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Abstract. So far, the number of individuals with Tic disorder worldwide has
reached 59 million, and the prevalence of the disorder is rapidly increasing glob-
ally. In this work, we focus on weakly supervised learning methods for recognizing
childhood tic disorders. In situations with limited data availability, we design arel-
ative probability metric based on the characteristics of the data and a multi-phase
learning algorithm is proposed based on relative probability in order to efficiently
utilize coarse-labeled data in a “from easy to difficult” manner. Furthermore, the
effectiveness of our method is validated through ablation experiments. Through
extensive experiments on the test dataset, we demonstrate that our method behaves
extraordinarily compared to baseline approaches, improving AUC by 3.0%, and
facilitating expedited diagnostic assessment for medical practitioners.
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1 Introduction

Tic disorder [1, 2] is a motor or vocal muscle spasm characterized by symptoms such
as frequent eye blinking, head jerking, facial distortions, repetitive coughing, and throat
clearing. Diagnosing Tic disorder in clinical settings is typically a complex process,
further complicated by the fact that the majority of affected individuals are children,
who often have low cooperation, leading to diagnostic challenges. Research [10, 11]
has primarily focused on pathology and clinical aspects over the past few decades, with
limited studies on the identification and detection of tic disorder symptoms in patients.

In recent years, machine learning has been widely applied to medical problems, par-
ticularly in the areas of disease diagnosis and classification. Some studies have employed
video-based action recognition to diagnose diseases. The mainstream approach for video
action recognition is based on Convolutional Neural Networks (CNNs) [3, 5]. One pop-
ular approach is the two-stream architecture [16—18]. Another approach is the use of
3D CNNs [19-24] that can directly capture spatiotemporal information from video
sequences. Furthermore, attention mechanisms [4] allow the model to allocate more
attention to relevant parts of the video, improving both accuracy and efficiency. These
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networks above need fully-supervised data but for the problem of recognizing tic dis-
order, data annotation requires professional doctors, which incurs high manpower costs
and poses challenges in annotation. Moreover, our available labeled data is limited.
Therefore, the fully supervised methods are not suitable for our research problem.
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Fig. 1. Frameworks of one-phase training (a) and our multi-phase training method (b).

Weakly supervised learning [25-36] (WSL) is the method to solve this issue, which
aims atimproving the performance of models by exploiting many unlabeled data. Among
various techniques in weakly supervised learning, pseudo-labeling methods have gained
significant attention due to their effectiveness in leveraging unlabeled data. Pseudo-
labeling is a technique that assigns labels to unlabeled data based on the predictions of a
trained model. These assigned labels are considered “pseudo-labels” and are then used
to augment the training set for further model refinement. Typically, a one-phase learning
scheme in Fig. 1(a) is adopted.

However, itis insufficient for knowledge excavation to exploit the unlabeled data only
once, so multi-phase learning comes out further enhances the performance of weakly
supervised learning methods. Multi-phase learning, divides the weakly supervised learn-
ing process into multiple stages, each with a specific objective or set of labeled and unla-
beled data. In each phase, the model is trained and pseudo-labels are generated based
on the current phase’s predictions. These pseudo-labels are then used as training data
for the next stage, enabling the model to learn progressively and capture more complex
patterns over successive stages.
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But issues arise as a result of these methods. Firstly, As the model is trained with
these pseudo-labels, it becomes biased towards making predictions that align with the
labels generated in the previous phase, in which way, increasing the number of phases
becomes meaningless for model performance improvement. Moreover, if the pseudo-
labels are noisy or incorrect, the model’s predictions may be influenced by these errors
and hinder further learning progress, leading to degraded performance. Secondly, the
method to generate pseudo-labels plays a crucial role. Common methods for generating
pseudo-labels include thresholding and Top-K selection. However, challenges remain in
selecting appropriate thresholds or K values and handling noisy or uncertain samples.

To address these problems, we design a metric called “relative probability” (RPr)
based on the characteristics of the annotations. We not only use this metric for generating
pseudo-labels but also involve it in multi-phase training to measure the learning difficulty
of positive samples. An RPr-guided method is proposed, and during the multi-phase
learning process, the RPr threshold decreases by phase so that easy samples can be
selected in early phases. This multi-phase learning with thresholds decrease strategy
(MPLTD) allows the model to initially learn from easy or simple data to enhance its
performance, and subsequently, in later phases, tackle more challenging or difficult data
(see Fig. 1(b)). The main contributions of this paper can be summarized as follows:

e We propose a facial data processing and dimensionality reduction method. In the case
of limited data, this dimensionality reduction method reduces the training time and
training difficulty of the model while achieving better accuracy.

e We design a relative probability metric that balances the accuracy of pseudo-label
generation and the number of positive samples obtained. It effectively improves the
learning performance of the model on coarsely labeled data.

e We propose a multi-phase learning process that implements a “from easy to hard”
weakly supervised learning approach. This method is relatively universal and
applicable.

