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Abstract. Path planning for unmanned aerial vehicles (UAV) is a key
technology for UAV intelligent system in the aspect of model construc-
tion. In order to improve the rapidity and optimality of UAV path
planning, we propose a hybrid approach for UAV path planning in 2D
environment. First, an enhanced particle swarm optimization algorithm
(EPSO) combine with genetic algorithm (GA) which named as EPSO-
GA is utilized to obtain the initial paths of UAV. In EPSO-GA, a hybrid
initialization of Q-learning and random initial solutions is adopted to
find the better initial paths for the UAV, which improves the quality
of initial paths and accelerates the convergence of the EPSO-GA. The
acceleration coefficients of EPSO-GA are designed as adaptive ones by
the fitness value to make full use of all particles and strengthen the global
search ability of the algorithm. Finally, the effectiveness of the proposed
algorithm is proved by the experiments of UAV path planning.

Keywords: UAV path planning · PSO-GA · Hybrid initialization ·
Q-learning

1 Introduction

Unmanned aerial vehicle (UAV) path planning refers to find a path between
the starting position and the destination under the conditions of terrain, radar,
and other factors [1]. In last decades, many methods have been proposed to
solve the issue of UAV path planning in 2D environment, which includes Graph-
based algorithm [2,3], Rapidly-exploring Random Trees algorithm (RRT) [4],
artificial potential field algorithm (APF) [5,6], and reinforcement learning [7].
Population-based algorithms are the most commonly methods used to plan path
for the UAV, such as genetic algorithm (GA) [8,9], particle swarm optimization
(PSO) [10], and ant colony algorithm (ACO) [11,12]. This kind of algorithms
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has the advantages of fast convergence speed, good parallelism and facilitate
collaboration among multiple populations.

Compared to other algorithms, PSO is often utilized in the path planning of
UAV. However, conventional PSO is confronted with several challenges. Firstly,
the initialization process of the particles is complex, leading to suboptimal initial
paths. Secondly, these algorithms exhibit slow convergence rates and are prone
to getting trapped in local optima. In order to solve the above problems, we
propose an EPSO-GA, and furthermore adopted it on the UAV path planning.
The main contribution of this paper can be summarized as follows.

(1) A hybrid approach of Q-learning and random initial solutions is applied
to find the initial paths for the UAV, which improves the quality of initial paths
and accelerates the convergence of the EPSO-GA.

(2) The acceleration coefficients of EPSO-GA are designed as adaptive ones
by the fitness value to make full use of all particles and strengthen the global
search ability of the algorithm. In addition, a heuristics factor is recommended
into mutation to speed up the convergence of the algorithm.

2 The Proposed Method

In this section, we construct the objective function for UAV path planning. To
enhance the quality of the initial population in the particle swarm algorithm,
we introduce Q-learning for hybrid initialization. Furthermore, we accelerate the
convergence speed and improve the global search capability of the algorithm by
incorporating mutation and crossover mechanisms.

2.1 Objective Function Construction

In this article, path length is defined as follows:

fL =
n∑

i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (1)

where xi and yi are the coordinates of path point i, and n is the total number
of path points.

To simplify the calculation, the path from the starting point to the destina-
tion is divided into three segments. For each segment, the 1/4, 2/4 and 3/4 points
of the outbound leg are used as reference points. The formula for calculating the
threat intensity of the jth radar against the drone is as follows:

Tj =
3∑

m=1

K

(
1

d41/4,m,j

+
1

d42/4,m,j

+
1

d43/4,m,j

)
(2)

where m represents the path segment, K is the threat intensity coefficient,
1

d1/4,m,j
represents the distance between the jth radar and a quarter of the m
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path segment, and Tj represents the threat intensity of the jth radar against the
drone. Therefore, the threat intensity of a single drone is described as follows:

fT =
N∑

j=1

Tj (3)

where N is the number of radars.
In order to reduce computational complexity, the path planning problem for

UAV is transformed into a constrained multi-objective function. By assigning
weights to each objective, transforming the multi-objective problem into a single-
objective problem. The objective function can be represented as follows:

fobj = w1 ∗ fL + w2 ∗ fT (4)

where w1 and w2 are the weights for path length and threat intensity respectively.

