
PassDiff: A New Approach for Password
Guessing Using Diffusion Model

Sheng Guo1, Ming Duan1,2(B), Yibin Du1, Wei Wang1, and Lulu Guo1

1 College of Cyberspace Security, Information Engineering University, Zhengzhou 450001,
China

mdscience@sina.com
2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China

Abstract. Password guessing models can be broadly divided into three classes:
dictionary-based password guessing model, password guessing model based on
probability statistics and password guessingmodel based on deep learning. Recur-
rent neural networks and generative adversarial networks are the main deep learn-
ing techniques used for password guessing in the past. In this paper, we propose
a novel PassDiff method for password guessing using denoising diffusion proba-
bilistic models (DDPMs). Considering the similarity between the password space
and the text space, we incorporate a byte-level tokenizer in the input phase and
optimize the sampling process by modifying the source code. We encode a special
character, and it makes PassDiff can handle input of variable length and obtain
variable output without manual truncation. The experimental results show that
PassDiff produces high-quality passwords even with minimal denoising steps. We
recommend setting the denoising steps to 5–50, which can increase the sampling
speed by tens of times. Compared with PassGAN, the training process of PassDiff
is more stable and the cracking rate is also significantly improved. Specifically,
when the denoising steps is set to 10 and 108 passwords are generated, PassDiff
increases the cracking rate by 3.17%, 6.33% and 13.22% on 12306, CSDN and
RockYou datasets, respectively.

Keywords: Denoising diffusion probabilistic models · Passwords · Deep
learning

1 Introduction

Password authentication, as a security mechanism to protect user privacy, has become
the most popular authentication method for a long time because of its simplicity, practi-
cality and efficiency. At the same time, attackers and researchers tried to apply various
emerging technologies to the password guessing model. This promoted the development
of cryptanalytic techniques.

Password guessing models can be broadly divided into three classes: dictionary-
based password guessingmodel, password guessingmodel based on probability statistics
and password guessing model based on deep learning.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Y. Zhang et al. (Eds.): CENet 2023, LNEE 1125, pp. 29–40, 2024.
https://doi.org/10.1007/978-981-99-9239-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9239-3_3&domain=pdf
https://doi.org/10.1007/978-981-99-9239-3_3


30 S. Guo et al.

The dictionary-based password guessing model usually converts the original pass-
word of the dictionary through predefined rules to generate a new extended set, that is,
the guessing set. The quanty of the guessing set depends on the amount of the original
dictionary and the number of rules. It is characterized by simplicity and speed, but the
generation of rules depends on personal experience. HashCat [1] and John the Ripper
(JTR) [2] both efficiently implement dictionary-based approaches.

The Markov model [3] and the Probabilistic Context Free Grammars (PCFG) model
[4] are two classical representatives of the password guessingmodel based on probability
statistics. The Markov model uses the statistical laws of the dictionary to calculate the
probability of the next character according to the previous character or context, output to
the guessing set in probability order, and guess as many passwords as possible with least
small guessing set. The PCFG model firstly preprocesses the password structure, and
divides the character types of the password into numbers D, letters L and special charac-
ters S, then it counts consecutive segments. For example, the password “abc@123456”
will be recorded as L3S1D6. The PCFG model usually statistics the frequencies of all
structures and strings, retains the high probability structures and then fills them with
high probability strings, finally outputs the filled passwords as the guessing set.

In recent years, deep learning technology has made great progress, and password
guessingmodels based on deep learning arise at the historicmoment. Deep learning tech-
niques such as Recurrent Neural Networks (RNNs), Generative Adversarial Networks
(GANs), Variational Auto-Encoders (VAEs) have also been applied to password guess-
ing models. In addition, many scholars have done a lot of research on the combination
of deep learning and traditional password guessing techniques such as PCFG.

In 2016,Melicher et al. [5] proposed the FLAmodel. Theyfirstly usedRNN to extract
and predict password features. Liu et al. [6] presented a PL model based on PCFG and
Long Short-Term Memory network (LSTM). Wang et al. [7] constructed PR and PR+
models based on PCFG and RNN. In 2019, Hitaj et al. [8] proposed PassGAN, the
first author to apply the generative adversarial network to the password guessing model.
Nam et al. [8] proposed rPassGAN, which applied RNN to PassGAN and adopted a dual
discriminator structure. Fu et al. [9] modified the generative and discriminant networks
of PassGAN to DenseNet and named their model DenseGAN.

