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Abstract. UAVs based on PID controllers are having increasing difficul-
ties in handling complex tasks. Whereas, reinforcement learning-based
high-dimensional models provide an important entry point for flight con-
trol to handle complex and high-dimensional tasks. In this paper, a neural
network controller training framework for outer-loop control is proposed,
which is used as a base platform for velocity controller training. Also, a
reinforcement learning-based quadrotor neural network speed controller
is proposed which maps the state of the UAV to the throttle commands
of the rotor for stable control of speed. In addition, this paper employs
the idea of curriculum learning to help the UAV adapt to a larger speed
tracking range and improve its overall performance. We demonstrate the
performance of the trained neural network controller by comparing it
with a conventional PI controller in simulations, achieving improvements
in both steady-state response time and tracking performance.
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1 Introduction

Unmanned Aerial Vehicles are extensively utilized in military exploration, agri-
culture, transportation, and other fields due to their agile maneuverability. In
these complex application scenarios, precise execution of position commands is
crucial, leading to an increasing demand for advanced intelligence in UAV flight
controllers. Traditional UAV controllers typically consist of an outer-loop posi-
tion control loop and an inner-loop attitude control loop. The outer-loop position
control loop generates attitude and thrust commands to track specific trajecto-
ries or speeds, while the inner-loop attitude control loop generates actuation
commands to the rotors to accurately track the target attitude state. However,
these conventional controller architectures face several challenges: (1) classical
PID control algorithms are commonly used for tracking expected values in both
loops. Although PID control can be effective, it relies on small angle assump-
tions that approximate the nonlinear dynamics of UAV as linear. Additionally,
the process of simultaneously adjusting PID parameters is also can be com-
plex and challenging to generalize. (2) Differences in the modal periods of the
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two control loops result in delays between control signals and longer periods for
upper-level position control. Recent research has shown that intelligent control
algorithms based on reinforcement learning offer a promising solution to these
challenges.

For attitude loop control, using reinforcement learning, an optimal attitude
control strategy for UAVs can be achieved without assuming aircraft dynamics,
ensuring that UAVs maintain good attitude stability despite unknown dynam-
ics or unexpected conditions. Deep reinforcement learning uses neural net-
work models instead of traditional control strategies. It has the advantage that
Deep Reinforcement Learning (DRL) has the ability to adapt to any non-linear
input/output mapping. Training data is collected iteratively in a simulation envi-
ronment to adapt the neural network model to the ideal controller distribution.
In [5], a simulation platform for reinforcement learning attitude controllers is
built, which simulates a realistic UAV maneuvering dynamics model and motor
model, and on which the Proximal Policy Optimization (PPO) algorithm-based
attitude controller is trained. Adversarial reinforcement learning algorithms were
proposed by [15] to enhance the capabilities of Sim2Real and based on [5] the
attitude controller was migrated to a real environment for deployment, on top of
which [10] proposed domain randomisation and course adversarial reinforcement
learning to further improve the robustness of the attitude controller.

For position loop control, which is more challenging due to the incorpora-
tion of UAV’s high-level dynamics attributes, Neural network controllers have
been applied to solve specific problems. For instance, [12] addresses the accurate
landing of quadrotors and introduces neural network controllers for quadrotor
landing. In [7], a deep Q-network hierarchy is designed for the autonomous land-
ing of a quadrotor in various simulated environments, demonstrating superior
performance compared to human-controlled aerial vehicles in the presence of
environmental disturbances. [11] applies the Deep Deterministic Policy Gradi-
ent (DDPG) algorithm for outer-loop control of aircraft landing and showcases
the capability and potential of the reinforcement learning approach, validating
its robustness under diverse wind disturbance conditions. In [14], a simulation
platform for a hybrid UAV velocity controller is developed, and a velocity con-
trol strategy is trained on this platform for the hybrid UAV model. While [4]
proposes a reinforcement learning-based position controller, it only addresses
recovery from an arbitrary initial state to a stationary state, limiting its appli-
cability to all cases of UAV position control.

