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Abstract. To realize the intelligence of robots, robots need to have the abil-
ity to grasp unknown objects. In this paper, a novel grasp detection network is
proposed, named Efficient Channel Attention Grasp Network (ECA-GraspNet).
ECA-GraspNet uses an encoder-decoder architecture to fuse feature information
from different layers using a Feature PyramidNetwork (FPN). The network is able
to actively focus on convolutional layers that are more useful for grasp detection
by embedding Efficient Channel Attention (ECA). The proposed network is able
to generate pixel-by-pixel grasp poses from RGB-D images at real-time speed.
We evaluate the proposed network on the public Cornell dataset and achieve an
accuracy of 97.7%.
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1 Introduction

Robotic grasping technology is widely used in factory assembly, agriculture, and logis-
tics. For intelligent robots, the primary task is to use sensors to perceive the environment
and predict graspable poses. However, it has been a challenge for robots to predict the
grasp pose of unknown objects in unstructured environments. Traditionalmethods utilize
analytical approaches, such as computing graspable poses through geometry, kinematics,
and dynamics [1]. However, these methods heavily depend on the shape of the object
to be grasped and require a lot of computation. In this paper, we mainly focus grasp
detection algorithm is applied on planar unknown objects.

With the development of deep learning technology, most studies have proposed grasp
detection methods based on neural networks. These methods can be simply divided into
classification-based methods [2–5] and detection-based methods [6, 7]. Classification-
based methods first generate a large number of candidate grasp poses from the input
data, and then filter out feasible grasps. Such methods usually have high accuracy. Due
to real-time limitations, it is difficult for most studies to generate dense grasp poses.
Detection-based approaches utilize convolutional neural networks (CNNs) to generate
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grasps end-to-end from input data. These methods build lightweight grasp detection
models by stacking multiple convolutional layers, which can quickly generate graspable
poses. However, the lightweight design affects the detection accuracy of the model.

In order to keep the model lightweight and further improve the accuracy of model
detection, this paper proposes a novel grasp detection network ECA-GraspNet. ECA-
GraspNet adopts the encoder-decoder structure, and uses the Feature Pyramid Network
(FPN) [8] to fully utilize the feature information extracted by different layers. The pro-
posed grasp detection network embeds Efficient Channel Attention (ECA) [9], focusing
on convolutional layers that are more useful for grasp detection. Compared with existing
work [6, 7], the proposed network uses FPN to make full use of the feature information
extracted by different layers, and uses ECA tomake the network focus on features useful
for grasp detection.

2 Related Work

For robotic grasping, the primary task is to estimate the grasp poses of objects to
be grasped from the input data. Jiang et al. [11] proposed to utilize a 7-dimensional
grasp rectangle to represent the configuration, including 3D position, 3D orientation and
required grasp width. They use a two-stage SVM to find grasp rectangles from the input
data. With the development of deep learning technology, some studies have begun to
use neural networks to detect grasp rectangles. Lenz et al. [10] first used deep learning
methods to detect grasp rectangles, and they used a sliding window detector to estimate.
Although sliding window can improve the accuracy of grasp detection compared with
SVM, it requires a lot of computational operations. To improve the accuracy and speed
of grasp detection, other studies also use direct regression grasp detectors. Song et al.
[5] used a region proposal network to regress grasp rectangles from RGB images and
predict their categories. Chen et al. [4] used a densely connected feature pyramid net-
work feature extractor and multiple two-stage detection units for predicting dense grasp
poses. Their experimental results show that the proposed method is real-time, but the
detection accuracy needs to be further improved.

Morrison et al. [6] designed a generative grasp detector, which can realize real-time
grasp detection through a convolutional neural network. They employ a generative grasp
detection method to directly predict pixel-wise grasp configurations end-to-end from
input data. Due to their simple use of multiple stacked convolutional layers, their models
still have some limitations in terms of grasp detection accuracy. In order to improve the
accuracy of grasp detection, Kumra et al. [7] proposed a novel grasp algorithm. They
achieved higher accuracy by designing a deeper network structure. Similarly, many
subsequent studies also adopted this generative grasp detection method [12, 13].

3 Problem Statement

In this paper, a five-dimensional rectangle is used to represent the grasp configuration of
the gripper [6]. We follow the grasp generation pipeline ofMorrison et al. [6] to generate
pixel-wise grasp poses from input images. We generate a grasp configuration from an
N-channel image I ∈ R

N×H×W with height H and widthW, which can be expressed as:

gi = (pi, qi, θi,wi) (1)
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wherepi = (u, v) is the parallel gripper’s center position, qi is the scalar qualitymeasure,
θi denotes the rotation in camera’s frame of reference,wi denotes requiredwidth in image
coordinates.

