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Abstract. The brainstem controls almost all normal functions in the life, such as
breathing, memory, movement, and is closely related to many neurological dis-
eases. Despite the importance of the brainstem, the delineation of its functional
sub-regions remains largely unexplored. In this study, we aim to explore func-
tional parcellation of the brainstem using functional magnetic resonance imaging
(fMRI), and propose a novel framework by combining spatial functional con-
nectivity features of the brainstem and NCut spectral clustering. Firstly, func-
tional connectivity between the brainstem and other cortical and sub-cortical brain
regions is estimated using fMRI data. Secondly, the estimated spatial functional
connectivity features are used to detect functional sub-regions of the brainstem
using NCut spectral clustering. Finally, the Dice coefficient was used to evalu-
ate the reproducibility of brainstem functional parcellation. The results show that
the Dice coefficient obtained by the proposed method was 0.74, which is higher
than that of the parcellation using temporal features of the brainstem (Dice coeffi-
cient of 0.32). In addition, NCut spectral clustering outperformed other clustering
methods regarding the reproducibility of brainstem functional parcellation. The
proposedmethod explores the potentials of spatial functional connectivity features
for brainstem functional parcellation. It may serve as a promising tool for studying
the functions and dysfunctions of the brainstem.
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1 Introduction

The brainstem, as an indispensable component of the central nervous system, plays a
crucial role in maintaining vital functions in individuals. Many critical physiological
functions, including but not limited to heartbeat, respiration, and digestion, are closely
associatedwith the brainstem [1]. In the human body, it can be regarded as one of themost
crucial organs. Current research indicates that many neurological disorders are related to
brainstem dysfunctions [2]. For instance, the neuropathological changes associated with
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Parkinson’s disease primarily occur in the brainstem [3]. The delineation of functional
sub-regions of the brainstem contributes to the understanding of functional organizations
of the brainstem and its relationship with brain diseases.

While there is a collection of functional parcellation studies for the cortex and sub-
cortex of the brain, functional parcellation of the brainstem remains largely unexplored,
in spite of its importance in the understanding of brain functions and dysfunctions [4].
Currently, the sub-regions of the brainstem are mostly delineated by using anatomical
principles [5, 6]. These methods rely on the morphological features and spatial infor-
mation of different sub-structures [7]. One study conducted in vivo segmentation of the
brainstem by using a semi-supervised approach, resulting in eleven sub-regions of the
brainstem [8]. In another study, a data-driven approach was utilized to extract functional
parcellations of the brainstem [9]. This approach adopted amodularity-based criterion to
generate functional sub-regions of the brainstem using temporal brainstem voxel signals.
While the brainstem voxel signals provide important information regarding the tempo-
ral features of the brainstem, the spatial connectivity pattern between the brainstem and
other cortical and sub-cortical brain regions is another key feature to characterize the
brainstem.However, such spatial features have not been taken into account for functional
parcellation of the brainstem.

In this study, a novel framework was proposed for brainstem functional parcellation
using fMRI, which incorporates spatial functional connectivity features. The proposed
method combines the spatial functional connectivity features of the brainstemwith NCut
spectral clustering [10]. The functional connectivity patterns between the brainstem and
other cortical and subcortical regions of the brain characterize the spatial features of
the brainstem. NCut spectral clustering is used to partition the brainstem into functional
sub-regions based on the similarity between spatial patterns of brainstem voxels. To the
best of our knowledge, this study is the first to utilize spatial functional connectivity
features for the functional parcellation of the brainstem.

