
Chapter 4 
Harnessing AI for Reliability 
and Maintenance 

Pierre Dersin 

Introduction 

To keep the key critical systems of today’s complex world operating smoothly and 
cost-effectively, reliability and asset management have become priorities for industry 
and governments. Accordingly, more than ever, close attention is paid to ensuring 
reliability performance and optimizing maintenance and asset management policies. 

The last two decades have witnessed the triumph of the digital transformation 
and, in particular, the “Internet of things” which, through the combination of cost-
effective sensors and efficient communication infrastructure, allows many industrial 
items of equipment to communicate in real time physical magnitudes that can be 
used to estimate their health condition. 

This evolution, combined with the fast-paced development of advanced data 
processing algorithms (“analytics”), including the vast area called artificial intelli-
gence (AI), has spurred the emergence of a discipline named Prognostics and Health 
Management (PHM). At the same time, it is revolutionizing reliability engineering. 

Back in the 1940s until the 1960s, reliability engineering evolved as a full-fledged 
scientific discipline under the pressure of the Cold War and the space race- and, not 
surprisingly, many prominent actors were found in the United States (e.g., Barlow 
and Proschan 1965) and the Soviet Union (e.g. Gnedenko). They built on important 
pre-WWII work such as that of W. Weibull in Sweden (Weibull 1939), as well 
as the foundations of reliability-related statistics by the likes of Fisher (1922) and 
Cox (1972a). A body of methodologies was soon constituted—necessarily, with 
simplifying assumptions.
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The situation in those days is best characterized by scarcity of data, and primitive 
computation tools. Indeed the beginnings of reliability theory were contemporaneous 
with the first computers, which utilized vacuum tubes and occupied an entire room. 
As late as the late 1970s, computer programs—even in a place like MIT-still had to be 
typed on punch cards and brought to an intimidating “computer center” which would 
(in the best case) deliver the outputs the following day. Many countries still had manu-
ally operated analog telephone exchanges—so much for telecommunication. Under 
those circumstances, emphasis was placed on simplified models: statistical inde-
pendence, stationarity, exponential time to failures, and the like. Metrics of interest 
addressed average characteristics at population level, such as MTTF or MTBF. 

One looks back in awe at the incredible technological successes which were 
achieved under those conditions—including landing the first man on the Moon, in 
1969. In parallel, maintenance practice has evolved from ‘run to failure” purely 
corrective maintenance to preventive maintenance and, in the 1960s, spurred by 
the aeronautics industry, the RCM (Reliability-Centered Maintenance) methodology 
which links reliability engineering (or, more precisely, RAMS) with maintenance 
needs, and stresses the notion of functional maintenance, i.e., maintenance plans 
determined by the need to keep fulfilling the function. In that context, condition-based 
maintenance increasingly has become part of the landscape. 

In the 1950s, the expression “artificial intelligence” (AI) appeared, with the 1956 
Dartmouth seminar organized by J. Mc Carthy. In its most general definition, AI aims 
at replicating human reasoning automatically. The first direction of investigation was 
symbolic AI, whereby special languages (such as LISP) were created to manipulate 
symbolic logic. This approach had limited success in the form of rule-based expert 
systems, for medical diagnostics for instance. But the unreasonable expectations they 
had raised were crushed, and led to disillusionment in the 1980s. 

In parallel, another approach was pursued, with the research on machine learning, 
which can be described as the field of study that gives computers the ability to learn 
without being explicitly programmed (see e.g., Alpaydin 2014).While, traditionally, 
computers are given a model and inputs, and apply the explicit instructions of the 
model to the inputs in order to generate outputs, instead, with machine learning, the 
computer is given inputs and outputs and is asked to find a model that could have 
generated the given outputs from the given inputs. Once it has found that model, it 
can then apply it to new inputs. 

Today, AI today is often understood to mean ML but actually ML is just a subset 
of AI (Fig. 4.1).