2.2 Initialization Method of PSO Particle Swarm Based
on Q-Learning

The hybrid initialization method of Q-learning and random initial population is
used in this paper to obtain the initial swarm of particles. In order to ensure that
the paths generated by Q-learning have lower threat intensity and shorter path
length compared to those generated randomly, the reward function of Q-learning
is shown in Table 1.

Table 1. Design of reward function.

State of UAV Reward

Starting point 0

End position 20

Obstacles and radar −1

Feasible point r

In Q-learning, all feasible points, obstacles and radars are distinguished in
the form of positive and negative values. Each cell represents a different value,
where 0 represents the starting point, r represents free space, −1 represents an
obstacle or radar occupied cell, and 20 represents the destination. The reward
values of all feasible points are adaptively adjusted based on their positions,
where r¿0. The reward value of feasible points increases as they approach the
destination and decreases as they approach a threat. The reward values of all
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feasible points are shown below:

r = r0 + rmax ∗ exp

⎡

⎣
−

√
(xu − xg)

2 + (yu − yg)
2

kg

⎤

⎦

−rt ∗ exp

⎡

⎣−∑m
i=1

√
(xu − xit)

2 + (yu − yit)
2

kt

⎤

⎦

(5)

where r0 represents the basic reward value, rmax represents the maximum reward
value without considering threats, rt is the threat coefficient, (xu, yu) and (xg, yg)
are the coordinates of the UAV and the target point respectively, (xit, yit) is the
coordinates of the ith radar, kg and kt are the control coefficients of the reward
function and m is the number of threats.

The balance between exploration and exploitation is another key part in Q-
learning. This paper adopts Boltzmann distribution [13], and its expression is as
follows:

p(a | s) =
eQ(s,a)/T

∑
ai∈A eQ(s,ai)/T

(6)

T = λkT0 (7)

where p(a | s) represents the probability that action a is selected in state s. λ
is a constant satisfying 0 < λ < 1, k is the current iteration number and T
is a control parameter. At the beginning of the training process, T has a large
value to ensure strong exploration capability, which decreases as the number of
iterations increases to ensure that the algorithm focuses on exploitation. The
update formula for Q values is as follows:

Q(s, a) ← Q(s, a) + α [r + γ max Q (s′, a′) − Q(s, a)] (8)

where α is the learning rate, γ is the discount factor, r is the immediate reward
value of the current action and Q (s, a) is the estimated value of taking the
current action.

Using the Q-learning method based on the fitness values of all solutions, m
paths are generated, and n paths are obtained by random initialization. The
initial population size S = m + n.

2.3 PSO Mutation Crossover Strategy

Inspired by the way of multiple UAV task assignment in [14], the updating
strategy of EPSO-GA can be defined as follows:

xi,j(t + 1) = c2 • f3 (c1 • f2 (w • f1 (xi,j(t), pi,j, best (t)) , gi,j, best (t))) (9)

where xi,j(t), pi,j,best(t) represent the position and personal optimal value of
particle in t iterations respectively, while gi,j, best (t) represents the global best
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value of the particle in the t-th generation. w is the learning factor of the particle
with respect to itself, c1 and c2 are the learning factors of the current particle
with respect to its individual best value and global best particle, respectively.
f1 is the operation of the particle with respect to itself, while f2 and f3 are
the operations of the particle based on its individual best value and global best
value, respectively.

f1 is defined as a mutation where the mutation probability of the particle i
is w, f1 is formulated as follows:

f1 = w • f1 (xi,j(t)) (10)

where w is the inertia weight which has a great influence on performance of the
algorithm. In order to accelerate the convergence of the algorithm, we adopt the
linear time-varying inertia weight updating strategy in [15], which is expressed
in the following formula:

w(t) =
T − t

T
(wmax − wmin) + wmin (11)

where the value of w is linearly decreased from wmax to the final value wmin. t is
the current iteration of the algorithm and maxiter is the maximum iterations of
the algorithm. At the beginning of the iteration, the particle exhibits a strong
global search ability, while towards the end of the iteration, it acquires a local
search capability.

