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Abstract. This paper explores the navigation of robots, which involves two key
aspects: global path planning and local path planning.The current approachutilizes
the A* algorithm for global planning and the DWA algorithm for local planning.
However, the traditional A* algorithm often fails to consider obstacles, leading to
impractical paths that robots struggle to navigate. As a result, success rates are nar-
row. To address these issues, we propose an enhanced A* algorithm that optimizes
the search approach, heuristic function as well as path smoothing. This modifi-
cation ensures that the generated paths align better with the robot’s motion while
still prioritizing the shortest distance. Additionally, we refine the evaluation func-
tion of the DWA algorithm to account for the robot’s angular velocity at different
linear velocities. This adjustment enables smoother steering through curves while
maintaining a consistent linear velocity at the same time. The improved algorithm
greatly improves the speed of the robot when cornering and has a more reasonable
completion path, while the success rate of cornering is greatly improved. In our
physical map, the robot with the improved algorithm consumes 33.95% less time
than the robot with the traditional algorithm, and the robot’s path is much better.
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1 Introduction

Robot navigation involves twomain components: global path planning [1] and local path
planning [2]. Global path planning determines the optimal path from the robot’s starting
point to its target point. It typically involves rasterizing and searching the map by using
algorithms like A* [3] or Dijkstra [4] to find the best path. In this paper, we focus on
improving the A* algorithm for global path planning and local path planning. On the
other hand, it allows the robot to adjust its path based on its current state and surroundings
while following the global path. This enhances the overall system’s robustness. The robot
collects information from its environment and itself to timely adjust its path and speed,
ensuring that it stays on track and avoids disturbances. Common algorithms used for
local path planning include DWA [5] and TEB [6], and in this paper, we aim to improve
the DWA algorithm.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Y. Zhang et al. (Eds.): CENet 2023, LNEE 1125, pp. 105–118, 2024.
https://doi.org/10.1007/978-981-99-9239-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9239-3_10&domain=pdf
https://doi.org/10.1007/978-981-99-9239-3_10


106 W. Qian et al.

Traditional robot navigation algorithms have limitations when it comes to realistic
and specific tasks. The four-wheel differential speed robot used in our experiment utilizes
A* and DWA algorithms. However, the traditional A* algorithm doesn’t fully align with
the robot’s motion principles. The DWA algorithm only calculates optimal routes for the
next moment, resulting in sub-optimal performance during cornering. To address these
issues, we proposemodifications to theA* algorithm’s neighborhood search strategy and
heuristic function. These enhancements generate better curved paths for global planning.
Additionally, we modify the evaluation function of the DWA algorithm to improve the
robot’s performance during bends. In summary, this paper focuses on improving global
and local path planning algorithms for robot navigation. By adapting the A* algorithm
and modifying the DWA algorithm, we aim to overcome the limitations of traditional
approaches and achieve better performance in practical tasks.

2 Introduction to Traditional Algorithms

2.1 Traditional A* Algorithm

The traditional A* algorithm begins by searching for points in the surrounding area
from the current point, as illustrated in Fig. 1. It completes this calculation through a
systematic search process. Subsequently, the cost function evaluates the points reached
by different search methods and selects the point with the lowest cost as the next target
point. This iterative process continues until the final target point is reached [7].

Fig. 1. Traditional A* algorithm search method

The A* algorithm uses heuristic search to get the best path to the destination, and it
finds the optimal path by means of an estimation function, which is generally written as
follows:

f (n) = g(n) + h(n) (1)

where g(n) represents the generation value from the starting node to the current node,
using the Euclidean distance representation, and h(n) represents the generation value
from the current node to the target node. In simple terms g(n) enables the robot to travel
to the target point with a shorter path, and h(n) enables the robot to plan the path faster
while limiting the path deviation.
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2.2 Traditional DWA Algorithm

The DWA algorithm samples multiple sets of velocity information in real-time local
path planning (v, ω), and based on this sampling the trajectory of the next moment of
action is simulated. The optimal path is selected among the predicted trajectories for
navigation. The robot is first modeled in motion, and considering that the robot used
cannot move omni directionally, the kinematic model yields a trajectory at moment t as

x = x + v ∗ �t ∗ cos(θt) (2)

y = y + v ∗ �t ∗ sin(θt) (3)

θt = θt + ω ∗ �t (4)

Considering that this trajectory model will be limited by the robot’s own structure,
three constraints are added to its velocity sampling. One of the most-valued constraints
is:

V = {v ∈ [vmin, vmax], ω ∈ [ωmin, ωmax]} (5)

Acceleration and deceleration constraints are:

