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Abstract. Accurately reconstructing the location and extent of cortical
sources is crucial for cognitive research and clinical applications. Regu-
larization methods that use the L1-norm in the spatial variation domain
effectively estimate cortical extended sources. However, in the variation
domain, employing L1-norm constraint tends to overestimate the extent
of sources. Hence, to achieve more precise estimations of both the loca-
tion and extent of sources, further sparseness-enforced regularizations are
required. In this work, we develop a robust EEG source imaging method,
VSSI-Lp, to estimate extended cortical sources. VSSI-Lp employs the Lp-
norm (0 < p < 1) in the variation domain to promote sparsity. Using
alternating direction method of multipliers (ADMM) and generalized
soft-thresholding (GST) algorithm, we can efficiently derive the solution
of VSSI-Lp. According to numerical simulations plus real data analysis,
VSSI-Lp outperforms both traditional L2 and L1-norm-based methods,
and the L1-norm-based method in the variation domain for reconstruct-
ing extended sources, validating the outstanding performance of Lp-norm
and variation constraint.

Keywords: EEG source imaging · Lp-norm · Variation sparsity ·
generalized soft-thresholding

1 Introduction

As a non-invasive tool, Electroencephalography (EEG) is used extensively in neu-
roscience research because of its excellent millisecond-level time resolution. EEG
source imaging (ESI) aims to reconstruct cortical activities from EEG signals,
essential in neuroscience research and clinical diagnosis (e.g., epileptic seizure
area localization). Moreover, ESI can also provide higher spatial resolution in
BCIs [6,8], obtaining more precise outcomes.
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To handle this ESI task, the current density model uses triangles to represent
sources and divides the cortex into a fixed triangular mesh [12]. With Maxwell’s
equations, the EEG signal is somehow a linear combination of the source ampli-
tudes [9]. Then ESI estimates the potential source activities by solving this linear
inverse problem, which is to find a source configuration that best suits the scalp
EEG measurement. However, the inverse problem is fully underdetermined due
to the candidate sources (typically more than 5000) vastly outnumbered the
scalp EEG electrodes (tens to hundreds) [7,16]. To obtain a unique source con-
figuration, employing appropriate constraints on the source spaces is therefore
necessary.

The most commonly employed constraint is the L2-norm regularization, like
the minimum norm estimate (MNE) [7], which obtains the target source con-
figuration with the minimum energy. However, the solutions of MNE are biased
towards superficial sources because the fields generated by scalp sources are
stronger than the deep sources with less energy [7]. One way to compensate for
this bias is to weight the regularization term with the lead-field matrix, which
is referred to as the weighted MNE (wMNE) [13]. Furthermore, in consider-
ing the dependencies between adjacent sources, the low-resolution electromag-
netic tomography (LORETA) approach was proposed. LORETA minimizes the
L2-norm of the second-order spatial derivative in source space, so as to derive
smoothness and local spatial coherent solutions. In general, these L2-norm-based
methods are welcomed due to their computational efficiency, but they limit spa-
tial resolution as they produce diffused estimations, though.

Sparse methods with L0-norm provide better spatial resolution than the L2-
norm-based approaches, but L0-norm optimization is computationally infeasi-
ble with large-scale data. To approximate the L0-norm, L1-norm constraints
are commonly used [14]. However, the sparse constraint on the original source
space only produces some point sources, providing little information on the size
of cortical activities [7,11]. In contrast, employing L1-norm regularization in
the transform domain, such as variation transform, will provide more accurate
estimations of extended sources [4,12]. Nonetheless, as suggested in [2], in the
transform domain, methods based on L1-norm tend to overestimate the extent of
sources, especially for small-sized sources. Therefore, more sparseness-enforced
constraints are necessary to achieve more accurate estimations [3].

To better approximate the solution of L0-norm with sufficient sparsity, sev-
eral studies have adopted the Lp-norm (0 < p < 1). Lp-norm offers flexible
recovery by controlling the value of p. Moreover, Lp-norm-based methods require
fewer measurements to achieve reliable reconstruction [3]. Therefore we propose
a new ESI algorithm in this work, to accurately estimate locations and extents of
sources, named Variation Sparse Source Imaging based on Lp-norm (VSSI-Lp).
Specifically, we utilize the Lp-norm regularization for spatial variation sources
to obtain sparse and robust solutions in the variation domain. The value of p
is alterable to fit sparsity and noise flexibly, enabling more reliable estimations.
Moreover, we employ the Alternating Direction Method of Multipliers (ADMM)
algorithm [20], in order to solve the optimization problem efficiently.
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The structure of this paper is outlined as follows. In Sect. 2, we introduce the
details of VSSI-Lp. In Sect. 3, we present the simulation design and evaluation
metrics. In Sect. 4, we compare the performance of VSSI-Lp with the benchmark
algorithms, followed by a brief discussion and conclusion in Sect. 5.

