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Introduction 

The digital technologies accompanying Industry 4.0 have ushered in a new era in the 
management of industrial economic systems. The concept of the digital twin is at 
the heart of this transformation. Stemming from the convergence of advanced data 
analytics, Internet of Things (IoT) technologies, and virtual modelling and domain 
knowledge (Fig. 7.1), digital twins were conceptualized to create virtual replicas of 
physical assets and systems.

Digital twin technology allows real-time monitoring, analysis, and simulation of 
industrial operations, leading to enhanced predictive maintenance, optimized produc-
tion workflows, and improved product development. It facilitates a comprehensive 
understanding of complex industrial systems, enabling precise insights into perfor-
mance, functionality, and potential areas for optimization. Given their ability to 
simulate and anticipate various scenarios, digital twins have become instrumental 
in driving innovation and efficiency, providing a solid foundation for the transfor-
mative journey toward an interconnected and intelligent industrial landscape. This 
innovative technology offers a comprehensive understanding of the unique attributes, 
operational performance, and potential issues of any equipment or system. Notably, 
the digital twin facilitates the virtual training of operators, eliminating the need for 
dedicated trainers or simulators. 

With the continuous advancement of machine learning (ML) and Artificial Intel-
ligence (AI), the realm of autonomous industrial machines is poised to undergo a 
significant shift. In this autonomous landscape, the role of the digital twin will evolve, 
propelling machines toward increased self-awareness and autonomy. Equipped with
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Fig. 7.1 Digital twins as cocreation of O&M knowledge and AI

the capability to optimize their own performance, synchronize with other machines, 
conduct self-diagnosis, and autonomously rectify faults, machines will necessitate 
minimal intervention from human operators (Happiest Minds 2021). 

The digital twin represents the convergence of the physical and virtual worlds, 
combining various technologies such as AI, ML, and software analytics to create 
dynamic digital simulation models. These models continuously update and adapt to 
reflect changes in their physical counterparts. By providing a precise digital replica 
of machinery, the digital twin technology enables operators to gain insights into the 
distinctive characteristics of the machine, its operational efficiency, and potential 
issues. Real-time monitoring through sensors enables operators to receive timely 
alerts about potential failures, downtimes, or accidents, allowing them to optimize 
the machine’s performance, monitor inter-device coordination, diagnose issues, and 
rectify faults with minimal impact on productivity. 

This evolving landscape of system development and management is witnessing a 
significant shift towards making systems and system-of-systems smarter using digital 
twin technologies. This transformation is driven by the integration of cutting-edge 
technologies, including IoT and user-friendly interfaces, which have revolutionized 
system interaction and decision-making processes. 

A fundamental aspect of this transformation is Model-Based Systems Engi-
neering (MBSE), a concept that emphasizes system reuse throughout its lifecycle. 
MBSE facilitates communication among stakeholders and is incorporated early in the 
acquisition process to streamline system synthesis. A system specification plays a 
crucial role in defining the requirements of a technical or software system under 
development. MBSE takes this concept further by formalizing and consistently 
applying modeling techniques throughout the system’s lifecycle, from its conceptual 
phase to design and beyond. MBSE supports various aspects of system develop-
ment, including requirements, architecture, analysis, verification, and validation. By 
employing formal and model-based specification techniques, it simplifies the process 
of specifying complex systems. The key to MBSE is the creation and utilization of 
a coherent digital system model, which serves as the central source of all pertinent 
information, streamlining interdisciplinary specification and development processes.
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Formal and semi-formal modeling languages are employed to concisely represent 
the system’s requirements, structure, and behavior. 

While some publications explore the use of digital twins within a model-based 
product development framework or the integration of MBSE into digital twins 
through diverse methods, the literature does not extensively focus on employing 
MBSE to manage digital twin complexity or to specify digital twins themselves. 
Some publications highlight specific advantages of MBSE for digital twin devel-
opment but may not provide a comprehensive specification technique. They often 
emphasize the requirements of particular stakeholders or overlook the entire product 
lifecycle. However, some work is starting to address the need for a holistic framework 
for digital twins, recognizing research gaps related to considering the full lifecycle 
and identifying the requirements of various stakeholders throughout the lifecycle 
(Fig. 7.2) (Rasor  2021). 

This concept aligns with the broader digital transformation initiatives pursued 
by many companies and government agencies. It empowers stakeholders across 
development, operations, and support with accessible and standardized data, thereby 
enhancing decision-making processes. In a comprehensive system engineering 
approach to digital twins, the digital twin itself is treated as a distinct system, resulting 
in a system-of-systems framework. This approach introduces a new paradigm of 
integrated system design and modelling.

Fig. 7.2 Digital twins and the whole lifecycle dimension 
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The increasing relevance of Industry 4.0 and the Industrial Internet of Things 
(IIoT) has expanded the scope of digital twin applications. Notably, digital twin 
research focuses on creating purpose-oriented virtual models that represent phys-
ical systems. Other efforts are directed at establishing bidirectional relationships 
between physical objects and their virtual counterparts, facilitating data transfer and 
processing. 

Various terminologies are used to describe digital concepts, such as the Asset 
Administration Shell in the context of Platform Industry 4.0. Related terms include 
Digital Model, Digital Master, and Digital Shadow, each serving distinct purposes 
in connecting physical and virtual realms. 

The multitude of digital twin research approaches has led to diverse understand-
ings and use cases, often lacking explicit specifications of required resources. More-
over, there is a growing need to determine the added value of implementing specific 
use cases. At the moment, there is no holistic framework for the conception, develop-
ment, and implementation of digital twins; thus, there is a need or further exploration 
and standardization (Rasor 2021). 

Digital Twin Definition 

The concept of the digital twin has gained significant traction in the era of Industry 
4.0, but there are a number of different definitions and interpretations. Some view 
digital twins as digital representations of physical objects or systems from the real 
world, while others consider them realistic digital depictions of physical entities. In 
essence, a digital twin encompasses a comprehensive description of a component, 
product, or system, containing all relevant information for its current and future 
lifecycle phases. 

