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Abstract. Omnidirectional videos (ODVs) play an increasingly impor-
tant role in the application fields of medical, education, advertising,
tourism, etc. Assessing the quality of ODVs is significant for service-
providers to improve the user’s Quality of Experience (QoE). However,
most existing quality assessment studies for ODVs only focus on the
visual distortions of videos, while ignoring that the overall QoE also
depends on the accompanying audio signals. In this paper, we first
establish a large-scale audio-visual quality assessment dataset for omni-
directional videos, which includes 375 distorted omnidirectional audio-
visual (A/V) sequences generated from 15 high-quality pristine omnidi-
rectional A/V contents, and the corresponding perceptual audio-visual
quality scores. Then, we design three baseline methods for full-reference
omnidirectional audio-visual quality assessment (OAVQA), which com-
bine existing state-of-the-art single-mode audio and video QA models via
multimodal fusion strategies. We validate the effectiveness of the A/V
multimodal fusion method for OAVQA on our dataset, which provides
a new benchmark for omnidirectional QoE evaluation. Our dataset is
available at https://github.com/iamazxl/OAVQA.

Keywords: Audio-visual Quality · Omnidirectional videos · Quality
assessment · Dataset

1 Introduction

Virtual Reality (VR) has attracted substantial attention from industry and
research communities due to its ability to provide users with a stereoscopic
and immersive experience through Head-Mounted Displays (HMDs) [6,8]. Omni-
directional Videos (ODVs), a.k.a, 360◦ videos, panoramic videos or spherical
videos, have emerged as a significant form of VR content. By using VR HMDs
and adjusting their head orientation, users can explore the audio-visual content
in any direction. This immersive experience of simulating real-world scenes has
contributed to the popularity of ODVs in various application fields, including
medical, education, advertising, tourism, etc.
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Compared to traditional videos, ultra high-definition ODVs contain more
scene information and multi-channel audio information, which results in a dou-
bling of ODV data volume. Due to the huge amount of data, playback stucking
and quality switching caused by network delays and fluctuations usually occur
during video transmission, which leads to the degradation of ODVs quality, and
further affects the QoE of ODVs. Moreover, ODVs may also suffer from the dis-
tortions introduced during the process of capturing or displaying, which further
decreases the QoE. Therefore, to provide users with a smooth viewing experi-
ence, it is important to monitor the quality of ODVs during the procedure of
shooting, codec, transmission, etc., and perform optimization accordingly.

In the past few decades, many objective quality assessment methods have
been proposed for traditional plane videos [19,23], and some recent works have
also explored the problem of audio-visual video quality assessment [21]. Recently,
with the popularity of VR, many studies have explored the problem of omnidirec-
tional image quality assessment [3,24] and omnidirectional video quality assess-
ment [13]. However, most omnidirectional video quality assessment research only
focuses on the single-mode signal, i.e., visual information, few works have inves-
tigated the multimodal quality assessment of ODVs incorporating audio infor-
mation. As an important part of ODVs, spatial audio may strongly influence the
human perceptual quality, thus it is necessary to conduct in-depth research on
the audio-visual quality assessment of the omnidirectional videos.

In this paper, we make three contributions to the omnidirectional audio-
visual quality assessment (OAVQA) field. Firstly, we construct a large-scale
omnidirectional audio-visual quality assessment dataset to solve the poverty
problem of the corresponding dataset. We first collected 15 high-quality ref-
erence omnidirectional audio-visual (A/V) content, and generated 375 distorted
ODVs degraded from them. Subsequently, 22 subjects were recruited to par-
ticipate in the subjective quality assessment experiment, and the audio-visual
quality ratings of the reference and distorted videos were collected. Secondly,
we design three baseline methods for full-reference omnidirectional AVQA. The
baseline models first utilize the existing state-of-the-art audio and video single-
mode quality assessment methods to predict the audio quality and video qual-
ity of ODVs, respectively, then utilize different multimodal fusion strategies to
fuse A/V prediction results and obtain the overall quality results of the ODVs.
Thirdly, we compare and analyze the prediction performance of these models on
our dataset, and establish a new benchmark for future studies on OAVQA.

