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Abstract. Optical computing is regarded as one of the most promising comput-
ing paradigms for solving the computational bottleneck and accelerating artificial
intelligence in the post-Moore age. While reconfigurable optical processors make
artificial general intelligence (AGI) possible, they often cannot processmultimodal
signals. Here, we propose an integrated all-optical multimodal learning engine
(AOMLE) built by reconfigurable phase-change meta-atoms. The engine archi-
tecture can be mapped to different optical neural networks by laser direct writing
for phase-change materials, enabling more efficient processing of visual and audi-
tory information at the speed of light. The AOMLE provides a cutting-edge idea
for reconfigurable optical processors with increasing demands for complicated AI
models.

Keywords: All-Optical Computing · Reconfigurable Chip · Multimodal
Learning

1 Introduction

The thriving development of photonics has paved the way for faster and more energy-
efficient AI computing. Optical processors are considered one of the most promising
solutions for accelerating AI [1–7], leveraging the unique advantages of light speed,
ultralow power consumption, and multiplexing. As the complexity of AI models contin-
ues to increase, the development of reconfigurable optical processors becomes increas-
ingly important. There is a need to design new devices and explore suitable materials
to make progress [8–12]. Chalcogenide phase-change materials play a crucial role in
the field of reconfigurable photonics [13–16]. The non-volatile materials can transition
between crystalline and amorphous phases under external excitation, exhibiting signif-
icant differences in optical properties [17], which find widespread applications in light
field modulation. Undeniably, reconfigurable optical computing hardware enabled by
phase-change materials has fruitful achievements [18–20]. However, current advanced
optical processors can only demonstrate particular types of information, such as visual
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signals like images and videos or sequential signals represented by audio. Due to
the monotony of optical computing architecture and coupling signals, there are still
limitations in multimodal signals processing, which prevents optical processors from
progressing toward general computers.

Herein, we propose an integrated all-optical multimode learning engine (AOMLE)
built by reconfigurable phase-change meta-atoms. By arranging phase-change meta-
atoms covering an individual optical waveguide, we map them to different optical neural
networks, enabling light-speed multimodal learning. We successfully reconstruct the
all-optical computing architecture by taking advantage of the excellent properties of
chalcogenide phase-changematerials: disorderedmetasurface corresponds to the optical
scattered neural network suitable for auditory signals, whereas layer-by-layer metalines
corresponds to the optical diffractive neural network that is better for visual signals.
We unify the training models for both optical neural network architectures by solving
Maxwell’s equations, and the adjoint method is used for backpropagation to update
the medium gradient. Finally, we obtain 95.83% accuracy in vowel recognition and
96.34% accuracy in handwritten digit recognition, both of which are comparable to
state-of-the-art electronic platforms and with a boost in energy efficiency. In conclusion,
our proposed all-optical computing engine can efficiently perform multimodal learning,
providing promise for general AI processors.

2 Architecture of AOMLE

Figure 1 depicts the architecture of AOMLE, which is actually a physical neural network
built by phase-change materials. The red and purple marks represent the directions
of data propagation in the feed-forward neural network and recurrent neural network,
respectively, in the artificial neural network model shown in Fig. 1(a), and AOMLE is
mapped to two neural networks by programming the pattern of phase-change materials
covered on the waveguide, as illustrated in Fig. 1(b). The amplitude of light is pre-
coded at the left input port of AOMLE. The optical path is obviously changed as light
propagates through the intermediate training region due to the modulation of phase-
change materials at the top of the waveguide, and the light is eventually coupled out at
the right port, and the intensity is detected by photodetectors to obtain the classification
result. This is the entire inference procedure of AOMLE.