A digital twin is essentially a virtual model intricately integrated with its real-
world counterpart. However, digital twins can vary significantly in terms of detail, 
technical focus, and scope. They have emerged as a critical technology in modern 
design and production engineering workflows, driven by advancements in sensor 
technology, information systems, and simulation technologies like Cyber-Physical 
Systems (CPS) and the Industrial Internet of Things (IIoT). Different interpretations 
and definitions of digital twins have arisen in both research and industry due to their 
diverse application areas. 

Digital twins are closely linked to several emerging technologies, with simulation 
systems, communication technologies, and CPS playing pivotal roles. CPS, in partic-
ular, represent a fundamental concept in Industry 4.0 and are a technical evolution of 
mechatronic systems that blend mechanics, electronics, and computer science. CPS 
are equipped with sensors for data collection, actuators for interacting with their 
surroundings, and embedded systems, which are microcomputers with computing 
capabilities and unique identities. They can communicate and coordinate with each
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other via data infrastructure, typically the Internet, creating cyber-physical produc-
tion systems (CPPS) when deployed in a production environment (Bauer 2015). 

Creating a digital twin relies on decentralized data collection and processing by 
CPS, using data from multiple CPS. This process involves addressing challenges 
related to data acquisition, transfer, storage, security, and analysis, and it requires 
a combination of dedicated hardware and software solutions. The adoption of the 
5G communication standard is anticipated to address current limitations in terms of 
bandwidth, latency, resilience, and scalability, particularly when supporting multiple 
devices. 

Once data from CPS are gathered, digital twins facilitate the running of simulations 
to explore various scenarios, aiding in predicting the behavior of CPS. Some experts 
have even asserted that from a simulation perspective, the digital twin approach repre-
sents the next significant advancement in modeling, simulation, and optimization 
technology. 

In summary, CPS comprise a conceptual framework and technology for smart-
ness, and digital twins underpin the infrastructure of Industry 4.0. CPS serves as a 
fundamental framework that combines computing elements and physical processes, 
enabling the seamless integration of the digital and physical worlds. This integration 
forms the backbone for the development of intelligent and interconnected technolo-
gies, known as smart systems, which encompass automation, data-driven decision-
making, and adaptive functionalities. Digital twins, in turn, leverage the capabili-
ties of CPS to create virtual replicas that mimic the behavior of physical assets or 
processes in real-time. By utilizing data collected from a network of sensors and 
IoT devices, digital twins facilitate real-time monitoring, analysis, and optimiza-
tion of complex industrial systems. The interwoven relationship between CPS, smart 
technologies, and digital twins fosters enhanced operational efficiency, predictive 
maintenance, and overall system resilience, driving the transformation of modern 
industries towards an interconnected and intelligent future (Fig. 7.3). 

Fig. 7.3 Digital twin as natural outcome of CPSs
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Simulation, in general, involves replicating the operation of real-world processes 
or systems, typically focusing on the evolution of physical quantities or entities 
of interest over time, across various physical domains. Simulation models describe 
mathematical, logical, and symbolic relationships among these entities, and these 
relationships can vary based on the intended use of the model. 

Throughout the product lifecycle, different stages can be identified, and numerous 
simulation technologies have emerged over the years to address each of these stages. 
These simulation tools continue to evolve, offering increased fidelity and enabling a 
deeper understanding of how design decisions impact product behavior in real-world 
use. It’s important to note that a digital twin isn’t a single, all-encompassing model but 
rather a collection of interconnected operational data artifacts and simulation models. 
These models must be chosen with the appropriate level of granularity for their 
intended purposes and evolve throughout the product lifecycle. For example, simpler 
models may be suitable for conceptual product decisions, while more sophisticated 
simulations support detailed product design and manufacturing processes. 

Digital twins generate vast amounts of data, necessitating robust data processing 
methods. AI models, which leverage ML techniques like neural networks, have 
become increasingly powerful thanks to enhanced computing capabilities. AI models 
can be deployed in cloud or distributed computing environments or embedded 
directly in physical objects like robots and vehicles to ensure data security and 
enable local processing of sensitive information. In distributed systems, ensuring 
data integrity is paramount, and blockchain technology can provide solutions for data 
protection and traceability of events throughout the product lifecycle. Blockchain can 
also facilitate the use of smart contracts, small software components that can auto-
mate actions such as maintenance or supply chain transactions within the digital twin 
ecosystem (Dittrich 2019). 

Origin and History of Digital Twins 

The concept of the digital twin has intriguing historical roots in NASA’s Apollo 
project. During this project, a physical space capsule on Earth was used to simulate 
the behaviour of a similar capsule in space. While this example involved a physical 
representation, it captures the essence of having one object mimic the effects of 
another. However, the space capsule on Earth was not a digital representation. 

Following NASA’s lead, the US Air Force embraced digital technology for various 
purposes, including design, maintenance, and failure prediction. The goal was to use 
digital twins to simulate the physical and mechanical properties of aircraft to predict 
issues like fatigue or cracks, ultimately extending the remaining useful life (RUL) of 
these assets. As the concept of digital twins gained momentum, it found applications 
in sustainable space exploration and the design of aerospace vehicles, marking its 
continued evolution and relevance in various industries (Singh 2021). 

Digital twins have various precursors leading to their modern incarnation:
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• Mirror Worlds (1991): David Gelernter proposed the concept of “Mirror Worlds,” 
where software models would replicate reality based on information from the 
physical world.

• Mirrored Spaces Model (2002): Michael Grieves introduced a model featuring 
real space, virtual space, and a linking mechanism to exchange data between them.

• Information Mirroring Model (2006): Grieves refined his model and renamed it 
the “Information Mirroring Model.” This model introduced bidirectional linking 
between real and virtual spaces and allowed for multiple virtual spaces corre-
sponding to a single real space, enabling the exploration of alternate ideas or 
designs.

• Digital Shadow and Digital Model: A digital model represents a physical object 
but involves only manual data exchange. It lacks real-time synchronization with 
the physical object. A digital shadow is a static copy of the physical object’s data, 
with one-way data flow from the physical object to its digital representation. It 
does not reflect the real-time state of the physical object.

• Semantic Virtual Factory Data Model: The model represents virtual entities within 
a factory environment, primarily used in manufacturing and industrial contexts. 
Unlike digital twin, it focuses on data modelling alone and does not offer real-time 
synchronization with physical objects.