As shown in the Fig. 1(a), the mutation operation begins by randomly select-
ing a point in the path (excluding the start and end points). Assuming the pre-
vious coordinate is N, there are 8 possible choices for the mutated coordinate.
To improve the efficiency of search, the distance Di between each candidate i
and the destination is calculated, and the probability Pi of the i being selected
is calculated as follows:

Pi = ki ∗ 1/Di∑8
i=1 1/Di

(12)

where ki is the adjusted adaptively according to the angle between coordinate
i and the destination. In particular, the probability is 0 when i represents an
obstacle.

To address the coordinate transformation issue, this paper introduces the
crossover mechanism from genetic algorithms while retaining the individual and
global learning strategies of the particle swarm.

f2 is defined as the intersection between particle xi,j and the individual best
particle with a probability of c1. The formula for f2 is as follows:

f2 = c1 • f2 (f1, pi,j, best (t)) (13)

f3 is defined as the intersection between particle xi,j and the global best
particle with a probability of c2. The formula for f3 is as follows:

f3 = c2 • f3 (f2, gi,j,best(t)) (14)
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Fig. 1. Crossover and mutation mechanisms.

If there is an overlap between the path points of the current particle and
either the individual best particle or the global best particle (excluding the
start and end points), a crossover operation is performed. In Fig. 1(b), particle
x shares two crossover points (63, 92) with the individual best particle. This
operation involves swapping the path point 71 between the two crossover points
and swapping the subsequent crossover point with the path points (112, 131)
between the individual best particle and particle x’s target point. In Fig. 1(d),
particle x shares more than two crossover points (63, 92, 131) with the individual
best particle. In this case, only the path points 71 and 112 between the single
best particle and particle x’s crossover point are swapped.

In EPSO-GA, the values of c1 and c2 are updated based on their fitness values
to fully utilize all particles and enhance the algorithm’s ability to escape local
optima. In each iteration, all particles are sorted based on their fitness values,
with the top half being stored in set A and the bottom half in set B. In the next
iteration, particles in set A have a higher probability of crossover. The formulas
for updating the learning factors c1 and c2 are as follows:

η =
min−fitness
max−fitness

− min−fitness
fitness (xij)

(15)

c1 = a + (1 − a)eη (16)

c2 = b + (1 − b)eη (17)
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In the formulas above, max−fitness and min−fitness represent the maxi-
mum and minimum fitness values of all particles in the population, respectively.
fitness (xij) represents the fitness value of particle j after i iterations, and the

values of a and b are experimentally determined constants. For particles in set
A, higher fitness values result in higher crossover probabilities. The particle with
the highest fitness value will always undergo crossover, while the probabilities
of the other particles decrease exponentially with their fitness values, but still
satisfy c1 > a, c2 > b. Through these operations, the top half of the particles
with higher fitness values are given an increased probability of crossover, allow-
ing them to focus more on searching, improving the algorithm’s global search
capability, and helping to escape local optima.

For the bottom half of the particles with lower fitness values, the values of
c1 and c2 are designed as follows:

c1 = cmax − cmax − cmin

max−iter
∗ t (18)

c2 = cmin +
cmax − cmin

max−iter
∗ t (19)

Here, both cmax and cmin are set to (cmax + cmin) /2 = cc
1 = cc

2, where c is a
constant satisfying 1 > cmax > cmin. max−iter represents the maximum number
of iterations, and t represents the current iteration number. As the number of
iterations increases, the value of c1 gradually increases while the value of c2
gradually decreases, causing the algorithm to shift from global search to local
search.