2 Related Work

2.1 Omnidirectional Video Quality Assessment Dataset

Table 1 provides an overview of several existing omnidirectional video quality
assessment datasets. It can be observed that most of the existing ODV quality
assessment datasets lack spatial audio information, and mainly focus on visual
distortions, while audio distortions are rarely been considered.
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2.2 Quality Assessment Models

Omnidirectional Video Quality Assessment. As a common storage format
of ODVs, ERP projection has severe mapping stretches near the poles. In order to
solve this problem, Yu et al. [31] proposed a spherical PSNR scheme (S-PSNR),
which is based on a set of uniform sampling points on the spherical surface, the
corresponding position on the mapping plane is calculated by different mapping
formulas. Sun et al. proposed the Weighted to Spherically uniform PSNR (WS-
PSNR) [25], which is directly performed in the original format and combined with
different stretching weights according to different mapping methods. Anwar et al.
[1] established an ODVs quality assessment model using the Bayesian inference
method, and evaluated the impact of buffering on users’ perceptual quality at
different bitrates. Fan et al. [10] established an ODVs dataset that contains
various distortions such as compression distortion and quality switching, and
then used machine learning methods to establish VQA models.

Table 1. An overview of omnidirectional video quality assessment datasets. “Mute”
means mute audio and “ambisonics” indicates spatial audio. SI and TI represent spatial
information and temporal information respectively. QP indicates quantization param-
eter and CRF means constant rate factor, which is used to control the video bitrate.

Dataset Video Num Audio Distortion Type QoE

Schatz et al. [22] 10 Mute Stalling MOS(1∼5)

Meng et al. [20] 774 Mute Frame size, Frame rate, Quantization stepsize, Resolutions MOS(1∼10)

Fei et al. [11] 468 Mute Bandwidth, Packet loss, Latency, Presence MOS(1∼5)

Anwar et al. [1] 208 Mute Bitrate, Stalling MOS

Fan et al. [10] 48 Mute Bitrate, Gender, Presence, TI, SI MOS(0∼9)

IVQAD [9] 150 Mute Bitrate, Frame rate, Resolution MOS(1∼5)

VQA-ODV [18] 600 Mute QP, Projection format DMOS(0 ∼ 60)

Fela et al. [12] 576 Ambisonics QP, Resolution, Audio bitrate MOS(0 ∼ 100)

Ours 390 Ambisonics
Audio bitrate, CRF, Resolution,

Noise, Blur, Stucking
MOS(1∼10)

Omnidirectional Audio-Visual Quality Assessment. As an important
part of ODVs, the influence of spatial audio on perceptual quality has rarely
been studied. Zhang et al. [33] presented a quality assessment methodology
for audio-visual multimedia in virtual reality environment. They presented a
panoramic audio-visual dataset and the quality factors which represent different
distortions were applied as the input to neural network. Fela et al. [14] utilized
PSNR and its variants designed for ODVs, i.e., WS-PSNR, CPP-PSNR and S-
PSNR [25,31,32], as the quality scores and studied the perceptual audio-visual
quality prediction based on the fusion of these scores [13]. Four machine learn-
ing models including multiple linear regression, decision tree, random forest, and
support vector machine (SVM), were tested.
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3 Omnidirectional Audio-Visual Quality Assessment
Dataset (OAVQAD)

3.1 Reference and Distorted Contents

We first captured 162 different ODVs with different scenes using a professional
VR camera Insta360 Pro2. Then, we selected 15 high-quality ODVs from the
collected ODVs as the reference videos in our OAVQAD. We utilized FFmpeg
to clip the duration of the selected ODVs to 6 s. Each ODV has a resolution
of 8K (7680 × 3840) in equirectangular projection (ERP) format with a frame
rate of 29.97 fps. All ODVs contain first order ambisonics (FOA) with 48,000 Hz
audio sampling rate and four audio channels. The audio and video formats are
shown in Table 2. The ODV contents include acappella chorus, shopping, guitar
playing, restaurant ordering, etc. Figure 1 shows the ERP format previews of the
selected 15 reference ODVs.