In this work, a simulation platform for training a quadrotor velocity controller
based on the gym-pybullet-drone project [6] was proposed. On top of this, a
DRL-based quadrotor velocity controller was proposed, which maps the target
speed and the quadrotor’s state as inputs directly to the rotor commands. A
PPO-based reinforcement learning strategy is used to train the controller, and
a curriculum learning approach is added on top of this to extend further the
velocity tracking range and robustness of the controller.
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2 Background

2.1 Reinforcement Learning

The RL-based algorithm learns the optimal strategy by allowing agents to inter-
act with the environment continuously so as to maximize returns or to achieve
specific goals [1]. The interaction process between an agent and the environment
is modeled as a Markov Decision Process (MDP). Namely, at a certain time t, an
agent obtains the state value St from the environment, takes the corresponding
action At according to the current state value, changes the environment, and
obtains the state value St+1 at the next time. The state transition is defined as
a probability of transition to state s′. Assume that the current state and action
are denoted as s and a, respectively. Then, the probability of transition to state
s′ can be expressed as pr{St+1 = s′|St = s,At = a}. The behavior of an agent
is defined by its policy, which is essentially a mapping of actions to be taken for
a specific state, as shown in Fig. 1.

Fig. 1. Schematic diagram of the RL framework

2.2 Curriculum Learning

Curriculum learning, introduced by [3] in 2009, is regarded as a training strategy
and has been widely referenced in the field of machine learning. It aims to mimic
the human learning process by initially training on simple tasks and gradually
increasing the training difficulty, enabling the model to accomplish more chal-
lenging tasks. Through curriculum learning, the intelligent agent can organize a
systematic exploration of the state space to address the issue of sparse rewards
and accelerate the convergence rate of the model. Therefore, we incorporate the
concept of curriculum learning into the training process to further enhance the
convergence efficiency and control effectiveness of the model.

3 Simulation Platform

3.1 Framework

We have designed the training framework shown in Fig. 2 as the basis for this
work, which is suitable for training not only velocity controllers but also supports
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the training of inner and outer loop controllers such as attitude and position. In
each interaction, the Pybullet physics engine will give a 12-dimensional variable
O representing the state of the UAV, including the position, attitude angle,
angular velocity, and linear velocity of the quadrotor, which can be expressed as

O = [x, y, z, ϕ, θ, ψ, vx, vy, vz, ωx, ωy, ωz] (1)

Then, the input state S(t) of the neural network controller was calculated
based on the state of the UAV and the target state given by the environment.
Based on S(t) the neural network controller selects an optimal action A(t) based
on its own policy distribution, which corresponds to the throttle commands of
the four motors, denoted as

A(t) = [σ1, σ2, σ3, σ4], σi ∈ [0, 1] (2)

Subsequently, the throttle commands are then fed into the rotor model to
compute the revolutions per minute (RPM) of the propellers. These RPMs are
further supplied as inputs to the quadrotor’s rigid body force model, yielding
the total thrust and torques in the body frame. Finally, the total thrust and
torques will be fed into the physics engine to calculate the quadrotor’s state at
the subsequent time step. The state variables, along with the rewards computed
based on these states, are fed as input into the neural network controller.

The above process constitutes a single simulation step for the controller, with
the neural network controller’s objective being the attainment of the optimal
execution strategy by maximizing long-term rewards.

3.2 Rotor Model

The RPM of the four rotors of a quadrotor is commonly controlled by a throt-
tle command, denoted as σ ∈ [0, 1]. It takes a certain amount of time for the
rotor to reach a steady-state speed, which is referred to as the rotor’s dynamic
response time, denoted as Tm. The dynamic response process of a rotor can be
approximated as a first-order low-pass filter, represented by:

Tm
d�(t)

t
+ �(t) = Cmσ(t) + �0 (3)

Cm is the revolution rate of a rotor. �0 denotes the rotor revolution when
the throttle command is 0. Equation (1) can be further represented as:

�̇(t) =
d�(t)

dt
=

1
Tm

(Cmσ(t) + �m − �(t)) (4)

�̇(t) denotes the change rate of rotor revolution. Finally, the rotor revolution
in the next timestep can be represented as:

�(t + 1) = �̇(t) ∗ dt + �(t) (5)

dt denotes the simulation timestep of the physical engine, and Tm denotes
the response time of the rotor.
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Fig. 2. Controller training Framework

3.3 Quadrotor Model

Depending on the rotational speed of the rotor, we can obtain the total thrust
and the corresponding torque for each axis:
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where cT and cM denote the drag force factor and torque factor, which depend
mainly on the geometry of the propeller. And wi denotes the RPM of the pro-
pellers.