Additionally, this article simplifies the paths by performing simplification
operations when there are no obstacles or threat points blocking a straight line
between two non-contiguous positions. As shown in Fig. 1(c), if the UAV can fly
directly from the current point to another waypoint in a straight line, the path
A-C-B will be replaced by the simpler path of A-B.

3 Simulation

To demonstrate the performance of proposed method, simulations and compar-
isons are carried out in 2D static environment. They are implemented in the
MATLAB environment and compared performance with CIPSO [16] and CIGA
[17], the simulation is running on a platform with a 3.2 GHz CPU and 8.0 GB
of RAM.

3.1 Parameters Setting

The weight of objectives are set as w1 = 0.8, w2 = 0.2, the size of population is
set as S = 50 and max iter = 100. The parameters of the EPSO-GA algorithm
are set as wmax = 0.8, wmin = 0.2, cmax = a = b = 0.8, cmin = 0.6. The
parameters of the CIPSO algorithm are set as wmax = 0.9, wmin = 0.4, cmax =
3.5, cmin = 0.5, V1 = 0.5, V2 = 0.1, a = 2, μ = 4. The parameters of the
CIGA algorithm are set as cr = 0.8, pc = 0.15. Coordinates of starting position,
destination and radars in the case are listed in Table 2.
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Table 2. The starting position and the destination of UAV and the coordinates of the
radars.

Environment type Start position End position Radar1 Radar2 Radar3

Z 381 20 55 356 ×
Complex 1 400 131 217 309

3.2 Result of UAV Path Planning

To compare the effect of the proportion of paths obtained by the Q-learning
algorithm on the optimization of the algorithm, the number of paths m obtained
by the Q-learning and the number of paths n obtained by random initialization
were adjusted respectively, and five groups of experiments were conducted in the
complex environment, with each group of experiments running independently for
20 times. The experimental results are shown in Table 3. Where m = 0 and n =
50 means purely random initialization, the initial best fitness is reduce with the
proportion of m increase, and the convergence result of the algorithm is the best
when m = 5 and n = 45. However, the average iteration number increases as m
increases when m > 5. Therefore, compared with the random initialization, the
path obtained by introducing Q-learning reduces the initial best fitness value
of the population, which can accelerate the convergence speed of the algorithm.
However, if the proportion of m is too large, the algorithm may fall into local
optimal and the number of iterations of the algorithm will be increased.

Table 3. Results of EPSO-GA under different m and n values.

Indicator m = 0,n = 50 m = 3,n = 47 m = 5,n = 45 m = 10,n = 40 m = 15,n = 35

Initial best fitness 33.7546 32.2565 30.7846 30.0512 28.365428.365428.3654

Average running time 16.21 15.84 15.3615.3615.36 15.38 16.02

Average iterations 21 18 171717 20 26

The comparative simulations among different algorithms are carried out in
two different environments, including Z-type and a complex environment, each
method is repeated 50 times independently and the best results are chosen. The
generated paths and corresponding convergence curves under different environ-
ments are presented in Fig. 2 and Fig. 3. The statistical results of simulation
are shown in Table 4. As observed in Fig. 2(a) and Fig. 3(a), CIGA, CIPSO
and our proposed method are complete the mission from the staring position to
the destination without any collision with obstacles and radars. In the Z-type
environment, the path generated by CIGA has a longest path and closest to
the radars which the value of path length and threat intensity are 42.1637 and
17.0397 respectively, while CIPSO has a shortest path with 39.2854 and a sec-
ond highest threat intensity with 16.6979. Our method is slightly longer than
CIPSO where the path length is 39.7274, but maintain a relative longer distance
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Fig. 2. Simulation results under Z-type environment.