We utilized advanced audio coding (AAC) as the audio encoding method
provided by FFmpeg 4.4, and used constant bitrate (CBR) mode to set the
audio bitrate to 64Kbps, 32Kbps and 16Kbps, respectively, thereby generating
three levels of perceptually well-separated audio compression distortion. Then,
we chose HEVC as the video encoding method provided by FFmpeg libx265
encoder, and for each source video we applied 3 different compression levels,
i.e., 32, 37 and 42 in constant rate factor (CRF) mode. Besides, we also set the
video resolution to three levels including 4K (3840×1920), 2K (1920×960), 1K
(1080×540). Moreover, in order to adapt to a wider range of application sce-
narios, we further introduced more abundant distortion types and added three

Acappella Basketball Canteen Cat Chatting

Class Crossing Discussion Gardener

Greeting Guide

Drawbridge

Guitar Gym Harmonica

Fig. 1. EPR format previews of 15 reference ODVs used in our OAVQAD.

Table 2. Omnidirectional audio and video format parameters.

Resolution Frame rate Bitrate Format Bit depth Duration Encoding

Video 8K 29.97fps 144Mbps YUV420 8bit 6s H.265

Audio - - 3072Kbps FOA 16bit 6s AAC-LC



516 X. Zhu et al.

types of distortions [5,7] including noise, blur, and stucking, and generated dis-
torted ODVs with various levels of these distortions. To summarize, we applied
25 distortion conditions to 15 reference ODVs, resulting in a total of 375 (15 ×
25) distorted ODVs.

3.2 Subjective Experiment Methodology

Experiment Apparatus. Since the subjective experiment was needed to be
conducted in a VR immersive environment, we used HTC Vive Pro Eye as the
HMD to demonstrate ODVs and collect subjective quality ratings. The subjec-
tive experiment platform used to play 8K ODVs and perform scoring interaction
was build based on Unity 1.1.0 as shown in Fig. 2.

Experiment Procedure. The subjective experiment was conducted in a sub-
jective study room in a university. A total of 22 subjects (14 males and 8 females)
were invited to participate in the subjective experiment. The subjects were
between 20 and 28 years old (mean 22.62, variance 5.23) and were all gradu-
ate and undergraduate students. All subjects had normal or corrected-to-normal
vision and hearing. In the experiment, subjects firstly received the guidance on
the use of VR equipment, including HMD and controllers. Then a training ses-
sion was performed for the subjects, making them be familiarized with the user
interface as well as the general range and types of distortions. In the testing
session, subjects watched 390 ODVs and gave perceptual scores of the overall
A/V quality. The order of the test videos was random for each subject to avoid
bias.

Fig. 2. Demonstration of the subjective experiment interface based on the Unity plat-
form.
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Fig. 3. Histogram of MOS distribution in the database.

3.3 Subjective Data Processing and Analysis

We followed the subjective data processing method recommended by ITU [2,4]
to perform the outlier detection and subject rejection. None of the 22 subjects
was identified as an outlier and eliminated. We normalized the raw scores of
subjects to Z-scores ranging between 0 and 100 and calculated the mean of Z-
scores to obtain the final mean opinion scores (MOSs), which are formulated as
follows:

zij =
rij − μi

σi
, z′

ij =
100 (zij + 3)

6
, (1)

MOSj =
1
N

N∑

i=1

z′
ij , (2)

where rij is the original score of the i-th subject on the j-th sequence, μi

and σi are the mean rating and the standard deviation given by subject i, N is
the total number of subjects. Figure 3 draws the histogram of MOS distribution
over the entire database, indicating that the perceptual quality scores are widely
distributed in the [0, 100] interval, basically covering every score segment, and
generally showing a normal distribution. It also manifests that the perceptual
quality distribution conforms to our expectations and the distortions setting is
quite reasonable.