Vd = {(v, ω) ∈ [vc − vb ∗ �t, vc + va ∗ �t], ω ∈ [ωc − ωb ∗ �t, ωc + ωa ∗ �t]}
(6)

The safety distance constraint is:

Vω = {(v, ω)|(v ≤ √
2dist(v, ω) · vb) ∧ (ω ≤ √

2dist(v, ω) · ωb)} (7)

After taking to multiple sets of speed information, the optimal path selection is
performed by using the evaluation function as follows:

G(ν, ω) = f (α ∗ heading(ν, ω) + β ∗ dist(ν, ω) + γ ∗ vel(ν, ω)) (8)

The heading term is the azimuth evaluation function. The dist term is the distance
evaluation function and the velocity term is the speed evaluation function [8].

3 A* Algorithm Improvement and Simulation

In this project, theA* algorithm is employed for global path planning.However, the tradi-
tional A* algorithm solely focuses on finding the shortest path, disregarding the smooth-
ness of the route. Although interpolation is commonly used to enhance the smoothness
of the robot’s motion trajectory, it often struggles to handle areas with significant curves
effectively [9]. Furthermore, the traditionalA* algorithm limits its search and calculation
to the immediate vicinity, resulting in unnecessary distance wastage on obstacle-free,
straight roads.

To overcome these limitations, this chapter introduces an improvement to the A*
algorithm tailored specifically for this project. The enhanced algorithm aims to optimize
the robot’s motion trajectory by considering both the shortest path and the smoothness of
the route.Additionally, it expands the search range beyond the immediate surroundings to
minimize distancewastage on flat, obstacle-free roads. The effectiveness of the proposed
improvement is validated through simulations.
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3.1 A* Algorithm Improvement

To account for the limitations of the non-omnidirectional motion capability of the robot
and the absence of obstacles in the experimental site, this paper presents an innovative
algorithm for searching neighborhood points, as depicted in Fig. 2. The primary objective
is to enhance speed and reduce computational effort. By specifically targeting the search
in the surrounding neighborhood, the robot can efficiently obtain a shorter final path,
which proves highly effective in obstacle-free, straight-line environments.

This algorithmic improvement optimizes the robot’s path by reducing the distance
traveled for corner points when no obstacles are present. Subsequent physical experi-
ments revealed that this modification also provides the robot with an increased safety
margin during curves. This finding underscores the significance of the proposed algo-
rithm, as it allows the robot to navigate more effectively, ensuring a greater level of
safety while maximizing efficiency.

Fig. 2. Improved A* algorithm search method

Considering that the AKM chassis robot we utilize lacks direct lateral displacement
capabilities, it bypasses the search for proximity points in the left and right directions.
The conventional A* algorithm produces a path planning form as shown in Fig. 3.
However, in practical scenarios, this trajectory fails to provide the robot with sufficient
safety distance during sharp curves. Consequently, the robot is prone to getting stuck by
obstacles, leading to navigation failures.

Fig. 3. Limitations of the traditional A* algorithm

Toaddress this issue,wepropose an alternative searchmethoddepicted inFig. 4when
an obstacle is detected near the search point. In cases depicted in Fig. 5, only the search
method shown in Fig. 4 is retained. Thismodified searchmethod enables the robot to plan
shorter paths in obstacle-free straight stretches and maintain an adequate safety distance
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when approaching curves. Compared to the traditional A* algorithm, this approach only
requires searching six neighbors, significantly reducing computational effort.

By implementing this search method, our robot can navigate more efficiently. It
obtains shorter paths in straight sections without obstacles while ensuring increased
safety margins during curved sections. This improvement proves crucial in avoiding
obstacles and achieving successful navigation.

In addition, considering that in the actual navigation process, the robot’s path will
be offset to a certain extent, and the h(n) term in the heuristic function is difficult to
calculate accurately. Either using the Euclidean distance or the Manhattan distance will
have unavoidable deviations, a compromise of the h(n) term is considered as follows:

Fig. 4. Right neighborhood with obstacles

Fig. 5. Obstacles in the oblique front neighborhood

h(n) = 0.5 ∗ k ∗
(√

(Nx − Px)2 +
√

(Ny − Py)2
)

+ 0.5 ∗ (1 − k) ∗
(√

(Nx − Px)2 + (Ny − Py)2
)

(0 ≤ k ≤ 1) (9)

where N represents the target point, P represents the current point, and k is the weight
that can be chosen according to the different values of the robot’s environment.
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In practice, h(n) and g(N) are not well balanced, and the robot tends to have some
extreme cases, such as when h(n) is too large and g(n) accounts for a smaller percentage,
the robot will tend to choose the shortest path but the path direction will deviate more;
in the opposite case the robot will consume more resources to plan more paths, wasting
computational resources and computational time. We want these two items to be user-
determined in the valuation function, and therefore add weights to these two items as
follows:

f (n) = g(n) + e−ωh(n)

1 + e−ω
(10)

By choosing appropriate values for ω based on practical applications, the proportion
of g(n) and h(n) in the pairwise valuation function is adjusted to achieve a balance
between improving the computational efficiency of the algorithm and obtaining the
shortest path.

