
Case Study in Developing Extensible Virtual
Assistant Using Genie Framework

Yi-Ting Wu1, Albert Chang2, Yu Hung Tsai1, Po-Chuan Wang1, Tinghao Chen1,
and Jeng-Wei Lin1(B)

1 Tunghai University, Taichung 407224, Taiwan
{g10490001,s08490007,s08490037,g11490031,jwlin}@thu.edu.tw

2 BSI Pacific, Taiwan Branch, Taipei 11492, Taiwan
albert.chang@bsigroup.com

Abstract. Deep learning has made significant improvement in natural language
processing. Nowadays virtual assistants or chatbots attract attention of many
researchers and are expected to be applied in more and more areas. We had
designed and implemented an extensible financial virtual assistant using Genie
framework. A new device (or skill) is developed to offer financial services in
backend server cloud. The device and supported APIs (Application Programming
Interface) are registered in an open repository Thingpedia. When Genie receives
user utterances, it translates them into ThingTalk programs using a large deep-
learning neural networks. Then, Genie executes the ThingTalk programs, which
may invoke the financial services through the registered APIs. ThingTalk is a
declarative programming language. Domain experts can easily describe financial
services in high-level viewpoint withminimal knowledge and experiences of com-
puter programming and system development, while complex services are imple-
mented in backend servers and access through APIs. As a result, domain experts
and computer engineers together can fast and easily build a virtual assistant that
support natural language interface.

Keywords: Extensibility · Virtual Assistant · Chatbot · NLP · Large Language
Model · Genie · ThingTalk

1 Introduction

Financial technology, abbreviated as FinTech, is emerging in recent years. Combined
together with multiple information and communication technologies (ICT), such as
mobile communications, social media, cloud services, and big data analysis, FinTech is
expected to significantly change how financial services are provided and consumed. For
example, in a user behavior survey of a very popular social app in Taiwan, more than half
of its users had accessed official accounts operated by financial services [1, 2]. Chatbots,
or virtual assistants, for different financial services become popular in our daily life.
However, most of them can understand only common and simple questions and provide
answers according to some predefined rules. Using traditional ICT technologies, it is
not easy to create a virtual assistants that can interact with its users in natural languages
[3].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. C. Hung et al. (Eds.): FC 2023, LNEE 1134, pp. 1–10, 2024.
https://doi.org/10.1007/978-981-99-9342-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9342-0_1&domain=pdf
http://orcid.org/0000-0001-8599-5083
https://doi.org/10.1007/978-981-99-9342-0_1

2 Y.-T. Wu et al.

Nowadays, various applications have been emerging due to the development of arti-
ficial intelligence (AI). Deep learning [4] promotes natural language and speech signal
processing significantly. Chatbots and virtual assistants have gained a lot of attention
and are applied in many scenarios, such as education, health care, entertainment, and so
on [5]. In new scenarios, the dialogue systems of these virtual assistants are improved to
make their replies more like human replies [6], and furthermore the way users interact
with them is more similar to the way with humans [7].

Virtual assistants, such as Amazon Alexa [8, 9], Google OpenWeave [10], Apple
Homekit [11], Samsung SmartThings [12], were designed and developed for these big
giant companies. On the other hand, Genie (previously Almond) is an open-source
virtual assistant that takes several important issues into consideration, such as privacy,
extensibility, and programmability [13–16].

In this paper, we presents an extensible virtual assistant for financial services using
Genie framework. Figure 1 shows the scenario of the proposed virtual assistant. It acts as
a chatbot that can provide historical and real-time information of Taiwan Stock market
in some chatrooms in a social media. We must note that in practice, there will be user
questions that the chatbot cannot understand. It has to handover these questions to the
customer support team and technical support team. The latter has to extend the capacity
of chatbot while the services cannot stop.

API
Knowledge

Base

Data

Source

 1

Data

Source

 2

Data

Source

 n

A

A

A

A

B

C

A

D

C

A

E

Customer

Support Team
Chatbot

IT DevOps

Chatroom 1Chatroom 2Chatroom 3

Technical

Support Team

Fig. 1. Scenario of the proposed virtual assistant

We have created the chatbot based on Genie framework [3, 13–16]. A new device
(or skill) for Taiwan Stock market is developed to offer stock information in backend
server cloud. The device and supported APIs (Application Programming Interface) are
registered in an open repository Thingpedia. When Genie receives user utterances, it
translates them into ThingTalk programs using a large deep-learning neural networks.
Then, Genie executes the ThingTalk programs, which may invoke the financial services
through the registered APIs. Figure 2 shows the system architecture of the proposed
virtual assistant.

