the price of
the plan, and the duration of the plan. Cluster-based blockchain networks can
also leverage edge computing resources to optimize resource allocation in mobile
networks. By using edge computing resources, such as computing power and stor-
age capacity at the network edge, mobile network operators can reduce latency,
improve network performance, and enhance the user experience. Overall, cluster-
based blockchain technology offers a promising approach to optimally allocating
resources in mobile networks. By providing a decentralized and secure infras-
tructure for managing network resources, cluster-based blockchain networks can
enhance network performance, improve user experience, and increase efficiency
and transparency in mobile network operations.
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Optimally allocating resources in current mobile networks offers three sig-
nificant issues. Developing strategies for optimal model-based heterogeneous in
a 5G and beyond environment based on limited game-based resource allocation
schemes. [1]-[3], as well as effective heuristics [6], Machine learning for wireless
communications has progressed rapidly since its introduction. In this article,
we’ll look at three approaches to tailoring deep learning for mobile network
applications: mobile data creation, end-to-end Cloud-Edge wireless communica-
tions, and network traffic control that can adapt to changing mobile network
environments., [4]-[5]. A primal-dual approach for learning resource allocations
in wireless networks via low-dimensional action utilizing a zeroth-order determin-
istic two-point gradient approximation scheme;see,e. g., [7]-[9] space exploration.
We analyze the key concerns, techniques, and various state-of-the-art attempts
connected to the offloading and task placement QoS Scheduling challenges from
a survey-related study. We use a new characterizing network model to investi-
gate the entire job placement offloading policy from mobile devices to the edge
cloud. To meet the requirements of practical applications such as robotics and
autonomous vehicles, transportation management systems, healthcare, as well
as telepresence, virtual reality (VR), augmented reality (AR), and mixed real-
ity (MR), 6G edge computing mobile networks will require massive internet of
things connectivity, ultra-reliability, low latency, and extreme high bandwidth.
This Fig.1 edge cloud or edge computing, on the other hand, is a novel con-
cept and technology that can address current cloud computing problems, such
as the time it takes to relay information to a centralized data center, which
delays decision making. An edge computing solution involves physically relocat-
ing computational resources closer to the source of the data, which is typically
an IoT device or sensor application. Edge computing removes the need for large
amounts of data to be transmitted between servers, clouds, and devices or edge
locations to be processed by processing data at the network’s edge. Four types
of services are deployed from various state-of-the-art MEC, as follows [2]:

— Infrastructure as a service (IaaS) is a type of cloud computing service that
offers pay-as-you-go compute, storage, and networking resources on demand.
TaaS is one of four types of cloud services, along with software as a service
(SaaS), platform as a service (PaaS), and function-as-a-service (serverless).

— Cloud computing services that provide an on-demand environment for design-
ing, testing, delivering, and maintaining software applications are known as
platform as a service. PaaS is designed to help developers build web or mobile
apps rapidly without having to worry about setting up or managing the under-
lying infrastructure of servers, storage, networks, and databases.

— Software as a service (SaaS) is a method of delivering software applications
internet on demand, typically by subscription. In the case of SaaS, the cloud
server and administration of the software application and supporting infras-
tructure. These servers are also in charge of maintenance tasks including
software upgrades and security fixes. Clients gain access to the program over
the internet, generally using a web browser on their phone, tablet, or PC.
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— FaaS, or Function-as-a-Service, is a cloud computing service that enables
clients to execute code in response to events without having to manage
the extensive infrastructure that is generally associated with developing and
deploying micro-services applications [3].
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Fig. 1. MEC Infrastructure diagram in 6G network.

The manuscript is organized as follows. Section?2 provides background on
MEC optimum resource allocation and the Spectral Graph Theory Concept for
Cluster-Based Blockchain Infrastructure. Section 3 presents the design details of
Stochastic block model (SBM) for MEC. The prototype implementation and the
experimental processing are presented in Sect. 4, as well as the results and data
analysis. Our considerations and future works are listed on Sect. 5.