In order to obtain a smoother path, consider three spline interpolations of the final
generated global path for smoothing, assuming that a total of n + 1 folds and a total of
h steps are known, we can obtain [10]:

ai = yi (11)

bi = yi+1 − yi
hi

− himi

2
− hi(mi+1 − mi)

6
(12)

ci = mi

2
(13)

di = mi+1 − mi

6hi
(14)

The final smoothed curve is obtained by bringing in the equation:

gi(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 (15)

The flow chart of the improved algorithm is as followed in Fig. 6.

3.2 Simulation Results

To test the effectiveness of the algorithm, a simple map with large curves was created
in Python. The focus was on comparing the improved algorithm’s performance at the
curves. The map consisted of squares, with black squares as obstacles, dark blue squares
as starting points, and purple squares as ending points.

In Fig. 7, the yellow line represents the path planned by the traditional A* algorithm,
while the blue line represents the path planned by the improved algorithm. The compari-
son mainly focused on the trajectory and distance traveled since the number of searched
neighborhood points was similar. The improved algorithm showed better alignment with
the robot’s motion and provided a greater safety distance at the curves.

After smoothing, the improved algorithm had a slightly shorter overall distance
traveled while maintaining better safety at the curves (red lines in Fig. 8). In open
fields, the improved algorithm had significant advantages in terms of distance traveled.
It prioritized allocating more paths for better safety at the curves, which is crucial in
such environments (Table 1).
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Fig. 6. Flow chart of the improved A* algorithm

Table 1. Comparison of the two algorithms

Route Curve safety

Traditional A* algorithm 32.48 Poor

Improved A* algorithm 32.26 Better
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4 Improvement of DWA Algorithm

The traditional DWA algorithm has limitations that affect robot performance in curves
and practical applications. It only predicts the next moment and calculates the next
best path, which can lead to poor performance [11]. To address this issue, we made
improvements for bending situations in this project. We adjusted the robot’s velocity
function to overcome the limitations of the DWA algorithm. By removing prediction
planning, we ensured that the robot’s actual direction aligns better with the planned path
in curves. To enhance the evaluation function, we introduced constraints on the robot’s
angular velocity relative to its linear velocity. This ensures the robot has enough angular
velocity for steering during deflection while preventing excessive steering on flat routes
with high linear velocity. These modifications aim to improve the robot’s performance
in curves and enhance its steering capabilities in various scenarios.

Fig. 7. Simulation results for improving A*

r(v) = κ ∗
(
e|v| − e−|v|

e|v| + e−|v|

)
+ b (16)

This equation evolves from the hyperbolic tangent function (tanh). This design holds
a dual purpose: firstly, maximizing the robot’s linear velocity to ensure sufficient speed,
and secondly, preventing excessive velocities that could lead to instability during turns.
The choice of this function brings forth unmistakable benefits. It allows for rapid growth
in linear velocity when it is small, while still keeping it bounded within a desirable
range. By adopting a linear function form, we gain greater control over its value range,
providing us with more versatile means of regulation. And this function shows in Fig. 9.

By this means, the angular velocity of the robot during steering is proportional to
the linear velocity, while the angular velocity of the robot is not too large due to the
properties of the function (Fig. 9). Also add the angular velocity evaluation term for the
evaluation function anvel(v, ω):

anvel(v, ω) = r(v) ∗ ω

v
(17)
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Fig. 8. Trajectory after smoothing process

Fig. 9. tanh(|x|)

By employing a linear function for the velocity-related component, we attain the abil-
ity to effortlessly manipulate its value range. Furthermore, our objective is to endow the
robotwith enhanced angular agility and reduced linear velocity. This entails not only cap-
ping the upper limit of linear speed to prevent unwieldy accelerations but also imposing
penalties when linear velocity escalates, while offering generous rewards for heightened
angular velocity. Thus, the resulting design embodies these thoughtful considerations.