Case Study in Developing Extensible Virtual Assistant 3

User

Thingpedia

Server Cloud

Semantic

Parser

Genie

API

get_price()

get_plot()

...

...

API

func1()

func2()

...

...

Device 1

Utterances

Device/API

Lookups

Device/API

Registration

Device/API

Invocations

ThingSystem

Fig. 2. Proposed virtual assistant architecture based on Genie framework

ThingTalk is a high-level declarative programming language. With a basic level of
knowledge and experiences of computer programming and system development, domain
experts can conceptually describe financial services in ThingTalk in a high-level view-
point. Function blocks that together support the financial services physically are imple-
mented by the technical team in backend server cloud. The APIs for these function
blocks are registered in Thingpedia. When Genie executes ThingTalk programs, it can
look up the requested APIs in Thingpedia and then invoke the corresponding function
blocks to realize the financial services. As a result, domain experts and technical team
can collaboratively develop and extend chatbot fast and easily.

In the remaining of this paper, we will describe the proposed virtual assistant
in Section 2, present the preliminary experiment results in Section 3, and give the
conclusions in Section 4.

2 Proposed Virtual Assistant

In this session, we first investigate the possible function set of the proposed virtual
assistant. As well, we will simply describe ThingTalk programming language. Then, we
present the design and implement of the device for Taiwan Stock.

2.1 Function Set of the Virtual Assistant

First, we collected news, reports, press releases, and articles from various platforms
for Taiwan Stock. Keywords were identified, such as price, stock names, stock codes,
weighted index, and so on. User utterances to query information of these keywords were
manually generated, such as the following query utterances.

• Check the trading volume/opening price/highest price/… of today’s market?
• Give me the company information of XYZ/ABC/…*?

4 Y.-T. Wu et al.

• Query XYZ/ABC/… stock code?
• XYZ/ABC/… percentage change today
• XYZ/ABC/… daily/weekly/monthly line
• stock (highest, average, and/or lowest) price of XYZ/ABC/… today/yesterday/last

week?
*XYZ/ABC/… refer to an abbreviation, full name, or nickname of a stock.

We most note that this collection of user intentions and corresponding utterances is
typically incomplete. As we have stated above, there will be always a need to extend the
capacity of the proposed chatbot for Taiwan Stock market. Thus, in the beginning, we
developed a small set of functions for stock information queries.

2.2 ThingTalk

ThingTalk [13–16] is a high-level declarative language designed to access Internet ser-
vices and IoT devices. ThingTalk is domain-specific and data focused. It has a very
simple construct of three types of clauses: stream (s), query (q), and action (a). The
construct follows.

s[⇒ q]? ⇒ a; (1)

In a ThingTalk program, s is a stream clause that determines when the rest of the
program runs. It can be a periodic timer, or it can monitor the result of a monitorable
query function defined inThingpedia for changes. The optional query clause (q) specifies
what data should be retrieved. Results of queries can be filtered. They can also be used as
an input parameter in a subsequent function invocation. The action clause (a) specifies
what the program should do.

For example, a user command “notify me when I receive a text” can be done by the
following ThingTalk program.

(2)

To be short, we omit the grammar details of ThingTalk in this paper.

2.3 Device for Taiwan Stock Market

In this study, we registered a new device named as TaiwanStock in Thingpedia, as well
as the APIs for the function blocks required to support intended stock services. As shown
in Fig. 3, a query function get_price() is declared as an API of this device. Again,
we omit the detail of the syntax in this paper.

The three types of clauses inThingTalk canusually bemapped to three type of phrases
in natural languages, and vise versa. For example, a stream clause can be mapped to
when phrase (WP), a query clause to noun phrase (NP), and an action clause to verb
phrase (VP), respectively.