• Product Avatar: Product avatar is a distributed and decentralized approach to 
managing product information. However, it lacks the concept of feedback and 
may provide information on only specific parts of a product.

• Digital Product Memory: Digital product memory involves sensing and capturing 
information related to specific physical parts or products. It was a precursor to the 
broader capabilities of digital twin.

• Intelligent Product: The concept of an intelligent product incorporates technolo-
gies like IoT, Big Data, and ML but lacks the comprehensive integration and 
synchronization offered by digital twin. Digital twin builds upon the foundation 
of intelligent products.

• Holons: These are early computer-integrated manufacturing tools that laid the 
groundwork for subsequent technologies. They contributed to the development 
of concepts like digital twin. 

Despite these early conceptualizations, practical implementation of digital twins 
faced significant challenges due to limitations in technology. Factors such as low 
computing power, limited device connectivity to the internet, inadequate data storage 
and management, and underdeveloped machine algorithms hindered the practical 
application of digital twins during this period. The concept of the digital twin evolved 
significantly with the rise of IoT, a fundamental component of Industry 4.0. 

Figure 7.4 illustrates the progression of digital twin concepts over time.
Today, there is no universally accepted standard definition for the term “digital 

twin”. Instead, various definitions have emerged based on specific characteristics that 
stem from different use cases involving digital twins. A common thread among these 
definitions is the integration of diverse data sources to create a digital representation of
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Fig. 7.4 Timeline of evolution of digital twin (Singh 2021)

a physical object or process throughout its entire lifecycle. This digital representation 
serves as the foundation for conducting various analyses and simulations (Van der 
Valk 2020). 

A digital twin serves as a virtual model of a real-world system, process, or service 
and can be applied to model products, factories, or business services. It offers the 
capability for real-time monitoring of systems and processes, enabling timely data 
analysis to prevent issues before they arise, schedule preventative maintenance, mini-
mize or prevent downtimes, explore new business opportunities, and plan future 
updates and innovations. While traditional virtual models often represent general 
concepts of a system or its components, a digital twin is an instance, a specific 
representation of a real-world counterpart. Digital twin technology can reduce the 
cost of system verification and testing while providing a real-time assessment of the 
system’s performance. 

In summary, the digital twin concept represents a significant advancement over its 
predecessors. It combines real-time synchronization, comprehensive data exchange, 
and feedback mechanisms between the physical and digital worlds. While earlier 
concepts served specific purposes, the digital twin integrates these functionalities to 
create a holistic and dynamic representation of physical objects, making it a valuable 
tool across various industries and applications. 

Defining the Digital Twin 

As mentioned above, the term “digital twin” is relatively new and has various interpre-
tations and definitions depending on the context and organization. Different entities 
have their own perspectives on what a digital twin represents:

• General Electric (GE) refers to digital twins as “dynamic digital models of physical 
assets and systems.”

• Siemens defines digital twins as “a digital copy that is created and developed 
simultaneously with the real machine.”

• DNV GL describes digital twins as “a virtual image of an asset, maintained 
throughout the lifecycle and easily accessible at any time.”

• SAP defines digital twins as digital representations that use real-time data from 
sensors to continuously represent a physical reality.
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While these definitions vary, they all share common intrinsic characteristics that 
define what a digital twin is: 

Identity: A digital twin is always associated with a real-world object or system. It represents 
a one-to-one or one-to-many mapping between the object or system and its digital twin 
counterpart. 

Representation: A digital twin captures the essential physical manifestation of the 
real asset in a digital format, which can include computer aided design (CAD) or 
computer aided engineering (CAE) models with corresponding metadata. 

(1) State: Unlike traditional CAD/CAE models, a digital twin has the capability to 
render quantifiable measures of the asset’s state in close to real-time. 

(2) Behavior: A digital twin reflects basic responses to external stimuli, such as 
forces, temperatures, or chemical processes, within its operational context. 

(3) Context: A digital twin describes the external operating context in which the 
asset exists or operates, including factors like wind, waves, temperature, and 
more. 

These characteristics ensure that digital twins offer a genuine view of the virtual 
system and its real-world status. When the model corresponds uniquely to an identifi-
able object and accurately reflects its state, it qualifies as a digital twin. Furthermore, 
in some cases, digital twins can even initiate operational changes in the physical 
object they represent (Makarov 2019). 

Benefits of Digital Twins 

Digital twins offer several advantages, including:

• Monitoring and inspection: Digital twins enable monitoring and inspection of 
assets digitally, saving effort and resources compared to physical inspections, 
especially in challenging access scenarios.

• Data aggregation: Digital twins facilitate high-fidelity data aggregation, such as 
stress cycle counting in fatigue life utilization calculations.

• Remaining life assessment: Digital twins can assess the remaining life of 
structures, aiding in maintenance and longevity.

• Early damage detection: Digital twins can detect damage early, enabling pre-
emptive maintenance and preventing shutdowns.

• Design feedback: Digital twins provide access to aggregated time series data for 
design feedback, transitioning from hindsight to foresight.

• Visualization and stress analysis: Digital twins allow visualization and inspection 
of stresses at inaccessible or hidden locations. 

As technology advances, digital twins are becoming increasingly sophisticated, with 
high-definition maps and detailed mathematical models of physical objects. These 
digital twins have the potential to revolutionize various industries, from self-driving 
cars with highly precise maps to regulatory reviews of medical devices based on 
realistic mathematical models.
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Fig. 7.5 Architecture of digital twins 

Digital Twin Architecture 

The digital twin architecture links physical and virtual worlds (Juarez 2021): 

1. Physical World: This element encompasses the tangible, real-world entities 
targeted for replication or modeling by the digital twin. In manufacturing, these 
physical entities may encompass machines, equipment, assets, products, and the 
entire production environment. The physical world (see Fig. 7.5) includes devices 
and sensors:

• Devices: These are the physical objects or assets themselves, such as machines 
or equipment used in manufacturing processes.

• Sensors: Sensors represent physical components directly connected to devices, 
responsible for collecting real-time data and information from the physical world. 
Sensors capture essential data, which is subsequently transmitted to the digital 
world for processing. 