Numerous machine learning methods have appeared, which essentially fall into 
two main categories: supervised learning, whereby the computer is trained on a 
set of ‘labelled” input data and is given outputs corresponding to each input data 
set (for instance, the output word “cat” corresponds to input images of cats); and 
unsupervised learning, whereby the computer is just given input data and has to detect 
patterns somehow (for instance, through clustering). An important and growing area 
is also reinforcement learning, which provides feedback so that ‘good ‘decisions
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Fig. 4.1 Artificial intelligence (AI)

are rewarded and bad decisions are penalized, and in that way the algorithm learns 
from experience and improves over time. The catalog of ML method is huge and 
growing; some of the better known ones include support vector machines (SVM), 
KNN (K-nearest neighbors), various regression methods, random forests, ensemble 
methods, etc. 

Generally, in PHM, signals acquired by sensors that monitor an asset are summa-
rized by so-called ‘features’, which form the basis for constructing health indicators 
and performing anomaly detection, fault diagnostics, and if possible prognostics. 
Features are traditionally engineered by domain experts but, with ML, there are 
methods that permit automatic feature learning. 

One family of methods that has had great success recently, i.e. in the last decade 
or so, after knowing its ups and downs since the 1950s (the “down” periods have 
been called “AI winters”) is that of artificial neural networks (ANN) (Fig. 4.2). ANNs 
have been inspired by biological neural networks. They incorporate two fundamental 
components: neurons (represented by nodes) and synapses (represented by links). 
Each node computes a nonlinear function of a weighted sum of inputs. The choice 
of the nonlinear functions is part of the “network architecture”. The values of the 
weights result from an optimization. For instance, in the supervised learning case, 
the weights are determined from a set of inputs in order to minimize some distance 
between the generated outputs and the target outputs. In general, a “loss function” is 
minimized to determine the best weights.

The ability of neural networks to learn any nonlinear function is characterized by 
“universal approximation theorems” (Hornik et al. 1989). This echoes somehow the 
intuition of MIT mathematician Norbert Wiener who, in one of his epochal books 
(Wiener 1964), wrote that “a learning machine operates with nonlinear feedback”. 

When the neural network contains more than one inner layer, it is called a 
deep network, and machine learning using such a network is called deep learning. 
Various neural network architectures have been introduced and used successfully. 
For instance the convolutional neural network (CNN) is ideal for image processing
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Fig. 4.2 Artificial neural 
network

in grids. Recurrent neural networks (RNN) include feedback loops and are quite suit-
able for automatic language translation for instance, as they can keep the memory of 
sequences of events. Recently, graph neural networks (GNN) have been successfully 
used for problems which can be framed in a graph structure. 

Although the concept of neural network goes back to nearly three quarters of a 
century, their recent success (largely after 2012) is explained by the following trends 
(Fink et al. 2020): 

• Advanced efficient algorithms, such as backpropagation. Many are now available 
freely on the Internet; 

• The availability of huge amounts of data; 
• The availability of affordable high-performance hardware (such as graphics 

processing units, GPU, for parallel computing) which makes it possible to process 
huge amounts of data very fast. 

As a result, nowadays AI/machine learning and in particular deep learning, is 
permeating many fields of human activity. Particularly impressive have been the 
recent successes in image processing (the ImageNet, a database with more than 
one million labelled images), in machine translation, and, most recently, in Large 
Language Models (the ubiquitous Chat GPT and its competitors). The progresses 
in industry have been so far a little slower due to the particular challenges that 
need to be met (see e.g., Karim et al. 2023), but it is only a matter of time before 
industrial AI becomes widespread. In particular, since a survey paper on “potential 
and opportunities of deep learning for PHM” (Fink et al. 2020) appeared in 2020,
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Fig. 4.3 Classical RAM (reliability-availability-maintainability) versus PHM (prognostics & 
health management) 

applications have been multiplying in various industrial fields including railways, 
aerospace and electric power generation and transmission. 

