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With the rapid development of information acquisition technology, new video
formats continue to emerge, such as 4K/8K and 360° panoramic video. Although
the new video formats can give viewers a better visual experience, their data
volume is very large, which brings new serious challenges to the field of video
compression. In order to store and transmit video data more efficiently, in July
2020, Joint Video Explore Team (JVET) launched the new generation video
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Abstract. Versatile Video Coding (VVC) introduces a new block parti-
tion structure called Multi-Type Tree (MTT), which includes four parti-
tioning modes: horizontal-vertical binary tree partitioning, horizontal-
vertical ternary tree partitioning. This new block partition structure
significantly improves compression performance, but at the same time
greatly increases the computational complexity of VVC. To reduce the
computational complexity of MTT in VVC inter-frame coding, a Mul-
titask learning-Based early MTT partition decision for Versatile Video
Coding is proposed. Firstly, for each Coding Unit (CU), two types of
features related to the optimal MTT partitioning are extracted, namely
encoding parameter features and encoding intermediate information fea-
tures. Secondly, to reduce the number of neural network parameters,
the horizontal or vertical partitioning in MTT is jointly learned, and
lightweight neural networks are constructed to decide whether to skip
the horizontal or vertical partitioning of binary or ternary trees. Experi-
mental results show that under the Random Access (RA) configuration,
the proposed method can reduce the VVC inter-frame computational
complexity by an average of 27.79%, while only increasing the Bjonte-
gaard delta bit rate (BDBR) by 1.14%.
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compression standard H.266/VVC [1]. Compared with the previous generation
of video compression standard H.265/High Efficiency Video Coding (HEVC),
the coding efficiency has been improved by about 40% while maintaining the
same subjective video quality [2].

Similar to the coding structure of HEVC, VVC is also encoded based on
hybrid coding framework. In order to further improve coding efficiency, VVC
introduced many new coding techniques [3,4]. For example, in order to support
more flexible block partitioning shapes, VVC used a nested multi-type tree based
on Quadtree with nested multi-type tree (QTMT), which increases the number
of partition modes for each CU to six [5]: Non-partition (NT), Quadtree parti-
tion (QT), Horizontal binary tree partition (H.BT), Vertical binary tree parti-
tion (V_BT), Horizontal ternary tree partition (H_TT) and Vertical ternary tree
partition (V_TT), as shown in Fig. 1. Under the RA configuration, the QTMT
partitioning structure can reduce the coding rate by 8.5% [6], but it leads to
about 1.7 times more computational complexity for VVC than HEVC [7]. Cur-
rently, the high complexity has become a major obstacle to deploying VVC in
real-time applications on devices that require low power consumption, such as
smartphones and unmanned aerial vehicles. Therefore, it is necessary to study
fast QTMT decision method to reduce the complexity of VVC.

NT QT H_BT V_BT HTT V1T

Fig. 1. Six partition modes.

In this paper, a multi-task learning-based early MTT partitioning decision
method for VVC is proposed, which cleverly combines multi-task learning with
the MTT module of VVC for the first time, and effectively solves the problems
of a large number of model parameters and low prediction accuracy. The main
contribution of this paper is as follows:

(1) Some new features related to MTT partitioning have been proposed,
experimental results show that these features have good prediction effect, and
the proposed method can effectively reduce the computational complexity.

(2) A lightweight neural network based on multi-task learning is proposed to
reduce the computational complexity of MTT, the lightweight neural network
model has fewer parameters and low training difficulty.

2 Related Work

2.1 Fast Algorithm in HEVC

The QTMT module of VVC is extended from the Quadtree module of HEVC.
The existing fast algorithms in HEVC can be mainly divided into two categories:
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the methods based on Machine Learning (ML) [8-12] and the methods based
on encoding intermediate information [13-15]. For example, Bouaafia et al. [§]
proposed two fast CU partitioning methods based on ML. The first is the online
Support Vector Machine (SVM) fast algorithm. Another method is to design
a deep convolutional neural network to predict the optimal size of each CU.
Lee et al. [11] used characteristic information based on Sobel operator and rate
distortion to determine the optimal size of each CU in advance. In the method
based on intermediate information. For example, Tan et al. [13] predicted resid-
ual error through statistical analysis and designed a residual threshold to deter-
mine whether the CU needs further division.