2 Related Work

Tic disorder diagnosis has no great progress made in this area until the 2010s. In 2010,
Bernabei et al. [10] conducted a study using wearable devices with accelerometers to
detect twitching movements in the limbs and trunks of Tourette syndrome patients,
achieving an accuracy of 80.5%. In 2016, Shute et al. [11] conducted research based
on brain electrical stimulation and observed low-frequency central medial-prefrontal
(CM-PF) activity to detect tic symptoms in patients.

Facial landmark detection is the process of automatically locating and identifying key
points or landmarks on a human face. Cootes et al. [12] proposed the Active Appearance
Models (AAM) which model the shape and texture of the face as random variables and
estimate them through optimization methods, thus achieving facial landmark detection.
Kazemi et al. [13] introduced a fast and accurate method for facial landmark detection
based on ensemble models of regression trees, enabling rapid detection of facial land-
marks. In 2015, Yang et al. [14] proposed a cascaded regression approach for robust
facial landmark tracking. This method progressively improves the localization accuracy
of facial landmarks by training a series of regressors in a cascade. Bulat et al. [15]
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provided a review of 2D and 3D facial landmark detection problems and presented a
large-scale 3D facial landmark dataset.

Weakly supervised learning focuses on developing algorithms and techniques to
address the challenges of training machine learning models with limited or noisy super-
vision. The most important line of research in WSL explores methods for generat-
ing pseudo-labels [31, 33], which are inferred labels assigned to unlabeled data based
on some heuristics or assumptions. These pseudo-labels are used to train the model
in a semi-supervised [32-36] or self-supervised manner. Many works are devoted to
semi-supervised these years, such as self-training, label propagation [29], and so on.

3 Method

In this section, we first define the problem of tic disorder recognition and classification.
To address privacy concerns, we employ dimensionality reduction techniques to convert
facial images into facial landmark points, thus preserving the privacy of the patients.
Firstly, we train an initial model with fully labeled data. Then we use this model to
generate pseudo-labels for the coarse labeled data, selecting reliable positive samples to
be added to the training set. We retrain the model and repeat this process iteratively. In
the pseudo-label generation step, we introduce the concept of relative probability, which
ensures that the selected positive samples exhibit similar features to the most prominent
movements in the long segments. For the iterative part, we propose a method to gradually
decrease the threshold value so that the model initially learns from simple samples to
improve accuracy and then focuses on difficult samples to enhance generalization.

3.1 Data Description

We collected a total of 129 videos from children with tic disorders. Based on the level
of annotation detail, we divided all the videos into two categories: fully labeled videos
(42 videos) and coarsely labeled videos (87 videos). The fully labeled videos consist of
short segments, where each annotated segment has a length of 2 s. On the other hand,
the coarsely labeled videos consist of long segments, where each segment has a length
ranging from 3 to 10 s.

3.2 Tic Disorder Recognition Problem Definition

Let R be the set of all videos, where each video X € N consists of several short seg-
ments xi, X2, X3, ..., xy € X. Each short segment x; is composed of several frames
ay,az, as, ...,ay € x; (usually 48 frames). Each frame a; is the basic unit of our data
processing, but not the basic unit for model prediction and tic recognition. The smallest
unit of tics is the short segment x;. In a video, each short segment can be one of the
following: eye tic, mouth tic, nose tic, or normal. Among them, the first three can occur
simultaneously, while the normal class can only occur alone.
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We define the tic recognition task to determine whether a short segment x is a
tic segment. In this task, we combine the tics in the eye, mouth, and nose regions as
the positive class for binary classification, while the normal segments are the negative
class. For convenience, we refer to it as “face binary classification” in the subsequent
tables. Additionally, we define three tic disorder classification tasks to differentiate the
tic regions. In each task, the tic region of interest is considered the positive class, while
normal segments are the negative class. For example, in the eye tic disorder classification
task, the positive class is eye tics, and the negative class is normal actions.

In summary, we define four binary classification tasks, where the positive and nega-
tive class samples are composed of multiple short segments. The labels for these samples
are y; € {0, 1}, where O represents the negative class and 1 represents the positive class.
Our goal is to achieve high classification accuracy (ACC) and area under the ROC curve
(AUCQ) for these tasks.