What are the implications for reliability engineering? 
As a general statement, one could say that what AI enables, which traditional 

approaches could not, is the consideration of individual items beyond just population 
averages, and taking into account very precisely all the context variables that influence 
an item’s degradation and failures. Figure 4.3 illustrates in that respect the main 
differences between classical RAM (Reliability-Availability-Maintainability) and 
PHM. Also, there is a key difference between traditional statistics and machine 
learning, as expressed by Breiman (“the two cultures”, Breiman 2001): traditional 
statistics necessarily postulate an a priori probability model to describe the data, 
while machine learning explores the data without a priori. 

The “ML revolution” offers tremendous opportunities in reliability engineering, 
which have only barely begun to be exploited. The field of reliability engineering 
(or more generally RAMS) and PHM (prognostics & health management) both are 
benefitting from ML and are actually coalescing into one single discipline. 

The subject is vast and, in a lecture such as this, our modest goal is to give a 
few examples to try and illustrate the great potential of AI-ML as applied to relia-
bility engineering and maintenance; while, at the same time, stressing the need for 
continuity and complementarity between traditional methods and AI-based ones. 
Necessarily, a number of important aspects had to be overlooked, and this is by no 
means an exhaustive survey of “AI for Reliability Engineering and Maintenance”.
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Design for Reliability and Reliability Prediction 

Design for reliability is an important engineering activity, which can benefit from 
AI. For instance, in dealing with locomotives that operate in harsh conditions, it is 
important to understand the impact of various operating conditions on mechanical 
stresses, so that those stresses can be reduced, and reliability improved. This appli-
cation has been treated recently (Gauthier 2022) with pattern recognition algorithms 
based on muti-layer feed-forward networks which are able to evidence very strong 
correlations between certain physical variables and mechanical stresses, with very 
small error probabilities. 

Those algorithms have then been implemented in on-board computers, so that the 
axle force is adapted in real time according to the sensed operational conditions, in 
order to limit the mechanical stresses. 

In traditional reliability engineering, models have been devised to represent the 
impact of various operational conditions, or stresses, on reliability. It is well known 
that environmental factors such as temperature or humidity impact reliability; but 
also, given a particular environment, asset mission profile will play a role as well. 

Those factors, sometimes called covariates, have been incorporated in propor-
tional hazard models, the best-known one being the Cox model (Cox 1972b): 

λ(t; S) = λ0(t)e 

i=n∑

i=1 
βi Si 

(4.1) 

where λ denotes the failure rate (sometimes called hazard rate), Si (i = 1…. n) denote 
the various stresses, and the coefficients βi are to be estimated statistically. 

In the Cox model (4.1), the failure rate is assumed to be proportional to a base 
failure rate λ0(t), and it further assumed that the coefficient of proportionality (i) 
is independent of time; (ii) depends linearly on the stresses. Those are of course 
simplifying assumptions, which are not necessarily verified in practice. For instance, 
they do not allow for modeling stresses that vary with time. Some more complex 
models have been introduced, whereby the coefficient can be a nonlinear function of 
the stresses, possibly time-dependent. 

Recently, reliability researchers at Ford Motor Co. (Li et al. 2022) have introduced 
an AI-ML based method, inspired by machine translation. They have designed a 
special type of RNN, with an “attention mechanism”-the main idea behind which is 
to weigh all outputs of hidden states to dynamically highlight relevant features of the 
input data. 

The goal is to exploit the ability of neural networks to learn highly complex, 
nonlinear functions. To do so, they adopt the viewpoint of translating time series, 
just as, in machine translation, a time series of written or spoken words in a given 
source language is translated into a time series of words in another, target language.
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The source language here is the language describing asset status (i.e. the stresses, 
or observed features) at various points in time, and the target language is the language 
describing failure probability at various points in future, i.e. the reliability function, 
also called survival function (whose knowledge is equivalent to that of the failure 
rate). This is why the model is called a survival model, and it is a “deep survival” 
model because it relies on a deep (i.e. multi-layer) neural network. 