4 Objective Omnidirectional Audio-Visual Quality
Assessment

4.1 Single-Mode Models

Many video and audio quality assessment methods have been proposed sepa-
rately in previous studies. These quality assessment algorithms, only predict
quality of single-modal audio or video signals, can be called as single-mode qual-
ity assessment methods. We first utilize the existing state-of-the-art single-mode
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quality assessment methods to predict the omnidirectional video and audio qual-
ity, respectively. Since both the single-mode AQA and VQA prediction scores
can characterize one aspect of the distortion severity of the distorted video, it is
reasonable to directly use the single-mode models to predict the overall audio-
visual quality score of the ODVs.

The well-known single-mode assessment models adopted in this paper are
introduced as follows:

– Video: VMAF [19], SSIM [28], MS-SSIM [29], VIFP [23], FSIM [34],
GMSD [30], WS-PSNR [25], CPP-PSNR [32], S-PSNR [31].

– Audio: PEAQ [27], STOI [26], VISQOL [16], LLR [17], SNR [17],
segSNR [15].

4.2 Weighted-Product Fusion

A single-mode audio/visual quality assessment metric can only characterize one
quality aspect thus cannot fully represent the overall subjective perceptual qual-
ity of an ODV. Therefore, it is important to use appropriate multimodal feature
fusion method to predict the A/V quality of ODVs. The simplest fusion method
is to directly multiply the quality scores of a VQA model and an AQA model as
the overall quality score of ODVs.

However, for human audio-visual perception, video and audio quality often
occupy different importance in ODVs, and people may pay more attention to
visual quality. The weighted product can balance the influence of different modal-
ities by assigning different weights to each of them, so the weighted product is
a better choice for score fusion compared to the direct multiplication method.
The weighted product can be formulated as

Qav = Q̂w
v · Q̂1−w

a , (3)

where Q̂a and Q̂v are normalized score of the audio and video, w and 1 − w
represent the weights of video and audio quality respectively, 0 ≤ w ≤ 1. Q̂a and
Q̂v are calculated by Q̂a = Qa−Qamin

Qamax−Qamin
and Q̂v = Qv−Qvmin

Qvmax−Qvmin
, where Qamin ,

Qamax , Qvmin and Qvmax bound Qa and Qv respectively. The optimal weights
depend on the used single-mode A/V quality evaluation models and we vary
the weight from 0 to 1 with 0.05 step increment to find the optimal weight w.
Since the score ranges of the video and audio quality assessment models may
be different, the multiplication method can only be performed after they are
appropriately scaled or normalized.
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Table 3. Video and audio quality prediction algorithms and their corresponding feature
types.

Category Models Feature Decomposed features.

Video VMAF [19] 6 4 scales of VIF, detail loss, motion

SSIM [28] 2 Luminance similarity, contrast and structural similarity

MS-SSIM [29] 6 Luminance similarity, 5 scales of contrast and structural similarity

VIFP [23] 4 4 scales of VIFP features

FSIM [34] 3 Phase congruency, gradient magnitude, and chrominance similarity

GMSD [30] 2 Mean and standard deviation of gradient magnitude similarity

WS-PSNR [25] 3 PSNR of Y, U, V components

CPP-PSNR [32] 3 PSNR of Y, U, V components

S-PSNR [31] 3 PSNR of Y, U, V components

Audio PEAQ [27] 11 11 model output variables before the neural network

STOI [26] 1 The complete algorithm

VISQOL [16] 3 Narrowband, wideband, fullband versions of VISOOL

LLR [17] 1 The complete algorithm

SNR [17] 1 The complete algorithm

seg-SNR [15] 1 The complete algorithm

4.3 Support Vector Regression Fusion

Since Support Vector Regression (SVR) is a commonly used machine learning
algorithm for establishing nonlinear relationships between inputs and outputs,
we also utilize the SVR method to integrate the quality prediction scores of
single-mode models