2 Spectral Graph Theory Concept for Cluster-Based
Blockchain

In this section, we will show how Cluster-Based Blockchain works with associated
matrices such as the adjacency matrix and graph Laplacian. Let G(V,|E|) be
a graph. We'll let n = |V denote the number of vertices/mobile nodes, and
m = |E| denote the number of edges. We’ll assume that vertices are indexed by
0,...,n — 1, and edges are indexed by 0,...,m — 1. The adjacency matrix**A
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is a n x n matrix with 4; ; = 1 if (4,5) € |E| is an edge node, and A, ; = 0 if
(i,7) ¢ |E|. If G is an undirected graph, then A is symmetric. If G is directed,
then A need not be symmetric. The degree of a node i, deg(i) is the number of
neighbors of ¢, meaning the number of edges which i participates in. You can
calculate the vector of degrees (a vector d of length n, where d; = deg(i)), using
matrix-vector mulpilication:

Lemma 1. (Matriz-vector multiplication):
Given a matric A € d;x;j

vector of degrees: A € d;

A and x matriz-vector multiplication is defined as
d=Azx

where z is the vector containing all 1s of length n. You might alternatively simply
add the row entries of all matrix A. We will also use D = diag(d) - a diagonal
matrix with D; ; = d;. The incidence matrix B is a n X m matrix which encodes
the relationship between edges and vertices. Let |E|, = (¢,7) be an edge. Then
the k-th column of B is all zeros except B; ;, = —1, and B, ;, = +1 (for undirected
graphs, it doesn’t matter which of B;; and B} is +1 and which is —1 as long
as they have opposite signs). Note that BT acts as a sort of difference operator
on functions of vertices, meaning B” f is a vector of length m which encodes the
difference in function value across all edge nodes. You can check that BT z¢ = 0,
where z¢ is a connected component indicator (z¢[i] =1if i € C, and z¢[i] =0
otherwise). C' C V is a connected component of the graph if all vertices in C
have a path between them, and there are no vertices in V' that are connected to
C which are not in C. This implies BT1 = 0. The **graph Laplacian®* L is an
nxn matrix L = D—A = BB If the graph lies on a regular grid, then L = —A
up to scaling by a finite difference width A2, but the graph Laplacian is defined
for all graphs. Note that the null-space of L is the same as the null-space of BT
(the span of indicators on connected components). In Fig. 2, it makes sense to
store all these matrices in sparse format. Spectral embeddings are one way of
obtaining locations of vertices of a graph for visualization. One way is to pretend
that all edges are Hooke’s law springs, and to minimize thepotential energy of

Fig. 2. The graph laplacian of 100 mobile nodes when cluster converge method.
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a configuration of vertex locations subject to the constraint that we can’t have
all points in the same location. In one dimension:

minimize E (z; — ;)2
x
(i)l E|

subject to
211 =0,z =1

Note that the objective function is a quadratic form on the embedding vector x:

Z (z; —x;)? =2"BBTr = 2" La (1)
(.5)€lE|

Because the vector 1 is in the nullspace of L, this is similar to locating the
eigenvector with the second-smallest eigenvalue. We can use the eigenvectors
for the next-largest eigenvalues for a higher-dimensional embedding. Spectral
Graph Theory is the study of graphs, which are mathematical structures used
to model relationships between objects. Spectral Graph Theory focuses on the
eigenvalues and eigenvectors of the graph’s adjacency matrix, which can provide
insight into the graph’s properties. For example, spectral graph theory can be
used to analyze the connectivity and clustering of a graph. Spectral clustering
refers to using a spectral embedding to cluster nodes in a graph. Let A, BCV
with AN B = ¢ We will denote

E(A,B) ={(i,j) € |[E| | i € A,j € B} (2)

One way to try to find clusters is to attempt to find a set of nodes S C V with

S =V\S, so that we minimize the cut objective

[E(S,9)|

CS) = Sin{lsT, STy

3)
The inequality bounds the second-smallest eigenvalue of L in terms of the optimal
value of C(S). In fact, the way to construct a partition of the graph which is
close to the optimal clustering minimizing C(.S) is to look at the eigenvector x
associated with the second smallest eigenvalue, and let S = {i € V | z; < 0}.
As Fig. 3, let’s look at a graph generated by a stochastic block model with two
clusters. The ”ground-truth” clusters are the ground-truth communities in the
model. As Fig. 4,we obtained. A value of 1 means that we found the true clusters.