This AI algorithm, call seq2surv2 (for “sequence-to-survival”), is able to make 
individual predictions on each asset based on that asset’s individual exposure to 
stresses and operating conditions over time, which is much more powerful than the 
traditional reliability engineering approach which deals only with average population 
behaviors in static (i.e. non-time-varying) environments. 

The learning scheme contains two aspects: feature extraction and survival function 
prediction. The architecture follows an encoder-decoder structure (see e.g., Doersch 
2016); the encoder maps the input sequence to a latent state vector; the decoder 
generates the output sequence from the latent state vector. The method has been 
tested satisfactorily on the NASA C-MAPSS open data set (Arias et al. 2021), with 
excellent performance results. It must be emphasized though that the method is a 
“black box”. At this stage, the predictions are not traced to identified failure modes 
or root cause analysis (such endeavors might be addressed in future). 

Transfer Learning for Diagnostics and Prognostics 

Data-driven machine learning models usually require (i) sufficiently many labeled 
data (so that the algorithms can be trained in a supervised way); (ii) identical 
distributions of data in the training set and the test set. 

Particularly in industrial applications for diagnostics and prognostics, at least one 
of those two conditions is usually not fulfilled. The data on which an algorithm is 
trained often does not contain enough labelled data: concretely, a number of failure 
data have no identified root cause or failure code associated with them. Or, there are 
simply not enough failure data. Or the data on which the algorithms has been trained 
(the training set) are not really representative of the data to which it will be applied 
(the test set). Then, if some knowledge has been gained previously on systems that 
resemble the system under study, it is useful to transfer from those other systems 
whatever has been learned on them. This is the idea of transfer learning. For instance, 
one could transfer to one type of machine (e.g., an engine) what has been learned on 
a different machine (say, another engine type).Or, knowledge acquired in one context 
can be transferred to a different context: for instance, from the knowledge of a relia-
bility function in accelerated stress conditions, derive the reliability function under 
standard, normal operating conditions. There are several methods for accomplishing 
transfer learning, an area of research which is progressing fast (see e.g., Yao et al. 
2023) for an extensive survey).
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In broad terms, they fall into the following three categories: (1) Model-based 
and parameter-based methods; (2) Feature-matching-based methods; (3) Adversarial 
adaptation methods. 

(1) Model-based and parameter-based methods 

Those methods take advantage of pre-trained models and adapt some of the model 
parameters to the new conditions. For instance, when the model is a deep neural 
network, weights from another application are used as initial weights, which cut the 
training time considerably. Thus the key idea is fine-tuning pre-trained parameters 
to the new application context. 

(2) Feature-matching-based Methods 

The key idea underlying those methods is to reduce the feature distribution differ-
ence across domains via feature transformation. The goal is to draw source-domain 
features and target-domain features closer to each other, so as to facilitate transfer 
(i.e. classification can be performed fairly easily in the target domain from features 
extracted from the data in the source domain). 

There is a feature extraction step and a domain adaptation step. 

(3) Adversarial Adaptation Methods 

Those methods exploit a modified version of the General Adversarial Network (GAN) 
(Goodfellow et al. 2014). The generative network extracts features, and the discrim-
inative network is used to tell the differences between source and target features. 
The goal is to learn features of one domain in such a way that the discriminator 
cannot distinguish them from features of the other domain. Domain-adversarial 
neural networks (DANN) belong to that category. 

Industrial applications have been reported, for instance to turbines (see e.g., 
Michau and Fink 2019; Wang et al. 2019). 

So far, there have been more applications to diagnostics than to prognostics. In 
any case, transfer learning has become a key enabler of advanced PHM systems and 
holds promises for reliability engineering (more generally RAMS) as well. 