It should be noted that the chalcogenide phase-change material used in AOMLE
is Sb2Se3, and its extinction coefficient in the telecommunication wavelength tends to
be negligible, meaning that intrinsic loss to the propagating light will be minimal. The
refractive index of crystalline Sb2Se3 is around 4.0, it has a stronger effect on the phase
modulation of light than that of amorphous Sb2Se3, so we regard the crystalline phase-
change meta-atom as an effective neuron, which function is to sum the input light and
then transmit them to the next effective neuron. In the nonlinear activation function of the
neural network, we use the Kerr effect of silicon itself to establish a nonlinear connection
between output and input optical power.
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Considering the wave characteristics of light itself, when it propagates through the
disordereddielectric layer, itwill continue to scatter in all directions,whichwill introduce
a feedback loop. This process is equivalent to the recurrent neural network, which ismore
suitable for processing data with time series information. Previous work has also proved
this in theory [21]. Therefore, we use the metasurface formed by the random distribution
of meta-atoms in different crystal phases to map the optical scattered neural network
to AOMLE. It should be pointed out that our preprocessing of time series information
only involves basic operations such as windowing and sampling, and we will not use
spectrogram and other methods to make it into a matrix for subsequent calculation so
that the time step of data will be preserved and the recurrent neural network will be
driven to compute when scattered light propagates backward.

Fig. 1. Architecture of AMOLE. (a) Artificial neural networkmodel. (b) Reconfigurable principle
of AOMLE. (c) A phase-change meta-atom and hardware implementation of AOMLE.
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For the on-chip diffractive neural network, its mathematical model is based on the
Huygens-Fresnel diffraction principle, which reveals that diffractive neurons are essen-
tially secondary wave sources, so their diffractive characteristics are more similar to
convolution operation, even though this is a one-dimensional situation. In this way, we
use crystalline effective neurons to form layers of diffractive metalines as hidden lay-
ers of feedforward neural networks. Furthermore, while the layered optical diffractive
architecture is a subset of the bulk scattered architecture, the modulation mechanism of
different architectures for the propagation light field determines which artificial neural
network model they correspond to and which modal data computing scenarios are better
suitable for.

In the experiment, the waveguide pattern of AOMLE architecture is realized by
optically programming the phase-change materials, and its experimental platform is
shown in Fig. 2. The experimental platform is mainly divided into two types of optical
paths, propagation computation part and laser programming part. For the image input of
the first kind of optical path, the 1550nmCWlaser passes through the beamexpander, and
the image information is programmed by the digital micro-mirror. It is input to a single-
mode fiber through the objective lens after passing through a 4f system. The acoustic-
optical modulator provides waveform information of voice signals to the light, which
is subsequently fed to AOMLE through the fiber. Finally, the photodetector receives
the classified optical signal. The second type of optical path is used to implement the
programming of AOMLE. We reconstruct the device using optical pulses generated by
a 638nm laser diode, and the piezo stage accomplishes the movement required for array
programming.

Fig. 2. Reconfigurable experimental schematic diagram of AOMLE

3 Training Algorithm of AOMLE

Light propagation in theAOMLE training region followsMaxwell’s electromagnetic the-
ory, and the primary light field distribution can be obtained by solving Maxwell’s equa-
tions in the frequency domain. We describe their training methods in relation to the dif-
ferences between the all-optical scattered and diffractive neural networks, respectively.
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The following loss function � is defined.

� = 1

2

N∑

i=1

(Ii − yi)
2 (1)

where Ii denotes the light intensity detected at the i th output port, and yi is the ground
truth as one-hot encoding.

First, we discuss the training process of the AOMLE scattered neural networkmodel.
At this moment, the structure of all phase-change meta-atoms in the training region is
noticed. We use the FDTD method in the frequency domain to solve the primary light
field

−→
E pri(r) of any point r.

(
∇2 − ω2μ0ε(r)

)−→
E pri(r) = −iωμ0

−→
J s (2)

where ε(r) is the complex relative dielectric constant at r, μ0 is the permeability of
vacuum, and

−→
J s is the current source density of the input light field distribution. We

then determine the derivative ∂�/∂
−→
E pri(r) and use it as the excitation source of the

adjoint field
−→
E adj(r). Consequently,

−→
E adj(r) can correspond to any r in the training

region.