Unlike probability-based or rule-based password guessing models, models built on
deep learning make no assumptions about the password structure. The guessing set
generated by a deep learning method is not restricted to any specific subset of the
password space. Inversely, neural networks can detect extensive password information
beyond the power of traditional password guessing models.

Recently, diffusion model [10] has become one of the most popular generative mod-
els due to its powerful generative ability. In 2020, Ho et al. [11] published Denoising
Diffusion Probabilistic Models (DDPMs), the first paper to give a rigorous mathemati-
cal derivation to prove that the diffusion model can produce high-quality images. Song
et al. [12] accelerated the sampling and proposed DDIMs, which was a more efficient
probabilistic model and had a same training process with DDPM. Peebles et al. [13]
proposed Diffusion Transformers (DiTs), which replaced the commonly-used U-Net
with Transformer. In addition to applications in computer vision, speech generation and



PassDiff: A New Approach for Password 31

natural language processing, more applications of diffusion model are being explored
by researchers [14].

1.1 Our Contribution

As far as we know, it is the first time to apply the diffusion model to the password
guessing model. When generating 108 passwords, our model can increase the cracking
rate by 13.22% on RockYou dataset. Through a lot of experiments, we prove the great
potential of the diffusion model in the field of password guessing. Our works expand
the application scope of the diffusion model.

We innovatively use the byte-level tokenizer embedding for encoding the password
into the input vector of the diffusion model. By modifying the model interface, the
passwords can be better input to the diffusion model.

By adjusting the parameters and modifying the source code, we optimize the denois-
ing process to better fit the characteristics of the passwords. Additionally, we improve
the sampling speed of the model.

1.2 Organization

The rest of our paper is organized as follows: We briefly introduce the basic knowledge
of generative adversarial network and diffusion model in Chap. 2. In this chapter, we
present our model: PassDiff. The fourth chapter is the description of our experimental
settings. In Chap. 5, we introduce and discuss our experimental results. In Chap. 6, we
draw the experimental conclusions and prospect our future work.

2 Background and Related Works

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) are made up of two parts: a generator (G) and a
discriminator (D), both of which are constructed using neural networks. G usually takes
random features or noise as its input. In the training process, G learns the distribution
of the input data and makes its output gradually approach the distribution of the input.
D estimates the conditional probability of the examples given a set of tagged inputs.
Throughout the training process, D spares no effort to distinguish the real samples and
fake ones. After hundreds of thousands of such games, G and D eventually reach an
equilibrium, with G generating a sample that is consistent with the distribution of input
data, and D having no advantage in guessing the source of the samples. The process can
be express by the formula as follows:

min
G

max
D

⎛
⎝

n∑
i=1

logD(xi) +
n∑

j=1

log
(
1 − D

(
G

(
zj

)))
⎞
⎠, (1)

where G and D represent generator and discriminator, respectively.

https://doi.org/10.1007/978-981-99-9239-3_2
https://doi.org/10.1007/978-981-99-9239-3_5
https://doi.org/10.1007/978-981-99-9239-3_6


32 S. Guo et al.

2.2 Denoising Diffusion Probabilistic Models

The Denoising Diffusion Probabilistic Models (DDPMs) involve two Markov chains:
a forward chain (diffusion process) for adding noise to the input data, and a backward
chain (denoising process) for transforming the noise back into the original data. The
diffusion process is often manually designed to convert any original distribution into
a simple prior distribution such as standard Normal distribution, while the denoising
process reverses this process using a parameterized transition kernel learned from a
deep neural network. The denoising process continuously generate new data points in
two steps: first sampling a random data from the prior distribution and then performing
the original sampling.

Mathematically, given a data distribution x0 ∼ q(x0) and assuming that the transition
kernel of the forward chain is q(xt |xt−1), the diffusion process will generate a sequence
of random variables x1, x2, . . . , xT . We use q(x1, . . . , xT |x0) to denote the joint distri-
bution of x1, x2, . . . , xT conditioned on x0. According to the chain rule of conditional
probability, it can be decomposed into the following formula:

q(x1, . . . , xT |x0) =
T∏
t=1

q(xt |xt−1). (2)

In DDPM, the transition kernel q(xt |xt−1) is usually manual designed to gradually
convert the data distribution q(x0) to a identifiable prior distribution. Gaussian pertur-
bation is often used as the transition kernel, and the most typical design of transition
kernel q(xt |xt−1) is

xt ∼ N
(√

1 − βtxt−1, βt

)
, (3)