2 Method

We can use the following formula to describe the linear relationship between
potential sources and EEG [2,10]

b = Ls + ε (1)

in which b ∈ R
m×1 is the scalp EEG measurement from m sensors. s ∈ R

n×1

denotes the current sources of n sources. L ∈ R
m×n is so-called the lead-field

matrix, describing the conductivity from potential sources to scalp electrodes.
ε is the measurement noise typically assumed to follow a Gaussian distribu-
tion [17].

The goal of ESI is to characterize the location and extents information of
potential source s with a giving EEG data b. Unfortunately, the number of
potential sources n is much bigger than the number of EEG electrodes m, and
numerous source configurations are suitable for the scalp measurements. There-
fore, narrowing the solution space with constraints is needed for the EEG inverse
problem.

s = arg min
s

‖b − Ls‖22 + f(s) (2)

where the former term is the data fitting term, and the latter term is the regu-
larization term which imposes the constraints.

Evidence has revealed that EEG signals largely arise from synchronized neu-
ral electrical activity and the cortical activation is compact [1]. Based on this,
we assume the sources have the attributes that are locally smooth and globally
clustered [10]. To achieve this, we impose sparsity on the variation domain of
sources and penalize the differences in amplitude between adjacent dipoles [4].
Specifically, we introduce the variation operator V , which is defined as

V =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vP1 vP2 · · · vPn

⎤
⎥⎥⎥⎦

{
vpi = 1, vpj = −1, i < j; if source i,j share edge p
vpi = 0; otherwise

(3)
Here, P represents the number of edges of all triangular grids in source model.
Each row of matrix V refers to the corresponding triangle edge. The values 1
and -1 in the pth row characterize a pair of adjacent sources over the pth edge.
Then, each non-zero element in the variation source u = V s ∈ R

P×1 denotes the
difference of amplitude between the two adjacent sources. To reconstruct locally
smooth and globally clustered cortical activities, we assume that the variation
source, V s, is sparse.
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Compared to the L2-norm and L1-norm regularization, previous studies have
revealed that the Lp-norm (0 < p < 1) can provide more accurate solutions with
less measurement data [3]. In this work, we employ the Lp-norm regulariza-
tion term to develop a precise and robust ESI method, VSSI-Lp, to reconstruct
extended sources with variation sparsity. The VSSI-Lp algorithm intends to solve
the following non-convex optimization problem

s = arg min
s

‖b − Ls‖22 + λ‖V s‖p
p (4)

where ‖ · ‖p
p = (

∑
i |si|p) with 0 < p < 1, and λ > 0 is the regularization

parameter. In this work, the value of p of the Lp-norm is empirically selected
within the result of simulations.

Equation (4) can be rewritten as

s = arg min
s

‖b − Ls‖22 + λ‖u‖p
p s.t.,u = V s (5)

which can be efficiently solved using the ADMM algorithm. Hence, the aug-
mented Lagrangian function is derived as

L(s,u,z) = ‖b − Ls‖22 + λ‖u‖p
p + z�(V s − u) +

ρ

2
‖V s − u‖22 (6)

where ρ > 0 is the Lagrangian penalty parameter and z ∈ R
P×1 is the

Lagrangian multiplier. The variables s,u,z can be updated by alternately min-
imizing the augmented Lagrangian function L. In the kth iteration, these vari-
ables are updated as

sk+1 = (2L�L + ρV �V )−1[2L�b + V �(ρuk − zk)]

uk+1 = arg min
u

λ‖u‖p
p +

ρ

2
‖V sk+1 − u +

1
ρ
zk‖22

zk+1 = zk + ρ(V sk+1 − uk+1)

(7)

Letting y = V sk+1 + 1
ρzk, uk is optimized as

uk = arg min
u

1
2
‖y − u‖22 +

λ

ρ
‖u‖p

p (8)

which can be solved using the generalized soft-thresholding (GST) function [21].
In each iteration, we alternately update the variables s,u,z. Generally, the

iteration is terminated by reaching the maximum number of iterations or when
the relative change of the estimated source s reaches the tolerance.

As for application details, the proposed method VSSI-Lp was conducted on
a standard PC (Corei9-10980XE CPU 3 GHz and 128 GB RAM). The algorithm
will converge after 500 ADMM iterations, which takes about 35 s, for the given
simulation configurations in Sect. 3. For reproducibility purposes, the code for
the proposed method is available at https://github.com/Mashirops/VSSI-Lp.
git.

https://github.com/Mashirops/VSSI-Lp.git.
https://github.com/Mashirops/VSSI-Lp.git.
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3 Simulation Design and Performance Metrics

VSSI-Lp is compared with two conventional L2-norm constraint ESI methods:
(1) wMNE [13], (2) LORETA [15], and two sparse constraint methods imple-
mented in the original source domain: (3) L1-norm regularization [19] which
solves

sL1 = arg min
s

‖b − Ls‖22 + λ‖s‖1, (9)

(4) Lp-norm regularization (in this work, we set p = 0.8 only for the following
formula) [21] which solves

sLp
= arg min

s
‖b − Ls‖22 + λ‖s‖p

p, (10)

and (5) VB-SCCD [4].