(
∇2 − ω2μ0ε(r)

)−→
E adj(r) = − ∂�

∂
−→
E pri(r)

(3)

This is the solution process of two electromagnetic fields in the all-optical scattered
neural network. The structural parameter in the diffractive neural network we are con-
cerned about is a certain layer −→m . According to the previous work [22], we can express
the original field

−→
E pri

(−→m )
and adjoint field

−→
E adj

(−→m )
in each diffractive layer.

−→
E pri

(−→m ) =
(

M∏

m=1

F−1PmF�m

)
−→
E s (4)

−→
E adj

(−→m ) = −→
E pri

(−→m ) ⊗ (Ii − yi) (5)

where F and F−1 denote the discrete Fourier transform and inverse form, Pm and �m

express the diagonal matrix including the light propagation from m th layer to m + 1 th
layer, and phase shifts of m th layer, respectively.

Combining the adjoint field
−→
E adj with the original field

−→
E pri, we get the gradient

of AOMLE’s structural parameters.

∂�

∂�
∝ Re

{−→
E adj · −→

E pri

}
(6)

where ∂�/∂� denotes the gradient value, and� here represents the structural parameter
r and −→m corresponding scattered and diffractive neural network, respectively, and the
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gradient has a linear relationship with the real component of
{−→
E adj · −→

E pri

}
. We can

update the state �� of phase-change meta-atoms.

�� = �t+1 − �t ∝ ∂�

∂�
(7)

The above process represents the training algorithm of AOMLE. It is crucial to
acknowledge that training a scattered neural network requires an inverse design method
rooted in photonics. Genetic algorithms, the adjoint method, generative adversarial net-
works, and reinforcement learning are all common methods for inverse design. For the
proposed on-chip diffractive neural network, the primary modeling approach is based
on the Rayleigh-Sommerfeld diffraction equation, although with substantial compu-
tational complexity. We build a unified model for all-optical scattered and diffractive
neural networks in this work by solving the original and adjoint electromagnetic fields
within the training domain for forward propagation and using the adjoint method for
backpropagation, which enables the realization of a more efficient training algorithm.
The training algorithm flow chart of AOMLE is presented in Fig. 3.

Fig. 3. Training algorithm flow chart of AOMLE

4 Multimodal Learning of AOMLE

According to the reconfigurable properties of AOMLE, we separate multimodal learning
into scattered computing mode (SCM) and diffractive computing mode (DCM). In this
work, we classify vowels and handwritten digital images using disctinct strategies.

In the face of SCM, we conduct vowel recognition tasks using the dataset [23].
This dataset consists of 270 audio messages from individuals of different genders and
covers a variety of pronunciations, including ae, ei and ow. The training epoch of SCM
is set to 30. As shown in Fig. 4(a-b), AOMLE achieves rapid convergence in the vowel
recognition, with the training dataset reaching 96%, and the testing dataset likewise
reaching 95.83%. Figure 4(c) shows the confusion matrix for both the training and
testing dataset. Additionally, the effect of varying the length of the training region on
recognition accuracy is also investigated as depicted in Fig. 4(d). By keeping thewidth of
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Fig. 4. Vowel recognition of SCM. (a-b) The confusion matrix of training dataset and testing
dataset. (c) The loss and accuracy of SCM with training epochs. (d) The relationship between
recognition accuracy and training region length.

the training area constant in AOMLE at 100, we identify that the testing dataset achieves
the greatest accuracy (95.83%) when the training area length is set to 200.