Among them, βt ∈ (0, 1) is a hyperparameter selected before training. We use
this kind of transition kernel here to simplify our discussion.In addition, other types of
transition kernels apply equally well. As we choose Gaussian perturbation as transition
kernel, we can get expressions for the q(xt |x0) of all t ∈ {0, 1, . . . ,T } by marginalizing
the joint distribution in the equality (2). Specifically, let αt = 1− βt, αt = ∏t

s=0 αs, we
have

xt ∼ N
(√

αtx0, (1 − αt)
)
. (4)

Given x0, by choosing a random vector, ε ∼ N (0, 1), and transforming it by the
following formula

xt = √
αtx0 + (1 − αt)ε, (5)

we can easily obtain a sample of the xt . When αT ≈ 0, the distribution of xT is almost
Gaussian, so we have

q(xT ) = ∫ q(xT |x0)q(x0)dx0 ≈ xT ∼ N (0, 1). (6)

The diffusion process consistently destroies the input data with noise until it loses all
the features. To produce new data points, DDPM firstly samples a random noise point



PassDiff: A New Approach for Password 33

that follows the prior distribution, and then conducts a regular reverse Markov chain to
increasingly eliminates the noise. Concretely, we use a prior distribution p(xT ) (where
xT ∼ N (0, 1)) and a knowable transition kernel pθ (xt−1|xt) to parameterize the reverse
Markov chain. The construction of the diffusion processmakes the q(xT ). Approximately
satisfy xT ∼ N (0, 1). The knowable transition kernel pθ (xt−1|xt) can be calculated by
the following formula

xt−1 ∼ N (μθ (xt, t),�θ (xt, t)), (7)

where θ represents the model parameters, the mean μθ(xt, t) and the variance �θ(xt, t)
are learned from deep neural networks, a very classical implementation is to learn noise
using U-Net. Using the reverse Markov chain, we can firstly sample a noise point
xT ∼ p(xT ) and then iteratively calculate it from the knowable transition probability
pθ (xt−1|xt) until t = 1, and finally we will get a data point x0.

Training the reversearkov chain to correspond to the forward Markov chain is very
important to the denoising process. So, we need to select a proper parameter θ so that the
reverse process joint distribution pθ (x0, x1, . . . , xT ) = p(xT )

∏T
t=1 pθ (xt−1|xt) is very

close to the joint distribution q(x0, x1, . . . , xT ) = q(x0)
∏T

t=1 q(xt |xt−1) of the forward
process (Fig. 1).

Fig. 1. Diffusion model architecture

3 Proposed Model: PassDiff

The standard diffusion model is mainly applied in the field of image generation, and
both its input and output are 2D vectors. Li et al. [15] made some modifications on
the standard diffusion model. They used Transformer to learn about noise distribution
and added the text embedding step and rounding step. They named their model the
Diffusion-LM model, which applies the diffusion model to the domain of controllable



34 S. Guo et al.

text generation. Aman [16] simplified the source code of Diffusion-LM model to make
it easier to use. The diffusion-LM model takes text as input and encodes the text into a
1D integral vector using word-level tokenizer embedding. In the diffusion process, the
integral vector will be converted to a 1D floating vector. At the end of the denoising
process, the rounding step converts a 1D floating vector back to a 1D integer vector
and outputs semantically similar sentence text via the tokenizer. Diffusion-LM model,
however, can only output fixed-length text, which needs to be truncated manually.

Word-level tokenizer embedding treats text as a sequence of words, typically divided
by spaces or punctuation marks. Encoding each word or word with more than a certain
frequency can preserve the semantic connection between words to a certain extent, but
it is easy to cause the encoding range being too large.

Byte-level tokenizer embedding treats text as a sequence of bytes, encoding both
a single byte and multiple bytes in a row. Single-byte encoding has poorer semantic
connections, and multi-bytes encoding is a compromise between single-byte encoding
and word-level encoding.

Considering the similarity between password space and text space, the semantic
relationship between the preceding and following characters of the password is weaker
than that in the corpus. Referring to the Diffusion-LM model, we encode the input
password with character-level tokenizer, and propose a PassDiff password prediction
model. In addition, we analyzed the code of the denoising process and found that it could
only generate passwords of fixed length. We introduce a random factor so that users can
generate passwords of any length within the required range according to their own needs,
which makes the generated dictionary more close to the distribution characteristics of
the training set and improves the password cracking rate to some extent.