3.3 Feature Extraction in Facial Data

In the context of limited data, to enhance the generalization of the algorithm, we perform
feature point extraction, facial segmentation, and face alignment on each frame of the
video segments. The overall process is in Algorithm 1 and visualized results are presented
in Fig. 2.

Specifically, in step 3 of the algorithm, the method for calculating the rotation
matrix is as follows: first, calculate the center coordinates of the left and right eyes
(centerX , centerY). Then calculate the angle between the line connecting the left and
right eyes and the horizontal line. This angle represents the rotation angle 6. Finally, we
can calculate the rotation matrix M as follows:

cosf —sind (1 — cosf) x centerX + sinf@ x centerY
M = | sinf cosf (1 —cosf) x centerY — sinf x centerX (D)
0 0 1

By utilizing the rotation matrix M, we can transform the coordinates of any point
(x, y) in the original image into the coordinates (x', y") of the corresponding point in the
new image. The transformation relationship between them is given by:

/ X

y|=M-|y (2)
1 1
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Algorithm 1 Facial Landmark Alignment
Input:

Single frame
Output:

Aligned single frame with facial landmark coordinates
1. Apply a face detector to detect facial landmark.

in the video.
3. Calculate the rotation matrix based on the coordinates of the left and right eyes.

4. Perform an affine transformation on the image to obtain the rotation-aligned image
and its corresponding landmark.

Fig. 2. Face alignment algorithm flow. Our method ultimately compresses the (1080, 1920) image
into a facial landmark sequence of size (68, 2).

3.4 Relative Probability Guided Multi-phase Learning

Relative Probability (RPr). To proceed with our method, we propose the concept of
Relative Probability. For each long segment, where PR, is our defined relative proba-
bility indicator, it represents the model’s confidence in predicting the current segment.
PRpyax 1s the maximum value of confidence scores among all short segments cut in the
long segment, and PRy, is the minimum. The calculation formula for relative probability
is as follows:
PRelative = M (3)
P Rmax — PRmin
Two thresholds thsd; and thsd, are set in advance and a short segment is marked as
a positive sample in the following condition:

PR ojative > thsdi &&PR.y; > thsd) @

Through this approach, we effectively exploit the prior information inherent in the
coarse annotations, assuming that the short segment with the highest confidence score
corresponds to the most salient movement within the given long segment. Considering
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the inherent similarity of movement patterns within each long segment, our objective is
to select positive samples that not only surpass the confidence threshold but also exhibit
a high degree of resemblance to the most prominent movement feature present in the
segment. This strategic selection process aims to mitigate the risk of false positives,
thereby enhancing the reliability and precision of our approach.

merge into (raining set

adjust thresholds

train Relative probability iz

classification
network

selection

ol belod
inference
coarsely labeled data

Fig. 3. Relative Probability guided multi-phase learning flowchart

Multi-phase Learning with Thresholds Decrease. Although we have introduced
the concept of relative probability to improve the accuracy of generating pseudo-labels, it
is inevitable that erroneous pseudo-label noise may still occur, potentially misleading the
model during training. Additionally, the integration of rough labeled data into the training
set requires careful consideration of techniques and strategies. If we simply incorporate
all positively labeled samples into the training set, in the subsequent iterations, the model
may tend to assign high confidence scores to these selected positive samples, resulting in
pseudo-labels that are nearly identical to those of the previous round. Consequently, this
iterative process can become stagnant, hindering any improvement in model accuracy.

Considering these problems, we propose a multi-phase learning algorithm with a
threshold decrease. The overall process is shown in Algorithm 2.

We have designed multiple expressions to update the threshold with respect to the
number of phases and we discover that the easiest and most effective method is a linear
decay strategy (see Eq. (5)). And after sufficient experiments, we find that when step; =
stepy = 0.05 and thresholds stop decreasing in 4" phase, the proposed method get the
best result.

thsd; = thsd; — step; i = 1,2 (@)
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Algorithm 2 Multi-phase learning with threshold decrease
Input:

Video data (including coarse and fine annotations), the number of training phases N
Output:

Trained model

Training:
For j=0; j<=N; j++ do
1. Train the model on the training set (initially fully labeled) until convergence, and
record the model's accuracy.
2. Perform inference on all coarse annotated data using the model.
3. Apply equation (4) to generate pseudo-labels based on the current thresholds.
4. Incorporate all selected positive samples that are not already in the training set.
5. Decrease the thresholds by equation (5).
End for

Testing:
Feed the test dataset into the trained model to obtain test results.

7
fo fc softmax
LSTM | H 8

Fig. 4. The architecture of our classification network

As for the classification network in Fig. 1 and Fig. 3, we find that Long Short-Term
Memory (LSTM) networks can capture the temporal motion features of facial landmarks,
leading to superior classification performance.