Fig. 3. Simulation results under complex environment.

from radars which threat intensity is only 9.5938. In the complex environment,
our method complete the mission with the shortest path length and the lowest
threat intensity.

In the Fig. 2(b) and Fig. 3(b), the best fitness of EPSO-GA are obviously
smaller than that of the other algorithms at the initial stage, which are the
results of hybrid initialization. Besides, EPSO-GA holds the fastest convergence
compare with the other methods, while reach its optimal and remain stable in
12th and 17th iteration under two different environments respectively.
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Table 4. Results comparison between the algorithms under different environments.

Indicator Z-type Complex type

EPSO-GA CIPSO CIGA EPSO-GA CIPSO CIGA

Shortest path length 39.7274 39.285439.285439.2854 42.1637 28.106928.106928.1069 29.5298 28.7108

Threat intensity 9.59389.59389.5938 16.6979 17.0397 13.481013.481013.4810 27.8362 16.0080

Success rate (%) 989898 96 98 100100100 98 100

Average running time (s) 6.24 6.87 5.835.835.83 15.36 18.91 14.4614.4614.46

A successful search is defined as finding the optimal solution after 200 itera-
tions. As shown in Table 4, the EPSO-GA algorithm we proposed ranks first in
the success rate. In terms of threat intensity, EPSO-GA are 43.7%, 42.5% better
than CIGA and CIPSO in the Z-type environment, 15.8%, 51.6% in the com-
plex environment respectively. Although our proposed method consumes slightly
more time than the CIGA which due to the adaptive adjustment of parameters
and hybrid initialization, the optimality of the solutions we have obtained. Our
proposed EPSO-GA can effectively generate optimal path and is more practical
in off-line path planing.

Table 5. Results comparison based on different weights under complex environment.

Weights Algorithms Best fitness Average fitnes Average iterations

w1 = 0.9, w2 = 0.4 EPSO-GA 26.302826.302826.3028 27.001527.001527.0015 171717

CIPSO 30.1475 30.7854 20

CIGA 29.1311 30.1227 18

w1 = 0.8, w2 = 0.2 EPSO-GA 25.181725.181725.1817 25.491025.491025.4910 171717

CIPSO 29.1911 32.1429 21

CIGA 26.1702 27.8914 19

w1 = 0.6, w2 = 0.4 EPSO-GA 27.4030 28.032128.032128.0321 191919

CIPSO 28.9213 29.1231 23

CIGA 26.541026.541026.5410 28.2356 19

w1 = 0.5, w2 = 0.5 EPSO-GA 25.321125.321125.3211 25.894025.894025.8940 21

CIPSO 29.1010 29.7414 21

CIGA 26.3007 26.5641 191919

In order to compare the influence of the weight of path length and threat
intensity on the optimization process, four groups of experiments are conducted
in complex environment by adjusting the weights of two sub-objectives, and
each group of experiments is run independently for 20 times. The experimental
results are shown in Table 5. It can be seen that the average iteration number of
each algorithm is the least, the best fitness and the average fitness of ESPO-GA
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algorithm are the minimum, and the obtained path quality is the best when w1

= 0.8, w2 = 0.2.

4 Conclusion

In this paper, a hybridization of EPSO-GA algorithm is proposed for path plan-
ning of UAV in 2D static environment. Q-learning is utilized to initialize paths of
UAV which improves the quality of initial paths and accelerates the convergence
of the EPSO-GA. The acceleration coefficients of EPSO-GA are designed as
adaptive ones by the fitness value to make full use of all particles and strengthen
the global search ability of the algorithm, and a heuristics factor is introduced
into mutation to speed up the convergence of algorithm. Through experiments
in two different environments, it has been shown that our proposed algorithm
has the advantages of path security and fast convergence in the path planning
of single UAV. In the future work, we will concentrate on reducing time con-
sumption of path planning for UAV and 3D environment will be introduced with
dynamic obstacles.
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