2. Digital world: the digital world comprises two essential components:

• Virtual environment platform (VMP): The VMP serves as an integrated 3D digital 
model capable of executing applications and actions to validate various algo-
rithms. It provides the foundation for creating and operating digital twins, offering 
the requisite models for their effective development and utilization. It can be 
considered middleware that links (see Fig. 7.5) smartness with delivered services.

• Digital twins: Digital twins are virtual representations of their corresponding phys-
ical objects. They faithfully mirror the life cycle and behavior of these physical 
entities, enabling a wide array of operations, including control, prediction, and 
analysis.
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3. Connections between physical and digital worlds: These connections facilitate the 
exchange of data and information between the real and virtual domains. The nature 
of these connections may vary depending on the specific development methodology 
employed. They are vital for ensuring that the digital twin accurately reflects the 
state and behavior of the physical object. 

These components collectively form the core of the digital twin concept. They 
enable organizations to create virtual counterparts of physical assets and systems, 
empowering real-time monitoring, analysis, and informed decision-making. This 
capability holds substantial potential for enhancing efficiency and effectiveness 
across various domains, including manufacturing. 

Digital Twin Classes and Categories 

Digital twins are applied across domains, playing pivotal roles in decision-making, 
real-time monitoring, and behavior prediction for tangible objects. The primary 
digital twin classes include:

• Digital twin of products: Originally developed for aerospace applications, this 
class manages data related to specific product lifecycles. Sensors capture real-time 
data for simulations.

• Digital twin of systems: This class predicts and reflects the behavior of systems 
throughout their lifecycles, aiding tasks like real-time monitoring and predictive 
maintenance in various fields. 

Digital twins in Industry 4.0 can be also categorized into types based on their 
characteristics:

• Plain gadget models: These models encompass current values obtained from 
sensors and expected values the gadget aims to achieve.

• Embedded digital twins (EDTs): EDTs actively participate in all operations 
involving their real twins, enabling smart decision-making through bidirectional 
connections between the physical and digital realms.

• Networked twins: Networking enhances connectivity and information exchange 
among integrated EDTs in smart manufacturing. 

The most relevant feature is the level of integration which reveals the relation of the 
physical object with the digital instance. Digital twins are classified based on the 
level of integration of data between real and digital twins:

• Digital model: This virtual representation doesn’t use automated data interchange 
between real and virtual objects. Data may be manually entered, and changes in 
one twin don’t directly affect the other (Fig. 7.6).

• Digital shadow: Involves automatic unidirectional data interchange from real to 
virtual objects. Changes in the real object directly update the virtual twin (Fig. 7.7).
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Fig. 7.6 No connection between model and real entity

Fig. 7.7 One-way connection from real entity to reflection

• Digital twin: Features bidirectional data interchange between real and virtual 
objects, with changes in either twin directly affecting the other (Fig. 7.8). 

A real digital twin exhibits three key characteristics (Fig. 7.8): 

Real-time reflection: Digital twins maintain both physical and digital worlds, 
allowing synchronization through data exchange. 
Communication and confluence: Digital twins involve communication and conflu-
ence within the physical world, between stored and current information, and 
between the physical and digital realms. 
Self-evolution: Digital twins can refresh and modify real-time information, 
leading to positive changes in models and content as current information is 
compared with the physical world.

Fig. 7.8 Two-way connection and real twinning 
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Creating a Digital Twin Model 

Creating a digital twin model is a complex endeavor, and there is no one-size-fits-all 
approach to building these virtual representations of real-world assets and systems. 
Different authors and practitioners employ different methods, methodologies, and 
modeling tools to develop these virtual counterparts (Makarov 2019). One of the 
most popular is the virtual prototyping powered by ALSTOM in energy and rail 
applications, as shown in Fig. 7.9, where physical models compensate for lack of 
knowledge extracted from data. 

There are several variants to model a twin, but most comprise knowledge about 
the physics of the failure and the surrounding context of the asset: 

(1) Systems Modeling Languages as a Basis for Digital Twins 

Systems modeling languages play a crucial role in creating digital twins. These are 
graphical modeling languages designed to support the analysis, specification, design, 
verification, and validation of complex systems. They provide a structured framework 
for capturing essential aspects of systems, components, and objects. These aspects 
include:

• Structure, interrelation, and classification: Users can define the structural elements 
of a system, how they relate to each other, and their classification.

Fig. 7.9 Virtual prototyping 
process 
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• Behavior: They represent system behavior using functions, messages, and states, 
allowing a comprehensive understanding of how the system operates.

• Limitations: They permit the specification of physical and operational properties 
and constraints.

• Distribution: They help manage the distribution of elements, behavior, and 
limitations across a system.

• Requirements: They support the documentation of requirements and their 
relationships with other system conditions, design elements, and test cases. 

2. Simulation as the digital twin foundation: 

Simulation is a numerical method used to study complex systems by developing 
mathematical models of their elements and connecting these models into an infor-
mational representation. Hybrid models that combine AI with multiphysics simu-
lations are becoming increasingly vital in the development of digital twins. These 
models harness AI’s capabilities, including ML algorithms and data-driven insights, 
to augment the accuracy and predictive power of traditional simulations. One of 
the remarkable aspects of this integration is its ability to create synthetic data and 
compensate for the lack of real-world information (see Fig. 7.10). By incorporating 
AI into simulations, these hybrid models can analyze the complex interplay between 
various physical phenomena and forecast system behavior under diverse conditions. 
This integration leads to a more comprehensive understanding of intricate relation-
ships among different variables, resulting in more precise and reliable digital twin 
models. Through AI-enhanced multiphysics simulations, organizations gain valuable 
insights into system performance, identify potential issues, and optimize operational 
strategies to enhance overall efficiency and resilience. 

Fig. 7.10 Contribution of hybrid modelling to digital creation by means of simulation
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When applying simulation to create digital twins, the following tasks must be 
addressed:

• Data acquisition: Gathering data from real-world objects is essential to create 
accurate virtual models that mirror physical objects.

• Software selection: It is necessary to decide whether to use universal simulation 
software or opt for custom development based on specific requirements.

• Effectiveness of digital twins: Digital twins are most effective in areas where 
formalized methods and mathematical models are integral. 

