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Abstract. This paper proposes a joint state observer based on deep learning for
traction systems in high-speed trains. For actual systems, the signal collected by
multiple sensors contains different variables, and each variablewill reflect the state
of the systems. However, most researchers construct the state estimation strategy
without consideration of relations between variables, reducing the accuracy of
fault detection. Therefore, how to analyze the correlation of different variables and
design the data-driven observer becomes the difficult problem. This paper designs
a data-driven joint output observer for traction system of high-speed trains. The
joint distribution function is constructed by the marginal distribution of different
variables and the resultant weight of the joint model is calculated by Kendall rank
correlation coefficient. In the end, the proposed method is verified on a pilot-scale
experimental platform and traction systems in high-speed trains.
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1 Introduction

In recent years, the high-speed trains have gradually become one of the convenient ways
for people to travel [1]. Traction control systems is of great significance to ensure the
efficient operation of high-speed trains. Once any fault occurs, it may cause great loss
of personnel and property [2]. Therefore, effective fault detection of tractions systems
is a hotspot in recent years.

Recently, because of the better applicability and high accuracy, much attention
has been paid to data-driven fault detection methods [3]. At present, data-driven fault
detection methods for industrial systems can be divided into three categories: multi-
variate statistical analysis-based methods, deep learning-based methods, and subspace
identification-based methods. Commonly adopted multivariate statistical analysis-based
fault detection methods such as principal component analysis (PCA) [4], slow feature
analysis (SFA) [5], and canonical variate analysis (CVA) [6], depend on different vari-
ables to design detection methods directly. In [7], an improved dynamic kernel PCA
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is proposed based on local preserving projections for dynamic nonlinear systems. In
addition, A weighted probabilistic SFA and improved CVA are constructed for pro-
cess monitoring of dynamic systems in [8] and [9]. Although this type of method has
been successfully extended to dynamic systems, it is difficult to obtain robust detec-
tion results due to the complexity of noise and disturbance. Benefiting from the rapid
development of neural networks, deep learning-based methods occupy the mainstream
of current research. Its low complexity of model designing brings great convenience
for researchers and engineers. For example, Zhang et al. [10] proposed a full feedback
dynamic neural network with exogenous input. The noise of collected data is reduced to
obtain accurate results. Besides optimizing the network model, improving the training
method can also enhance the dynamic performance of the algorithm [11]. However, it is
also difficult to deal with the disturbance and noise. In the multi-sensor monitoring envi-
ronment, enhancing the interpretability of deep learning methods is still a big problem
to deal with. The subspace identification-based strategy not only realizes the analysis
of dynamic characteristics, but detects faults through residual generator by data-driven
observer. Motivated by this, this paper proposed a joint data-driven observer for the fault
detection task of traction systems. The main contributions and innovations of this study
include:

(1) A joint observer based on the copula function is constructed for traction systems.
(2) The fault detection strategy based on data-driven designs is introduced.
(3) Different experiments including motor platform and traction systems are used for

verification.

The paper is organized as follows. In Sect. 2, the proposed data-driven fault detection
scheme is introduced. Section 3 shows the experiment results by different aspects. In
Sect. 4, the discussions about the open problems and perspectives are given. Section 5
is the conclusions and future works of this study.

2 The Proposed Data-Driven Fault Detection Scheme

The purpose of this paper is to design a joint data-driven fault detection method for
traction systems in high-speed train. The framework of the proposed method is shown
in Fig. 1.