Case Study in Developing Extensible Virtual Assistant 5

Service:TaiwanStock
class @com.TaiwanStock {
 query get_price(
 in opt company : String
 #_[canonical={
 default="base",
 base=["stocknumber", "number","stock code",
 "stock symbol","ticker symbol"],
 property=["# stock","# stock price"]
 }],
 out stockNo : String
 #_[canonical="stock symbol"],
 out stockName : String
 #_[canonical="stock name"],
 ...)
 ...}

Fig. 3. A snapshot of the TaiwanStock device

These phrases are used as primitive templates in genie-toolkit [13–16]. Table 1 shows
somemapping examples used in this study, where genie-toolkit considers ${} as a holder
of a parameter. Combined with constructive templates for the nature language, English
in this study, genie-toolkit can generate a large number of user utterances and their
corresponding ThingTalk programs. Thus, we can train the semantic parser in Genie to
translate user utterances to ThingTalk programs.

Table 1. Some phrases in nature language and ThingTalk clauses.

Phrases Type of
phrases ThingTalk clauses

price of ${p_code} NP @taiwanstock.get_price
(company=p_code)

${p_company}’s K line NP @taiwanstock.get_Kplot
(company=p_company)

When ${p_company} rose by
more than ${p_change} WP

edge (monitor
(@taiwanstock.get_price
(company=p_company)))
on change >= p_change

Call ${p_number} VP
@org.thingpedia.builtin.
thingengine.phone.call
(number=p_number)

6 Y.-T. Wu et al.

3 Preliminary Experiment

3.1 Data Source

In this study, we downloaded the historical data of 2022 Taiwan Stock market from
Taiwan Economic Journal (TEJ) [17]. The data was preprocessed and then stored in a
SQL database in the backend server cloud.

3.2 Backend Servers

There are two types of backend servers: database servers and application servers. All
servers are generic personal computers running Ubuntu 18.04.6 LTS. MariaDB [18] is
adopted in the database server. Functions declared in the TaiwanStock device are imple-
mented using Python and Flask [19] according to Restful API design in the application
servers.

3.3 Genie Server

Genie server accepts user utterances, translate them into ThingTalk programs by the
semantic parsers, and execute the program to fulfill user requests. Genie accesses the Tai-
wanStock device via the APIs registered in Thingpedia and implemented in the backend
application servers.

Genie server is also a generic personal computers running Ubuntu 18.04.6 LTS. It
is equipped with AMD® Ryzen 5 2600 six-core processor×12, 64 GB DRAM, and
NVIDIA GeForce RTX 2070.

Currently, Genie server adopts BART-base [20] as its semantic parser.

3.4 Experiment

In this preliminary study, we carefully collected 80 user utterances, and designed their
corresponding ThingTalk programs. Some user utterances are simple sentences, while
others are dialogs of several sentences. Table 2 shows some of the user utterances and
their corresponding ThingTalk programs.

In order to train the semantic parser, BART-base. Phrases were identified as WP,
NP, and VP, and mapped to ThingTalk clauses. We used genie-toolkit to generate the
training data to train BART-base.

Finally, for the 80 user utterances, we randomly pick up some predicted ThingTalk
programs for manual evaluation.

Case Study in Developing Extensible Virtual Assistant 7

3.5 Experiment Results

It took one hour or so for genie-toolkit to generate the training data and then train
semantic parser, currently BART-base.

Table 2. Some user utterances and their corresponding ThingTalk program.

User utterances ThingTalk program

What is the stock price of
2318?

$dialogue
@org.thingpedia.dialogue.transaction
.execute;
@com.TWstock.get_price(query="2318")
;

Check 2318 stock price on
April 15

$dialogue
@org.thingpedia.dialogue.transaction
.execute;
@com.TWstock.get_price(query="2318",
date = new Date("2022-04-15"))

1101 Trends

$dialogue
@org.thingpedia.dialogue.transaction
.execute;
@com.TWstock.get_plot(stockname
="1101");

Figure 4 shows a snapshot when chatting with Genie, where the user requests a K
line graph of stock No. 2317.

Fig. 4. Snapshot of chatting with Genie

8 Y.-T. Wu et al.

Ta
bl
e
3.