3.1 Numerical Simulation

Given the absence of ground truth, several Monte Carlo numerical simulations
were conducted with Brainstorm [18], using the default ICBM 152 head struc-
ture, to validate the performance of those ESI algorithms. The cortex surface
was downsampled into 6004 triangular meshes and each triangular stood for a
dipole source perpendicular to the cortical surface. We calculated the lead-field
matrix L through BEM models based on the 64-channel Neuroscan Quik-cap
sensor system.

On the cortex, we randomly selected a seed triangle and added adjacent
triangle grids one by one till the whole area reaches a specified value, so as to
construct an extended source. Then we applied an amplitude on the constructed
source to obtain the ground truth sreal. By multiplying it with the lead-field
matrix L, we obtained the clean EEG signals. To further simulate actual EEG
signals for experiments, we added Gaussian white noise on the clean EEG data.
By changing the signal-to-noise ratio (SNR), the noise level is controllable. Here,
SNR is defined as 10 log10

[
σ2(Ls)
σ2(ε)

]
, where σ2(·) denotes the variance. Monte

Carlo numerical simulations in the following scenarios are conducted:

1) Various SNRs - we made use of four levels of SNR (−5, 0, 5 and 10 dB)
with only one patch source around 6 cm2 to evaluate the robustness of our
proposed ESI method to noise levels;

2) Various number of channels - we considered using data with varying numbers
of channels with SNR = 5 dB, including 100% (62 channels), 75% (47 chan-
nels), 50% (31 channels), and 25% (16 channels) to evaluate the robustness of
our proposed ESI method to different amounts of data. For each simulation,
channels of all non-complete cases were randomly selected.

For each case, we conducted 50 Monte Carlo simulations.
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3.2 Performance Metrics

To fully evaluate the performance of ESI algorithms, we carry our four perfor-
mance metrics. (1) The area under the receiver operating characteristic (ROC)
curve (AUC) [4,11], describing the sensitivity and specificity of the reconstructed
sources. (2) Spatial dispersion (SD) [11,12], measuring the spatial blurring of
the reconstructed sources w.r.t. the ground truth. (3) The distance of localiza-
tion error (DLE) [9,12], measuring the localization error of the reconstructed
sources w.r.t. the ground truth. (4) The normalized relative mean square error
(nRMSE) [10], measuring the relative squared error between the normalized
reconstructed sources and the normalized ground truth.

Details of four performance metrics can be found in [12]. In general, higher
AUC values with lower SD, DLE and nRMSE values imply better performance
of the ESI methods. The significance is assessed using the Kruskal-Wallis test.
Suppose that the statistic from the Kruskal-Wallis test is significant, we will
further conduct Wilcoxon rank sum tests to determine whether VSSI-Lp yields
significantly superior estimations against each benchmark algorithm. The Otsu’s
threshold is employed to visualize the imaging results [10,12].

4 Results

4.1 Simulation Results Analysis

Effect of Different p-values. For the Lp-norm-based methods, the value of
p primarily affects the sparsity of the solutions. Here, we compared the perfor-
mance of VSSI-Lp with various p-values from 0.1 to 0.9 with one patch source
under the SNR = 5 dB, to test the influence of the p-value. Figure 1 depicts
the performance metrics under different values of p. For p < 0.5, the Lp-norm
enforced the sparsity too aggressively, leading to a high error rate in source esti-
mation, evidenced by the low AUC, and large DLE, SD, and nRMSE values.
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Fig. 1. Performance metrics under various values of p. The figure shows the Mean ±
SEM (standard error of the mean) of the results for 50 Monte-Carlo simulations.
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Conversely, the performance of VSSI-Lp remains stable when p ≥ 0.6. Conse-
quently, for VSSI-Lp, the p-value in the later simulations are empirically selected
as 0.6.

Effect of SNRs. Figure 2 presents the performance metrics under various
SNRs. As the SNR increases, all algorithms show improved performance, indi-
cated by the increased AUC (p < 0.05), decreased DLE (p < 0.05), SD (p < 0.05)
and nRMSE (p < 0.05) values. Because L1 and Lp-norm-based methods enforce
sparsity on the original domain, they always produce point estimations, result-
ing in the lowest SD values at all SNR levels. However, the L1 and Lp-norm
regularizations produce many false estimations, indicated by the large DLE val-
ues, and provide little information about source extents, indicated by the lowest
AUC values. VSSI-Lp outperforms VB-SCCD, wMNE and LORETA, indicated
by the largest AUC, lowest SD and nRMSE values.