3.4 Dynamic Model

The quadrotor is considered as a rigid body and its total thrust is always parallel
to the z-axis of the body frame. We can calculate the positional and rotational
dynamics of the quadrotor based on the total thrust and torques on the three
axes in the body frame obtained in (6).

{
ṗe = ve

v̇e = ge3 − f
mRw

b e3
(7)

where p denotes position, v denotes velocity, the right superscript w denotes
the world frame, and the right superscript b denotes the body frame. Re

b denotes
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the rotation matrix from the body frame to the world frame, f denotes the total
thrust, m denotes the quadrotor mass, g denotes the gravitational acceleration,
and e3 is the unit vector of the z-axis in the world frame.

Its attitude model can be written as:
{

Θ̇ = Rw
b · ωb

Jω̇b = −ωb × Jωb + Ga + τ
(8)

where Θ̇ denotes the Euler angle change rate in the world frame, ωb denotes
the angular velocity in the body frame, J denotes the inertia matrix, Ga denotes
the gyroscopic moment, and τ denotes the torque in the three axes. After calcu-
lating the corresponding angular velocity, linear velocity, and linear acceleration,
we integrate them in a simple discrete form in (9) and thus obtain the twelve-
dimensional variables of the quadrotor UAV.

⎧
⎨
⎩

vi = vi−1 + dt · v̇i

pi = pi−1 + dt · vi

Θ = Θ + dt · Θ̇
(9)

4 Neural Network Velocity Controller

4.1 Network Structure

Based on Sect. 3, a neural network velocity controller was trained using the
PPO algorithm. The controller adopts the network structure of the classical
PPO algorithm, shown in Fig. 3. The input S(t) ∈ R12 to the network comes
from the state of the quadrotor and the target velocity, which can be represented
as:

S(t) = [ϕ, θ, ψ, α, β, γ, Pvx
, Pvy

, Pvz
, Ivx

, Ivy
, Ivz

] ∈ R12 (10)

where [ϕ, θ, ψ] respectively denote the quadrotor’s roll, pitch, and yaw angles.
[α, β, γ] respectively denote the angular velocity of the three axes in the body
frame of the quadrotor. [Pvx

, Pvy
, Pvz

] denote the proportional term for the
difference between the line velocity of the quadrotor and the desired velocity.
[Ivx

, Ivy
, Ivz

] denote the integral term. The output of the network is the throttle
commands σi for the four rotors.

Given that the model of the controller does not incorporate temporal net-
works like RNN or LSTM, the incorporation of an integration module will
enhance the tracking performance of the controller [14]. Therefore, an integral
module is incorporated into the model, and its discrete form is shown below:

In = ηIn−1 + Dn (11)

where Dn denotes the velocity error sum in the current timestep. In−1 denotes
cumulative velocity integral in the last timestep. And η is the constant decay
coefficient.
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Fig. 3. Neural Network Controller

4.2 Reward Function

The reward function consists of the following components: (1)Survival reward
gs, which is used to keep the flight stable at the beginning. (2)Velocity error
penalty gv, which is used to ensure the quadrotor tracks the desired velocity as
closely as possible. (3)Angular velocity penalty gω, which is used to ensure that
the quadrotor remains as stable as possible during the tracking and to prevent
constant oscillations.

R(t) = gs − wvgv − wωgω (12)

where wv,wω are the corresponding weights and gs is defined as a constant.

4.3 Normalization

Normalization is a significant part of the training process, as there are gaps
in the magnitudes of the original inputs. If normalization is not performed,
the training process will not converge and result in the accumulative reward
oscillating repeatedly. To address this issue, a normalization step for the state
variables of the quadrotor is adopted.

In our approach, we normalize the state quantities of the UAV by constrain-
ing the velocity and desired velocity within the range of [−3, 3] and the angular
velocity within the range of [−50, 50]. Subsequently, we apply a max-min nor-
malization to ensure that all the state variables fall within a consistent range.

By performing input normalization, we aim to mitigate the adverse effects of
input disparities and facilitate the training process of the controller. This normal-
ization step helps to establish a more stable and effective learning environment,
allowing the controller to converge toward optimal performance.
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4.4 Training Setup

We implemented the PPO algorithm using Python and based on the Stable
Baselines3 library [8]. The training process consists of two phases. In the first
phase, the quadrotor is initialized with a random attitude (pitch and roll angles
randomly selected from the range of [−π/2, π/2] rad/s) and a random target
velocity along each axis (with single-axis velocities randomly selected from the
range of [−1, 1] m/s). At each time step, the controller executes motor commands
within the range of [0,1] and receives a reward based on the current state. When
any of the pitch, roll, and angular velocities exceeds the predefined threshold, it
indicates that the quadrotor has lost stability and is no longer in a controlled
state. In such cases, the early termination is considered.