2 Materials and Methods

This studyproposes a new framework for brainstem functional parcellation by combining
spatial functional connectivity features of the brainstem and NCut spectral clustering.
Figure 1 shows the overallworkflowof the proposedmethod. Firstly, using fMRIdata, the
functional connectivity betweenbrainstemvoxels and cortical aswell as subcortical brain
regions is estimated, thereby capturing the spatial features of the brainstem. Secondly,
the correlation between spatial functional connectivity features of brainstem voxels is
calculated togenerate a similaritymatrix betweenbrainstemvoxels. Lastly,NCut spectral
clustering [10], an unsupervised machine learning algorithm, is employed to partition
brainstem voxels into functional sub-regions based on the generated similaritymatrix. To
assess the efficacy of the proposed method, the reproducibility of functional sub-region
delineation is evaluated using the Dice coefficient [11].

2.1 fMRI Dataset and Preprocessing

The data for this study was obtained from the publicly available Human Connectome
Project (HCP) dataset [12]. The participantswith substantial headmotion parameters and



454 M. Wang et al.

Fig. 1. The overall workflow of the proposed method for brainstem functional parcellation.

those who did not undergo repeated scanning sessions were excluded from the analysis
due to concerns regarding data quality and reliability. As a result, the resting-state fMRI
data from 170 healthy adult participants were included in this study.

The fMRI data was collected using a 3T magnetic field strength and a gradient-echo
EPI sequence. The scanning parameters included a repetition time (TR) of 720ms, an
echo time (TE) of 33.1ms, a flip angle (FA) of 52°, a field of view (FOV) of 208 ×
180mm (RO × PE), a matrix size of 64 × 64, a slice thickness of 2.0mm, 72 slices,
and an isotropic voxel size of 2.0mm. The data was acquired with a multiband factor of
8, an echo spacing of 0.58ms, and a bandwidth (BW) of 2290Hz/Px. Each participant
underwent two fMRI scans, with each scan consisting of 1200 volumes. The total scan
time for each participant was approximately 14 min [13]. In this study, the two scans are
referred to as REST1 and REST2, respectively.

The preprocessing pipeline for HCP data consists of spatial and temporal process-
ing procedures. Spatial preprocessing involves a series of steps, including spatial artifact
removal, surface generation, cross-modal registration, and alignment to a standard space.
On the other hand, temporal preprocessing involves the application of MELODIC ICA,
where artifact and motion-related time courses are regressed out from both volumet-
ric and grayordinate data [12]. Moreover, this approach also acts as a noise reduction
technique for the signals originating from the brainstem region.

A template derived based on multimodal data [14] was used to define the regions of
interest (ROIs), including both brainstem and brain cortex/subcortex. The average time
series within each cortical and subcortical ROIs, as well as the voxel time series within
the brainstem, were extracted for the subsequent analyses.

2.2 Spatial Functional Connectivity Features of Brainstem Voxels

In this study, we evaluated the similarity between voxels of the brainstem using their spa-
tial features (i.e., functional connectivity patterns), rather than commonly used temporal
features (i.e., original fMRI time series) [9]. Specifically, spatial functional connectiv-
ity features were assessed by correlating the signals from brainstem voxels with those
from brain cortical/subcortical ROIs. These functional connectivity features captured the
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spatial patterns of interaction between the brainstem and other cortical and subcortical
brain regions. Subsequently, the similarity matrix between the voxels of the brainstem
was constructed by computing the correlation between spatial functional connectivity
features of brainstem voxels.

2.3 NCut Spectral Clustering for Brainstem Functional Parcellation

2.3.1 Clustering Methods

To extract functional sub-regions of the brainstem from the similarity matrix obtained
from brainstem spatial functional connectivity features, we employed NCut spectral
clustering method [15]. Spectral clustering projects the data into a lower-dimensional
space and then applies a clustering algorithm, such as K-means, to group the data points.
By leveraging the spectral properties of the similarity matrix, this method can effectively
capture the underlying structure and identify functional sub-regions of the brainstem
[16].