We employ the classical MNIST dataset to assess its performance for DCM. Follow-
ing 30 epochs of training, we achieve a recognition accuracy of 96.82% on the training
dataset and 96.34% on the testing dataset. The confusion matrix is shown in Fig. 5(a-b),
while Fig. 5(c) illustrates the performance of loss function and accuracy in handwrit-
ten digital classification. It is evident that AOMLE and other models have comparable
accuracy. We further explore the scalability of DCM by changing the number of lay-
ers in the diffractive neural network, as presented in Fig. 5(d). By maintaining a fixed
interval between metalines, we show that increasing the number of diffractive layers
improves accuracy. The rate of improvement, however, becomes limited as the number
of layers increases, indicating some redundancy within the neural network. We have
a total of 2000 effective neurons per diffractive layer, which can be further optimized
through pruning. Nevertheless, we decide to use five diffractive layers of meta lines for
handwritten digital image classification, reaching a remarkable accuracy of 96.34% on
the testing dataset.
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Fig. 5. Handwritten digital recognition of DCM. (a-b) The confusion matrix of training dataset
and testing dataset. (c) The loss and accuracy of DCM with training epochs. (d) The scalablity of
diffractive layers.

We conduct a comparative analysis between our proposed AOMLE and several pro-
cessor chips used for intelligent classification tasks in the fields of natural language pro-
cessing andmachine vision, as shown inTable 1. The current optical processors primarily
rely on devices or architectures such asMach-Zehnder interferometer, optical diffraction,
wavelength-divisionmultiplexing, and optical scattering.Upon comparingAOMLEwith
other advanced optical processors, it becomes evident that AOMLE outperforms them
in various indicators, including programmability, processible modality, among others.
Furthermore, AOMLE achieves a remarkable increase in computing energy-efficiency,
surpassing commercial electric processors by several orders of magnitude, while retain-
ing outstanding recognition accuracy. These results highlight AOMLE’s exceptional
competitive edge over both optical and electric processors.
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Table 1. Comparison of state-of-the-art integrated optical and electronic AI chips.

Processor Programmability Modality Energy Latency

Optical
processor

[1] Electrical Audios 30fJ/MAC < 100ps

[3] Optical Images – < 1ns

[4] Electrical Images 1.58pJ/MAC 110ns

[5] Optical Images 17fJ/MAC 250ps

[7] Electrical Images 345fJ/MAC < 60ps

[9] Electrical Images &
Videos

0.82fJ/MAC –

[12] Optical Audios 20pJ/MAC 40ps

Electronic
processor

Google TPU Electrical – 0.43pJ/MAC 1.4ns

Flash Electrical – 7fJ/MAC 15ns

Our work AOMLE Optical Images &
Audios

< 5fJ/MAC < 200ps

5 Conclusion and Discussion

We propose a highly integrated all-optical multimodal learning engine called AOMLE,
which effectively switches tasks based on input data modality and achieve array pro-
gramming using externallymodulated laser pulses. By leveraging the tunable property of
phase-change materials, we successfully implement the reconfigurability of all-optical
scattered and diffractive neural network on a single chip. We update the neural net-
work’s parameters using the unified form of the adjoint method, resulting in exceptional
performance in both vowel recognition and handwritten digit recognition multimodal
tasks.

It is worth mentioning the adjoint method has been widely employed in the inverse
design of photonic devices. However, practical device fabrication often necessitates the
binarization of trained medium parameters. The obtained device parameters of AOMLE
can be quasi-continuous, with the level of discretization depending on the programming
ability of laser pulses. This approach effectively overcomes the constraints imposed by
binarization during fabrication, thereby further enhancing the computing performance
of the optical processor.

Additionally, we utilize externally modulated laser pulses to program the phase-
change materials, enabling precise control and alteration of the refractive index of the
phase-change meta-atoms. Consequently, written laser pulses directly define the device
pattern, eliminating the need for top-down lithography processes. This not only signifi-
cantly enhances the flexibility of the silicon photonic device but also reduces fabrication
errors and phase noise caused by lithography and etching. Collectively, these advan-
tages demonstrate that our proposed AOMLE paves the way for more energy-efficient
and flexible optical artificial intelligence processors.
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