Combining Physics and Data 

As illustrated in the previous sections, data-driven methods benefit from a number 
of recent breakthroughs and can be very efficient. However, as also mentioned, they 
suffer from a number of shortcomings. On the other hand, a number of physical degra-
dation phenomena are well described by known physical laws, and it seems natural 
to use that knowledge when it exists, instead of just blindly processing data without 
paying attention to their meaning. Therefore, it seems that hybrid PHM, i.e., the joint 
use of physics knowledge with the processing of acquired field data, is a promising 
way forward. Physics-based and data-driven algorithms are complementary. A purely 
physics-based algorithm is limited by the need for a detailed knowledge of model
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Fig. 4.4 Digital twin and 
physical space 

parameters, some of which can vary over time with changing environmental condi-
tions and evolving mission profile. In hybrid PHM systems, physical parameters are 
continually updated as new data is being acquired, as illustrated in Fig. 4.4. 

The multi-physics model is sometimes called a digital twin. 
A digital twin however is more than just a model. Just as any model, it is an abstrac-

tion of reality, i.e. it does not include all the details but only the parameters that are 
essential to the function being studied; at the same time, it ideally contains all rele-
vant information relating to the history of the physical system; i.e., design changes, 
maintenance history, etc. A digital twin should accompany the physical system 
throughout its life time. Initially invented by NASA back in the Apollo program 
days, the concept has known considerable success recently, in PHM and RAMS 
applications in particular. Definitions vary and no unique standardized definition has 
emerged yet. 

For instance, an example of definition is: “A Digital Twin is an integrated multi-
physics, multi-scale simulation of a complex product which uses available models and 
information updates (such as sensor measurements, procurement and maintenance 
actions, configuration changes etc.) to mirror an asset during its entire lifecycle” 
(Karim et al. 2023). 

IEEE distinguishes several classes of digital twins (IEEE 2020): the ‘digital 
model’, where changes in the physical object must be manually carried over to the 
digital twin; the ‘digital shadow’, where changes in the physical object are automat-
ically carried over to the twin, and the full digital twin where changes occur auto-
matically in both directions. Most digital twins in existence correspond to IEEE’s 
‘digital shadow’ concept. 

A fairly recent illustrative example (Staino et al. 2018) is provided by the filter of 
an HVAC (heating-ventilation-air conditioning) system installed on tramway cars. 
HVAC performs a crucial function in warm climates. The filters tend to clog with 
dust accumulation, up to the point where the function of air exchange is no longer 
adequately performed. To avoid such a ‘failure’, filters are replaced preventively,
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and filter providers tend to be conservative in their recommendations for a replace-
ment period. To avoid unnecessary replacements while avoiding loss of function, a 
tramway manufacturer (Alstom) has put in place a preventive maintenance strategy 
relying on the concept of digital twin. A physical law (Darcy’s law) describes mate-
rial accumulation. The model parameters are continually updated by means of pres-
sure sensors: increasing clogging results in the need for a higher pressure differential 
upstream and downstream from the filter in order to achieve the same air flow through 
the filter. Continuous measurement of that pressure difference is the basis for the defi-
nition of a health indicator and the dynamic estimation of the filter’s remaining useful 
life, i.e. the time left until reaching an unacceptable level of clogging. 

This technique has led to a very accurate filter RUL prediction and it was evidenced 
that, under normal operating conditions, filter replacement periodicity could be 
halved without harm, with respect to supplier’s recommendations. 

That example is comparatively simple, in that there is a single failure mode (clog-
ging) and the complete physical model is readily available (although not elementary 
at all) and lends itself well to the construction of a simple health indicator. 

In general, a full physical model of all relevant degradations is not available. 
Several approaches have been proposed to combine physics knowledge with data-

driven methods (e.g., Arias-Chao et al. 2019). 
The general idea is to use physics-based models to guide the discovery of useful 

machine-learning models, what is sometimes called “physics-informed machine 
learning” (Huber et al. 2023). 

One promising approach (Arias et al. 2022) consists of estimating unobservable 
parameters from system dynamics (physics) and sensor readings. Those parameters 
encode the health condition of system components. They are then input into a deep 
neural network, along with sensor readings and physical model responses, to generate 
a prognostics model. This approach has been validated on a standard dataset, the 
‘Commercial Modular Aero-Propulsion System Simulation’ (CMAPPS). It falls into 
the general category of “physics informed neural networks” (PINN), an active area 
of research. 