Given an input sample set D = (x1, x2, . . . , xn), the similarity matrix generation
method, and the number of clusters k, the similarity matrix S is constructed based on
the provided similarity matrix generation method. Subsequently, the similarity matrix
undergoes an absolute value transformation. Furthermore, only the similarity values
corresponding to adjacent voxels are retained, while those values between non-adjacent
voxels is set to zero. This leads to the construction of the adjacency matrix W and the
degreematrix D. Subsequently, the Laplacianmatrix L is computed. The graph partition-

ing requires constructing a normalized Laplacian matrix Ln = D
1

−2 LD
1

−2 . Eigenvalues
of Ln are calculated. The computed eigenvalues are arranged in ascending order, with
the first k eigenvalues being selected to construct the eigenvector f. The eigenvector f
is then normalized to form the n ∗ k dimensional feature matrix H. Each row in H is
treated as a k-dimensional sample, yielding a total of n samples. A clustering method is
then applied, typically utilizing the K-means clustering algorithm. The final outcome of
this process is the cluster partition C = (c1, c2, . . . , ck) [17].

2.3.2 Group-Level Analysis

After obtaining individual-level brainstem functional parcellations using NCut spec-
tral clustering, group-level analysis is performed to derive a population-level brainstem
template. Group-level analysis is a method that combines individual brainstem func-
tional parcellations to obtain a representative brainstem template that captures shared
characteristics of the group.

We employed a two-level analysis to obtain the group-level parcellation [18]. It is
accomplished by constructing an adjacency matrix A of size N ∗N, where N represents
the number of vertices in the brainstem. The edges in the stability graph are weighted
based on the frequency of occurrence of the same parcel assignments for two vertices, vi
and vj, across all individual subject parcellations. Once the stability graph is constructed,
it is further subdivided into different regions using a graph partitioning algorithm, such
as spectral clustering with normalized cuts [19], resulting in a group-level parcellation.
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2.3.3 Optimal Parcellations

Determining the optimal number of functional sub-regions is an important issue. Eigen-
map is one of the methods that can be used for estimating the number of clusters [21].
Eigengap is computed by analyzing the eigenvalues obtained from the spectral decom-
position of a given matrix. Specifically, the eigengap is computed by calculating the
absolute difference between consecutive eigenvalues. Larger eigengap typically indi-
cates significant differences between distinct clusters and serves as a basis for selecting
the appropriate number of clusters. A common approach is to identify the peaks in the
eigenvalue gaps as the optimal number of clusters [22].

2.3.4 Commonly used Clustering Methods

To evaluate the performance of the proposed framework, we compared the performance
ofNCut spectral clusteringwith other commonly clusteringmethods, includingK-means
clustering, modularity and RatioCut spectral clustering. K-means is a widely used clus-
tering algorithm that aims to partition data into k clusters by minimizing the within-
cluster sum of squares [18, 23]. Modularity is a popular community detection method,
which measures the density of connections within communities and compares it to a
random network, aiming to maximize a modularity quality function [24]. RatioCut can
be regarded as a simplification of the NCut clustering method. It disregards considera-
tions of node degrees and connectivity and instead focuses on minimizing the number
of cut edges [25].

2.4 Reproducibility of Brainstem Functional Parcellation

The Dice coefficient was employed to assess the reproducibility of brainstem functional
parcellation [26, 27].

The Dice coefficient measures the overlap between two parcellation results, where a
higher value indicates a greater similarity between the parcellations [28]. The calculation
of the Dice coefficient is as follows:

Dice(A,B) = 2|A ∩ B|
|A| + |B|

The numerator of the Dice coefficient is twice the intersection of sets A and B, and
the denominator is the sum of the lengths of sets A and B. Therefore, the Dice coefficient
ranges from 0 to 1, where a higher value indicates a greater overlap and similarity
between two parcellation results.