Applications of Digital Twins 

Digital twins play a pivotal role in enhancing the intelligence of operational systems 
across various industries. By maintaining an accurate and up-to-date representation 
of real-world operating assets, these virtual counterparts empower enterprises to 
exercise precise control and optimize both individual assets and the broader oper-
ational ecosystem. This representation encompasses not only the current state of 
assets but also their historical operational data. Digital twins offer a multitude of 
benefits, including optimization, automation, and predictive capabilities, and their 
utility extends to purposes beyond standard operations, such as virtual commissioning 
and the development of next-generation designs. 

The key applications of digital twins span several domains: 

Operations optimization: Digital twins excel in conducting what-if simulations 
that assess readiness and recommend adjustments. This capability enables orga-
nizations to optimize their operations, reduce risk, cut costs, and enhance overall 
efficiency. By running scenarios and evaluating potential changes, digital twins 
provide valuable insights into how to refine operational processes. 
Predictive maintenance: Digital twins are invaluable in predicting the RUL of 
equipment and assets. By continuously monitoring and analyzing real-time data 
from these assets, digital twins can determine the optimal timing for maintenance 
or replacement. This proactive approach to maintenance helps organizations avoid 
unplanned downtime and costly repairs. 
Anomaly detection: Operating in parallel with their real-world counterparts, 
digital twins are equipped to identify operational behavior that deviates from 
expected, simulated behavior. For instance, in the context of a petroleum 
company’s offshore oil rigs that operate continuously, a digital twin can scru-
tinize sensor data to swiftly detect anomalies. This early detection is instrumental 
in preventing potential catastrophic damage or accidents. 
Fault isolation: When anomalies are detected, digital twins can trigger simulations 
aimed at isolating the fault and identifying its root cause. This diagnostic capability 
empowers engineers or the system itself to take appropriate corrective actions 
promptly. By pinpointing the source of the issue, organizations can minimize 
downtime and ensure the safety and reliability of their assets.



94 D. Galar and U. Kumar

In summary, digital twins serve as intelligent companions to real-world assets and 
systems, offering a range of capabilities that enhance operational efficiency, minimize 
risks, and optimize performance. Whether used for operations optimization, predic-
tive maintenance, anomaly detection, or fault isolation, digital twins are instrumental 
in driving informed decision-making and ensuring the reliability and longevity of 
critical assets. 

Some key sectors where digital twins are making a significant impact are:

• Manufacturing: Digital twins are revolutionizing the manufacturing industry by 
optimizing product design, production processes, and maintenance procedures. 
This optimization leads to reduced throughput times and enhanced operational 
efficiency, ultimately resulting in cost savings.

• Automobile: In the automotive sector, digital twins create virtual models of 
connected vehicles, capturing comprehensive behavioral and operational data. 
This data analysis aids in evaluating overall vehicle performance as well as 
individual connected features. Digital twins also enable personalized customer 
service, enhancing the automotive user experience.

• Retail: Digital twin technology is enhancing the retail industry by offering virtual 
representations of customers and allowing the modelling of fashion items on these 
digital avatars. This capability improves customer experiences by enabling person-
alized shopping recommendations. Digital twins are also used to optimize store 
planning, enhance security measures, and manage energy resources efficiently.

• Healthcare: Combining digital twins with IoT data has far-reaching applications 
in healthcare. These applications range from cost-saving measures to patient 
monitoring, preventative maintenance of medical equipment, and personalized 
healthcare solutions. Digital twins facilitate better patient outcomes and resource 
management in healthcare settings.

• Smart Cities: Digital twins, coupled with IoT data, play a crucial role in the devel-
opment of smart cities. They contribute to economic growth, efficient resource 
management, reduced environmental impact, and an improved quality of life for 
residents. City planners and policymakers use digital twin models to access data 
from various sensor networks and intelligent systems, enabling more informed 
decision-making for urban development.

• Industrial IoT: In industrial settings, digital twins empower firms to monitor, 
track, and control industrial systems digitally. Beyond operational data, digital 
twins capture environmental data, including location, configurations, and financial 
models. These data enable the prediction of future operations and anomalies, 
enhancing operational efficiency and cost-effectiveness. 

The digital twin concept has a transformative impact on various industries, offering 
opportunities for optimization, innovation, and data-driven decision-making. Its 
application extends to manufacturing, automotive, retail, healthcare, smart cities, and 
IIoT, where digital twins enhance performance, customer experiences, and resource 
management, while driving cost savings and operational efficiency.
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Applications of Digital Twins Through the Product Lifecycle 

The application of digital twins is a multifaceted concept that spans various stages 
of the product lifecycle and industrial processes.

• Product design and optimization: Digital twins are increasingly integrated into 
the product design stages, offering a quantitative tool for efficient and optimal 
decision-making. Data from previous product generations are amalgamated to 
form a comprehensive digital twin, facilitating knowledge transfer and enhancing 
the early stages of new product development. This approach leverages data 
from digital twins of past product designs to analyze and optimize new designs, 
streamlining the design process.

• Production and manufacturing: Digital twins have a significant presence in 
production systems. They are used to simulate production processes, predict 
outcomes, optimize operations, correct deviations, and evaluate system perfor-
mance. By modeling manufacturing steps and entire machine tools, digital twins 
help determine the effects of tool behavior and process parameters, leading to 
optimized tool geometries and enhanced product quality. In additive manufac-
turing, digital twins are employed to evaluate 3D printed metallic components, 
reducing trial and error tests and shortening the design-to-production timeline. 
Complex production systems, characterized by interconnected manufacturing, 
quality control, and logistics processes, also benefit from digital twins. These 
systems involve stochastic and dynamic processes with non-linear dependencies 
that are challenging to address analytically.

• Optimization: Simulation models of digital twins are eventually used in combi-
nation with optimization programs to achieve various objectives, including 
selective part assembly, robust production scheduling, and the prediction of 
countermeasures in response to disturbances.