4 Experiments

In this section, we train our models on our train dataset (which contains 2436 short
segments) and coarse labeled data (87 videos). We evaluate the proposed method on
our independent test dataset (which contains 833 short segments). For the methods
that use the sequence of facial landmark points as input, we calculate the displacement
between consecutive frames, resulting in a sequence of displacement vectors representing
the motion of facial landmarks. For the methods that use original images as input, we
perform facial segmentation to isolate the face region and apply grayscale normalization
to enhance the consistency of the input data. All models are trained in RTX 3090.
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4.1 Comparisons to Existing Methods

To the best of our knowledge, the field of tic disorder recognition lacks publicly available
datasets, and there is a scarcity of relevant research with no established state-of-the-art
(SOTA) method. Considering this, we conduct experiments using ResNet-3D and 13D,
which are widely adopted methods in the domain of action recognition. We employ
these models to tackle the task of movement disorder recognition, aiming to assess
their performance and suitability. Considering the limited amount of data, we encounter
challenges in evaluating transformer-based methods. For our facial feature extraction
and privacy preservation method, which generates facial landmark points as input, we
explore the performance of traditional machine learning methods.

As shown in Table 1, after face alignment, our method achieves an average AUC
of 95.1%, 1.9% higher than ResNet-3D. The methods that use original images as input
behave poorly even though they have much more parameters. I believe that the insufficient
training data is one of the reasons. Additionally, simple LSTM or MLP models are already
sufficient to capture the features of tic behaviors and our facial feature extraction method
not only preserves privacy but also leads to better classification results.

Table 1. Our facial feature extraction and multi-phase learning based LSTM method vs. current
method for video action detection. The numbers in the table represent AUC (%).

method face eye mouth nose avg

ResNet-3D 94.7 92.9 93.1 92.0 93.2
13D 92.6 88.5 87.9 88.6 89.4
MLP 95.0 934 93.2 90.9 93.1
MLP w/o alignment 93.3 92.0 92.5 90.1 92.0
RF [7, 8] 89.1 88.3 86.6 86.9 87.7
RF w/o alignment 88.0 88.1 85.6 86.7 87.1
LSTM (ours) 97.0 96.2 93.5 93.8 95.1
LSTM w/o alignment 95.7 94.9 92.9 92.8 94.1

For our best method LSTM in Table 1, we conduct complete experiment and find
that while other methods may have higher AUC in the first phase, our method gradually
surpasses them in subsequent stages and converges around four phases, demonstrating
clear advantages compared to one-phase methods (Fig. 5).
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Fig. 5. AUC’s change curve with phase on four binary classification tasks. From left to right,
they are: face, eyes, mouth, nose. Baseline refers to the one-phase method with Top2 selection.
One-phase changes Top2 selection into RPr selection.

4.2 Ablation Study

In this subsection, we evaluate the effect of proposed RPr selection and MPLTD
algorithm. We conduct our experiment on ResNet-3D and LSTM. The results are in
Table 2.

For LSTM, our RPr and MPLTD methods achieve the average AUC of 95.1%, out-
performing baseline by 3%. For ResNet-3D, our method achieves the average AUC of
93.2%, 4.2% higher than baseline. Moreover, we discover that both RPr and MLTD meth-
ods lead to a significant increase in AUC. Through these proposed methods, we leverage
both coarse-labeled and fine-labeled data in a comprehensive manner and achieve a more
robust and effective training process for our model.

Table 2. Quantitive evaluation of our proposed method RPr and MLTD. The effectiveness is
tested both in LSTM and ResNet-3D.

model RPr MPLTD avg. AUC (%)
LSTM 92.1
4 94.3
Vv 93.9
J J 95.1
ResNet-3D 89.0
i 90.5
Vv 92.1
J J 93.2




110 R. Zhang et al.
5 Conclusion

In this work, we proposed a framework for facial feature extraction, suitable for weakly
supervised learning with a limited amount of data and privacy preservation. Furthermore,
based on the characteristics of our data, we introduced the concept of relative probability
(RPr) and developed a multi-phase learning with threshold decrease (MPLTD) algorithm,
achieving higher AUC than baseline. At last, we conducted ablation experiments to
validate the effectiveness of each algorithm and achieved an ideal result. Our high-
accuracy model not only assists doctors in diagnosis but also has the potential to be
applied throughout the entire treatment process. It can be used to monitor and analyze
the recovery and treatment progress of patients, providing guidance on medication and
treatment approaches. In the future, we will continue to explore the tic disorder in limbs
and address the multi-modal problem incorporating speech input.