The grasp quality qi represents the grasp score. It is a scalar value between 0 and 1
where a value closer to 1 indicates higher grasp quality. θi represents the rotation grasp
angle in the camera coordinate. Due to the grasp angle θi is symmetrical, the angle is
represented as a value in the range [-π/2,π/2]. To avoid learning the grasp angle directly,
the angle is encoded as two components of a unit vector, cos(2�I ) and sin(2�I ). The
final grasp angle is calculated by θi = atctan(sin(2�I )/cos(2�I ))/2.

All grasp configurations in image space can be expressed as:

GI = (QI ,WI ,�I ) ∈ R
3×H×W (2)

where QI ∈ R
H×W ,WI ∈ R

H×W and �I ∈ R
H×W represent three images and contain

values of qi, wi and θi at each pixel, respectively.
The optimal grasp configuration in image space can be computed as follows:

g∗
i = maxQI (GI ) (3)

4 Method

Robots need to be able to grasp unseen objects in an unstructured environment. For a
grasp model, it is necessary to consider the uncertainty of the shape, pose and size of the
object to be grasped. Generally, the grasp model uses stacking multiple convolutional
layers to extract the feature information of the object to be grasped from the input
image. Shallow networks usually extract low-level feature information of objects (i.e.
texture and edge), and deeper networks usually extract more abstract high-level semantic
information. Therefore, considering the feature information of different layers extracted
by the model may be more beneficial for the grasp detection task. In addition, it also
needs to consider how different convolutional layers can effectively extract features
useful for grasp detection.

In this paper, a grasp detection model named ECA-GraspNet is proposed. ECA-
GraspNet employs an encoder-decoder architecture. In order to utilize the feature infor-
mation extracted by different layers, we refer to the idea of Feature Pyramid Network
(FPN) [8] to make skip connections between some convolutional layers in the encoder
and decoder. Extensive studies have shown that models with deeper and wider layers
generally demonstrate better performance for the same task. For grasp tasks with poten-
tial in industry, a lightweight and efficient grasp model is the primary consideration. In
order to effectively extract the feature information of objects to be grasped, an efficient
channel attention network is used in FPN. The network architecture is shown in Fig. 1.

4.1 Grasp Detector

The grasp detector is designedwith a generative end-to-end grasp pipeline. In the encoder
part, the RGB-D image first passes through three convolutional layers [C1, C2, C3] to
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Fig. 1. Network architecture. The encoder consists of 3 convolutional layers [C1, C2, C3] and 4
residual blocks [Res1, Res2, Res3, Res4]. The decoder consists of 3 convolutional layers [C4, C5,
C6] for feature extraction and 4 convolutional layers [C7, C8, C9, C10] for generating grasps.

extract features, and the output sizes are 32 × 224 × 224, 64 × 112 × 112 and 128
× 56 × 56. Each convolutional layer consists of a convolutional operation, a batch
normalization (BN) layer and a ReLU respectively. The kernel size and stride of C1 are
9 and 1, respectively. C2 and C3 have the same kernel size and stride, which are 4 and 2,
respectively. To utilize the convolutional layers more effectively, ECA is inserted after
C2 and C3 to focus on the effective convolutional layers for grasp detection. It is well
known that the performance of the model will increase as the number of layers increases
at a certain number of layers. However, when exceeding a certain number of layers,
the performance of the model will decrease. To extract high-level feature information
that may be more useful for grasp detection at deeper layers, four residual blocks [Res1,
Res2, Res3, Res4] are used. Each residual block is composed of two convolutional layers
and a skip connection, and the output size is 128 × 56 × 56. The kernel size and stride
of the convolutional layers in each residual block are both 3 and 1.

In the decoder part, three convolutional layers are used for sequential up-sampling.
The size of each convolutional layer output is 128 × 56 × 56, 64 × 112 × 112 and 32
× 224 × 224, respectively. In this process, the corresponding convolutional layers in
the encoder and decoder are skip-connected, and ECA is used to focus on the convo-
lutional layers that are effective for grasp detection. ECA can make full use of limited
convolutional layers to extract effective convolutional layers for grasp detection. C4 and
C5 have the same kernel size and stride, which are 4 and 2, respectively. The kernel
size and stride of C6 are 9 and 1, respectively. Furthermore, ECA is inserted after both
C4 and C5 to further focus on convolutional layers that are more effective for grasp
detection. The final output of the network includes grasp quality (QI ), grasp width (WI )
and grasp angle (�I ). The grasp angle includes two parts cos(2�I ) and sin(2�I ). Each
component of the network output is obtained using a convolutional layer with kernel
size 1 and stride 1.
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4.2 Loss Function

In order to deal with outliers more stably, we use smooth L1 (Huber) loss function.
This loss function combines the advantages of L1 loss and L2 loss, which is not easily
disturbed by other outliers and has good robustness. Given a generated grasp Gi and a
ground-truth grasp G̃i, the loss function is defined as follows:

L(Gi, G̃i) = 1

n

∑

k

zk (4)

where zk is represented as follows:

zk =
{
0.5(Gik , G̃ik )

2, if |Gik , G̃ik | < 1
|Gik , G̃ik | − 0.5, otherwise

(5)

5 Experiments and Results

5.1 Dataset and Metric

Models are trained and evaluated using the public Cornell Grasping Dataset [10]. For
the Cornell dataset, there are 885 RGB and depth images of 240 different objects, of
which there are 5,110 positive and 2,909 negative grasps. The dataset is divided in two
ways: image-wise (IW) and object-wise (OW). The training set and test set divided by
IWmay have images of the same object. Objects do not overlap in the OW division way,
which is closer to the real scene. We generate training and test sets using OW way.