• Maintenance: Maintenance and refurbishment play key roles in shaping the 
behavior of assets, introducing new components, and even involving suppliers 
outside the original equipment manufacturer (OEM) supply chain. Third-party 
maintenance providers, with the appropriate service-level agreements, can modify 
assets independently of the OEM. This scenario imposes an obligation on asset 
owners or operators to maintain an up-to-date digital twin that accurately repre-
sents the asset’s as-maintained state. Even if operators are not directly connected 
to the manufacturing supply chain, they must ensure the digital twin remains rele-
vant. This requirement extends to facilitating the seamless handover of digital 
twin data from the manufacturing process to the operating process owner (Bächle 
and Gregorzik, 2019). 

Despite the evident benefits, current approaches to digital twins often operate within 
distinct and separate disciplines. This siloed approach can lead to missed opportuni-
ties. Product design and specification may occur without considering more efficient
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production possibilities, and highly precise production processes may not take advan-
tage of previously acquired product knowledge and the interactions of individual 
features. 

In essence, digital twins offer a versatile set of tools that can revolutionize product 
design, manufacturing, and production systems. Their ability to simulate and opti-
mize processes, predict outcomes, and facilitate human-robot collaboration holds 
immense potential for industries seeking to enhance efficiency, reduce costs, and 
accelerate development timelines. However, to realize these benefits, there is a need 
for greater integration and collaboration across disciplines to ensure that knowledge 
and insights from digital twins are leveraged holistically throughout the product 
lifecycle. 

Digital Twins and Predictive Maintenance 

A digital twin is a dynamic digital replica of a physical entity, bridging the gap 
between the physical and virtual worlds. It leverages IoT, AI, ML, and software 
analytics to create simulation models that continuously adapt to changes in their phys-
ical counterparts. Maintenance analytics is a crucial component within the context 
of digital twins and Industry 4.0. By integrating data-driven insights and analytics, 
maintenance processes can be optimized for efficiency and cost-effectiveness. Main-
tenance analytics leverages historical and real-time data to identify patterns, antici-
pate equipment failures, and schedule preventive maintenance tasks. This proactive 
approach ensures potential issues are addressed before they result in costly downtime 
or disruptions to production. With the integration of maintenance analytics, organi-
zations can make informed decisions based on data-driven predictions, leading to 
improved asset performance, extended equipment lifespan, and overall operational 
resilience (Fig. 7.11).

Essentially, a digital twin evolves and updates itself based on multiple data sources, 
offering real-time insights into its present and future states. 

Industry 4.0 has ushered in a strategic shift from reactive to predictive mainte-
nance. Predictive maintenance assesses equipment conditions through periodic or 
continuous monitoring. The objective is to perform maintenance at the most cost-
effective moment, just before equipment performance falls below a certain threshold. 
Digital twins have the potential to elevate predictive maintenance to the next level. 

Analytical solutions for predictive maintenance empower organizations to proac-
tively prevent unforeseen events and monitor asset conditions or entire production 
processes. When combined with the capability to simulate behavior, digital twins 
enable companies to optimize operations comprehensively and efficiently. They also 
facilitate testing of production developments and planned investments. Collaboration 
between predictive maintenance platforms and digital twins becomes crucial. 

By simulating asset behavior and maintenance scenarios, digital twins inform 
decision-makers about critical maintenance Key Performance Indicators (KPIs) 
such as cost, downtime, RUL, end of life (EoL), and mean time between fail-
ures (MTBF). These simulations empower enterprises to plan future maintenance, 
enhance preventive and condition-based maintenance processes, and minimize 
unscheduled downtime (ReliaSol 2021).
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Fig. 7.11 Maturity stages in maintenance analytics

How Are Digital Twins Used in Maintenance? 

Digital twins find significant utility in maintenance in the following areas:

• Digital simulation: Digital twins provide essential data for realistic asset behavior 
and maintenance simulations. These simulations consider risk factors, failure 
modes, operational scenarios, and system configurations. They yield maintenance-
related KPIs like cost, downtime, RUL, EoL, and MTBF. Simulations support 
predictive maintenance planning and improve preventive and condition-based 
maintenance processes, minimizing unplanned downtime. Indeed, reliability, 
availability, maintainability, and safety (RAMS) knowledge during design is 
crucial to cover all the ways an asset might fail and therefore increase the 
digital twin detectability or predictability of such failure modes as depicted in 
the flowchart in Fig. 7.12.

• What-if analysis: Organizations leverage digital twins to simulate various main-
tenance scenarios (Fig. 7.13), aiding in the selection of the most effective strategy. 
These analyses contribute to long-term planning decisions, such as choosing 
between predictive and preventive maintenance strategies, and short-term choices 
like asset replacement.

• Maintenance system configuration: Digital twins synchronize with the status of 
their physical counterparts. Changes in the asset’s status reflect in the digital twin
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Fig. 7.12 Digital twin creation based on design information and RAMS parameters
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Fig. 7.13 Prescriptive analytics for maintenance performed in a digital twin for the optimal decision 
support system (DSS) 

and vice versa. This synchronization allows digital twins to configure asset oper-
ation and related physical systems. Systems can adjust their physical components 
based on information and commands from their digital counterparts.
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• Innovation: Digital twins serve as innovation catalysts in maintenance. They facil-
itate the testing, validation, and evaluation of innovative maintenance concepts 
without disrupting operations. 

In fact, digital twins are transformative tools in maintenance, enabling data-driven 
decision-making, scenario analysis, and improved asset performance throughout the 
lifecycle. 

Digital Twin Implementation Considerations 

Digital twin technology represents an advancement in numerous industries, offering 
a holistic approach to enhancing operational efficiency and informed decision-
making. This innovation allows organizations to create digital replicas of physical 
assets, enabling profound analysis and real-time monitoring. However, successful 
implementation requires careful consideration of multiple factors, including refer-
ence models, regulatory compliance, implementation phases, and organizational 
approaches. 

Regulatory requirements: Digital twin technology serves as an invaluable tool for 
organizations aiming to conform to regulatory requirements. Particularly in indus-
tries subject to strict environmental regulations, such as automotive, marine, and 
aerospace, digital twins enable engineers to redesign components, significantly 
reducing emissions and helping organizations avoid regulatory fines and expenses 
(Altair 2019). 