Acknowledgements. This work was supported by Beijing Natural Science Foundation (M22024).

References

1. Leckman, J.F., Bloch, M.H.: Tic disorders. In: Rutter’s Child and Adolescent Psychiatry,
pp- 757-773 (2015)

2. Cohen, S.C., Leckman, J.F., Bloch, M.H.: Clinical assessment of Tourette syndrome and tic
disorders. Neurosci. Biobehav. Rev. 37(6), 997-1007 (2013)

3. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1-9 (2015)

4. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing

Systems, pp. 5998-6008 (2017)

Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Liaw, A., Wiener, M.: Classification and regression by random forest. R News 2(3), 18-22

(2002)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735-1780
(1997)

10. Bernabei, M., et al.: Automatic detection of tic activity in the Tourette Syndrome. In: 2010
Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 422—
425. IEEE, August 2010

11. Shute, J.B., et al.: Thalamocortical network activity enables chronic tic detection in humans
with Tourette syndrome. Neurolmage Clin. 12, 165-172 (2016)

12. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern
Anal. Mach. Intell. 23(6), 681-685 (2001)

13. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression
trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1867-1874 (2014)

14. Yang, H., Liu, H.: Cascaded regression based landmark localization for robust facial feature
tracking. IEEE Trans. Image Process. 24(8), 2479-2490 (2015)

15. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment prob-
lem? (and a dataset of 230,000 3D facial landmarks). In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 1021-1030 (2017)

®© N oW



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

A Weakly Supervised Learning Method 111

. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in

videos. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and
description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2625-2634(2015)

Wu, Z., Jiang, Y.G., Wang, X., Ye, H., Xue, X.: Multi-stream multi-class fusion of deep
networks for video classification. In: Proceedings of the 24th ACM International Conference
on Multimedia, pp. 791-800, October 2016

Tran, D., Bourdeyv, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features
with 3D convolutional networks. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 4489-4497 (2015)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition (2014). arXiv preprint arXiv:1409.1556

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778
(2016)

Hara, K., Kataoka, H.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and Ima-
geNet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6546-6555 (2018)

Jiang, B., Zhang, L., Zhang, D., Zhang, M., Yang, H., Guo, Y.: T3D: temporal 3D Con-
vNet for real-time action recognition. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 07, pp. 12309-12316 (2020)

Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D resid-
ual networks. In: Proceedings of the IEEE International Conference on Computer Vision,
pp- 5534-5542 (2017)

Pathak, D., Krihenbiihl, P., Darrell, T.: Constrained convolutional neural networks for weakly
supervised segmentation. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 1796-1804 (2015)

Zhang, Z., Xu, J., Yang, L., Xiong, Y.: Deep learning based intervertebral disc segmentation
from weakly labeled training data. J. Med. Syst. 42(6), 100 (2018)

Durand, T., Mordan, T., Thome, N.: Weakly supervised object detection: a survey. Int. J.
Comput. Vision 127(9), 1191-1234 (2019)

Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency
targets improve semi-supervised deep learning results. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

Zhuf, X., GhahramanifH, Z.: Learning from labeled and unlabeled data with label
propagation (2002)

Ma, X., et al.: Dimensionality-driven learning with noisy labels. In: International Conference
on Machine Learning, pp. 3355-3364. PMLR, July 2018

Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep
neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, no.
2, p. 896, June 2013

Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-
ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw.
Learn. Syst. 32(2), 523-534 (2020)

Wang,Z.,Li, Y., Guo, Y., Fang, L., Wang, S.: Data-uncertainty guided multi-phase learning for
semi-supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp.4568—4577 (2021)

Yang, X., Song, Z., King, I., Xu, Z.: A survey on deep semi-supervised learning. IEEE Trans.
Knowl. Data Eng. (2022)


http://arxiv.org/abs/1409.1556

112

35.

36.

R. Zhang et al.

Huynh, T., Nibali, A., He, Z.: Semi-supervised learning for medical image classification using
imbalanced training data. In: Computer Methods and Programs in Biomedicine, p. 106628
(2022)

Zheng, M., You, S., Huang, L., Wang, F., Qian, C., Xu, C.: SimMatch: semi-supervised
learning with similarity matching. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14471-14481 (2022)



	A Weakly Supervised Learning Method for Recognizing Childhood Tic Disorders
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data Description
	3.2 Tic Disorder Recognition Problem Definition
	3.3 Feature Extraction in Facial Data
	3.4 Relative Probability Guided Multi-phase Learning

	4 Experiments
	4.1 Comparisons to Existing Methods
	4.2 Ablation Study

	5 Conclusion
	References