3 Experiments

We utilized this framework to extract functional subregions of the brainstem from 170
healthy subjects. Firstly, we built an individual similarity matrix for each subject using
spatial functional connectivity features of the brainstem. Subsequently, NCut spectral
clustering was applied to the matrix of each subject, resulting in an individual brainstem
functional parcellation for each participant. Finally, a two-level group analysis method
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was employed to derive the group-level parcellation by integrating the individual brain-
stem functional parcellation results. The eigengap method was used to select the optimal
number of clusters, and the range of the number of clusters was set to 15–25 by refer-
ring to the previous literature [20]. To evaluate the proposed method, we used the Dice
coefficient between the two scans, REST1 and REST2, to measure the reproducibility
of brainstem functional parcellation. Higher reproducibility indicates better parcellation
performance.

4 Results

We computed the eigen-gap values within the range of 15 to 25 subregions. The eigen-
gap indicates significant transitions in the eigenvalues. As shown in Fig. 2, there is a
substantial jump at 21 clusters, leading to the selection of 21 sub-regions as the optimal
division for functional parcellation of the brainstem.

Fig. 2. Eigen-gap analysis for functional parcellation of the brainstem.

To validate the proposed method, we compared different clustering methods and
featureswith the number of clusters ranging from15 to 25. Specifically,wefirst compared
the reproducibility between the proposed spatial functional connectivity features and
traditional temporal features, and then compared different clustering methods, including
NCut, RatioCut, K-means and modularity.

Figure 3 shows the Dice coefficient of brainstem functional parcellation using the
proposed method with spatial functional connectivity features, compared to that using
temporal fMRI time series features. Theboxplotwas drawnbasedon theDice coefficients
across different number of clusters. It can be seen that the brainstem parcellation based
on spatial connectivity features outperformed that based on temporal features in terms of
the Dice coefficient. This trend was consistent throughout the number of clusters ranging
from15 to 25.

For the optimal parcellation with 21 brainstem subregions, the Dice coefficient using
the proposed method with spatial functional connectivity features was 0.74. Such per-
formance was higher than that obtained using the fMRI temporal time series features,
which yielded a Dice coefficient of 0.32.
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Fig. 3. Comparisons of the reproducibility of brainstem functional parcellation using spatial func-
tional connectivity features and temporal fMRI time series features. The boxplot was drawn based
on the Dice coefficients across different numbers of clusters.

Fig. 4. Comparisons of the reproducibility of brainstem functional parcellation using different
clusteringmethods. The boxplotwas drawnbased on theDice coefficients across different numbers
of clusters.

The reproducibility of different clustering methods using spatial functional connec-
tivity features of the brainstem were compared in Fig. 4. The boxplot was drawn based
on the Dice coefficients across different numbers of clusters. The results showed that
the NCut method achieved higher Dice coefficients compared to other methods. The
consistent trend was observed across different numbers of clusters ranging from 15 to
25.



Brainstem Functional Parcellation Based on Spatial Connectivity Features 459

When the brainstem was divided into 21 subregions, the results showed that NCut
spectral clustering exhibited the best reproducibility with a Dice coefficient of 0.74,
outperforming that ofRatioCut (aDice coefficient of 0.69),modularity (aDice coefficient
of 0.40), and K-means (a Dice coefficient of 0.27).

Fig. 5. Visualization of functional sub-regions of the brainstem obtained using the proposed
method.

Finally, the group-level brainstem functional parcellation obtained using the pro-
posed method is shown in Fig. 5. The brainstem is partitioned into 21 functional
sub-regions.

5 Conclusions

This study proposed a novel framework for brainstem functional parcellation by com-
bining the spatial functional connectivity features of the brainstem and NCut spectral
clustering. The proposed method exhibited the best reproducibility in terms of Dice
coefficient, outperforming that achieved by using temporal fMRI time series features
and other clustering methods. The results demonstrated the advantage of spatial func-
tional connectivity features of the brainstem over temporal fMRI time series features
and the superiority of NCut spectral clustering. The current study provides the delin-
eation of functional sub-regions of the brainstem, benefiting the exploration of functional
organizations of the brainstem and brainstem pathology of brain diseases.
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