Qav = SVR(Qv, Qa), (4)

where Qv and Qa represent the quality prediction scores of video and audio,
respectively, and Qav denotes the fused A/V quality scores. In this case, SVR
uses the single-mode quality scores predicted by traditional AQA and VQA
algorithms respectively as the inputs, and the quality score (i.e., MOS) as the
labels for regression function training.

The performance of SVR fusion methods can be further improved by substi-
tuting scores with quality-aware feature vectors fv and fa, which can be either
hand-crafted features or extracted features from existing popular AQA and VQA
models. In this way, we can better fuse video and audio quality prediction results
by fully utilizing the quality features of audio and video, thereby improving
the performance of the entire model. This feature-based fusion method can be
expressed as:

Qav = SVR(fv, fa). (5)

The video and audio quality-aware feature vectors used here are extracted from
some existing AQA and VQA models, which are summarized in Table 3.
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5 Experiment Validation

5.1 Evaluation of Single-Mode Models

We test different single-mode quality assessment models (6 audio models and 9
video models) on our omnidirectional AVQA dataset to analyze the effectiveness
of single-mode quality models. Experimental results are illustrated in Fig. 4.

For AQA models, STOI, VISQOL, SNR, and segSNR yield relatively good
performances on our database, in which STOI achieves the both highest SRCC
and PLCC performance. Most of the VQA models show similar performance, and
all of them are not able to predict A/V quality effectively with SRCC and PLCC
below 0.6. The above analysis shows that most single-mode quality assessment
models have a poor performance on our OAVQAD, indicating the necessity of
fusing single-mode quality prediction results for more accurate OAVQA.

Fig. 4. Performances of single-mode models on overall audio-visual quality prediction.

5.2 Evaluation of Weighted-Product Fusion

For weighted-product fusion methods, we randomly divide the dataset into 80%
training set and 20% test set. All distorted ODVs from the same reference ODVs
are placed in the same set to ensure that the video content of the two set are
completely separated.

In the weighted-product fusion, a total of 54 (9 video models × 6 audio
models) weighted product quality fusion models are generated. In order to
normalize the prediction scores of the single-mode quality prediction mod-
els, the following normalization functions are used: Q

′
VMAF = 1

100QVMAF,
Q

′
WS-PSNR = 1

29 (QWS-PSNR − 23), Q
′
S-PSNR = 1

29 (QS-PSNR − 23), Q
′
CPP-PSNR =

1
29 (QCPP-PSNR−23), Q

′
GMSD = 1− 1

0.26QGMSD, Q
′
PEAQ = 1+ 1

3.5 (QPEAQ−0.21),
Q

′
LLR = 1− 1

1.2−0.7 (|QLLR|−0.7), Q
′
SNR = 1

20QSNR, Q
′
segSNR = 1

35+2 (QsegSNR +
2). The prediction scores of other models are already bounded in [0, 1], no further
normalization is needed.
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Table 4 shows the performance of weighted product fusion models. Among
these methods, the models fused by VQA algorithms VMAF, MS-SSIM, GMSD,
and the AQA algorithms STOI, VISQOL, SNR show relatively better perfor-
mances. The model combining GMSD and STOI achieves the best performance
in terms of SRCC. In addition, with the same AQA components, the perfor-
mance of fusion models using different VQA components has little difference,
which manifests that different AQA components have larger impact on the per-
formance of fusion models. Moreover, the mean optimal weight for visual modal-
ity of 54 weighted product models is 0.7231, suggesting that visual modality has
a greater impact on QoE than audio modality.

