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Abstract. To solve the shortage of non-renewable energy sources, the develop-
ment and utilization of abundant renewable energy sources at sea are gradually
attracting attention. For the acquisition and analysis of offshore energy sources, we
propose a newoffloading framework for grid communication under offshoremulti-
energy power generation systems. This framework can enhance the performance
of offshore communication and provide a good basis for command transmission
of multi-energy complementary power generation systems. In this paper, we con-
sider network offloading with the help of unmanned aerial vehicles (UAVs), while
adopting non-orthogonal multiple access (NOMA) techniques on each UAV. The
system hardware loss and incomplete successive interference cancellation (SIC)
are jointly optimized for UAV trajectory and power allocation to minimize the
system energy loss. To solve the non-convex problem, we use a two-step Deep
Reinforcement Learning (DRL) based algorithm. Numerical results are based on
the number of iterations and the variation of the signal-to-noise ratio magnitude
to evaluate the effectiveness of the proposed algorithm in the system in terms of
system energy consumption, transmission rate, interruption probability, and error
rate. This research was funded by the National Natural Science Foundation of
China, grant number U2006222 and Natural Science Foundation of Shandong
Province, grant number ZR2020MF138.
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1 Introduction

After the 1950s, the global energy shortage gradually emerged, which has attracted
continuous attention from all over the world [1]. The ocean covers about 71% of the
earth’s surface area, and the abundant ocean energy is very valuable for research in
renewable energy.

In recent years 5G communication technology has been deeply integrated with land-
based power IoT. Edge offloading technologies are widely used in it [2]. However,
because renewable energy sources such as offshore wind and solar are too dispersed and
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far from onshore power equipment and base stations, it is impossible to achieve edge
offloading network coverage by relying only on terrestrial base stations [3].

The use of orthogonal multiple access (OMA) for land-based energy communication
withUAVshas beenwidely used, and considering that the number of access terminalswill
grow immeasurably in the future 6G network with the integration of earth, sea, air, and
sky, OMA is difficult tomeet themaritime communication scenariowith scarce spectrum
resources [4]. Non-orthogonal multiple access (NOMA) allowsmultiple terminals to use
the common resource block simultaneously, and the combination with the mobile UAV
model can meet the problem of multi-node access to marine networks [5].

Therefore, based on the multi-agent DQN approach, we mainly make the following
innovations:

• Considering the communication patterns under the offshore multi-energy com-
plementary power generation system and using a three-path model that fits the
characteristics of the sea, we propose a NOMA-based UAV-assisted offloading
framework.

• We first invoke the K-means algorithm to classify user clusters. Then we use a multi-
intelligent deep Q-network algorithm to reduce the system energy consumption by
optimizing the action trajectory and power allocation of UAVs.

• Based on the optimal energy consumption, we analyze the outage probability and
transmission rate of the system under different multi-access techniques and evaluate
the effectiveness of the proposed framework.

2 System Model

2.1 System

We consider a maritime offload network consisting of U UAVs carrying mini-MEC
servers and mobile ship users [6]. We assume that NOMA technology is used to support
downlink communication, where each UAV can be associated with K users [7]. The
collection of users and drones is denoted by k ∈ K and u ∈ U. The considered UAV-
assisted wireless network is shown in Fig. 1.

Fig. 1. NOMA-based framework for maritime UAV-assisted cellular networks

Considering the special atmospheric refractive index structure in the marine atmo-
spheric environment easily forms evaporative waveguides, which provide conditions
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for long-range communication. Assume that the evaporative duct layer is horizontally
homogeneous. When reflected rays from the sea surface exist outside the LoS (Line
of Sight) path, it is assumed that near-sweep incidence exists on the sea surface and,
eventually, the reflection coefficient of the vertically polarized waves approaches −1
[8]. Using these assumptions, the 3-ray path loss model can be simplified to
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where du
k (t) is the distance between UAV and the user in the 3D model, du

k (t) =√
h2u + (xu − xk)2 + (yu − yk)2, hu denotes the flight altitude of UAV u
It is assumed that the channel gain between the user and the UAV remains constant

during each time slot t. Then the channel gain from the UAV u to the user k can be
calculated as

guk (t) = 10
−Luk (t)

10 (2)

2.2 UAV-User Group Association Problems

Assume that in the initial state, the users associated with the UAV are randomly dis-
tributed in the maritime cellular network. Let the location state of the UAV and users
remain the same in each time slot. It is assumed that each user can be associated with
only one UAV within a set of time slots, and the UAV also provides service only to the
associated user.