So
m
e
re
su
lts

of
th
e
ev
al
ua
tio

n

N
o

U
se

r u
tte

ra
nc

es
Ta

rg
et

 T
hi

ng
Ta

lk
 p

ro
gr

am
Pr

ed
ic

te
d

Th
in

gT
al

k
pr

og
ra

m
Ev

al
ua

tio
n

1
he

llo
$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
g
r
e
e
t
;

$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
g
r
e
e
t
;

ok

42
ts

m
c

st
oc

k
pr

ic
e

on

D
A

TE
_0

$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
e
x
e
c
u
t
e
;

@
c
o
m
.
T
a
i
w
a
n
S
t
o
c
k
.
g
e
t
_
p
r
i
c
e
(

d
a
t
e

=

n
e
w

D
a
t
e

(
2
0
2
2
,
3
,
1
0
,

n
e
w

T
i
m
e
(

8

,

0
)
)
,

q
u
e
r
y

=

"

t
s
m
c

"
)

;

$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
e
x
e
c
u
t
e
;

[
s
t
o
c
k
N
a
m
e
]
o
f

@
c
o
m
.
T
a
i
w
a
n
S
t
o
c
k
.
g
e
t
_
p
r
i
c
e
(

d
a
t
e

=

D
A
T
E
_
0

)
;

ok
_

fu
nc

tio
n

61

I w
an

t t
o

qu
er

y
th

e
st

oc
k

pr
ic

e
of

 0
05

0
st

oc
k

co
de

$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
e
x
e
c
u
t
e
;

@
c
o
m
.
T
a
i
w
a
n
S
t
o
c
k
.
g
e
t
_
p
r
i
c
e
(

q
u
e
r
y

=

"

5
0

s
t
o
c
k

c
o
d
e
"

)
;

$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
e
x
e
c
u
t
e
;

@
c
o
m
.
T
a
i
w
a
n
S
t
o
c
k
.
g
e
t
_
p
r
i
c
e
(

q
u
e
r
y

=

"

5
0

"

)
;

ok
_

w
ith

ou
t_

pa
ra

m

68
qu

er
y

th
e

st
oc

k
pr

ic
e

of
 1

10
1

$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
e
x
e
c
u
t
e
;

@
c
o
m
.
T
a
i
w
a
n
S
t
o
c
k
.
g
e
t
_
p
r
i
c
e
(

q
u
e
r
y
=
"
1
1
0
1

"

)
;

$
d
i
a
l
o
g
u
e

@
o
r
g
.
T
h
i
n
g
p
e
d
i
a
.
d
i
a
l
o
g
u
e
.

t
r
a
n
s
a
c
t
i
o
n
.
e
x
e
c
u
t
e
;

@
c
o
m
.
T
a
i
w
a
n
S
t
o
c
k
.
g
e
t
_
p
r
i
c
e
(

q
u
e
r
y

=

"

1
1
0
1

"

)
;

ok

Case Study in Developing Extensible Virtual Assistant 9

3.6 Evaluation

For the 80 user utterances, we randomly pick up some generated ThingTalk programs
for manual evaluation.

We carefully compare the predicted and target ThingTalk programs [16]. The
result of the each comparison could be ok, ok_without_param, ok_function, ok_device,
ok_num_function, ok_syntax, or wrong_syntax.

Table 3 show some results of the evaluation. The evaluation result shows 76 of 80
predicted ThingTalk programs are effective.

4 Conclusions and Future Works

In this study, we had designed and implemented an extensible chatbot for Taiwan Stock
market based on Genie framework. Genie server accepts user utterances, translate them
into ThingTalk programs by the semantic parsers, and execute the program to fulfill user
requests. Genie accesses the TaiwanStock device via the APIs registered in Thingpedia
and implemented in the backend application servers.

ThingTalk is a declarative programming language. Domain experts can conceptually
describe various services in ThingTalk in a high-level viewpoint. They need just a basic
level of knowledge and experiences of computer programming and system development.
On the other hand, functions actually carrying out the complex computing logics are
declared as APIs, and implemented by the technical team in backend server cloud. With
ThingTalk programming language as a bridge, domain exports can focus on the service
logics in high level, while technical teams can focus on implementing the APIs in the
backend servers. As a result, it is much easier to extend the capacity of the chatbot than
earlier approaches.

4.1 Future Works

Currently, several new functions of the chatbot have been identified. New APIs are
under construction to extend the capacity of the chatbot. As well, new large language
models (LLM), such as ChatGPT [21], are under investigation for translation from user
utterances into ThingTalk programs.