A potential benefit of those hybrid approaches is to leverage the advantages of 
physics-based models and data-driven ones. Clearly, one should carefully avoid 
inheriting drawbacks from the two methods. 

Quantifying and Managing Uncertainty 

Reliability engineers have long been accustomed to dealing with uncertainty, typi-
cally by attaching a confidence interval to reliability, maintainability or availability 
estimates instead of just providing point estimates. In AI-based methods, especially 
when using neural networks, it is only recently that attention has been paid to uncer-
tainty quantification. However, it is extremely important because several sources of
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uncertainty typically impact detection, diagnostics and prognostics metrics. Those 
include epistemic uncertainty, i.e., how much is unknown about the model (for 
instance the value of some model parameters), and what is sometimes called aleatory 
uncertainty, related to measurement errors and to variability in mission profile. 
Especially when estimating RUL (remaining useful life), which is affected among 
other by the future mission profile, providing confidence bounds is indispensable 
for risk management (Dersin 2023). In purely physics-based models, uncertainty 
quantification can be based on analytical methods such as first-order reliability 
methods (FORM) and first-order Taylor expansion of RUL based on the state equa-
tion (Sankararaman et al. 2014). For machine-learning based algorithms, more— 
complex methods have to be considered. A recent comprehensive tutorial (Nemani 
et al. 2023) surveys state-of-the-art methods, which include, among other, Gaussian 
process regression, Bayesian neural networks, and neural network ensembles. They 
lead to the notion of ‘uncertainty-aware machine learning’. 

Combining AI with Traditional Reliability Engineering 

As already pointed out, we believe AI can enhance classical reliability engineering 
and that there should be a strong synergy between classical approaches and AI-based 
ones. 

Let us illustrate this idea. Recently, this author introduced the use of a time trans-
formation or time warping to describe the time evolution of equipment of system 
degradation (Dersin 2023). The time warping is in a one-to-one correspondence with 
the reliability function. It has the property that, in the transformed time, the mean 
residual life (MRL), i.e., the expectation of the RUL, is a linear function (Fig. 4.5). 

The transformation (denoted g) also leaves invariant the first-and second-order 
moments of the time-to-failure distributions. In the transformed time, the slope of 
the MRL can be derived explicitly in terms of the TTF’s coefficient of variation (i.e. 
the ratio of mean to standard deviation)-as in (4.2): 

k = 
1 −

(
σ 
μ

)2 

1 +
(

σ 
μ

)2 (4.2)

Fig. 4.5 Time transformation 
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where 

μ = MTTF (4.3) 

σ 2 = E
[
(T T  F  − μ)2

]
(4.4) 

That slope parameter k (a dimensionless quantity) is therefore an invariant of the 
time transformation g. It characterizes the speed of degradation somehow. 

As the class of time-to-failure distributions with a MRL linear in time enjoys useful 
properties, among other an explicit formulation of the RUL confidence interval, those 
properties can be translated into equivalent properties for the initial distribution, using 
the inverse mapping g−1. It is thus possible to derive explicit confidence intervals, 
and also bounds on the average time derivative of the RUL. 

Now, identifying the time warping function can be performed by means of clas-
sical statistical methods (curve fitting) (Dersin 2023) but, if individual asset condi-
tions, which typically evolve in time, must be taken into account, machine learning-
including deep learning-algorithms are probably preferable because they make it 
possible to take into account a much larger number of parameters, dynamically. 

Toward Optimized Dynamic Maintenance 

The goal of predictive maintenance is to avoid failures as much as possible, while, 
at the same time, keeping the maintenance costs reasonable. In order to explicitly 
manage risks, one can impose an upper bound on the probability that RUL(t) is lower  
than the time to the next inspection. Let the next inspection occur at time t + s*. 
Then the constraint is 

P
[
RUL(t) < s∗] < α (4.5) 

In that way, s* can be determined explicitly, as a function of t, using the time 
warping g(), by the method described in the previous section. 