Timeline considerations: The timeline for implementing digital twin technology 
varies significantly based on factors such as the type of asset, accuracy require-
ments, feasibility, cost considerations, and technology readiness. At its core, a basic 
digital twin implementation necessitates:

• Edge capabilities, which encompass observing key aspects of the asset’s real-
time state and behavior. This typically involves deploying sensors with associated 
edge processing capabilities and enhancing data quality through processes like 
calibration, filtering, and time synchronization.

• Digital twin core runtime, which utilizes the data stream from the edge to create 
a (near) real-time digital representation of the asset’s state. 

The application layer integrates with the digital twin’s data streams, becoming an 
integral component of various business processes, including user applications for 
monitoring and control, legacy applications for maintenance and asset management, 
and data analytics and ML stacks for pattern recognition and decision support 
(Erikstad 2017). 

Practical considerations in implementation: A well-structured approach is crucial to 
the success of digital twin implementation (Roundy 2020). This organization involves 
four essential steps:

• Involving the entire product value chain: Collaboration across the product value 
chain is vital. Different departments within an organization face distinct business
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Fig. 7.14 Evolution from 
3D models to predictive 
engines

challenges in their daily operations. A digital twin offers solutions to issues such 
as cross-functional collaboration, data-driven decision-making, and supply chain 
coordination. Gathering insights and inputs from stakeholders at all levels ensures 
a more efficient digital twin design.

• Establishing well-documented practices: Employing standardized and well-
documented design practices enhances transparency and simplifies collaborative 
work. This approach fosters the communication of ideas across departments and 
regions, allowing multiple users to build or modify digital twin models without 
disrupting existing components.

• Incorporating data from multiple sources: A rich dataset from various sources, 
both internal and external, is fundamental for creating realistic and insightful 
simulations. While 3D modeling and geometry are sufficient for representing 
how parts fit together and how a product functions, predicting faults and errors 
requires extensive data and advanced analytics. Figure 7.14 shows the evolution 
of digital twins from 3d representations to analytic engines.

• Ensuring long access lifecycles: Avoiding vendor lock-in is crucial when imple-
menting digital twins using proprietary design software (Roundy 2020). Assets 
with long lifecycles, such as buildings and industrial machinery, often outlast 
the software used to design them. To mitigate this risk, IT architects and digital 
twin owners should establish terms with software vendors to ensure ongoing data 
compatibility and avoid dependency on a single supplier. 

In conclusion, digital twin technology offers immense potential when organizations 
pay close attention to reference models, regulatory requirements, structured imple-
mentation phases, industrial applications, and the broad range of benefits. The success 
of digital twin implementations is closely tied to embracing an inclusive approach, 
fostering standardized practices, leveraging diverse data sources, and ensuring 
long-term sustainability in the deployment of this transformative technology. 

Cost of digital twin implementation: When implementing digital twin technology, 
various factors contribute to the overall costs, and the expected returns on investment 
(RoI) largely depend on the specific application and the scale of the asset systems.
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The cost of implementing and starting up digital twins can vary significantly based on 
asset type, size, complexity, and the level of detail required by the client (Lengthorn 
2021). Not all sectors have a quick payback in terms of ROI. The benefits and RoI of 
digital twins are particularly pronounced in the maintenance sector. The application 
of DTs in maintenance yields several positive impacts:

• Insights into asset management: Digital twins provide insights into asset manage-
ment processes, enabling the optimization of maintenance strategies by identi-
fying non-obvious failure or degradation patterns.

• Optimal maintenance decisions: Simulations enabled by digital twins facili-
tate optimal maintenance decisions, leading to improved Overall Equipment 
Efficiency (OEE) and better RoI.

• Automation and cost-effectiveness: Digital twins increase the automation and 
cost-effectiveness of maintenance processes, enhancing their flexibility.

• Transition to predictive maintenance: Digital twins aid in the transition from 
traditional maintenance approaches to more effective ones, like predictive 
maintenance, with minimal disruption to operations (Edge4industry 2018). 

However, the design and construction of digital twins for maintenance applica-
tions remain costly and complex. To harness the benefits, various aspects must be 
considered:

• Understanding assets’ physical properties, including electrical and mechanical 
specifications.

• Identifying failure modes, their criticality, and degradation patterns.
• Incorporating statistical information, such as failure probabilities and distribution 

functions.
• Aligning digital twins with maintenance and business goals, including cost targets, 

spare parts inventory, OEE, and risk management (Edge4industry 2018). 

A phased approach, starting with simpler models and gradually incorporating more 
sophistication, is a practical way to implement digital twins while minimizing risks 
and gaining confidence in their use maybe less costly and a right approach for quick 
wins. 

Digital twins have a significant impact on maintenance indicators by optimizing 
processes, improving decision-making, and increasing automation. They can lead 
to substantial cost savings, particularly in maintenance costs, by identifying and 
addressing issues proactively (Edge4industry 2018). Furthermore, digital twins have 
a substantial impact on the income statement of organizations. By integrating tech-
nologies like artificial intelligence, machine learning, and software analytics with 
real-time data, digital twins create simulation models that optimize development 
cycles, anticipate downtime, and enable real-time performance assessment (TWI 
2021). However the ROI should be considered before deciding the adoption of such 
technology and the timing to design and deploy.
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Conclusion: Advantages of Digital Twin Technology for Maintenance and Ongoing 
Issues 

1. Advantages of digital twins in maintenance 

Many companies across diverse industries are actively investing in digital twin tech-
nology, offering digital twin software solutions, or applying digital twins within 
their own operations (Sharma 2020). The adoption of digital twin technology has 
compelling benefits for enterprises, including:

• Continuous asset tracking: The ability to monitor assets, components, and 
processes in real-time.

• Efficient problem understanding: Quick identification and understanding of issues 
as they arise.

• Enhanced product and operation improvement: Opportunities to refine products, 
processes, and services based on real-time insights.

• Facilitation of innovation: Reduced risks associated with high-cost investments.
• Advanced planning through simulations: Improved planning and decision-making 

through the use of simulations.
• Effective problem tracing: The ability to pinpoint and address issues that 

traditional methodologies may miss.
• Predictive maintenance: Anticipating failures in terms of their type and timing, 

enabling proactive maintenance (ReliaSol 2021). 