We found no significant advantage of multi-bytes encoding over single-byte encod-
ing. For simplicity, this article encodes only a single byte, i.e., only 1 special byte and 95
visible bytes. Our coding range is 0 to 95. The special byte is represented as 0, and the
remaining visible bytes are represented in ASCII order from 1 to 95. The encoding of the
special character can handle input of variable length and obtain variable output without
manual truncation. We found that the PassDiff model produces high-quality passwords
even with minimal denoising steps. We recommend setting the denoising steps to 5 to
50, which can increase the sampling speed by tens of times (Fig. 2).

4 Experiment Setup

Our experimental environment is a DELL Precision 5820 workstation with 128G mem-
ory, 10 CPU cores, and an NVIDIAGeForce RTX 3090 graphics card. All of our experi-
ments were performed under Win10 and Ubuntu 22.04. We conducted PassGAN related
experiments on Win10, using the source code of rnnPassGAN [8, 17]. Experiments
related to diffusion model were carried out on Ubuntu 22.04, and the source code came
from minimal-text-diffusion [16].

4.1 Dataset

We chose three classical datasets for the experiment: 12306, CSDN and RockYou. We
start by suming up the amount of passwords in the three datasets. In the second step,



PassDiff: A New Approach for Password 35

Fig. 2. PassDiff model architecture

we deleted passwords that contain invisible characters or are longer than 15 and marked
them as Totals1. The number of unique passwords and the repetition rate were also
recorded. We continued to divide the passwords in Totals1 into the train set and the
test set at random ratios of 80% and 20%, respectively, and noted the count of unique
passwords. The statistical results are as follows.

Table 1. Totals, unique totals and repetitive rate of 12306, CSDN and RockYou

Datasets Totals Totals1
(Uniques)

Repetition
rate (%)

Train set
(Uniques)

Test set
(Uniques)

12306 131,653 131,652
(117,807)

10.5 105,321
(95,283)

26,331
(24,974)

CSDN 6,428,632 6358,467
(3973,939)

37.5 5086,773
(3256,919)

1271,694
(910,100)

RockYou 32,584,847 32,330,944
(12,350,913)

61.8 25,864,755
(10,562,791)

6466,189
(3498,440)

We counted the ratios of various length interval of the three datasets as follows.
It can be seen from Tables 1 and 2, 12306 dataset is small in scale with low repetition

rate, while RockYou dataset has a large sizewith high repetition rate. The length intervals
of the three datasets are all relatively concentrated.

4.2 Hyperparameters

The main hyperparameters of our PassDiff model include: training rounds, batch size,
diffusion steps, denoising steps, input length, output length, learning rate and so on.
At present, we set some parameters to the default values of the original diffusion



36 S. Guo et al.

Table 2. The ratio of length intervals of 12306, CSDN and RockYou

Datasets Totals1 Ratio of various length intervals The primary
length interval
(ratio)

1–5 (%) 6–10 (%) 11–15 (%) >15 (%)

12306 131,652 0 94.11 5.89 0 6–10 (94.11%)

CSDN 6,358,467 0.62 76.56 21.72 1.1 8–12 (90.54%)

RockYou 32,330,944 4.32 86.54 8.36 0.78 5–11 (94.18%)

model. Moreover, we fixed the diffusion steps and the learning rate at 2000 and 0.0001,
respectively.

Using the PassDiff model, we generate 105 to 108 unique passwords, and calculated
the cracking rate between the generated dictionary and the test set.Moreover,we compare
our cracking rate with PassGAN’s dictionary of the same size. When calculating the
cracking rate, the passwords in the generated dictionary are unique ones, while the train
and the test sets contain duplicate passwords.

5 Evaluation

5.1 Experiments on the PassDiff Model

For the 12306 dataset, we conducted a lot of experiments of PassDiffmodelwith different
training rounds, batch sizes and denoising steps. Due to the slow sampling speed of the
diffusionmodel, wemainly generated dictionaries of size of 105 and 106 for comparison.

The two dot plots below show how the cracking rate of the 12306 dataset varies with
the number of denoising steps. The quantity of training rounds in both experiments was
200,000, and both generated 105 and 106 passwords, but their batch sizes were 1024 and
256, respectively (Figs. 3 and 4).