This evaluation term will comprehensively evaluate the relationship between linear
velocity and angular velocity, and the score of this term will be lower when the angular
velocity is too small and the linear velocity is too large, which happens to be the case
when the robot is out of control in a curve, and the improved evaluation function is

G(ν, ω) = f (α ∗ heading(ν, ω)

+ β ∗ dist(ν, ω) + γ ∗ vel(ν, ω) + λ ∗ anvel(v, ω)) (18)
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5 Experimental Results

The experimental robot is AKM robot, using two motors into the rear drive, the main
control is Jetson nano, using ubuntu18.04 operating system, real-time map building
and navigation using ROS (melodic) system to complete, radar using the Ledon D300,
IMU using MPU6050. This experiment using LIDAR and using gmapping algorithm
to complete the map construction. After getting the complete static map, the target
point selection for navigation is performed in RViz. This experiment uses multi-point
navigation to complete the pile wrapping test. Since the physical map is not empty and
generates a lot of steering, a huge steering is generated at one side of the map end, which
is a great challenge for the robot’s navigation.

The experimental map and equipment are shown in Fig. 10. In the navigation process
rqt_plot will record the indicators of the trolley in real time, we also wrote the same node
file to listen to the robotmap coordinates in real time andprint onRViz to get the trajectory
of the robot walking, so as to compare the trajectory performance and speed of the same
robot under different algorithms, in the case of the same map and close to the starting
and ending points. The maximum linear velocity of the robot was set to 2.5 m/s and the
maximum angular velocity was set to 3 rads/s.

Fig. 10. Experimental environment and equipment

Comparing the trajectories in Figs. 11 and 12 reveals that the optimized algorithm
outperformed the traditional algorithm, especially in the final sharp curve. Figure 14
illustrates that the optimized algorithm maintained a high angular speed throughout the
curve, enabling the robot to take shorter paths and achieve higher linear speeds during
cornering. In contrast, the commonalgorithm (Fig. 13) had limited adjustments in angular
velocity, often resulting in delayed increases until the bend was nearly impossible to
navigate. This led to wasted distance, and in practical use, the traditional algorithm had
a low success rate in 180° bends.

In most situations, traditional algorithms struggle to navigate through this track
successfully in the given experimental platform and environment. They often encounter
difficulties, such as pausing or even colliding with walls during the challenging 180-
degree turns. This observation is supported by monitoring the algorithm’s output for
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linear and angular velocities. It is commonly observed that these velocity values fluctuate
around the zero point, causing the robot to move in a circular path and pause multiple
times to adjust its direction before completing the turn. This behavior is visually reflected
in the graph,where the angular velocity tends to follow the changes in linear velocity. The
main reason behind this phenomenon is that the robot cannot fully execute the algorithm’s
commands, while the algorithm attempts to rectify the robot’s motion. Consequently,
the robot experiences frequent pauses and takes wider turns, resulting in significant time
wastage. However, when the robot operates with the improved algorithm, these pauses
are eliminated. The robot becomes more adept at following the algorithm’s motion
commands, particularly noticeable at the sharpest turn, where the commands exhibit
minimal fluctuations. As a result, the robot smoothly completes the 180-degree turn
with little to no deceleration in real-world scenarios. The difference between the two
algorithms at the curve section is illustrated in Fig. 15 (Table 2).

Table 2. Comparison of the effects of the two algorithms

Time consumption(s) Success rate

Before improvement 40.62 Frequent failures

After improvement 26.83 Hardly ever fails

Fig. 11. Physical trajectory of the traditional algorithm
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Fig. 12. Physical trajectory of the improved algorithm

Fig. 13. Speed graph of traditional algorithm. Traditional algorithm speed graph: From 25 to 30
s, during the 180-degree turn, traditional algorithms decelerate, causing abrupt angular and linear
velocity changes, and a lower overall cornering speed.

Fig. 14. Speed graph of improved algorithm.Between 25 and 30 s, the platform turns 180 degrees.
The enhanced algorithm plans for a larger initial steering angle, leading to smoother angular and
linear velocities, resulting in a higher overall cornering speed.
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Fig. 15. Comparison of the two algorithms at the curve section.The improved algorithm has a
clear advantage in trajectory and speed around curves.

6 Conclusion

In this paper, the traditional A* algorithm and DWA algorithm are optimized and
improved for robot cornering. Firstly, an innovative 6-neighborhood A* algorithm is
proposed, its heuristic function is optimized and its final trajectory is interpolated and
smoothed, and finally the simulation verifies its effect so that its final cornering effect
is better than that of the traditional A* algorithm. The evaluation function of the DWA
algorithm is modified to allow the robot to obtain a larger angular speed and limit the
linear speed in large bends, so that the robot can use a relatively faster speed to complete
the bends safely. In the final physical experimental session, the robot’s speed and oper-
ational stability were greatly improved. Such improvements can make the autonomous
navigation mobile robot perform better in urban, logistics, industrial, and other map
environments with multiple curves.
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