Let suk(t) be the association between the UAV u and the user k. If UAV u is associated
with user k, then denote suk(t) = 1, otherwise suk(t) = 0. Thus there is the following
constraint:

U∑
u=1

suk(t) = 1,∀k ∈ K, u ∈ U (3)

Let P denotes the total power of the UAV u. Then the transmit power assigned to
user k satisfies the constraint

Pu(t) =
K∑

k=1

Pu
k (t)s

u
k(t) (4)

2.3 NOMA Downlink Communications

We assume that K users are in a cluster. Each user receives and decodes the data trans-
mitted downlink from the associated UAV. Inter-cluster interference is generated when
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different UAVs are offloaded to different users and reuse the same channel. If different
users reusing the same channel under the same UAV association are considered, intra-
cluster interference will occur. NOMA protocol applies SIC receiver at the receiving
terminal to implement multi-user detection to eliminate the interference. The receiver
first decodes the signal with large channel gain, subtracts the multi-access interference
generated by that user’s signal from the combined signal, and then judges the remain-
ing users again, and so on, until all the interference is eliminated [9]. Therefore, the
signal-to-noise ratio of user k:

SINRu
k(t) =

∣∣guk (t)∣∣2Pu
k (t)s

u
k(t)

Iuin k(t) + Iuon k(t) + zuk
(5)

Here, “Iuon k(t) = ∑U
s=1,s �=u

∣∣gsk(t)∣∣2Ps(t)” is the inter-cluster interference to user k from
UAVs other than UA V u, where gsk(t) denotes the channel gain between UAVs other

than UAV u and user k, s �= u. “Iuin k(t) = ∑K
i=k+1

∣∣gui (t)∣∣2Pu
i (t)s

u
i (t)” is the intra-cluster

interference generated within the same range served by the UAV. zuk is the additive white
Gaussian noise (AWGN), zuk ∼ CN (0, σ 2).

With the above reasoning and Shannon’s formula, the corresponding data rate can
be calculated as

Ru
k(t) =

U∑
u=1

K∑
k=1

B log 2(1 + SINRu
k(t)) (6)

The time delay required for the UAV service at moment it is

Tu
k (t) = In

Ru
k(t)

(7)

The energy efficiency consumed is

Eu
k (t) = Pu(t) · Tu

k (t) (8)

2.4 System Outage Probability Analysis

To facilitate the discussion of system mid-range performance, it is necessary to define
the system interrupt event first. If any user in the group does not decode successfully,
the system is considered to be interrupted. Assuming that the target rate of transmission
is rk , the system interruption probability can be expressed as:

Pout = 1 − Ps (9)

where denotes the probability of successful transmission and has

Ps = Pr{SINRu
k ≥ SINR′

k , k ∈ K
}

SINR′
k = 2rk − 1 (10)
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Let αu
k (t) be the power allocation factor for user k. Then the following relation-

ship exists between user power and transmit power Pu
k (t) = Pu(t)αu

k (t) and there is a
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3 Question Formula

For the offshore renewable energy generation system, considering the different demands
of communication users, we take minimizing the system energy consumption as the
optimization objective, including jointly optimizing the trajectory and power allocation
of UAVs. We express the positions of UAV u and user k in time slot t by Lu and Lk ,
respectively, and L = {x(t), y(t), h(t), 0 ≤ t ≤ T }. Assume that the UAV and user
positions are fixed within each time slot t and that each UAV position is different.

Consequently, the optimization issue may be expressed as

min E(t)

s.t.C1 : Lmin ≤ Lu(t) ≤ Lmax,∀u ∈ U,

C2 : Lmin ≤ Lk(t) ≤ Lmax,∀k ∈ K,

C3 : Lu
i �= Lu

j , i,j ∈ U,∀t,

C4 :
K∑
k=1

suk(t)P
u
k (t) ≤ Pu,∀k ∈ K, u ∈ U (12)

C1 ~ C3 denote the location constraints of the UAV and the user in the stereoscopic
space. According to C4, the entire amount of power provided to the user cannot be higher
than the transmit power.

Since the class of problems in (11) was shown in [6] to be non-convex and NP-hard
for this optimization problem, and due to high computational complexity and randomly
varying channel conditions, it is difficult to obtain a globally optimal solution in practice.
Therefore, this paper invokes an RL-based algorithm that interacts with the environment
and learns from the interaction experience.