2.1 Systems Description

Consider the LTI model of systems as

x(k + 1) = Ax(k) + Bu(k) + ω(k)

y(k) = Cx(k) + Du(k) + υ(k)
(1)

where x ∈ Rkx represents the state of systems; u ∈ Rku and y ∈ Rky are input and
output of systems, respectively; A, B, C, and D stand for the system matrices with
known dimensions; ω ∈ Rkx and y ∈ Rky are white noises with the assumption that
ω ∼ (

0,
∑

ω

)
and υ ∼ (

0,
∑

υ

)
.
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Fig. 1. The framework of proposed joint observer model

The full-order observer introduced in [12] is given below.

x̂(k + 1) = Ax̂(k) + Bu(k) + L(r(k))

ŷ(k) = Cx̂(k) + Du(k)
(2)

where r(k) stands for the residual of system output.
In data-driven scheme, the residual generator can be obtained by using the kernel

representationK and left coprime factorization introduced in [13]. These definitions are
given as

K
[
u(z)

y(z)

]

= 0,K : =[−N̂ (z) M̂ (z)
]

(3)

According to the definitions above, the residual generator (4) can be used to fault
detection.

r(z) = M̂ (z)y(z) − N̂ (z)u(z) (4)

2.2 Data-Driven Joint Observer Based on Correlation Measure

To design a joint model, the important lemma [14] is given as follows.

Lemma1 (Sklars theorem):For a randomvector X with cumulative distribution function
F and univariate marginal cumulative distribution functions F1, · · · ,Fd . There exists
a copula C such that

F(x1, · · · , xd ) = C(F1(x1), · · · ,Fd (xd )) (5)

If X is continuous, then such a copula C is unique. Conversely, if we know the joint
cumulative distribution junction F and themarginals F1, · · · ,Fd , we can find the copula
via

C(u1, · · · , ud ) = F(F−1
1 (u1), · · · ,F−1

d (ud )) (6)

where F−1
j (t) = inf{s : Fj(s) ≥ t}.



Dynamic Fault Detection Method of Traction Systems 93

Lemma 1 illustrates the existence of copula functions. For computing the weight
of different marginal distributions, Kendall tau, one of the correlation measures of the
copula function, is used in this section. The specific definition is given as

ξ = Pr[(X1 − X2)(Y1 − Y2) > 0] − Pr[(X1 − X2)(Y1 − Y2) < 0] (7)

where (X1,Y1), (X2,Y2) are independent identically distributed binary random vectors.
The copula function used in this paper is Gaussian copula, which belongs to a family

of elliptic copula function. The cumulative distribution function and probability density
function are given below.

C(u, v; ρ) =
∫ ψ−1(u)

−∞

∫ ψ−1(v)

−∞
1

2π
√
1 − ρ2

exp

(−r2 − s2 + 2ρrs

2 − 2ρ2

)
drds (8)

p(u, v; ρ)

= 1
√
1 − ρ2

exp

(

−ψ−1(u)2 + ψ−1(v)2 − 2ρψ−1(u)ψ−1(v)

2 − 2ρ2

)

exp

(

−ψ−1(u)2ψ−1(v)2

2

)

(9)

where ψ−1(·) is the inverse function of unary normal distribution, and ρ is the linear
correlation coefficient.

According to the copula function above, the weight τi of the i variable used to obtain
the proportion of correlation can be defined as

τi = ξi

ξ1 + · · · + ξn
(10)

where n represents the number of variables.
To analyze the performance of dynamic systems, the data model can be expressed

as

ρs(k) = [
ρT (k) · · · ρT (k + s)

]T
(11)

where k stands for the instant,s is the stacked size. It is worth to mention that ρ can
represent any variables in systems. Therefore, the data-driven observer based on deep
learning technology for dynamic systems can be constructed by full connection neural
network as follows:

NN = min
N−s∑

k=s+1

1

2

∥∥∥
∥∥∥∥
ys(k) − A

⎛

⎜
⎝

us−1(k − s)

us(k) ; 	

ys−1(k − s)

⎞

⎟
⎠

∥∥∥
∥∥∥∥

2

2

(12)

According to the setting of network model above, the observer can be defined as

ŷ(k) = A(u(k);	) (13)

Based on (8) and (11), the joint data-driven observer for traction systems can be
obtained as

ŷ_joint(k) = 1

n

n∑

i=1

τi ŷi(k) (14)
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where ŷ_joint represents the estimation of joint observer output. Fault detection can be
accomplished by errors below.

e_joint(k) = y_joint(k) − ŷ_joint(k) (15)

2.3 Implementation Procedures of Fault Detection

Following the proposed fault detection method in this study, the implementation
procedure is formulated in Algorithm 1.