2.2 Fast Algorithm in VVC

Since QTMT partitioning in VVC is more complex and flexible than QT par-
titioning in HEVC, the above method cannot be used directly in VVC. Fast
methods in VVC also fall into two categories: the methods based on ML [16-
22] and the methods based on intermediate information [23-26]. In the method
based on ML, methods [16-20] is used for RA configuration inter-frame coding.
For example, Pan et al. [16] designed a Multi-information Convolutional Neu-
ral Network (MF-CNN) model, which jointly uses multi-domain information to
terminate the CU partitioning process in advance. Methods [21,22] are used for
All Intra (AI) configuration intra-frame coding. For example, Tissier et al. [21]
proposed a two-stage learning method is proposed to reduce the computational
complexity of CUs in VVC encoders, including CNN and Decision Tree.

In the method using intermediate coding information, methods [23,24] is
used for inter-frame coding. For example, Won et al. [23] proposed a fast par-
titioning algorithm of binary and ternary trees based on Mean Absolute Error
(MAE) function, using the MAE value to compare with a threshold value to
determine whether to further partition. Methods [25,26] is used for intra-frame
encoding. For example, Peng et al. [26] sets adaptive threshold to classify CUs
into simple, ordinary and complex types according to texture features, and skips
the calculation of all partition modes of simple CU.

3 Background and Motivation

In the VVC encoding process, the current frame is first divided into multiple
Coding Tree Units (CTUs) of the same size. Then, each CTU is divided into CU
leaf nodes, and then CUs is recursively divided. Due to the addition of a variety
of partitioning modes and partitioning rules, the partitioning results of a frame
image become diverse. In order to obtain the best result of the current frame
partitioning, it is necessary to traverse all possible partitioning cases for each CU
and calculate the Rate-Distortion cost (RDcost) for each CU partitioning mode.
Finally, the mode with the lowest RDcost is selected as the best CU partitioning
mode. The RDcost is calculated as follows:

RDcost =D + A x K, (1)
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where D is the distortion, K, represents the number of bits of mode m, m
includes the six partition modes show in Fig. 1, and X is the Lagrange multiplier.

Although the exhaustive search method in VVC can obtain the optimal par-
tition mode of CUs, it increases the RDcost calculation several times, which
brings a sharp increase in computational complexity. Figure 2 shows an example
of optimal CU partitioning in a frame of BQSquare sequence in RA configuration,
where the left subgraph is a 128x128 CU partition, Only one partition mode is
selected as the optimal mode for a CU. Therefore, if we can accurately predict
the optimal partition mode of CUs in advance and skip the RDcost calculation
of the remaining partition modes, the complexity will be reduced effectively.

Lj\ﬁ‘

Fig. 2. A Partition Example.

4 Proposed Approach

4.1 Multi-task Learning Model

Multi-task Learning (MTL) can combine datasets from multiple tasks, and
thereby alleviating the problem of data sparsity by utilizing useful informa-
tion from other related learning tasks. In addition, when multiple tasks learn
together, the unrelated parts of the tasks act as trace noise, and adding trace
noise can improve the generalization ability of the model.

In VVC, since the binary tree partitioning of CUs in the same direction is
closely related to the ternary tree partitioning, MTL can be applied to the MTT
module of VVC based on this feature. Therefore, in this paper, the binary tree
horizontal partitioning skip and ternary tree horizontal partitioning skip of the
same CU are combined into a multi-task problem, while the vertical orientation
constitutes another multi-task problem. Then, two types of multitask learning
models are constructed: Horizontal Multitask Model (HMTL) and Vertical Mul-
titask Model (VMTL). In order to reduce the number of parameters in the
model, this paper employs lightweight neural network to build multi-task learn-
ing model. The specific structure of the model is shown in Fig. 3. At the input
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Fig. 3. Network Model.

layer, the residuals, CU information and gradients of two single tasks are input
into the model for feature processing according to the calculation method in
Sect. 4.2, and the obtained features are then processed using a simple two-layer
fully connected (FC) network. The final output is the prediction result of two
single tasks. The multi-task learning model utilizes Mean Square Error (MSE)
as the loss function, which is defined as follows:

MSE(y,y/) _ Z?:l(yl - y;)2 (2)

n

where 3’ is the predicted value, y is the actual value, and n is the dimension.