4 Solutions

This section focuses on the solution proposed to solve the above objective function,
which is roughly divided into two steps. After the edge server calculates the offload, it
first uses the K-means algorithm to cluster and associate users based on their location
and the drones to determine each drone cluster and the users to be served. The multi-
agent DQNmethod is then used to jointly optimize the trajectory and power allocation of
the UAVs to accomplish the objective of minimizing system energy consumption [10].
Figure 2 shows a block diagram of joint optimization using a multi-agent DQN scheme.
The solution will be described in detail in two areas next.
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Fig. 2. Block diagram of the joint optimization of a multi-intelligent DQN scheme.

4.1 Clustering of User Based on K-Means

Spatial association of users using K-means clustering with an upper limit on cluster
membership allows the offloaded users to be divided into multiple clusters to suppress
inter-cluster interference. Within the system, we first divide, at random, the location of
each user into U groups and randomly select U users as cluster centers for the clusters.
The distance between the other users and each cluster center is calculated and these
remaining users are assigned to the closest cluster of users. The number of users in each
cluster is calculated, and if there are redundancies or vacancies, users are reassigned
based on the nearest user cluster. The clustering center and the assigned users then
represent a clustering cluster. For each user assigned, the position of the cluster center is
recalculated based on the center distance of the existing users in the cluster. This process
is repeated until all users have been allocated, or the cluster centers no longer change and
the mean sum of squares of errors is minimized. Once users are allocated, the nearest
UAV is selected for each user cluster to complete the clustering.

4.2 Deployment and Power Allocation of Multi-agent DQN Algorithm

In this subsection, we use a multi-intelligent DQN algorithm based on a user sub-
clustering strategy to jointly optimize the UAV cluster trajectory and power allocation
to minimize the system energy consumption. That is, multiple UAVs are deployed in
the maritime cellular offload network, abstracting the scenario as intelligences that can
choose their actions, and the UAVs exist independently of each other and do not know
the choice of actions.

For each time t, the UAV as an agent decent to a state when it needs to select an
action based on the state, receive a reward rt = r(st, at), and observe a new state st+1.
Each intelligent body exists independently in the environment. Combinedwith the power
allocation scenario, each part of the task is represented in themulti-intelligent bodyDQN
framework as follows:

State: In the system multi-agent DQN model, each UAV and the cluster of users it
serves is treated as an agent, and the state of the intelligent body consists of the cluster’s
location and channel gain [11]. Each agent interacts with the environment independently,
allowing different agent to connect to the same neuron. As shown in Eq. (13):

Sut = {Lu(t),Ls(t), guk (t), gsk(t)}, u, s ∈ U , s �= u, k ∈ K



UAV-Assisted NOMA Network Power Allocation 131

St = {S1t , S2t , . . . , Sut } (13)

Actions: At time t, each agent u ∈ U observes the current state of the environment
St ∈ S and chooses an action Au

t ∈ Au based on a random policy πu, and the actions of
the intelligent agents form a joint action At . Each independent agent needs to choose the
UAV flight action and the power allocation decision. The action usage is given by the
following equation:

At =
{
AL = {Left, right, front, back, up, down, stationary}
AP = {P1,P2, . . . ,Pk} (14)

Reward: As a result of this joint action, all intelligences receive a reward signal
Rt = r(St,At) [12] and the environment is transferred to a new state St+1 ∈ S according
to a transfer probability function P(St+1|St,At ) [13].

A natural approach to such a fully observable, cooperative multi-intelligence RL
problem is to consider a “meta-intelligence” that chooses a joint action At based on π , π
being a vector containing strategies πu, u ∈ U , i.e. π = (π1, . . . , πn). This meta-agent
learns the Q function Q(s, a) = Eπ [Gt |St = s,At = a], which is conditional on the
states and joint actions of all agents.

In summary, in a multi-intelligent DQN model, the intelligences can perform mul-
tiple discrete actions, and each network is trained independently without interfering
with each other. The drone cluster feeds state information into the evaluation network
after establishing appropriate connections with the neurons. After several iterations, the
scheme results in higher reward values.

5 Analysis of Result

To determine the success of the suggested method and the gain of each component,
numerical results are presented in this section. In the simulation scenario, we assume
3–20 UAVs and 10–60 sea vessel users distributed in a 3D space of 500 * 500 * 150.
Users are randomly distributed in the same horizontal plane in space. The hovering
position of the UAV depends on the centroids of the user clusters and is optimized. Each
UAV serves 2–10 users through NOMA. The neural network in use comprises three
layers and a hidden layer with forty nodes. The mean square error is used as the loss
function, while the activation function is a corrected linear unit. The neural network is
trained using the Adam optimizer [14]. Table 1 includes a list of the additional default
simulation parameters. Without a special justification, the simulation uses its default
settings.