This paper uses the standard rectangle metric to evaluate whether the grasp rectan-
gle is correct. For a correctly predicted rectangle, the angular difference between the
predicted grasp angle and the ground truth angle is within 30° and the Jacquard metric
is greater than 0.25. The rectangle metric is calculated as follows:

{∣∣θp − θGT
∣∣ < 30

◦

J |Gp,GGT | = Gp∩GGT
Gp∪GGT

> 0.25
(6)

where θp represents the predicted grasp angle and θGT represents the ground truth grasp
angle. Gp represents the predicted grasp rectangle and GGT denotes the ground truth
grasp rectangle.

5.2 Training Details

Themodel is implemented byPyTorch, and themodel parameters are optimized using the
Adamoptimizer.We employ randomcropping, scaling and rotation to create 8,840RGB-
D images of input size 224 × 224 and 51,100 grasp positive samples. The experiment
is conducted using a 2.4GHz Intel Xeon Silver 4210R CPU and NVIDIA GeForce
RTX3090 graphics card, and is trained for 50 epochs. The initial learning rate is set to
0.001 and the batch size is 8.
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5.3 Experiments on the Dataset

Quantitative Results. Table 1 compares the results of different algorithms on the Cor-
nell dataset. OW is used to demonstrate the accuracy of grasp detection. The proposed
method achieves 97.7% accuracy onOW. Compared with other algorithms, the proposed
method achieves better accuracy. Compared with the method of Kumra et al. [7], the pro-
posed method has a relative improvement of 1.1% in accuracy. Moreover, the proposed
method has an inference speed of 213 FPS, which can be used for real-time applica-
tions. The grasp detection time is 20 ms. It should be noted that the grasp detection
time includes the sum of the time of all steps of image pre-processing, model infer-
ence and post-processing. Compared with the method of Tian et al. [17], the accuracy
of the proposed method is reduced by 1.2%. However, the proposed method is faster in
detection speed. Comparedwith other algorithms, ourmethod canmake a better trade-off
between accuracy and detection time. For future industrial applications, grasp estimation
algorithms need to perform well in both accuracy and efficiency. The proposed method
maintains real-time performance while improving the accuracy of grasp detection. In
addition, the proposed model uses multi-layer convolution to build a lightweight grasp
detection network, which is more advantageous than others using large networks (i.e.
ResNet-50) for deployment on actual AI embedded devices.

Table 1. Results of different algorithms on the Cornell dataset.

Authors Algorithm OW (%) Time (ms)

Jiang [11] Fast Search 58.6 5000

Lenz [10] SAE 75.6 1350

Redmon [14] AlexNet, MutiGrasp 87.1 76

Asif [15] STEM-CaRFs 87.5 –

Kumra [16] ResNet-50x2 88.9 103

Morrison [6] GG-CNN 69.0 19

Kumra [7] GR-ConvNet-RGB-D 96.6 20

Tian [17] ResNet-50 98.9 26

Ours ECA-GraspNet 97.7 20

Qualitative Results. Figure 2 shows the results of partial grasp detection. The first row
to the third row in Fig. 2 represent the grasp quality, grasp angle and grasp width respec-
tively. Locations that are darker red in the grasp quality image have higher grasp scores.
The last row of Fig. 2 represents the predicted grasp rectangle. From the visualization
results, the proposed method can better predict the grasp rectangles of different objects.
Experimental results demonstrate that the proposed ECA-GraspNet is able to generate
reliable grasps.
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Fig. 2. Grasp detection results on the Cornell dataset.

Limitations. The method proposed in this paper only generates grasp rectangles for
isolated objects. In the actual cluttered object scene, this will affect the accuracy of
grasp detection to a certain extent. In addition, for potential grasping applications, the
detection efficiency of the proposed method needs to be improved.

6 Conclusion

In this paper, we propose a novel grasp detection network ECA-GraspNet. The feature
information extracted by different layers is fused through the feature pyramid network,
and an efficient channel attention mechanism is embedded to make full use of the convo-
lutional layers that are beneficial to grasp detection. We evaluated ECA-GraspNet on the
Cornell dataset and achieved decent accuracy. Moreover, the lightweight design enables
our proposed grasp detection network to be used in real-time robotic applications. In
the future, we will focus on grasp detection in cluttered scenes and improve detection
efficiency.
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