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Abstract. Remaining useful life (RUL) prediction is one of the key techniques
in prognostics and health management (PHM). Deep learning-based prognostics
methods,which can automaticallymine useful degradation information frommon-
itoring data and infer causal relationships, have received a lot of attention in RUL
prediction of machinery. However, in some industrial application scenarios, the
operating conditions of the actual data often differ significantly from those of the
training data, which greatly limits the predictive performance of the prediction
methods. To overcome the above limitations, an anti-adaptive residual life predic-
tion framework is proposed for RUL prediction under different operating condi-
tions. First, a new network, named bidirectional temporal convolutional network
(BDTCN), is proposed to capture the interdependence of the input data on the time
scale through forward and reverse convolution operations. Then, an anti-adaptive
training strategy is developed to help the BDTCN further extract the operating
condition invariant degradation features so that it can perform RUL prediction
across operating conditions. The proposed framework is evaluated through abla-
tion experiments and comparison with existing methods. The experimental results
demonstrate the effectiveness and superiority of the framework in RUL prediction.
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1 Introduction

Remaining useful life (RUL) prediction is one of the key techniques for prognostics
and health management (PHM), which can estimate the remaining time before damage
develops beyond the failure threshold, thus avoiding unplanned downtime and improving
the safety, reliability and durability of machinery [1, 2]. Generally, RUL prediction
methods are developed based on first-principles, degradation mechanisms, or artificial
intelligence (AI) techniques. With the wide application of Industrial Internet of Things
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(IoT), AI-based prediction methods have received more attention in RUL prediction of
machinery than other methods because they can automatically mine useful degradation
information from monitoring data and infer correlation and causation [3].

Existing AI-based prediction methods can be categorized into two main groups:
shallow learning-basedmethods and deep learning-basedmethods [4]. Shallow learning-
based methods are built on some traditional machine learning models. These models
have limited representational learning capabilities and thus require a priori knowledge
or domain expertise to preprocess the raw monitoring data from the machine. However,
in the era of industrial IoT, where the amount of monitoring data grows exponentially
over time, the process of sensitive feature extraction becomes increasingly difficult.
To address the massive monitoring data and avoid labor-intensive feature extraction,
deep learning, a special class of machine learning, is gradually being applied to RUL
prediction of machinery [5].

Deep learning-based methods are constructed by stacking multiple nonlinear pro-
cessing layers, which represent a stronger learning capability compared to shallow
learning-based methods. As a result, deep learning-based methods get rid of the process
of sensitive feature extraction and are able to directly use raw monitoring data as inputs
for model training and RUL prediction. In the past few years, scholars have employed
different types of deep learning models to accomplish the RUL prediction task. Wang
et al. [6] constructed a multi-scale convolutional attention network to solve the problem
of multi-sensor information fusion and applied it into RUL prediction of cutting tools.
Ma et al. [5] proposed a convolution-based long short-term memory network for RUL
prediction, in which the convolutional structure embedded in the LSTM is able to cap-
ture long-term dependencies while extracting features in the time-frequency domain.Wu
et al. [7] built a LSTM autoencoder considering various degradation trends and adopted
it to estimate the bearing RUL. Although deep learning-based prediction methods have
achieved some state-of-the-art results, few studies have considered the prediction of
machinery life under different operating conditions. In some industrial application sce-
narios, the operating conditions of the actual data often differ greatly from those of the
training data, which greatly limits the prediction performance of the prediction methods.

Based on the above analysis, this paper proposes a new network called bidirectional
temporal convolutional network (BDTCN), where the core layer of the network: the
bidirectional temporal convolutional layer can be used for elaborate information mining
and time series modeling along the forward and reverse directions to capture the i and
efficiently capture the variation of operating conditions. In addition, to enable the network
predict RUL using data from different operating conditions, this paper develops a new
training strategy, namely the adversarial adaptation training strategy, which can help the
network to extract operating condition-invariant degradation features forRULprediction.