Acknowledgment. Thisworkwas supported in part byNational Science andTechnologyCouncil,
Taiwan, under Grant MOST 111-2221-E-029-018-.

References

1. King, B.: Bank 4.0: Banking Everywhere, Never at a Bank. Wiley (2018)
2. 2021 LINE User Usage Survey. Nielsen (2021). (in Chinese). https://linecorp.com/zh-hant/

pr/news/zh-hant/2021/4000. Accessed 20 May 2023
3. Wu, Y.-T.: Design and implementation of extensible financial chatbot. Master Thesis.

Department Information Management, Tunghai University (2023)
4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

https://linecorp.com/zh-hant/pr/news/zh-hant/2021/4000

10 Y.-T. Wu et al.

5. Liao, S.-W., Hsu, C.-H., Lin, J.-W., Wu, Y.-T., Leu, F.-Y.: A deep learning-based Chinese
semantic parser for the Almond virtual assistant. Sensors 22(5), 1891 (2022)

6. Shah, H., Warwick, K., Vallverdú, J., Wu, D.: Can machines talk? Comparison of Eliza with
modern dialogue systems. Comput. Hum. Behav. 58, 278–295 (2016)

7. Adamopoulou, E., Moussiades, L.: An overview of chatbot technology. In: Maglogiannis, I.,
Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IFIPAdvances in Information andCommunication
Technology, vol. 584, pp. 373–383. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-49186-4_31

8. Amazon Alexa Voice AI. https://developer.amazon.com/alexa. Accessed 20 May 2023
9. Goyal, A., Metallinou, A., Matsoukas, S.: Fast and scalable expansion of natural language

understanding functionality for intelligent agents. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, LA, USA, 1–6 June 2018 (2018)

10. OpenWeave. https://openweave.io/. Accessed 20 May 2023
11. HomeKit Overview. https://developer.apple.com/apple-home. Accessed 20 May 2023
12. SmartThings Developers. https://developer.smartthings.com/. Accessed 20 May 2023
13. Campagna, G., Ramesh, R., Xu, S., Fischer, M., Lam, M.S.: Almond: the architecture of an

open, crowdsourced, privacy-preserving, programmable virtual assistant. In: Proceedings of
the 26th International Conference on World Wide Web, pp. 341–350 (2017)

14. Campagna, G., Xu, S., Moradshahi, M., Socher, R., Lam, M.S.: Genie: a generator of natural
language semantic parsers for virtual assistant commands. In: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp. 394–410
(2019)

15. Campagna, G., Semnani, S., Kearns, R., Sato, L.J.K., Xu, S., Lam, M.: A few-shot semantic
parser for wizard-of-oz dialogues with the precise ThingTalk representation. In: Findings of
the Association for Computational Linguistics, ACL 2022, Dublin, Ireland, pp. 4021–4034
(2022)

16. Genie Wiki. https://wiki.genie.stanford.edu/. Accessed 20 May 2023
17. Taiwan Economic Journal. https://www.finasia.biz/. Accessed 20 May 2023
18. MariaDB. https://mariadb.org/. Accessed 20 May 2023
19. Flask-RESTful. https://flask-restful.readthedocs.io/en/latest/. Accessed 20 May 2023
20. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language

generation, translation, and comprehension. In: ACL (2020)
21. Introducing ChatGPT. https://openai.com/blog/chatgpt. Accessed 20 May 2023

https://doi.org/10.1007/978-3-030-49186-4_31
https://developer.amazon.com/alexa
https://openweave.io/
https://developer.apple.com/apple-home
https://developer.smartthings.com/
https://wiki.genie.stanford.edu/
https://www.finasia.biz/
https://mariadb.org/
https://flask-restful.readthedocs.io/en/latest/
https://openai.com/blog/chatgpt

	Case Study in Developing Extensible Virtual Assistant Using Genie Framework
	1 Introduction
	2 Proposed Virtual Assistant
	2.1 Function Set of the Virtual Assistant
	2.2 ThingTalk
	2.3 Device for Taiwan Stock Market

	3 Preliminary Experiment
	3.1 Data Source
	3.2 Backend Servers
	3.3 Genie Server
	3.4 Experiment
	3.5 Experiment Results
	3.6 Evaluation

	4 Conclusions and Future Works
	4.1 Future Works

	References