3 Stochastic Block Model (SBM) and Cluster-Based
Blockchain

This study’s SBM structure is a mathematical model used for assessing network
structure and community detection, whereas a cluster-based blockchain is a con-
cept that combines clustering with blockchain technology to improve scalability
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SBM with ground-truth clusters SBM with spectral clusters

Fig. 3. The graph Laplacian of 100 Fig.4. The graph Laplacian of 100

mobile nodes when spectral clustering mobile nodes when the adjusted rand
to partition into two clusters converge index to measure the quality of the
method. clustering.

and efficiency. It is assumed that nodes in a mobile network are organized into
groups or communities, and that edges between nodes are formed based on prob-
abilities that rely on the nodes’ community assignments. Assume the following
assumptions here: n - the number of mobile nodes in the graph N - n x n adja-
cency matrix A - n X n matrix of probabilities Many statistical network models
lie under the umbrella of independent edge random networks, also referred to
as the Inhomogeneous Erdos-Renyi (IER) model. The elements of the network’s
adjacency matrix A are sampled individually from a Bernoulli distribution in
this model:

A, j) = Bernoulli(P; ;) (4)

If n is the number of mobile nodes, the matrix P is a n*n matrix of probabilities
with elements in [0.1] . We can design a variety of specialized models depending
on how the matrix P is created. We will now go over a few of these options. It is
worth noting that for each model, we assume that there are no loops, or that the
diagonal of the matrix P is always set to zero. Each node in the stochastic block
model (SBM) is modeled as belonging to a block(sometimes called a community
or group). The probability of node i connecting to node j is just a function of
the two mobile nodes’ block membership. Let n be the number of nodes in the
graph, then 7 is a length n vector which indicates the block membership of each
node in the graph. Let K be the number of blocks, then B is a K x K matrix of
block-block connection probabilities.

P(%]) = BTiTj (5)

In the stochastic block model (abbreviated SBM), we have graphs of the form
G(n,p,q). For clarity, consider the following:

Assumption 1 The class C is not empty.
let’s assume that n is even and p > q
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In this paradigm, there are two ”communities” of varying sizes n/2

so that the probability of an edge existing between any two nodes within a com-
munity is p and the probability of an edge between the two communities is q
This recovers the communities from a random graph realization G(V, |E|).

The Inhomogeneous Erdos-Renyi model is very simple and lacks many of the
properties of networks in real scenarios. It is only a mathematical object with
similar phase transition effects. In this study, no communities establish between
nodes. An SBM computing for cluster-based blockchain was developed in this
study; the majority of these scenarios’ MEC models use its variants. Each node
in its most mobile nodes belongs to one of C' communities, and the occurrence
of an edge between two nodes is an event that is independent of the other edges
and the probability Q, ., (WithQ € RE*C definite probability matrix and ¢;,c;
node communities ¢,j respectively).

A graph containing two communities is created by the following cell.
Although nodes within the same community have strong connections, nodes
within different communities have less connections. Experiment with the two
accessible parameters here: ‘n’ and ‘Q’.

This research analyses the qualitative difference between Q with all posi-
tive eigenvalues with Q with some negative eigenvalues using two communities

to simplify the visualisation. For example, consider the following parameters:
00509 0 0O

‘n=[45, 5, 45, 5]‘ and Q = ( 052 08 0.%95 83) How many communities are there
0 0.5 0.9 0.9

about SBM,(z, B). We know from the graphs that nodes (0,45 — 1) belong to

community A, whereas nodes (5 — 1,n) belong to community B.

Corollary 1. Let p = alog(n)/n
and q = Blog(n)/n
If:

simulate the probability of exact recovery when

a;ﬁ—v@5>1

then do the same for

agﬁ—vﬂﬁ<1 (6)