5.3 Evaluation of SVR Fusion

SVR fusion includes two methods including the score-based fusion and the
feature-based fusion. A total of 108 (9 video models × 6 audio models × 2
SVR conditions) models are tested and the normalization process is no longer
required. In SVR fusion models, the radial basis function (RBF) is selected as the
kernel function, the parameter γ of the kernel function is 0.05, and the penalty
factor C is 1024. Table 5 shows the performance of SVR fusion models.

Table 4. Performances of weighted-product fusion-based A/V quality models. The top
3 models are in bold.

Criteria Video Weighted Product

Model PEAQ STOI VISQOL LLR SNR segSNR

SRCC VMAF 0.5783 0.7790 0.7157 0.5745 0.7432 0.6660

WS-PSNR 0.5252 0.7348 0.6911 0.5507 0.7124 0.6658

S-PSNR 0.5182 0.7292 0.6886 0.5460 0.7068 0.6576

CPP-PSNR 0.5246 0.7333 0.6914 0.5499 0.7121 0.6652

SSIM 0.5605 0.7717 0.7289 0.5123 0.6783 0.6372

MS-SSIM 0.6131 0.7998 0.7511 0.6161 0.7596 0.6942

VIFP 0.5916 0.7746 0.7332 0.5978 0.7499 0.7017

FSIM 0.5386 0.7563 0.7259 0.5638 0.6632 0.6188

GMSD 0.6151 0.8044 0.7358 0.6246 0.7530 0.6844

PLCC VMAF 0.6124 0.7885 0.7265 0.6324 0.7442 0.6484

WS-PSNR 0.5595 0.7576 0.7407 0.6020 0.7351 0.5960

S-PSNR 0.5558 0.7530 0.7404 0.5966 0.7287 0.5984

CPP-PSNR 0.5594 0.7567 0.7401 0.6001 0.7340 0.5931

SSIM 0.5984 0.7917 0.7604 0.5601 0.6917 0.6886

MS-SSIM 0.6405 0.8124 0.7792 0.6561 0.7710 0.7270

VIFP 0.6188 0.8057 0.7294 0.6415 0.7522 0.6758

FSIM 0.5806 0.7743 0.7682 0.6015 0.6693 0.6650

GMSD 0.6357 0.8112 0.7518 0.6557 0.7587 0.6894
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Table 5. Performances of SVR fusion-based A/V quality models. The top 3 models in
terms of each metric are in bold.

Criteria Video SVR (Quality Score) SVR (Quality Feature)