4.2 Feature Analysis

In order to obtain the features most relevant to the optimal partitioning mode,
the coding information of each CU and the corresponding optimal partitioning
mode are extracted as data sets in the original VVC encoding process. In this
paper, eight types of coding information are selected for correlation research.
Then, according to the correlation from high to low, six kinds of encoded infor-
mation are chosen as the input features for the model, Fig.4 illustrates the
analysis of thermal map characteristics. The dataset is obtained by encoding
the BlowingBubbles sequence, Although the data set is extracted from only one
sequence, the experimental results demonstrate that the model also exhibits good
prediction performance on other sequences, which also proves that the method
proposed in this paper has good generalization. The following is a detailed expla-
nation of the selected features:

1) Maximum subblock residual variance (Max_res): In inter-frame coding,
the residual value represents the changes of pixel value. However, block par-
tition tends to divide pixels with similar changes into the same block, so the
partitioning mode becomes more necessary when the variance value of subblock
residuals obtained after partitioning is smaller. The residual value of pixel points
is calculated as follows:

Rij=|Pi; — Oijl (3)
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Fig. 4. The analysis of thermal map characteristics. The left is the HMTL data set
and the right is the VMTL data set.

where R; ; represents the residual value of point (¢,5) in the subblock, P; ; rep-
resents the predicted luma value, and O; ; represents the original luma value.
In order to ensure that the subblocks of variance calculation are of the same
size, the binary tree partitioning mode is considered to have two subblocks of
equal size, and the ternary tree partitioning mode is considered to have four
subblocks of equal size. Finally, the residual variance values of all CU subblocks
are calculated based on the current partitioning mode, and the maximum value
is normalized as a feature. The variance calculation is as follows:

Y Y (R — R)?
=== H(>)< W )

where Var is the residual variance value of subblock, H is the height of subblock,
W is the width, R; ; is the residual value of subblock point (4, j), R is the average
residual value of subblock.

2) Comparison value of variance of subblock residuals (Comp_var): Judging
from only one direction will result in significant prediction errors. Therefore,
within the same partition tree, we can compare the partition modes in two
different directions to obtain the maximum residual variance value of subblock,
and then skip the partition mode with large residual variance value of subblock
through comparison. This feature is calculated as follows:

Var

g_ 1 Var.H >VarV D= 1 VarV>Var_H (5)
10 Var.H <VarV 10 VarV<Var.H

where Var_H represents the maximum residual variance value of current CU
horizontal subblock, Var_V represents the maximum residual variance value
of vertical subblock, S represents the horizontal binary tree and ternary tree
features, and D represents the vertical binary tree and ternary tree features.
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3) Quantization parameter (QP): QP reflects the compression level of spatial
details. A smaller QP value indicates a higher retention of details, leading to a
tendency to divide the data into smaller blocks.

4) Aspect ratio (HW _ratio): When the width is larger than the height, CU
tends to be divided vertically. The specific calculation formula of this feature is

as follows:
———— Me{H_BT,HT1
F{ I17 6{ K }

- (6)
o MelV-BT.V.TT)

where H is the height of the current CU, W is the width, and M is the partition
mode of the current CU.

5) QTMT Depth (Depth): the smaller the depth is, the more likely it is to be
divided, conversely, the larger the depth, the more likely it is not to be divided.

6) Horizontal and vertical gradient ratio (Gard_ratio): The gradient value
can effectively represent the motion in a specific direction. In this paper, HMTL
model uses G}, /G,, VMTL model uses G,/G}, and the specific calculation for-
mula of gradient is as follows:

HW _ratio =

H—-1W-1 H—-1W-1
= > > [Riji1— Riyl G |Rit1,; — Rijl (7)
=0 j=0 =0 j=0

where G}, and G, respectively represent horizontal and vertical gradients. H is
the height of the current CU, W is the width, and R; ; represents the residual
value of the point (i, 7).

4.3 Model Training

In order to obtain the lightweight neural network structure with the best per-
formance, we tested five different fully connected network structures. The test
results are shown in Table 1,“Quantity” represents the number of parameters and
“Accuracy” represents the model accuracy. The structure 6x20x20 achieved the
highest prediction accuracy, and both tasks use the same structure.

Table 1. Model Architecture Testing.