One can then select the value of the risk α in such a way as to minimize the 
sum of the total expected cost of maintenance (including preventive and corrective 
maintenance) and the expected cost of failures (Dersin 2023). More preventive main-
tenance will mean fewer failures, and therefore the optimal solution is a function of 
the relative costs (the cost of failure includes failures operational impacts, such as 
the costs of cancelled flights or of train delays, or lost production). 

Since, in practice, environment and mission profile conditions, and therefore 
stresses, evolve with time, the estimates of the time warping g(.) and the ‘degradation 
speed’ k must be updated dynamically. They will also be influenced by the various 
maintenance operations that are carried out over time. Accordingly, a dynamic deci-
sion support process, described by the iterative procedure of Fig. 4.6, can be put in
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Fig. 4.6 Dynamic risk-based Predictive Maintenance. μ = MTTF. The cost function per unit of 
time is denoted c. (reproduced from (Dersin 2023) by kind permission of Taylor & Francis) 

place. Identification of the g transformation and estimation of mean μ and variance 
(or mean and slope k) can also rely, not just on acquired field data, but on physical 
laws and expert knowledge as well. In our view at least, this process can only be a 
decision support tool and the ultimate decision maker is human. 

Conclusions, Opportunities and Challenges 

In this brief survey, it was only possible to scratch the surface of the burgeoning field of 
AI and its potential benefits for reliability engineering and maintenance management. 
For instance, reinforcement learning, natural language processing, large language 
models, are all about to revolutionize the field to some extent.
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One of the challenges of AI in industrial applications (so-called ‘Industrial AI’) 
is interpretability, or explainability: how can a domain expert be convinced that the 
decisions recommended by a black box (typically a neural network) are justified? That 
would seem to require something like a ‘white box’ approach. Clearly, physics-based 
models are by definition more-easily explainable than purely data-driven ones. But 
as seen earlier, purely physics-based models are rarely available. The whole field of 
“explainable AI” (XAI), is therefore receiving increased attention (see (Arrieta et al. 
2019) for a recent survey). For instance, SHAP (SHapley Additive exPlanations)— 
(Strumbelj et al. 2014; Ribeiro et al. 2016) is a game-theoretic approach to explain the 
output of any machine learning model, by determining the contributions of individual 
features on the algorithm’s decisions. A methodology for focusing on causality rather 
than just correlation, named Causal Inference (Pearl 2009), is also part of that effort 
towards explainable AI. 

In all algorithms, data quantity and quality is an important concern. Lack of 
data can sometimes be overcome by data augmentation, and plethora of data can 
be addressed by pre-processing to eliminate unnecessary or redundant data. Data 
quality management is a key activity in itself. Algorithms for tracking and elimi-
nating corrupted or contaminated data do exist (see e.g., Ulmer et al. 2023). Another 
challenge, not the least one, is cybersecurity and data ownership. The more algo-
rithms reside on the cloud, the more this subject comes to the fore (see e.g., Kour 
et al. 2022). 

Industrial AI was the subject of a recent conference sponsored by Luleå University 
of Technology (IAI 2023), featuring among other the “AI Factory” (Karim 2022, 
2023), a collaborative platform that allows multiple industrial partners to share only 
the data they need to share—in particular by bringing models to data rather than the 
opposite. That approach has shown its merit in railway applications, and is being 
generalized to other fields. Last but not least, in this era of climate change and 
emphasis on sustainable development, a key challenge is the energy consumption of 
algorithms-frugal AI is the corresponding ‘buzzword”. The notion combines that of 
energy frugality and low data consumption. 

A good overview of PHM challenges can be found in (Zio 2022). A comprehen-
sive treatment of state-of-the-art Reliability Engineering techniques can be found in 
(Birolini 2017) and (Nachlas 2017). 

In conclusion, in spite of the very real challenges that still exist, especially in indus-
trial applications of AI, we are of the opinion that reliability and maintenance engi-
neers stand to benefit enormously from the potential of AI; and that, at the same time, 
it would be a mistake to believe that reliability engineering will “dissolve into AI”. 
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