The simulation operates at a frequency of 240 Hz, and a total of eight million
steps are trained in this phase. In the second phase, we fine-tune the model
trained in the first phase by increasing the task difficulty. The target speed
range is expanded to a single-axis target speed within the range of [−3,3] m/s,
allowing for a larger speed range. We train a total of two million steps in this
stage.

Fig. 4. The mean reward during the training process

The average reward curve for each episode during the final convergence is
illustrated in Fig. 4. It’s worth noting that at the beginning of the second stage,
there is a significant drop in the reward. This reduction is due to the larger
speed variation range, which results in a higher penalty term for tracking speeds,
impacting the overall reward.

In order to enhance the robustness of the controller in real-world control
scenarios, we incorporated noise during the training process [10,15,16]. Specifi-
cally, we added Gaussian noise with a mean of 0 and a variance of 0.1 to several
state variables, including velocity, angular velocity, and attitude of the UAV,
during the training phase. The inclusion of noise helps the controller to adapt
and handle variations and uncertainties that may arise during actual control
tasks, thereby improving its overall robustness.
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5 Result

Since in practice quadrotors do not have an accurate estimation of acceleration,
conventional PID controllers generally rely on proportional and integral terms in
the velocity loop. A comparative analysis is conducted between our controller and
the PI controller. It is worth noting that the NN controller also relies explicitly
only on the proportional and integral terms as input, and its knowledge of the
derivative terms will probably come from its derivation of the pose. Moreover, it
is important to consider that the velocity control loop exhibits a longer steady-
state response time delay in comparison to the attitude control loop, typically
ranging from 0.5 to 1 s, depending on the tracked speed.

To evaluate their performance, both the NN Controller and PI Controller
are initialized from a static state and tasked with tracking four velocity changes
within 12 s. The velocities are randomly altered every 3 s, with the third change
being of greater magnitude. The step response performance of the controllers
with different algorithm implementations under the interference of random
noise is illustrated in Fig. 5. Intuitively, the NN Controller has an advantage
in response latency and exhibits a smoother response curve when tracking larger
velocity changes (6–9 s) in comparison to the PI Controller.

In order to effectively evaluate the tracking performance and emphasize the
impact of high errors, we utilize the root mean square error (RMSE) as a perfor-
mance metric. The RMSE amplifies errors and provides a more comprehensive
measure of the actual tracking error. The formula of RMSE is as follows:

Fig. 5. Comparison of two controllers in the simulation of velocity tracking
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RMSE(x, y, f) =

√√√√ 1
m

m∑
i=1

[f(xi) − yi]2 (13)

The results of the RMSE are presented in the table, clearly demonstrating
that our algorithm outperforms the PI controller in terms of smaller RMSE
values across all three axes. This indicates that our algorithm excels in velocity
tracking for the flight task, achieving superior performance.

Table 1. The RMSE of PI Controller and NN Controller

RMSEx (m/s) RMSEy (m/s) RMSEz (m/s)

PI Controller 0.7942 0.5366 0.6233

NN Controller 0.6773 0.4943 0.5207

6 Conclusion

In this paper, we propose a simulation framework used to train the neural net-
work controller for quadrotors and a novel neural network velocity controller for
quadrotors based on the PPO algorithm. Additionally, we extend the tracking
speed range of the controller by incorporating the concept of curriculum learning.
The obtained controller demonstrates stable tracking control of the quadrotor’s
upper velocity, exhibiting comparable or superior tracking performance com-
pared to the conventional PI controller.

In our future work, we aim to further enhance the algorithm model to improve
the tracking performance of the controller. Additionally, we plan to incorporate
control of the yaw angle of the quadrotor. Furthermore, we intend to deploy the
developed controller to real aircraft and utilize it as the underlying controller
for path planning. By pursuing these avenues, we anticipate achieving signifi-
cant advancements in the tracking capabilities of the controller, expanding its
potential applications, and enhancing its performance in real-world scenarios.
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