The remaining sections of this paper are summarized as follows. Section 2 describes
in detail the proposed BDTCN and the adversarial adaptation training strategy for
mechanical RUL prediction under different operating conditions. Section 3 validates the
effectiveness of theproposedmethodbyperforming accelerateddegradation experiments
on rolling bearings. Finally, conclusions are given in Sect. 4.
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Fig. 1. The network structure of BDTCN

2 The BDTCN and the Adversarial Adaptation Training Strategy

In this section, a bidirectional temporal convolutional layer is first constructed to fully
exploit the machine degradation information and efficiently capture the variation of
operating conditions in RULprediction. Then, an adversarial adaptation training strategy
is developed to essentially enhance the robustness of BDTCN’s RUL prediction under
different operating conditions.

2.1 Proposed BDTCN

The network structure of BDTCN is shown in Fig. 1, which consists of a representation
learning sub-network and a RUL prediction sub-network. The representation learning
sub-network consists of D bidirectional temporal convolutional layers and D maximum
pooling layers stacked alternately, after which the RUL prediction sub-network uses two
fully connected layers for RUL prediction. Specifically, the proposed BDTCN embeds
temporal information into the network inputs using a time window with a length of
S. These input data have interdependencies on time scales, and such dependencies are
crucial for accurate RUL prediction under different operating conditions. Therefore, the
BDTCN constructs a new layer of the network, i.e., the bidirectional temporal convo-
lutional layer to enhance the temporal information mining capability of the prognostics
network.

As shown in Fig. 2, The bidirectional temporal convolutional layer contains a for-
ward temporal convolution operation and a reverse temporal convolution operation. The
process of bidirectional temporal convolution operation can be formulated as follows:
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Fig. 2. Architecture of bidirectional temporal convolutional layer
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where σr(·) is nonlinear activation function, xl−1
t is the input tensor of l-th bi-directional

temporal convolution layer at time t, �zln,t is the output tensor of the forward temporal

convolution at time t,
←
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n∗d is the n-th reverse temporal convolution kernel with an

expansion of d, �bln and
←−
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n are the bias term. In particular, the number of forward and
reverse temporal convolution kernels of the l-th bidirectional temporal convolution layer
are both 2(l−1)N and the expansion rate are both 2(l−1). After that, the outputs of these
two convolutions are fed separately to the maximum pooling layer, which is formulated
as follows:
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where p is the pooling size and s is the pooling stride. Note that in the example of Fig. 2,
the number of convolution kernels is set to 1 for ease of observation and no maximum
pooling layer is added.

2.2 Adversarial Adaptation Training for BDTCN

This section proposes the adversarial adaptation training strategy as shown in Fig. 3,
which takes into account the variability between monitoring data with different working
conditions, and adapts and fine-tunes the BDTCN to the operating conditions by gener-
ating adversarial training. The proposed adversarial adaptation strategy first initializes
the BDTCN using the source operating condition dataset, and the initialized representa-
tion learning sub-networks F(·) and RUL prediction sub-networks R(·) can be obtained.
Then, the generative adversarial network is constructed to obtain operating condition-
invariant degradation features, specifically, the generator consists of the representation
learning sub-network and the discriminator consists of three fully connected layers. The
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generator and the discriminator are independent of each other and optimize their respec-
tive network parameters alternately by means of adversarial training, and finally reach
the Nash equilibrium, i.e., the generator outputs operating condition-invariant represen-
tations, so that the discriminator cannot judge its operating condition. And its objective
function is defined as follows:

Fig. 3. An illustration of adversarial adaptation training
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where Xs is the samples from the source operating condition dataset, Xt is the samples
from the target operating condition dataset, F∗(·) is the generator after updating network
parameters. The discriminator D(·) is fixed when the parameters of the generator F(·)
are updated, and the objective function of the generator can be formulated as follows:

min
F∗ L(

F∗) = EXs∼ps(Xs)

[
log

(
1 − D

(
F∗(Xs)

))]
(6)

Similarly, the objective function of the discriminator can be expressed as follows:
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The operating condition-invariant representations can be extracted by the above
adversarial domain adaptation training strategy, thus realizing the RUL prediction under
different operating conditions data.