Figure 3 provides an imaging example under different SNRs. As expected,
wMNE and LORETA produce too diffused estimations, while the L1-norm and
Lp constraint in the original source domain obtained several point sources around
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Fig. 2. Performance metrics of various SNRs. This figure shows the Mean ± SEM of
the results for 50 Monte-Carlo simulations.
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or in the ground truth. VB-SCCD shows better estimations than the other bench-
mark methods, although it provides some spurious sources around the actual
activities. Among all the ESI methods, the reconstructions by the proposed
VSSI-Lp are the most accurate in matching the ground truth.
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Fig. 3. Imaging example under different SNR levels. The thresholds of the estimated
maps are obtained using Ostu’s method.

Effect of the Number of Channels. Figure 4 presents the performance
metrics under different numbers of EEG channels. As the number of channels
decreases, the performance of all methods declines due to the loss of measurement
information. VSSI-Lp exhibits good robustness and provides more accurate infor-
mation on extended sources than other methods even with some missing data,
indicated by larger AUC (p < 0.05) and lower DLE (p < 0.05), SD (p < 0.05,
except for L1-norm) and nRMSE (p < 0.05) values.

4.2 Real Data Result Analysis

In this subsection, we utilized the public EEG dataset to further assess the
practical efficacy of VSSI-Lp, which is the epilepsy EEG data from Brainstorm.
Detailed descriptions can be found at https://neuroimage.usc.edu/brainstorm/
DatasetEpilepsy. In this work, we followed the tutorial of Brainstorm to derive
the head model, lead-field matrix and EEG data for source localization. The
EEG data is presented in Fig. 5(a), which is an average of 58 tails, and the
data at the peak (0 ms) is used for source imaging. Figure 5(b) presents the

https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy.
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy.
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Fig. 4. Performance metrics of various number of channels. This figure shows the Mean
± SEM of the results for 50 Monte Carlo simulations.

Fig. 5. Estimated sources of epilepsy data. (a) is the waveforms of averaged EEG data;
(b) is the result of each algorithm at 0 ms.
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imaging results. wMNE and LORETA provide diffused estimations, while the
result of LORETA is smoother. L1-norm regularization obtains 2 point sources,
and Lp-norm regularization yields several incoherent point sources around the
left frontal lobe. Results of VSSI-Lp and VB-SCCD provide clear information
about the location and extent of potential sources, which conform to clinical
findings in [5].

5 Discussion and Conclusion

Here in this work, we proposed a new ESI method, VSSI-Lp, to reconstruct
the location and extent of brain activity. VSSI-Lp method enforces the spar-
sity of potential brain sources using the Lp-norm regularization in the variation
domain. By utilizing the ADMM and GST algorithms, the solution of VSSI-Lp

can be efficiently obtained. Numerical simulations and real data analysis reveal
the superior performance of VSSI-Lp.

Due to the highly under-determined nature of ESI, such methods are dif-
ficult to work out. Even worse, it is essential for neuroscience and neurology
applications to infer the spatial distribution of potential brain sources from lim-
ited measurements. Methods based on L2-norm constraint, such as wMNE and
LORETA, produce too blurred and diffused results, indicated by the large DLE
and SD values in Fig. 2. Methods based on L1-norm and Lp-norm improve the
spatial resolution of their estimations by enforcing sparsity in the original source
domain. However, these conventional sparse constrained methods provide little
information on the extent of brain activity because they miss the most active
sources on the cortex.

To estimate the localization and extent of potential extended sources, VB-
SCCD [4] employed L1-norm sparse constraint in the spatial variation domain
which significantly improved the reconstructions of extended sources. However,
as suggested in [2], VB-SCCD over-estimates the extent of cortical activities,
especially for sources with small extents. This may be because the mathematical
properties of L1-norm make it not sparse enough [3]. To enforce sparsity more
aggressively, we proposed VSSI-Lp, which employed the Lp-norm (0 < p < 1)
instead of the L1-norm regularization in the variation domain. Results of Monte
Carlo simulations demonstrate the superiority of VSSI-Lp over VB-SCCD with
higher AUC values and lower DLE, SD, and nRMSE values in most cases.

In this work, the regularization parameter, λ, was selected using cross-
validation. In our future work, we plan to investigate using the Bayesian proba-
bility framework to model VSSI-Lp and allow the model to infer the parameters
automatically. Additionally, we will also apply the proposed method for brain
disease diagnosis, cortical network analysis and fine motor imagery decoding.
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