Structure | 6x10x50 | 6x30 | 6x20 |6x30x30|6x20%x20
Quantity | 671 241 161 1171 581
Accuracy | 80.14% | 78.43% | 78.13% | 81.48% | 83.32%

After data cleaning and redundancy removal, a total of 284,497 data sets
were used to train the previously constructed multi-task model, including 110,589
data sets for the HMTL model and 173,908 data sets for the VMTL model. Train
the model precision convergence about 500 times, and both models achieved an
accuracy of over 80%. Figure5 illustrates the training process.
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Fig. 5. Train Process. The left is the HMTL model and the right is the VMTL model,
“Acc” represents the accuracy and “Epoch” represents the number of iterations

4.4 The Whole Algorithm Proposed

In this paper, the objective is to identify unnecessary partitioning modes using
the algorithm, skip the calculation of RDcost, and reduce the computational
complexity in the search process for the optimal CU partitioning mode. Addi-
tionally, skip flags are introduced to minimize the impact of incorrect predictions.
For the binary tree or ternary tree partitioning of the same CU, if the HMTL
model predicts the horizontal direction and skips it, the VMTL model will not
make predictions for the vertical direction. The overall flow of the proposed algo-
rithm is presented in Algorithm 1, Where “Skip” indicates that the calculation
of the current mode is skipped ahead of time.

5 Experimental Results and Discussion

5.1 Experimental Conditions

In order to evaluate the performance of the proposed method, the latest test
software VIM19.2 and the test software VIM6.0 of VVC were tested respec-
tively with the original VITM as the anchor point. The experiment employed a
total of 21 recommended general test videos, ranging from Class Al to Class E,
with RA configuration and QPs of 22, 27, 32, and 37. To mitigate the impact of
incorrect predictions, the decision to skip the partitioning mode was based on a
confidence level exceeding 95% in the model prediction. Therefore, the threshold
(th) is set to 0.05. Encoding performance was evaluated using encoding time
saving T'S and BDBR [27]. Typically, better performance is indicated by greater
encoding time reduction and smaller BDBR increase. To quantify coding perfor-
mance, we use a performance metric similar to what is called a “Factor” in [28].
A higher Factor value denotes superior performance, The formulas are defined
as follows:
_ Timeyrg — Timepre

TS = 8)

Timeorg
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Algorithm 1: Proposed Algorithm

Input: Current mode M, Threshold value th, Binary tree horizontal skip flag
B_flag, Ternary tree horizontal skip flag T_flag
initialization: B_flag=0, T_flag=0, p_-bh=1, p_bv=1, p_th=1, p_tv=1
if M==H_BT then
HMTL prediction—>p_bh,p_th;
if p_bh < th then
| Skip and B_flag=1
else
| B_flag=0

if M==V_BT && B_flag=0 then
VMTL prediction—>p_bv,p_tv;
if p_bv < th then

| Skip

if M==H_TT && p-th < th then
| Skip and T_flag=1;

if M==V_TT && ptv < th && T_flag=0 then
| Skip;

end

TS
(9)
BDBR
where T'ime,,, represents the total encoding time of the original VI'M encoder,
and Timepr. represents the total encoding time with the proposed algorithm

added. The computer configuration for the experiment is: “11th Gen Intel(R)
Core(TM) i7-11700F @ 2.50GHz, 16GB-RAM”

Factor =

5.2 Coding Performance Evaluation

Table 2 shows the overall performance of the proposed method. The fast MTT
partitioning method proposed in VIM19.2 can save 13.92%-41.63% encoding
time, with an average saving of 27.79%. The corresponding BDBR increases by
0.56%-1.79%, with an average increase of only 1.14%. To better demonstrate the
effectiveness of the algorithm proposed in this paper, a comparison is made with
the methods proposed by Pan [16] and Li [24]. In order to make the experimental
comparison fair, the same test platform version is used. The algorithm proposed
in this paper is implemented on VITMG6.0, and the comparison data with Pan’s
method is obtained. Similarly, Li’s algorithm implemented on VTM19.2 is com-
pared with the experimental results of the algorithm proposed in this paper.
On VTMS6.0, Pan’s method achieves an average time reduction of 25.42% with
an average BDBR increase of 2.53%. In contrast, the proposed method achieves
an average time reduction of 26.68% with an average BDBR increase of 0.98%.
On VTM19.2, Li’s algorithm saves an average of 23.95% of time, and BDBR
increases an average of 1.21%. The results indicate that, on average, the pro-
posed method outperforms both Pan’s and Li’s algorithms in terms of T'S and
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BDBR. In other words, the method in this paper achieves a greater reduction in
coding time with a smaller increase in BDBR, and get a higher Factor value.