The latter point is especially important. Many assets, especially complex and long-
lasting ones like aircraft, ships, locomotives, and wind turbines, undergo substan-
tial changes throughout their operational lifespans. This necessitates efficient main-
tenance decision-making to prevent unscheduled maintenance, as it can lead to 
increased costs and operational delays. Predictive analysis has emerged as a key 
strategy for improving reliability and reducing unscheduled maintenance. Organi-
zations are increasingly turning to predictive analysis to anticipate potential failures 
before they occur, addressing long-standing issues related to asset failures. 

The digital twin plays a pivotal role in enabling effective predictive analysis. It 
serves as an exact replica of a physical asset, offering the essential context required 
for accurate predictions. This context encompasses the entire history of an asset, 
capturing its configuration and managing changes over time. The digital twin inte-
grates data from various sources, including computer-aided design (CAD), simu-
lation models, IoT data, time series data, and maintenance records, to provide a 
comprehensive and detailed picture of an asset’s condition. 

However, it’s crucial to distinguish between digital models and digital twins. 
While there is a growing trend to use simulation or CAD models as digital twins, 
this approach can be problematic. These models may not accurately reflect the final 
as-built configuration of an asset, as changes often occur during manufacturing, 
modifications, and defect rectification. As assets undergo maintenance and upgrades 
over time, they may deviate significantly from the original models.
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To maintain the effectiveness of predictive maintenance, it is important to contin-
uously update the digital twin to reflect significant changes in an asset’s configura-
tion. This includes capturing alterations made during maintenance, such as compo-
nent replacements. This constant updating ensures the digital twin configuration 
provides the necessary context for accurate predictive analytics. For example, it 
allows different maintenance approaches based on specific asset configurations, even 
if two assets have logged the same number of operating hours. 

Predictive maintenance, powered by context-rich digital twins, relies on real-time 
data from IoT sensors. These data are sent to the digital twin configuration, where 
they are analyzed against OEM specifications. Multi-physics simulation models are 
then applied to interpret the data and predict potential component failures proactively. 

Challenges and Barriers to the Adoption of Digital Twin 
Technology 

Despite the promise of digital twins, their implementation can be challenging. Several 
common errors and pitfalls should be avoided to ensure success. These include repur-
posing a digital twin platform for different applications, attempting to implement 
digital twins across an entire production line or facility too quickly, neglecting data 
quality control, overlooking the importance of device communication standards for 
IoT devices, and failing to secure buy-in from users across the product value chain. 
Addressing these challenges and avoiding common pitfalls is essential to maximize 
the effectiveness and value of digital twin implementations across various industries.

• Digital twins focus on providing insights into physical systems. This limits their 
applicability in certain fields that require a more holistic understanding. For 
example, when used in urban planning, digital twins cannot address underlying 
sociopolitical issues, such as social inequality or housing crises. Thus, their use 
may not directly impact broader societal challenges (Kshetri 2021).

• Digital twin adoption may be hampered in developing economies, primarily due 
to the computational power required to create high-fidelity models, which can 
often exceed the available resources (Kshetri 2021).

• Cost is another issue, especially for projects with short lifespans. Imple-
menting and maintaining digital twins can be prohibitively expensive, potentially 
undermining their viability (Sharma 2020).

• The intricate nature of digital twin technology further complicates matters. It 
demands seamless integration of various components, real-time tools, algorithms, 
and vast amounts of Big Data, a process that can be time-consuming and resource-
intensive (Sharma 2020). 

Digital twins require continuous updates to remain aligned with advance-
ments in related technologies and remain fit-for-purpose throughout their lifecycle 
(Sharma 2020). Correctly designing a DT to carry out its intended purpose and 
evaluating its performance are non-trivial tasks.
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• Digital twins need an extensive and reliable data supply to function effectively. 
They produce copious amounts of data of various types, and users must be able to 
swiftly access and extract meaningful insights from this data. System knowledge 
often proves incomplete, inconsistent, or erroneous, posing challenges to data 
quality. Furthermore, issues related to sensitive data, such as privacy concerns 
and the protection of business secrets, can complicate digital twin development. 
Differing stakeholder perspectives on data quality, based on their unique purposes, 
add further complexity to the challenge. Accountability and transparency in data 
usage are essential to foster user confidence in the results (Pileggi 2021).

• In the realm of model fidelity, the challenge lies in determining which features 
of the system are most salient and relevant. Striking the right balance between 
too much detail, which can be costly and complicated, and too little detail, which 
may be insufficient, requires careful consideration. As the purpose of the digital 
twin evolves, the model, data infrastructure, and applications must be continually 
evaluated and adapted (Pileggi 2021).

• Maintaining the reliable operation of digital twins is another technical challenge. 
Digital twins are designed to be used throughout the lifecycle of a real-world 
object or system, which entails managing a complex blend of software, hard-
ware, measurements, and simulations. This complexity escalates when various 
stakeholders from different organizations are involved concurrently. Maintenance, 
encompassing software upgrades, hardware component changes, and model 
adjustments, is crucial to ensuring that a DT continues to deliver value efficiently 
(Pileggi 2021). 

Effective use of digital twins necessitates the careful allocation of computa-
tional resources, often distributed across private and public clouds, vendor plat-
forms, and high-performance computing resources. Security considerations must 
be integrated, and the system must be designed to prevent computational overload 
(Pileggi 2021).

• The absence of standardized definitions, common language, and established best 
practices in the industry poses a significant technological challenge. This lack of 
standardization can make it difficult to identify and address specific requirements 
for digital twin implementations.

• Dgital twins often require data related to product lifecycle management, which 
may come from a company’s suppliers and even their suppliers’ suppliers. 
Obtaining access to data on products and processes outside an organization can 
present challenges, including issues of data sharing and integration (Lawton 2020). 
To foster the development and widespread acceptance of digital twins, the industry 
needs to create standards and best practices. Establishing common definitions, 
language, and guidelines can facilitate smoother implementation and interoper-
ability across various digital twin systems. These standards will play a crucial 
role in realizing the full potential of digital twins across diverse sectors.
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In summary, the practical application of digital twins faces myriad challenges encom-
passing technical, knowledge-based, and organizational aspects. Overcoming these 
barriers is essential to fully leverage the potential of digital twins while recognizing 
their inherent limitations. 
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