Fig. 3. Cracking rate of 12306 with batch size = 1024

The above plots show that the cracking rate is positively correlated with the batch
size and the amount of the generated dictionary. As the number of denoising steps raises,



PassDiff: A New Approach for Password 37

Fig. 4. Cracking rate of 12306 with batch size = 256

the cracking rate gradually increases and stabilizes around 20–25 steps, indicating that
the PassDiff model requires only a small number of restore steps to produce a good
dictionary.

Figure 5 illustrates the variation pattern of cracking rate with training rounds for the
12306 dataset. In this experiment, the batch size is 1024 and the number of denoising
steps is 20. Respectively, we generated 105 and 106 passwords.

Fig. 5. Cracking rate of 12306 varies with the training rounds

As shown in the above graph that the cracking rate gradually increases with the
increase of training rounds. Through other experiments, we found that the cracking rate
had not reached the peak when training 200,000 rounds. If we increase the training
rounds, we will acquire a higher cracking rate.

For CSDN and RockYou datasets, we also conducted experiments to generate dic-
tionaries of different sizes under the conditions of different training rounds, different
batch sizes and different denoising steps. The datasets showed roughly the same rule as
12306. Here, we present only our representative experiments. Figures 6 and 7 show the
effect of the number of denoising steps on the cracking rate of CSDN andRockYouwhen



38 S. Guo et al.

Fig. 6. Cracking rate of CSDN varies with the denoising steps

Fig. 7. Cracking rate of RockYou varies with the denoising steps

generating 105 and 106 passwords, respectively, under the condition that the quantity of
training rounds is set to 200,000 and the batch size is 1024.

It is visible that the cracking rate of CSDN and RockYou is higher than 12306 on the
whole. We think this is due to their repetition rate being higher than 12306. The cracking
rates of CSDN and RockYou datasets gradually stabilized at about 40 denoising steps,
exceeding the denoising steps required for 12306. Upon further analysis, we attributed
it to inadequate training and larger data size.

From the experimental results of PassDiff model above, we analyze that increasing
the quantity of both training rounds and batch size can improve the cracking rate.With the
increase of the number of denoising steps, the crack first gradually rises to the maximum
value and then tends to be stable.

Additionally, we explored the variation of repetition rate, training time and sampling
time. We find that the repetition rate is positively correlated with the number of training
rounds and denoising steps. The higher the repetition rate, the longer it takes to generate
a unique password dictionary of the same size. The training time is proportional to the
quantity of training rounds and batch size. Regardless of the repetition rate, the sampling
time is proportional to the number of denoising steps and the amount of the generated



PassDiff: A New Approach for Password 39

dictionary. Take the 12306 dataset as an example. When the batch size is 1024, it takes
about 31 h to train 200,000 rounds. If the denoising step is set to 20, we will need about
11 h to generate 107 unique passwords.

5.2 Comparison with PassGAN

We tested the cracking rate of PassGAN under the same conditions for three datasets:
12306, CSDN, and RockYou. In the paper [7], the authors show that for the RockYou
dataset, themodel gets the best dictionary at 199,000 rounds of training. This is consistent
with our experiment. Therefore, we trained 200,000 rounds on each of the three datasets
for comparison. For our PassDiff model, we sacrifice some cracking rates to generate
a larger dictionary, and the parameters of our model are 200,000 training rounds, 1024
batch size, and 10 denoising steps. Our results are shown in Table 3.

Table 3. Comparison of cracking rate of PassGAN and PassDiff for 12306, CSDN and RockYou

Dataset Model Size of dictionary (%)

105 (%) 106 (%) 107 (%) 108 (%)

12306 PassGAN 6.85 13.77 21.84 34.91

PassDiff 8.45 15.30 24.70 38.08

CSDN PassGAN 17.12 21.27 25.31 30.99

PassDiff 19.41 24.61 30.03 37.32

RockYou PassGAN 9.44 16.80 26.32 37.27

PassDiff 15.45 24.83 37.36 50.49

From Table 3, we can clearly see that our PassDiff model has significant advantages
over PassGAN.When generating 108 passwords, the cracking rate of ourmodel is 3.17%,
6.33% and 13.22% higher than that of PassGAN on 12306, CSDN and RockYou data
sets, respectively. In addition, it is not our best performance in cracking rate. However,
there is still some gap between our model and the traditional password guessing model
(such as PCFG).Wewill keep improving our model and try to combine it with traditional
methods.