4 Results and Discussion

Figure 5 depicts the adjacency matrix for the example, where black and white
indicate 1 and 0, respectively. Graphs with binary adjacency matrices are referred
to as binary graphs from now on. In the SBM, Fig.7,n=1000 and each node
belongs to one of the K (< n) groups, where K = 2 in the example. Because the
groups are unknown before to modelling, a K-vector Z,, is also defined for node
p=1,2,...,n, with all elements 0 except one that takes the value 1 and reflects
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the group node p belongs to in SBM(z, B). In Fig. 7 network with ‘n=[60,60]
nodes and block matrix use the following parameters’ @ = (-5 9-2). In order
to describe the generation of the edges of G according to the groups the nodes
belong to, a 2 x 2 cluster block matrix, denoted by C, is introduced. If Fig.6 G
is k-means clustering-based blockchain, for 1 < i < j < K, Cj;€[0,1] and repre-
sents the probability of occurrence of an edge between a node in group i and a
node in group j. Spectral Graph Theory can be used to analyze the structure of
blockchain networks, and to identify nodes that are particularly important for
maintaining the network’s integrity. Edge computing can be used to improve the
performance of blockchain networks by reducing the amount of data that needs
to be transmitted over the network. Additionally, edge computing can be used to
perform computations related to Spectral Graph Theory, such as the calculation
of graph Laplacians, which can be useful for machine learning and other appli-
cations. Let p be denote the probability of an edge between nodes in the same
cluster, and ¢ denote the probability of an edge between nodes in different clus-
ters. This Study consider Spectral Graph Theory for stochastic block model with
k = 2 clusters and n = [60,60] nodes per cluster. Figure8 Analysis Adjacency
spectral embedding when mobile nodes Histogram and Fig.9 scatter diagram
for 2 communities distribution state. Plot a phase diagram of the adjusted rand
index (ARI) where p and ¢ are both in the range [0, 1]. The Random Dot Prod-
uct Graph (RDPG) can also be used in blockchain analysis or modelling. The
RDPG is utilised in this study to describe relationships or interactions between
distinct entities in a blockchain network. A blockchain is a distributed ledger in
which transactions are recorded by several nodes or participants. Each trans-
action may involve a variety of entities, including users, addresses, and smart
contracts. The RDPG can help capture and forecast the underlying structure
and dynamics of the blockchain network by representing these entities as nodes
and their interactions as edges in a graph. To create an RDPG for blockchain
analysis, latent vectors or characteristics can be associated with each entity in
the blockchain. These latent vectors can reflect a variety of entity traits or prop-
erties, such as transaction history, account balances, or network behaviours. In
Fig. 10, the dot product of the latent vectors of k = 5 clusters under pairwise
distance entities can then be utilized to determine the likelihood of an inter-
action or connection between them. If the dot product, for example, exceeds a
specific threshold, an edge can be constructed between the respective nodes in
the RDPG. After constructing the RDPG, several graph analysis techniques can
be used to acquire insights into the blockchain network. In Fig. 11 k = 6 clusters,
RDPG can incorporate community discovery, centrality metrics, clustering, and
anomaly detection, among other things. Using the RDPG framework, researchers
and predictive analysts can investigate the structural characteristics and behav-
iors of the blockchain network and perhaps find patterns or anomalies that may
be useful for understanding its dynamics or detecting fraudulent activity. It is
crucial to note that the application of the RDPG to blockchain analysis is still an
evolving MEC scenario, and there are numerous computers and methodologies
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that can be applied depending on the specific cloud edge computing for vehicle
and transport.

Fig.5. The graph execution time and Fig. 6. The graph execution time and
energy consumption of each mobile energy consumption of each mobile
nodes when cluster converge method.. nodes when kmean cluster method..

SBMpn(z, B) Simulation, wireless nodes ordered by mobile edge

® Community 1
© Community 2

Fig. 7. The graph execution time and energy consumption of each mobile nodes when
stochastic Block Model method.
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Fig. 10. The graph execution time and Fig. 11. The graph execution time and
energy consumption of each mobile energy consumption of each mobile
nodes when pairwise distance mode. nodes when predict method.

5 Conclusion and Future Work

This investigation Multi-Access edge computing assisted wireless device (IoT)
offloading scheme communications is a key component of the future 6G scenario.
In this paper, we offer a new SBM-based method for cluster-based Blockchain
optimization of transmit reinforcement and resource estimation in a 6G com-
munication system. The technique used by the MEC system while also meeting
the greatest transmit power restriction. The simulation results suggest that the
proposed offloading technique can reduce the cumulative rate of MEC com-
munication in a short period of task time (CPU time) when compared to the
real-world scheme with fixed transmit mobile cloud computing. In the future,
we will examine optimal allocation of MEC to IOT using a matching algorithm,
as well as deep learning-based design of a 6G cloud integration environment.
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