From Fig. 3, we can easily observe the convergence of the multi-agent model, with
the increase of the number of algorithm iterations, the energy consumption decreases
correspondingly, and the reduction of energy consumption ismore significant forNOMA
compared to OMA. However, we can see that as the learning rate increases it may cause
the intelligences to update too quickly and not share information as quickly, therefore
leading to a lower convergence of the curve.

Figure 4 shows the relationship between the number of errors in user association and
the number of training sets, with NOMA also slightly outperforming OMA in terms of
error rate.
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Table 1. Simulation parameters

Parameter Value

wavelength in meters λ 0.15

The height of evaporation duct layer he 20

Carrier frequency fc 2 GHZ

Bandwidth 15 kHz

AWGN power −100 dBm/Hz

Transmitting power of UAV 20 dBm

Fig. 3. Total energy consumption versus training episodes for OMA and NOMA.

It is assumed that a UAV can only serve two users. To facilitate the simulation of the
degree of association in the 3D model, the UAV’ is used to denote the projection of the
UAV in the xy-axis plane, and a region of the same color is used to denote the cluster of
UAVs and the users they serve under the same cluster. According to the above algorithm,
and so that the multi-access method and energy consumption are selected differently,
the UAV and user location state information is shown in Fig. 5. Any user under the same
cluster with optimal and average energy consumption is selected for outage probability
and transmission rate analysis. The analysis is shown below:

Figure 6 gives the outage probability performance of users within the same cluster
for NOMA and OMA transmission methods with different energy consumptions. The
decoding order of users under the same cluster within user 1 and 2 systems. to see
that since each user needs to decode the interference of all previous users during the
decoding process, user 2 can obtain a larger outage probability value for a suitable
signal-to-noise ratio value. The reason for this is that since User 2 fails to adequately
decode and remove the signal from User 1, the interfering signal from User 1 will
gradually accumulate throughout the communication process, whichwill result in higher
interference and thus higher outage probability performance for the highest-level user.
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Fig. 4. Worst user-data rate in test episode with re-clustering.

And regardless of the user, the outage probability of interruption at optimal energy
is lower than the outage probability at average energy consumption. This is due to the
different co-power allocation at different energy consumptions, which results in different
outage probabilities.

To verify the outage probability results in Fig. 6, the transmission rates of users
within the same cluster are given in Fig. 7. As the signal-to-noise ratio increases, the
transmission rate of the first user outperforms that of the second user, even if there are
hardware defects and interference within the system. From the results, the user starts to
have a more significant rate increase at a signal-to-noise ratio of 10dB under optimal
energy consumption, while the user under average energy consumption has a change at
around 15 dB. This indicates that the system is capable of accomplishing low-energy
and high-rate transmissions in maritime communications.

6 Summary

In order to improve the efficiency of offshore energy systems and ensure a tight con-
nection and reliable operation of the sea-land grid. In this paper, a NOMA-based UAV-
assisted offloading network is designed for optimizing communication performance
under offshore multi-energy complementary power generation systems. The system
uses UAVs equipped with edge servers and antennas to perform task offloading calcu-
lations and resource allocation tasks for offshore users. The system uses the K—means
algorithm to make clustering associations between users and UAVs, and then uses a
multi-intelligent deep Q-network algorithm to minimize system energy consumption by
optimizing UAV cluster movement trajectories and user power allocation while consid-
ering system hardware loss and SIC incompleteness. The simulation results evaluate the
performance of the proposed method through numerical results of energy consumption
and error rate, comparing in terms of convergence, multi-access schemes, and learning
rate. The cluster location analysis in the average energy consumption state in the selected
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(a) The NOMA association case at 
optimal energy consumption. 

(b) The OMA association case at op-
timal energy consumption. 

(c) The NOMA association case at 
average energy consumption. 

(d) The OMA association case at av-
erage energy consumption.

Fig. 5. Location and association information in the average state.

number of iterations and the simulation analysis of the interruption rate and transmission
rate of users in this state for the same cluster and different multiple access techniques are
given. These results demonstrate the superiority of the NOMA framework in the context
of maritime UAV-assisted offload networks.
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Fig. 6. Outage probability versus SNR.

Fig. 7. Achieve rates within the same cluster.
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