Model PEAQ STOI ViSQOL LLR SNR segSNR PEAQ STOI VISQOL LLR SNR segSNR

SRCC VMAF 0.5481 0.7855 0.7141 0.5676 0.5688 0.6391 0.8343 0.8428 0.8566 0.6052 0.6119 0.6818

WS-PSNR 0.5306 0.7625 0.6974 0.5506 0.5453 0.6269 0.8035 0.7787 0.8171 0.5612 0.5582 0.6346

S-PSNR 0.5221 0.7593 0.6966 0.5418 0.5365 0.6202 0.8030 0.7764 0.8123 0.5550 0.5476 0.6263

CPP-PSNR 0.5301 0.7626 0.6982 0.5495 0.5452 0.6272 0.8039 0.7806 0.8174 0.5612 0.5584 0.6356

SSIM 0.5023 0.7246 0.6734 0.4651 0.5636 0.6222 0.7385 0.7475 0.7654 0.5314 0.5643 0.6492

MS-SSIM 0.5809 0.7984 0.7407 0.5963 0.6020 0.6727 0.8201 0.8342 0.8654 0.6136 0.6103 0.6752

VIFP 0.5983 0.8412 0.8149 0.6149 0.6043 0.6887 0.8751 0.8726 0.8881 0.6545 0.6464 0.7311

FSIM 0.5046 0.7290 0.6775 0.4604 0.5727 0.6227 0.7485 0.7413 0.7646 0.5275 0.5603 0.6357

GMSD 0.5749 0.8048 0.7450 0.6178 0.6020 0.6669 0.8426 0.7982 0.8459 0.6084 0.5940 0.6599

PLCC VMAF 0.5845 0.8111 0.7808 0.6275 0.6075 0.6832 0.8440 0.8543 0.8619 0.6527 0.6552 0.7303

WS-PSNR 0.5789 0.7831 0.7521 0.6125 0.5978 0.6704 0.8113 0.8012 0.8286 0.6312 0.6118 0.6919

S-PSNR 0.5703 0.7802 0.7472 0.6044 0.5895 0.6599 0.8109 0.7975 0.8229 0.6268 0.6030 0.6800

CPP-PSNR 0.5770 0.7832 0.7514 0.6115 0.5974 0.6712 0.8118 0.8026 0.8286 0.6313 0.6122 0.6930

SSIM 0.4297 0.7340 0.7125 0.4892 0.4234 0.5577 0.7656 0.7729 0.7721 0.5641 0.5674 0.6404

MS-SSIM 0.6187 0.8168 0.7874 0.6542 0.6476 0.7075 0.8350 0.8508 0.8697 0.6630 0.6632 0.7191

VIFP 0.6358 0.8565 0.8374 0.6752 0.6591 0.7382 0.8779 0.8828 0.8941 0.6950 0.6862 0.7748

FSIM 0.4275 0.7330 0.7102 0.4827 0.4298 0.5427 0.7647 0.7647 0.7676 0.5556 0.5595 0.6286

GMSD 0.6065 0.8249 0.7986 0.6564 0.6495 0.6964 0.8473 0.8170 0.8539 0.6488 0.6409 0.6889

It can be observed that quality score-based SVR fusion models achieve similar
performance compared with the weighted-product fusion models, while quality
feature-based SVR fusion models achieve much better performance compared to
above two methods. The models combining the AQA components, PEAQ, STOI
and VISQOL, and the VQA components VIFP and GMSD have relatively better
performance.

Figure 5 demonstrates the performance improvement obtained by each single-
mode AQA and VQA model, which further confirms the above phenomenon.
The performance improvement of each single-mode model is calculated by aver-
aging the SRCC improvements of all combinations of this model with the mod-
els from another perceptual mode. It can be observed that only VISQOL and
VIFP models gain performance improvement by replacing weighted-product with
SVR, suggesting that the weighted-product fusion is generally a more feasible
method. Futhermore, Fig. 5 also illustrates that it is more efficient to decom-
pose the single-mode VQA and AQA scores into ODVs’ quality features. It can
be observed that the feature-based regression models achieve different degrees
of performance improvement for different VQA and AQA fusion, among which
PEAQ achieved a significant improvement with nearly 50%. Some of these mod-
els, e.g., STOI, LLR, SNR and segSNR, have a small performance progress
caused by feature extraction, we reasonably speculate that these algorithm mod-
els are not easy to decompose.
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Fig. 5. Performance improvements in terms of SRCC introduced by replacing weighted-
product fusion with quality score-based SVR fusion, and decomposing quality models
into features during SVR fusion.

6 Conclusion

In this work, we construct an informative omnidirectional audio-visual quality
assessment dataset, which involves 390 omnidirectional videos with ambisonics
and the corresponding perceptual scores collected from 22 participants under
immersive environment. Based on our dataset, we design three types of baseline
AVQA models which combine AQA and VQA models via two multimodal fusion
methods to predict quality scores of ODVs. Moreover, quantitative analyses for
the performance of these models are conducted to evaluate the predictive effect of
different objective models. The experiment results on our dataset show that SVR
fusion based on quality-aware features have the best performance. Our dataset,
objective baseline methods and established benchmark can great facilitate the
further research of dataset design and algorithm improvement for OAVQA.
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