Finally, the RUL prediction subnetwork is fine-tuned using the source operating
condition dataset, noting that the parameters of the representation learning sub-network
F∗(·) are fixed in this process and only the parameters of theRULprediction sub-network
R(·) are updated.
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3 Experimental Results and Analysis

3.1 Data Description

To validate the effectiveness of the proposed method, accelerated degradation tests were
performed on a rolling bearing testbed as shown in Fig. 4. The tested bearingswere driven
by an alternating current (AC) motor and the radial force was applied by a hydraulic
loading device. The run-to-failure data of the tested bearingswere collected by horizontal
and vertical accelerometers with a sampling frequency of 25.6 kHz, a sampling interval
of 12 s and a sampling time of 1.28 s each interval. As shown in Table 1, a total of
14 LDK UER204 ball bearings were subjected to accelerated degradation under three
different operating conditions. The tested bearings under the first operating condition
were used as the source-domain, and the tested bearings under the last two operating
conditions were used as the target-domain data. In addition, the first two tested bearings
in each target condition are used in adversarial domain adaptation, and the last three
ones are used as testing set.

Fig. 4. Rolling bearing testbed

3.2 Ablation Experiments

In order to validate the effectiveness of the BDTCN and adversarial adaptation training
strategy, ablation experiments were performed in this section. Method 1 uses a standard
convolutional layer instead of a bidirectional temporal convolutional layer and does
not use the adversarial adaptation training strategy. Method 2 constructed by standard
convolutional layer and trained by adversarial adaptation strategy. Method 3 retains
the bidirectional temporal convolutional layer but does not use an adversarial adapta-
tion training strategy. The performance of the compared methods is shown in Table 2,
according to which the following analysis can be done: The RMSE of Method 1 is the
largest among all compared methods, which indicates that if the network obtained by
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Table 1. Tested bearings for RUL prediction

Operating condition Rotating speed Radial force Bearings

Source condition 2100 rpm 12kN Bearing 1_1 Bearing 1_2
Bearing 1_3 Bearing 1_4
Bearing 1_5

Target condition 1 2400 rpm 11kN Bearing 2_1 Bearing 2_2
Bearing 2_3 Bearing 2_4
Bearing 2_5

Target condition 2 2700 rpm 10kN Bearing 3_1 Bearing 3_2
Bearing 3_3 Bearing 3_4
Bearing 3_5

directly using the data trained from a single working condition is predicted under the
new working condition, the network will be difficult to obtain good prediction results,
which leads to a large error between the predicted value and the true value, whereas the
BDTCN uses a bidirectional temporal convolutional layer for feature extraction and is
trained using the antithetic adaptation strategy, so its RMSE is minimized among all the
compared networks.

3.3 Comparison with Existing Methods

This section uses three existing prognostics methods for RUL prediction. Method 4 [8]
is constructed based on sparse self-coding. Method 5 [9] and Method 6 [10] are built on
top of convolutional neural networks and convolutional long- and short-term memory
networks, respectively. Table 2 summarizes the performance evaluation results of the
proposed methods and the three existing migration prediction methods. From the table,
it can be seen that the proposed method obtains the minimumRMSE value in the RUL of
the tested bearings for each operating condition. This indicates that compared to the other
three existingmethods, the proposedBDTCN is able to obtain higher prediction accuracy
and more stable prediction results under different operating conditions. Therefore, the
prediction performance of the proposed method is better than the other three existing
methods.
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Table 2. Performance evaluation of compared methods

Operating condition RMSE

Target condition 1 Target condition 2

Method 1 168.6022 185.6684

Method 2 134.2259 155.3813

Method 3 115.0177 125.9103

Method 4 126.9998 147.8215

Method 5 116.2318 127.4653

Method 6 113.3713 104.6772

BDTCN 93.0030 94.7992

4 Conclusion

An anti-adaptive remaining lifetime prediction framework is proposed for RUL pre-
diction under different operating conditions. First, a new network, named BDTCN, is
proposed to extract the interdependencies of input data on time scales through forward
and reverse convolution operations to capture key degradation features associated with
operating conditions. Then, an anti-adaptive training strategy is developed to help the
BDTCN further extract the operating condition invariant degradation features. The pro-
posed framework is evaluated through ablation experiments and comparison with exist-
ing methods. The experimental results demonstrate the effectiveness and superiority of
the framework in RUL prediction.
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