Algorithm 1 Fault detection using joint observer

1: Load the normal data of yi and fault data yfi

2: Calculate the copula function by (6) and obtain the Kendall tau by (7)

3: Calculate the joint weight by (10)

4: Construct the data-driven observer by (12)

5: Estimate the joint output of systems by (14)

6: Detect the fault by using errors in (15)

3 Verifications

For illustrating the practicality of the proposed method, two different experiments
developed by traction systems are designed. Then, the experimental environment and
experimental results are given below.

3.1 Experiment on Pilot-Scale Platform

The traction systems shown in Fig. 2 contains the cabinet, the tractionmotor, and sensors.
The input voltage is 220V and the power of module is 10KW. The parameters of traction
systems in this experiment are given in Table 1. Figure 3(a) illustrates the probability
density function of copula. It is different with the Archimedean copula function because
of the symmetric tail correlation. Figure 3(b) shows the fault detection result using the
proposed method. The system fault is happened in the 100th sample. When the fault
occurs, the residual has a significant step.

3.2 Verification on Traction Systems of High-Speed Trains

For illustrating the practicality, the proposed method is verified by the running data of
traction system in high-speed trains. The traction motor equipped in trains is shown in
Fig. 4. All the running data are collected from monitoring systems in high-speed trains.
Figure 5(a) illustrates the probability density function of copula for actual data. It also
has symmetric tail correlation. Figure 5(b) shows the fault detection result using the
running data of train system. The system fault happened in the 35th sample. Although,
due to the complexity of the actual systems, false alarm appears at the 9th and 13th
sample points, the results of fault detection are still satisfactory.
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Fig. 2. Traction control systems in laboratory

Table 1. Parameters of motor

Parameter Value Parameter Value

Mechanical time constant 4.989 ms Power 0.6 KW

Rated torque 2 NM Electrical time constant 2.968 ms

Rated speed 3000 RPM Torque constant 0.5 Nm/Arms

Rated current 4 A Maximum current 12A

Rotor inertia 0.425 Maximum torque 6 NM

(a) Probability density function of copula      (b) Detection result of motor fault 

Fig. 3. Experimental results of traction control systems in laboratory
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Fig. 4. Traction systems of high-speed trains

(a) Probability density function of copula      (b) Detection result of motor fault 

Fig. 5. Experimental results of traction control systems in high-speed trains

4 Discussions

Although data-driven fault detection technology has some limitations in its current devel-
opment stage, it still has significant potential for industrial systems. Especially for multi-
sensor monitoring systems, the observer-based modeling approach can describe the sys-
tem’s dynamic behavior and directly construct residual generators to detect faults. Most
importantly, when sufficient data is available, data-driven methods can greatly reduce
modeling complexity and achieve satisfactory detection results. However, for the traction
system of high-speed trains, there are still some issues that need further consideration:

(1) In engineering applications, the real-time performance of algorithms is always a hot
topic. How to further improve the computing efficiency of high frequency sampling
systems deserves more attention.

(2) While nonlinear observer models are effective in describing system characteristics,
the design of such models for distributed systems poses significant challenges.
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(3) Besides the characteristics of initial variables, the correlation between process
variables and noise should be considered.

5 Conclusions

In this article, a data-driven joint observer is proposed for traction systems in high-
speed trains. To obtain the joint distribution of system state, marginal distributions of
all variables are considered in this scheme. In the end, the proposed method is verified
by different experiments. Results shows the superiority of this method. Benefiting from
the joint model, future research consists of fault configuration and health prediction for
other complex systems is possible.
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