Table 2. Experimental Result.

Class | Sequence Pan[16] Li[24] Proposed(V6.0) | Proposed(V19.2)
BDBR|TS |BDBR|TS |BDBR|TS BDBR | TS
Al Campfire 2.80 30.08 | 1.84 33.35|1.24 30.23 1.31 30.37
FoodMarket4 1.59 42.90|0.70 25.3310.92 35.82 0.80 41.63
Tango2 3.68 34.05|0.87 21.19/1.39 30.90 1.73 35.66
A2 CatRobot1 5.59 30.62 | 0.85 16.28 | 0.61 25.21 0.79 29.11
DaylightRoad2 |4.43 29.2010.91 17.00|1.13 27.21 1.60 31.90
ParkRunning3 |1.61 21.30|0.87 27.3510.73 28.50 0.87 29.54
B MarketPlace 3.22 36.4711.20 21.54|1.35 30.47 1.38 30.50
RitualDance 2.97 31.23]1.89 29.53|1.52 30.71 1.79 26.86
BasketballDrive | 2.96 32.3911.29 27.1411.40 30.96 1.59 31.23
BQTerrace 0.98 13.80 | 0.86 26.450.22 23.42 0.56 26.42
Cactus 5.20 25.4211.12 25.4110.94 26.19 0.75 27.54
C BasketballDrill | 1.59 24.38 | 1.60 32.981.25 28.60 1.54 26.14
PartyScene 1.84 14.94 1 1.36 33.65 | 0.69 2494 0.86 25.33
RaceHorsesC 2.23 22.5511.92 32.63|1.05 25.87 1.29 26.02
D BasketballPass | 1.56 21.181.49 22.7110.75 22.58 0.86 20.58
BlowingBubbles | 2.29 16.97 | 1.44 22.9410.79 23.63 1.05 23.91
BQSquare 0.84 9.69 |1.04 18.78 1 0.35 15.30 0.65 13.92
RaceHorses 2.24 20.33 1 1.96 26.83|1.40 25.36 1.38 23.80
E FourPeople 1.76 125.26/0.93 |15.63|0.88 [23.04 |0.97 | 26.11
Johnny 1.69 24.9210.63 12.65 ] 0.63 25.77 1.20 28.95
KristenAndSara | 2.11 26.21|0.65 13.5310.92 25.53 10.93 28.13
Average 2.53 25.4211.21 23.95/0.98 26.68 1.14 27.79
Factor 10.45 19.79 27.22 24.38

5.3 Model Performance Evaluation

In order to provide a clearer analysis of the number of model parameters, a
comparison is made between the network structure in this paper and Pan’s [16]
as shown in Table 3. The number of model parameters used in this paper is only
1162, which is far less than Pan’s model with 25.6M. In addition, the additional
consumption brought by the model is tested under four different QPS. The result
is to take the average of three sequences (BasketballDrill, BlowingBubbles and
FourPeople). The additional time added in this paper is only 0.98% on average,
while the additional time added by the Pan’s model is 5.21%. Combined with the
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experimental test results, it is shown that the neural network model constructed
in this paper can bring better prediction effect with fewer parameters.

Table 3. Model Parameter Quantity.

Structure Quantity | Size QP22 | QP27 | QP32 | QP37 | Average

Proposed | Full-6*20*%20 | 1162 4.528KB | 0.73% | 0.78% | 1.06% | 1.38% | 0.98%

Pan [16] | ResNet-50 25.6M 102.4MB | 4.23% | 5.18% | 5.91% | 5.53% | 5.21%

6

Conclusion

In order to reduce the computational complexity of VVC inter-frame coding,
this paper proposes a Multitask learning-Based early MTT partition decision
for VVC inter-frame coding. The proposed multi-task learning model is simple
in structure, easy to be integrated into VVC test software, and can effectively
reduce the complexity of coding computation. Experimental results show that
the proposed method can achieve good coding performance on different versions
of the test platform. In the latest test platform VTM19.2, the average BDBR
increase is only 1.14%, and the encoding time can be reduced by 27.79%.
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