6 Conclusion

In this paper, by optimizing the diffusionmodel parameters and increasing the number of
training rounds, we propose PassDiff model with shorter training time and more stable
training process than PassGAN. However, due to the slow sampling speed of diffusion
model, it is difficult for themodel used in this paper to generate billion-level dictionaries.
The diffusion model has great potential in constructing password guessing models, and
can also make great breakthroughs in theory.



40 S. Guo et al.

In future work, we will further optimize parameters and debug other parameters such
as diffusion steps and learning rate. We plan to use other neural networks to learn from
the noise to improve the cracking rate. We will also try other encoding methods, such as
encoding more than two characters and trying to combine them with PCFG.

References

1. HashCat: https://hashcat.net. Last accessed 21 May 2023
2. John the Ripper: https://www.openwall.com/john/. Last accessed 15 Apr 2023
3. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-space tradeoff.

In: Proceedings of the 12th ACM Conference on Computer and Communications Security,
pp. 364–372. ACM (2005)

4. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using probabilistic
context-free grammars. In: 30th IEEE Symposium on Security and Privacy, pp. 391–405.
IEEE (2009)

5. Liu, Y., Xia, Z., Yi, P., Yao, Y., Xie, T., Wang, W., Zhu, T.: Genpass: a general deep learning
model for password guessing with PCFG rules and adversarial generation. In: Proceedings
of the 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018)

6. Wang, D., Zou, Y., Tao, Y., Wang, B.: Password guessing based on recurrent neural networks
and generative adversarial networks. Chin. J. Comput., 1519–1534 (2021)

7. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: a deep learning approach for
password guessing. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 217–237. Springer, Cham (2019)

8. Nam, S., Jeon, S., Moon, J.: Recurrent GANs password cracker for IoT password secu-
rity enhancement. In: Proceedings of the International Workshop on Information Security
Applications, pp. 247–258. Jeju Island, Korea (2019)

9. Fu, C., Duan, M., Dai, X., Wei, Q., Wu, Q., Zhou, R.. DenseGAN: A Password Guessing
Model Based on DenseNet and PassGAN. In: Information Security Practice and Experience.
ISPEC 2021. Lecture Notes in Computer Science, vol. 13107, pp. 296–305. Springer, Cham
(2021)

10. Anderson, B.D.: Reverse-time diffusion equation models. Stochast. Processes Appl. 12(3),
313–326 (1982)

11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf.
Process. Syst. 33, 6840–6851 (2020)

12. Song J, Meng C, Ermon S.: Denoising Diffusion Implicit Models. arXiv preprint arXiv:2010.
02502 (2020)

13. Peebles W, Xie S.: Scalable Diffusion Models with Transformers. arXiv preprint arXiv:2212.
09748 (2022)

14. Yang L, Zhang Z, Song Y, et al.: Diffusion Models: A Comprehensive Survey of Methods
and Applications. arXiv preprint arXiv:2209.00796 (2022)

15. Li, X., Thickstun, J., Gulrajani, I., et al.: Diffusion-lm improves controllable text generation.
Adv. Neural. Inf. Process. Syst. 35, 4328–4343 (2022)

16. Aman, M.: Minimal Text Diffusion. https://github.com/madaan/minimal-text-diffusion. Last
accessed 10 Apr 2023

17. Peng, K.: GAN-Based Password Guessing. https://github.com/ponedo/rnnPassGAN-pas
sword-cracking. Last accessed 10 Apr 2023

18. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using neural
networks. In: USENIX Security Symposium, pp. 175–191 (2016)

https://hashcat.net
https://www.openwall.com/john/
http://arxiv.org/abs/2010.02502
http://arxiv.org/abs/2212.09748
http://arxiv.org/abs/2209.00796
https://github.com/madaan/minimal-text-diffusion
https://github.com/ponedo/rnnPassGAN-password-cracking

	PassDiff: A New Approach for Password Guessing Using Diffusion Model
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Background and Related Works
	2.1 Generative Adversarial Networks
	2.2 Denoising Diffusion Probabilistic Models

	3 Proposed Model: PassDiff
	4 Experiment Setup
	4.1 Dataset
	4.2 Hyperparameters

	5 Evaluation
	5.1 Experiments on the PassDiff Model
	5.2 Comparison with PassGAN

	6 Conclusion
	References


